src/sys/dev/pci/if_vr.c

1738 lines
42 KiB
C
Raw Normal View History

2023-12-05 14:40:24 +01:00
/* $OpenBSD: if_vr.c,v 1.160 2023/12/05 13:43:39 kevlo Exp $ */
/*
* Copyright (c) 1997, 1998
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD: src/sys/pci/if_vr.c,v 1.73 2003/08/22 07:13:22 imp Exp $
*/
/*
* VIA Rhine fast ethernet PCI NIC driver
*
* Supports various network adapters based on the VIA Rhine
* and Rhine II PCI controllers, including the D-Link DFE530TX.
* Datasheets are available at ftp://ftp.vtbridge.org/Docs/LAN/.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The VIA Rhine controllers are similar in some respects to the
* the DEC tulip chips, except less complicated. The controller
* uses an MII bus and an external physical layer interface. The
* receiver has a one entry perfect filter and a 64-bit hash table
* multicast filter. Transmit and receive descriptors are similar
* to the tulip.
*
* Early Rhine has a serious flaw in its transmit DMA mechanism:
* transmit buffers must be longword aligned. Unfortunately,
* OpenBSD doesn't guarantee that mbufs will be filled in starting
* at longword boundaries, so we have to do a buffer copy before
* transmission.
*/
#include "bpfilter.h"
#include "vlan.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/timeout.h>
#include <sys/socket.h>
#include <net/if.h>
#include <sys/device.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net/if_media.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <machine/bus.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#define VR_USEIOSPACE
#include <dev/pci/if_vrreg.h>
int vr_probe(struct device *, void *, void *);
int vr_quirks(struct pci_attach_args *);
void vr_attach(struct device *, struct device *, void *);
int vr_activate(struct device *, int);
const struct cfattach vr_ca = {
sizeof(struct vr_softc), vr_probe, vr_attach, NULL,
vr_activate
};
struct cfdriver vr_cd = {
NULL, "vr", DV_IFNET
};
int vr_encap(struct vr_softc *, struct vr_chain **, struct mbuf *);
void vr_rxeof(struct vr_softc *);
void vr_rxeoc(struct vr_softc *);
void vr_txeof(struct vr_softc *);
void vr_tick(void *);
void vr_rxtick(void *);
int vr_intr(void *);
int vr_dmamem_alloc(struct vr_softc *, struct vr_dmamem *,
bus_size_t, u_int);
void vr_dmamem_free(struct vr_softc *, struct vr_dmamem *);
void vr_start(struct ifnet *);
int vr_ioctl(struct ifnet *, u_long, caddr_t);
void vr_chipinit(struct vr_softc *);
void vr_init(void *);
void vr_stop(struct vr_softc *);
void vr_watchdog(struct ifnet *);
int vr_ifmedia_upd(struct ifnet *);
void vr_ifmedia_sts(struct ifnet *, struct ifmediareq *);
int vr_mii_readreg(struct vr_softc *, struct vr_mii_frame *);
int vr_mii_writereg(struct vr_softc *, struct vr_mii_frame *);
int vr_miibus_readreg(struct device *, int, int);
void vr_miibus_writereg(struct device *, int, int, int);
void vr_miibus_statchg(struct device *);
void vr_setcfg(struct vr_softc *, uint64_t);
void vr_iff(struct vr_softc *);
void vr_reset(struct vr_softc *);
int vr_list_rx_init(struct vr_softc *);
void vr_fill_rx_ring(struct vr_softc *);
int vr_list_tx_init(struct vr_softc *);
#ifndef SMALL_KERNEL
int vr_wol(struct ifnet *, int);
#endif
int vr_alloc_mbuf(struct vr_softc *, struct vr_chain_onefrag *);
/*
* Supported devices & quirks
*/
#define VR_Q_NEEDALIGN (1<<0)
#define VR_Q_CSUM (1<<1)
#define VR_Q_CAM (1<<2)
#define VR_Q_HWTAG (1<<3)
#define VR_Q_INTDISABLE (1<<4)
#define VR_Q_BABYJUMBO (1<<5) /* others may work too */
struct vr_type {
pci_vendor_id_t vr_vid;
pci_product_id_t vr_pid;
int vr_quirks;
} vr_devices[] = {
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_RHINE,
VR_Q_NEEDALIGN },
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_RHINEII,
VR_Q_NEEDALIGN },
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_RHINEII_2,
VR_Q_BABYJUMBO },
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105,
VR_Q_BABYJUMBO },
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M,
VR_Q_CSUM | VR_Q_CAM | VR_Q_HWTAG | VR_Q_INTDISABLE |
VR_Q_BABYJUMBO },
{ PCI_VENDOR_DELTA, PCI_PRODUCT_DELTA_RHINEII,
VR_Q_NEEDALIGN },
{ PCI_VENDOR_ADDTRON, PCI_PRODUCT_ADDTRON_RHINEII,
VR_Q_NEEDALIGN }
};
#define VR_SETBIT(sc, reg, x) \
CSR_WRITE_1(sc, reg, \
CSR_READ_1(sc, reg) | (x))
#define VR_CLRBIT(sc, reg, x) \
CSR_WRITE_1(sc, reg, \
CSR_READ_1(sc, reg) & ~(x))
#define VR_SETBIT16(sc, reg, x) \
CSR_WRITE_2(sc, reg, \
CSR_READ_2(sc, reg) | (x))
#define VR_CLRBIT16(sc, reg, x) \
CSR_WRITE_2(sc, reg, \
CSR_READ_2(sc, reg) & ~(x))
#define VR_SETBIT32(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) | (x))
#define VR_CLRBIT32(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) & ~(x))
#define SIO_SET(x) \
CSR_WRITE_1(sc, VR_MIICMD, \
CSR_READ_1(sc, VR_MIICMD) | (x))
#define SIO_CLR(x) \
CSR_WRITE_1(sc, VR_MIICMD, \
CSR_READ_1(sc, VR_MIICMD) & ~(x))
/*
* Read an PHY register through the MII.
*/
int
vr_mii_readreg(struct vr_softc *sc, struct vr_mii_frame *frame)
{
int s, i;
s = splnet();
/* Set the PHY-address */
CSR_WRITE_1(sc, VR_PHYADDR, (CSR_READ_1(sc, VR_PHYADDR)& 0xe0)|
frame->mii_phyaddr);
/* Set the register-address */
CSR_WRITE_1(sc, VR_MIIADDR, frame->mii_regaddr);
VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_READ_ENB);
for (i = 0; i < 10000; i++) {
if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_READ_ENB) == 0)
break;
DELAY(1);
}
frame->mii_data = CSR_READ_2(sc, VR_MIIDATA);
splx(s);
return(0);
}
/*
* Write to a PHY register through the MII.
*/
int
vr_mii_writereg(struct vr_softc *sc, struct vr_mii_frame *frame)
{
int s, i;
s = splnet();
/* Set the PHY-address */
CSR_WRITE_1(sc, VR_PHYADDR, (CSR_READ_1(sc, VR_PHYADDR)& 0xe0)|
frame->mii_phyaddr);
/* Set the register-address and data to write */
CSR_WRITE_1(sc, VR_MIIADDR, frame->mii_regaddr);
CSR_WRITE_2(sc, VR_MIIDATA, frame->mii_data);
VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_WRITE_ENB);
for (i = 0; i < 10000; i++) {
if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_WRITE_ENB) == 0)
break;
DELAY(1);
}
splx(s);
return(0);
}
int
vr_miibus_readreg(struct device *dev, int phy, int reg)
{
struct vr_softc *sc = (struct vr_softc *)dev;
struct vr_mii_frame frame;
switch (sc->vr_revid) {
case REV_ID_VT6102_APOLLO:
case REV_ID_VT6103:
if (phy != 1)
return 0;
default:
break;
}
bzero(&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
vr_mii_readreg(sc, &frame);
return(frame.mii_data);
}
void
vr_miibus_writereg(struct device *dev, int phy, int reg, int data)
{
struct vr_softc *sc = (struct vr_softc *)dev;
struct vr_mii_frame frame;
switch (sc->vr_revid) {
case REV_ID_VT6102_APOLLO:
case REV_ID_VT6103:
if (phy != 1)
return;
default:
break;
}
bzero(&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
frame.mii_data = data;
vr_mii_writereg(sc, &frame);
}
void
vr_miibus_statchg(struct device *dev)
{
struct vr_softc *sc = (struct vr_softc *)dev;
vr_setcfg(sc, sc->sc_mii.mii_media_active);
}
void
vr_iff(struct vr_softc *sc)
{
struct arpcom *ac = &sc->arpcom;
struct ifnet *ifp = &sc->arpcom.ac_if;
int h = 0;
u_int32_t hashes[2];
struct ether_multi *enm;
struct ether_multistep step;
u_int8_t rxfilt;
rxfilt = CSR_READ_1(sc, VR_RXCFG);
rxfilt &= ~(VR_RXCFG_RX_BROAD | VR_RXCFG_RX_MULTI |
VR_RXCFG_RX_PROMISC);
ifp->if_flags &= ~IFF_ALLMULTI;
/*
* Always accept broadcast frames.
*/
rxfilt |= VR_RXCFG_RX_BROAD;
if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
ifp->if_flags |= IFF_ALLMULTI;
rxfilt |= VR_RXCFG_RX_MULTI;
if (ifp->if_flags & IFF_PROMISC)
rxfilt |= VR_RXCFG_RX_PROMISC;
hashes[0] = hashes[1] = 0xFFFFFFFF;
} else {
/* Program new filter. */
rxfilt |= VR_RXCFG_RX_MULTI;
bzero(hashes, sizeof(hashes));
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
h = ether_crc32_be(enm->enm_addrlo,
ETHER_ADDR_LEN) >> 26;
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
ETHER_NEXT_MULTI(step, enm);
}
}
CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
}
/*
* In order to fiddle with the
* 'full-duplex' and '100Mbps' bits in the netconfig register, we
* first have to put the transmit and/or receive logic in the idle state.
*/
void
vr_setcfg(struct vr_softc *sc, uint64_t media)
{
int i;
if (sc->sc_mii.mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE) {
sc->vr_link = 1;
if (CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON|VR_CMD_RX_ON))
VR_CLRBIT16(sc, VR_COMMAND,
(VR_CMD_TX_ON|VR_CMD_RX_ON));
if ((media & IFM_GMASK) == IFM_FDX)
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
else
VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
} else {
sc->vr_link = 0;
VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
for (i = VR_TIMEOUT; i > 0; i--) {
DELAY(10);
if (!(CSR_READ_2(sc, VR_COMMAND) &
(VR_CMD_TX_ON|VR_CMD_RX_ON)))
break;
}
if (i == 0) {
#ifdef VR_DEBUG
printf("%s: rx shutdown error!\n", sc->sc_dev.dv_xname);
#endif
sc->vr_flags |= VR_F_RESTART;
}
}
}
void
vr_reset(struct vr_softc *sc)
{
int i;
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
for (i = 0; i < VR_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
break;
}
if (i == VR_TIMEOUT) {
if (sc->vr_revid < REV_ID_VT3065_A)
printf("%s: reset never completed!\n",
sc->sc_dev.dv_xname);
else {
#ifdef VR_DEBUG
/* Use newer force reset command */
printf("%s: Using force reset command.\n",
sc->sc_dev.dv_xname);
#endif
VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST);
}
}
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
}
/*
* Probe for a VIA Rhine chip.
*/
int
vr_probe(struct device *parent, void *match, void *aux)
{
const struct vr_type *vr;
struct pci_attach_args *pa = (struct pci_attach_args *)aux;
int i, nent = nitems(vr_devices);
for (i = 0, vr = vr_devices; i < nent; i++, vr++)
if (PCI_VENDOR(pa->pa_id) == vr->vr_vid &&
PCI_PRODUCT(pa->pa_id) == vr->vr_pid)
return(1);
return(0);
}
int
vr_quirks(struct pci_attach_args *pa)
{
const struct vr_type *vr;
int i, nent = nitems(vr_devices);
for (i = 0, vr = vr_devices; i < nent; i++, vr++)
if (PCI_VENDOR(pa->pa_id) == vr->vr_vid &&
PCI_PRODUCT(pa->pa_id) == vr->vr_pid)
return(vr->vr_quirks);
return(0);
}
int
vr_dmamem_alloc(struct vr_softc *sc, struct vr_dmamem *vrm,
bus_size_t size, u_int align)
{
vrm->vrm_size = size;
if (bus_dmamap_create(sc->sc_dmat, vrm->vrm_size, 1,
vrm->vrm_size, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
&vrm->vrm_map) != 0)
return (1);
if (bus_dmamem_alloc(sc->sc_dmat, vrm->vrm_size,
align, 0, &vrm->vrm_seg, 1, &vrm->vrm_nsegs,
BUS_DMA_WAITOK | BUS_DMA_ZERO) != 0)
goto destroy;
if (bus_dmamem_map(sc->sc_dmat, &vrm->vrm_seg, vrm->vrm_nsegs,
vrm->vrm_size, &vrm->vrm_kva, BUS_DMA_WAITOK) != 0)
goto free;
if (bus_dmamap_load(sc->sc_dmat, vrm->vrm_map, vrm->vrm_kva,
vrm->vrm_size, NULL, BUS_DMA_WAITOK) != 0)
goto unmap;
return (0);
unmap:
bus_dmamem_unmap(sc->sc_dmat, vrm->vrm_kva, vrm->vrm_size);
free:
bus_dmamem_free(sc->sc_dmat, &vrm->vrm_seg, 1);
destroy:
bus_dmamap_destroy(sc->sc_dmat, vrm->vrm_map);
return (1);
}
void
vr_dmamem_free(struct vr_softc *sc, struct vr_dmamem *vrm)
{
bus_dmamap_unload(sc->sc_dmat, vrm->vrm_map);
bus_dmamem_unmap(sc->sc_dmat, vrm->vrm_kva, vrm->vrm_size);
bus_dmamem_free(sc->sc_dmat, &vrm->vrm_seg, 1);
bus_dmamap_destroy(sc->sc_dmat, vrm->vrm_map);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
void
vr_attach(struct device *parent, struct device *self, void *aux)
{
int i;
struct vr_softc *sc = (struct vr_softc *)self;
struct pci_attach_args *pa = aux;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr = NULL;
struct ifnet *ifp = &sc->arpcom.ac_if;
bus_size_t size;
pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
/*
* Map control/status registers.
*/
#ifdef VR_USEIOSPACE
if (pci_mapreg_map(pa, VR_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
&sc->vr_btag, &sc->vr_bhandle, NULL, &size, 0)) {
printf(": can't map i/o space\n");
return;
}
#else
if (pci_mapreg_map(pa, VR_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
&sc->vr_btag, &sc->vr_bhandle, NULL, &size, 0)) {
printf(": can't map mem space\n");
return;
}
#endif
/* Allocate interrupt */
if (pci_intr_map(pa, &ih)) {
printf(": can't map interrupt\n");
goto fail;
}
intrstr = pci_intr_string(pc, ih);
sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, vr_intr, sc,
self->dv_xname);
if (sc->sc_ih == NULL) {
printf(": can't establish interrupt");
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
goto fail;
}
printf(": %s", intrstr);
sc->vr_revid = PCI_REVISION(pa->pa_class);
sc->sc_pc = pa->pa_pc;
sc->sc_tag = pa->pa_tag;
vr_chipinit(sc);
/*
* Get station address. The way the Rhine chips work,
* you're not allowed to directly access the EEPROM once
* they've been programmed a special way. Consequently,
* we need to read the node address from the PAR0 and PAR1
* registers.
*/
VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
DELAY(1000);
for (i = 0; i < ETHER_ADDR_LEN; i++)
sc->arpcom.ac_enaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
/*
* A Rhine chip was detected. Inform the world.
*/
printf(", address %s\n", ether_sprintf(sc->arpcom.ac_enaddr));
sc->sc_dmat = pa->pa_dmat;
if (vr_dmamem_alloc(sc, &sc->sc_zeromap, 64, PAGE_SIZE) != 0) {
printf(": failed to allocate zero pad memory\n");
return;
}
bzero(sc->sc_zeromap.vrm_kva, 64);
bus_dmamap_sync(sc->sc_dmat, sc->sc_zeromap.vrm_map, 0,
sc->sc_zeromap.vrm_map->dm_mapsize, BUS_DMASYNC_PREREAD);
if (vr_dmamem_alloc(sc, &sc->sc_listmap, sizeof(struct vr_list_data),
PAGE_SIZE) != 0) {
printf(": failed to allocate dma map\n");
goto free_zero;
}
sc->vr_ldata = (struct vr_list_data *)sc->sc_listmap.vrm_kva;
sc->vr_quirks = vr_quirks(pa);
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = vr_ioctl;
ifp->if_start = vr_start;
ifp->if_watchdog = vr_watchdog;
if (sc->vr_quirks & VR_Q_BABYJUMBO)
ifp->if_hardmtu = VR_RXLEN_BABYJUMBO -
ETHER_HDR_LEN - ETHER_CRC_LEN;
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
ifp->if_capabilities = IFCAP_VLAN_MTU;
if (sc->vr_quirks & VR_Q_CSUM)
ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
IFCAP_CSUM_UDPv4;
#if NVLAN > 0
/* if the hardware can do VLAN tagging, say so. */
if (sc->vr_quirks & VR_Q_HWTAG)
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
#endif
#ifndef SMALL_KERNEL
if (sc->vr_revid >= REV_ID_VT3065_A) {
ifp->if_capabilities |= IFCAP_WOL;
ifp->if_wol = vr_wol;
vr_wol(ifp, 0);
}
#endif
/*
* Do MII setup.
*/
sc->sc_mii.mii_ifp = ifp;
sc->sc_mii.mii_readreg = vr_miibus_readreg;
sc->sc_mii.mii_writereg = vr_miibus_writereg;
sc->sc_mii.mii_statchg = vr_miibus_statchg;
ifmedia_init(&sc->sc_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY,
0);
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
} else
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
timeout_set(&sc->sc_to, vr_tick, sc);
timeout_set(&sc->sc_rxto, vr_rxtick, sc);
/*
* Call MI attach routines.
*/
if_attach(ifp);
ether_ifattach(ifp);
return;
free_zero:
bus_dmamap_sync(sc->sc_dmat, sc->sc_zeromap.vrm_map, 0,
sc->sc_zeromap.vrm_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
vr_dmamem_free(sc, &sc->sc_zeromap);
fail:
bus_space_unmap(sc->vr_btag, sc->vr_bhandle, size);
}
int
vr_activate(struct device *self, int act)
{
struct vr_softc *sc = (struct vr_softc *)self;
struct ifnet *ifp = &sc->arpcom.ac_if;
int rv = 0;
switch (act) {
case DVACT_SUSPEND:
if (ifp->if_flags & IFF_RUNNING)
vr_stop(sc);
rv = config_activate_children(self, act);
break;
case DVACT_RESUME:
if (ifp->if_flags & IFF_UP)
vr_init(sc);
break;
default:
rv = config_activate_children(self, act);
break;
}
return (rv);
}
/*
* Initialize the transmit descriptors.
*/
int
vr_list_tx_init(struct vr_softc *sc)
{
struct vr_chain_data *cd;
struct vr_list_data *ld;
int i;
cd = &sc->vr_cdata;
ld = sc->vr_ldata;
cd->vr_tx_cnt = cd->vr_tx_pkts = 0;
for (i = 0; i < VR_TX_LIST_CNT; i++) {
cd->vr_tx_chain[i].vr_ptr = &ld->vr_tx_list[i];
cd->vr_tx_chain[i].vr_paddr =
sc->sc_listmap.vrm_map->dm_segs[0].ds_addr +
offsetof(struct vr_list_data, vr_tx_list[i]);
if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, VR_MAXFRAGS,
MCLBYTES, 0, BUS_DMA_NOWAIT, &cd->vr_tx_chain[i].vr_map))
return (ENOBUFS);
if (i == (VR_TX_LIST_CNT - 1))
cd->vr_tx_chain[i].vr_nextdesc =
&cd->vr_tx_chain[0];
else
cd->vr_tx_chain[i].vr_nextdesc =
&cd->vr_tx_chain[i + 1];
}
cd->vr_tx_cons = cd->vr_tx_prod = &cd->vr_tx_chain[0];
return (0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
int
vr_list_rx_init(struct vr_softc *sc)
{
struct vr_chain_data *cd;
struct vr_list_data *ld;
struct vr_desc *d;
int i, nexti;
cd = &sc->vr_cdata;
ld = sc->vr_ldata;
for (i = 0; i < VR_RX_LIST_CNT; i++) {
if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
0, BUS_DMA_NOWAIT | BUS_DMA_READ,
&cd->vr_rx_chain[i].vr_map))
return (ENOBUFS);
d = (struct vr_desc *)&ld->vr_rx_list[i];
cd->vr_rx_chain[i].vr_ptr = d;
cd->vr_rx_chain[i].vr_paddr =
sc->sc_listmap.vrm_map->dm_segs[0].ds_addr +
offsetof(struct vr_list_data, vr_rx_list[i]);
if (i == (VR_RX_LIST_CNT - 1))
nexti = 0;
else
nexti = i + 1;
cd->vr_rx_chain[i].vr_nextdesc = &cd->vr_rx_chain[nexti];
ld->vr_rx_list[i].vr_next =
htole32(sc->sc_listmap.vrm_map->dm_segs[0].ds_addr +
offsetof(struct vr_list_data, vr_rx_list[nexti]));
}
cd->vr_rx_prod = cd->vr_rx_cons = &cd->vr_rx_chain[0];
if_rxr_init(&sc->sc_rxring, 2, VR_RX_LIST_CNT - 1);
vr_fill_rx_ring(sc);
return (0);
}
void
vr_fill_rx_ring(struct vr_softc *sc)
{
struct vr_chain_data *cd;
struct vr_list_data *ld;
u_int slots;
cd = &sc->vr_cdata;
ld = sc->vr_ldata;
for (slots = if_rxr_get(&sc->sc_rxring, VR_RX_LIST_CNT);
slots > 0; slots--) {
if (vr_alloc_mbuf(sc, cd->vr_rx_prod))
break;
cd->vr_rx_prod = cd->vr_rx_prod->vr_nextdesc;
}
if_rxr_put(&sc->sc_rxring, slots);
if (if_rxr_inuse(&sc->sc_rxring) == 0)
timeout_add(&sc->sc_rxto, 0);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
void
vr_rxeof(struct vr_softc *sc)
{
struct mbuf *m;
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
struct ifnet *ifp;
struct vr_chain_onefrag *cur_rx;
int total_len = 0;
u_int32_t rxstat, rxctl;
ifp = &sc->arpcom.ac_if;
while (if_rxr_inuse(&sc->sc_rxring) > 0) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap.vrm_map,
0, sc->sc_listmap.vrm_map->dm_mapsize,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
rxstat = letoh32(sc->vr_cdata.vr_rx_cons->vr_ptr->vr_status);
if (rxstat & VR_RXSTAT_OWN)
break;
rxctl = letoh32(sc->vr_cdata.vr_rx_cons->vr_ptr->vr_ctl);
cur_rx = sc->vr_cdata.vr_rx_cons;
m = cur_rx->vr_mbuf;
cur_rx->vr_mbuf = NULL;
sc->vr_cdata.vr_rx_cons = cur_rx->vr_nextdesc;
if_rxr_put(&sc->sc_rxring, 1);
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring.
*/
if ((rxstat & VR_RXSTAT_RX_OK) == 0) {
ifp->if_ierrors++;
#ifdef VR_DEBUG
printf("%s: rx error (%02x):",
sc->sc_dev.dv_xname, rxstat & 0x000000ff);
if (rxstat & VR_RXSTAT_CRCERR)
printf(" crc error");
if (rxstat & VR_RXSTAT_FRAMEALIGNERR)
printf(" frame alignment error");
if (rxstat & VR_RXSTAT_FIFOOFLOW)
printf(" FIFO overflow");
if (rxstat & VR_RXSTAT_GIANT)
printf(" received giant packet");
if (rxstat & VR_RXSTAT_RUNT)
printf(" received runt packet");
if (rxstat & VR_RXSTAT_BUSERR)
printf(" system bus error");
if (rxstat & VR_RXSTAT_BUFFERR)
printf(" rx buffer error");
printf("\n");
#endif
m_freem(m);
continue;
}
/* No errors; receive the packet. */
total_len = VR_RXBYTES(letoh32(cur_rx->vr_ptr->vr_status));
bus_dmamap_sync(sc->sc_dmat, cur_rx->vr_map, 0,
cur_rx->vr_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, cur_rx->vr_map);
/*
* The VIA Rhine chip includes the CRC with every
* received frame, and there's no way to turn this
* behavior off so trim the CRC manually.
*/
total_len -= ETHER_CRC_LEN;
#ifdef __STRICT_ALIGNMENT
{
struct mbuf *m0;
m0 = m_devget(mtod(m, caddr_t), total_len, ETHER_ALIGN);
m_freem(m);
if (m0 == NULL) {
ifp->if_ierrors++;
continue;
}
m = m0;
2023-09-26 21:52:17 +02:00
}
#else
m->m_pkthdr.len = m->m_len = total_len;
#endif
if (sc->vr_quirks & VR_Q_CSUM &&
(rxstat & VR_RXSTAT_FRAG) == 0 &&
(rxctl & VR_RXCTL_IP) != 0) {
/* Checksum is valid for non-fragmented IP packets. */
if ((rxctl & VR_RXCTL_IPOK) == VR_RXCTL_IPOK)
m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
if (rxctl & (VR_RXCTL_TCP | VR_RXCTL_UDP) &&
((rxctl & VR_RXCTL_TCPUDPOK) != 0))
m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK |
M_UDP_CSUM_IN_OK;
}
#if NVLAN > 0
/*
* If there's a tagged packet, the 802.1q header will be at the
* 4-byte boundary following the CRC. There will be 2 bytes
* TPID (0x8100) and 2 bytes TCI (including VLAN ID).
* This isn't in the data sheet.
*/
if (rxctl & VR_RXCTL_TAG) {
int offset = ((total_len + 3) & ~3) + ETHER_CRC_LEN + 2;
m->m_pkthdr.ether_vtag = htons(*(u_int16_t *)
((u_int8_t *)m->m_data + offset));
m->m_flags |= M_VLANTAG;
}
#endif
ml_enqueue(&ml, m);
}
if (ifiq_input(&ifp->if_rcv, &ml))
if_rxr_livelocked(&sc->sc_rxring);
vr_fill_rx_ring(sc);
bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap.vrm_map,
0, sc->sc_listmap.vrm_map->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
void
vr_rxeoc(struct vr_softc *sc)
{
struct ifnet *ifp;
int i;
ifp = &sc->arpcom.ac_if;
ifp->if_ierrors++;
VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
DELAY(10000);
for (i = 0x400;
i && (CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON);
i--)
; /* Wait for receiver to stop */
if (!i) {
printf("%s: rx shutdown error!\n", sc->sc_dev.dv_xname);
sc->vr_flags |= VR_F_RESTART;
return;
}
vr_rxeof(sc);
CSR_WRITE_4(sc, VR_RXADDR, sc->vr_cdata.vr_rx_cons->vr_paddr);
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
void
vr_txeof(struct vr_softc *sc)
{
struct vr_chain *cur_tx;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
cur_tx = sc->vr_cdata.vr_tx_cons;
while (cur_tx != sc->vr_cdata.vr_tx_prod) {
u_int32_t txstat, txctl;
int i;
txstat = letoh32(cur_tx->vr_ptr->vr_status);
txctl = letoh32(cur_tx->vr_ptr->vr_ctl);
if ((txstat & VR_TXSTAT_ABRT) ||
(txstat & VR_TXSTAT_UDF)) {
for (i = 0x400;
i && (CSR_READ_2(sc, VR_COMMAND) & VR_CMD_TX_ON);
i--)
; /* Wait for chip to shutdown */
if (!i) {
printf("%s: tx shutdown timeout\n",
sc->sc_dev.dv_xname);
sc->vr_flags |= VR_F_RESTART;
break;
}
cur_tx->vr_ptr->vr_status = htole32(VR_TXSTAT_OWN);
CSR_WRITE_4(sc, VR_TXADDR, cur_tx->vr_paddr);
break;
}
if (txstat & VR_TXSTAT_OWN)
break;
sc->vr_cdata.vr_tx_cnt--;
/* Only the first descriptor in the chain is valid. */
if ((txctl & VR_TXCTL_FIRSTFRAG) == 0)
goto next;
if (txstat & VR_TXSTAT_ERRSUM) {
ifp->if_oerrors++;
if (txstat & VR_TXSTAT_DEFER)
ifp->if_collisions++;
if (txstat & VR_TXSTAT_LATECOLL)
ifp->if_collisions++;
}
ifp->if_collisions +=(txstat & VR_TXSTAT_COLLCNT) >> 3;
if (cur_tx->vr_map != NULL && cur_tx->vr_map->dm_nsegs > 0)
bus_dmamap_unload(sc->sc_dmat, cur_tx->vr_map);
m_freem(cur_tx->vr_mbuf);
cur_tx->vr_mbuf = NULL;
ifq_clr_oactive(&ifp->if_snd);
next:
cur_tx = cur_tx->vr_nextdesc;
}
sc->vr_cdata.vr_tx_cons = cur_tx;
if (sc->vr_cdata.vr_tx_cnt == 0)
ifp->if_timer = 0;
}
void
vr_tick(void *xsc)
{
struct vr_softc *sc = xsc;
int s;
s = splnet();
if (sc->vr_flags & VR_F_RESTART) {
printf("%s: restarting\n", sc->sc_dev.dv_xname);
vr_init(sc);
sc->vr_flags &= ~VR_F_RESTART;
}
mii_tick(&sc->sc_mii);
timeout_add_sec(&sc->sc_to, 1);
splx(s);
}
void
vr_rxtick(void *xsc)
{
struct vr_softc *sc = xsc;
int s;
s = splnet();
if (if_rxr_inuse(&sc->sc_rxring) == 0) {
vr_fill_rx_ring(sc);
if (if_rxr_inuse(&sc->sc_rxring) == 0)
timeout_add(&sc->sc_rxto, 1);
}
splx(s);
}
int
vr_intr(void *arg)
{
struct vr_softc *sc;
struct ifnet *ifp;
u_int16_t status;
int claimed = 0;
sc = arg;
ifp = &sc->arpcom.ac_if;
/* Suppress unwanted interrupts. */
if (!(ifp->if_flags & IFF_UP)) {
vr_stop(sc);
return 0;
}
status = CSR_READ_2(sc, VR_ISR);
if (status)
CSR_WRITE_2(sc, VR_ISR, status);
if (status & VR_INTRS) {
claimed = 1;
if (status & VR_ISR_RX_OK)
vr_rxeof(sc);
if (status & VR_ISR_RX_DROPPED) {
#ifdef VR_DEBUG
printf("%s: rx packet lost\n", sc->sc_dev.dv_xname);
#endif
ifp->if_ierrors++;
}
if ((status & VR_ISR_RX_ERR) || (status & VR_ISR_RX_NOBUF) ||
(status & VR_ISR_RX_OFLOW)) {
#ifdef VR_DEBUG
printf("%s: receive error (%04x)",
sc->sc_dev.dv_xname, status);
if (status & VR_ISR_RX_NOBUF)
printf(" no buffers");
if (status & VR_ISR_RX_OFLOW)
printf(" overflow");
printf("\n");
#endif
vr_rxeoc(sc);
}
if ((status & VR_ISR_BUSERR) || (status & VR_ISR_TX_UNDERRUN)) {
if (status & VR_ISR_BUSERR)
printf("%s: PCI bus error\n",
sc->sc_dev.dv_xname);
if (status & VR_ISR_TX_UNDERRUN)
printf("%s: transmit underrun\n",
sc->sc_dev.dv_xname);
vr_init(sc);
status = 0;
}
if ((status & VR_ISR_TX_OK) || (status & VR_ISR_TX_ABRT) ||
(status & VR_ISR_TX_ABRT2) || (status & VR_ISR_UDFI)) {
vr_txeof(sc);
if ((status & VR_ISR_UDFI) ||
(status & VR_ISR_TX_ABRT2) ||
(status & VR_ISR_TX_ABRT)) {
#ifdef VR_DEBUG
if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2))
printf("%s: transmit aborted\n",
sc->sc_dev.dv_xname);
if (status & VR_ISR_UDFI)
printf("%s: transmit underflow\n",
sc->sc_dev.dv_xname);
#endif
ifp->if_oerrors++;
if (sc->vr_cdata.vr_tx_cons->vr_mbuf != NULL) {
VR_SETBIT16(sc, VR_COMMAND,
VR_CMD_TX_ON);
VR_SETBIT16(sc, VR_COMMAND,
VR_CMD_TX_GO);
}
}
}
}
if (!ifq_empty(&ifp->if_snd))
vr_start(ifp);
return (claimed);
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
int
vr_encap(struct vr_softc *sc, struct vr_chain **cp, struct mbuf *m)
{
struct vr_chain *c = *cp;
struct vr_desc *f = NULL;
u_int32_t vr_ctl = 0, vr_status = 0, intdisable = 0;
bus_dmamap_t txmap;
int i, runt = 0;
int error;
if (sc->vr_quirks & VR_Q_CSUM) {
if (m->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
vr_ctl |= VR_TXCTL_IPCSUM;
if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
vr_ctl |= VR_TXCTL_TCPCSUM;
if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
vr_ctl |= VR_TXCTL_UDPCSUM;
}
if (sc->vr_quirks & VR_Q_NEEDALIGN) {
/* Deep copy for chips that need alignment */
error = EFBIG;
} else {
error = bus_dmamap_load_mbuf(sc->sc_dmat, c->vr_map, m,
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
}
switch (error) {
case 0:
break;
case EFBIG:
if (m_defrag(m, M_DONTWAIT) == 0 &&
bus_dmamap_load_mbuf(sc->sc_dmat, c->vr_map, m,
BUS_DMA_NOWAIT) == 0)
break;
/* FALLTHROUGH */
default:
return (ENOBUFS);
}
bus_dmamap_sync(sc->sc_dmat, c->vr_map, 0, c->vr_map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
if (c->vr_map->dm_mapsize < VR_MIN_FRAMELEN)
runt = 1;
#if NVLAN > 0
/*
* Tell chip to insert VLAN tag if needed.
* This chip expects the VLAN ID (0x0FFF) and the PCP (0xE000)
* in only 15 bits without the gap at 0x1000 (reserved for DEI).
* Therefore we need to de- / re-construct the VLAN header.
*/
if (m->m_flags & M_VLANTAG) {
u_int32_t vtag = m->m_pkthdr.ether_vtag;
vtag = EVL_VLANOFTAG(vtag) | EVL_PRIOFTAG(vtag) << 12;
vr_status |= vtag << VR_TXSTAT_PQSHIFT;
vr_ctl |= htole32(VR_TXCTL_INSERTTAG);
}
#endif
/*
* We only want TX completion interrupts on every Nth packet.
* We need to set VR_TXNEXT_INTDISABLE on every descriptor except
* for the last descriptor of every Nth packet, where we set
* VR_TXCTL_FINT. The former is in the specs for only some chips.
* present: VT6102 VT6105M VT8235M
* not present: VT86C100 6105LOM
*/
if (++sc->vr_cdata.vr_tx_pkts % VR_TX_INTR_THRESH != 0 &&
sc->vr_quirks & VR_Q_INTDISABLE)
intdisable = VR_TXNEXT_INTDISABLE;
c->vr_mbuf = m;
txmap = c->vr_map;
for (i = 0; i < txmap->dm_nsegs; i++) {
if (i != 0)
*cp = c = c->vr_nextdesc;
f = c->vr_ptr;
f->vr_ctl = htole32(txmap->dm_segs[i].ds_len | VR_TXCTL_TLINK |
vr_ctl);
if (i == 0)
f->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG);
f->vr_status = htole32(vr_status);
f->vr_data = htole32(txmap->dm_segs[i].ds_addr);
f->vr_next = htole32(c->vr_nextdesc->vr_paddr | intdisable);
sc->vr_cdata.vr_tx_cnt++;
}
/* Pad runt frames */
if (runt) {
*cp = c = c->vr_nextdesc;
f = c->vr_ptr;
f->vr_ctl = htole32((VR_MIN_FRAMELEN - txmap->dm_mapsize) |
VR_TXCTL_TLINK | vr_ctl);
f->vr_status = htole32(vr_status);
f->vr_data = htole32(sc->sc_zeromap.vrm_map->dm_segs[0].ds_addr);
f->vr_next = htole32(c->vr_nextdesc->vr_paddr | intdisable);
sc->vr_cdata.vr_tx_cnt++;
}
/* Set EOP on the last descriptor */
f->vr_ctl |= htole32(VR_TXCTL_LASTFRAG);
if (sc->vr_cdata.vr_tx_pkts % VR_TX_INTR_THRESH == 0)
f->vr_ctl |= htole32(VR_TXCTL_FINT);
return (0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
void
vr_start(struct ifnet *ifp)
{
struct vr_softc *sc;
struct mbuf *m;
struct vr_chain *cur_tx, *head_tx;
unsigned int queued = 0;
sc = ifp->if_softc;
if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
return;
if (sc->vr_link == 0)
return;
cur_tx = sc->vr_cdata.vr_tx_prod;
for (;;) {
if (sc->vr_cdata.vr_tx_cnt + VR_MAXFRAGS >=
VR_TX_LIST_CNT - 1) {
ifq_set_oactive(&ifp->if_snd);
break;
}
m = ifq_dequeue(&ifp->if_snd);
if (m == NULL)
break;
/* Pack the data into the descriptor. */
head_tx = cur_tx;
if (vr_encap(sc, &cur_tx, m)) {
m_freem(m);
ifp->if_oerrors++;
continue;
}
queued++;
/* Only set ownership bit on first descriptor */
head_tx->vr_ptr->vr_status |= htole32(VR_TXSTAT_OWN);
#if NBPFILTER > 0
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_OUT);
#endif
cur_tx = cur_tx->vr_nextdesc;
}
if (queued > 0) {
sc->vr_cdata.vr_tx_prod = cur_tx;
bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap.vrm_map, 0,
sc->sc_listmap.vrm_map->dm_mapsize,
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
/* Tell the chip to start transmitting. */
VR_SETBIT16(sc, VR_COMMAND, /*VR_CMD_TX_ON|*/VR_CMD_TX_GO);
/* Set a timeout in case the chip goes out to lunch. */
ifp->if_timer = 5;
}
}
void
vr_chipinit(struct vr_softc *sc)
{
/*
* Make sure it isn't suspended.
*/
if (pci_get_capability(sc->sc_pc, sc->sc_tag,
PCI_CAP_PWRMGMT, NULL, NULL))
VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1));
/* Reset the adapter. */
vr_reset(sc);
/*
* Turn on bit2 (MIION) in PCI configuration register 0x53 during
* initialization and disable AUTOPOLL.
*/
pci_conf_write(sc->sc_pc, sc->sc_tag, VR_PCI_MODE,
pci_conf_read(sc->sc_pc, sc->sc_tag, VR_PCI_MODE) |
(VR_MODE3_MIION << 24));
VR_CLRBIT(sc, VR_MIICMD, VR_MIICMD_AUTOPOLL);
}
void
vr_init(void *xsc)
{
struct vr_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
struct mii_data *mii = &sc->sc_mii;
int s, i;
s = splnet();
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
vr_stop(sc);
vr_chipinit(sc);
/*
* Set our station address.
*/
for (i = 0; i < ETHER_ADDR_LEN; i++)
CSR_WRITE_1(sc, VR_PAR0 + i, sc->arpcom.ac_enaddr[i]);
/* Set DMA size */
VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH);
VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD);
/*
* BCR0 and BCR1 can override the RXCFG and TXCFG registers,
* so we must set both.
*/
VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH);
VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTHRESH128BYTES);
VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH);
VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTHRESHSTORENFWD);
VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES);
VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
VR_SETBIT(sc, VR_TXCFG, VR_TXCFG_TXTAGEN);
/* Init circular RX list. */
if (vr_list_rx_init(sc) == ENOBUFS) {
printf("%s: initialization failed: no memory for rx buffers\n",
sc->sc_dev.dv_xname);
vr_stop(sc);
splx(s);
return;
}
/*
* Init tx descriptors.
*/
if (vr_list_tx_init(sc) == ENOBUFS) {
printf("%s: initialization failed: no memory for tx buffers\n",
sc->sc_dev.dv_xname);
vr_stop(sc);
splx(s);
return;
}
/*
* Program promiscuous mode and multicast filters.
*/
vr_iff(sc);
/*
* Load the address of the RX list.
*/
CSR_WRITE_4(sc, VR_RXADDR, sc->vr_cdata.vr_rx_cons->vr_paddr);
/* Enable receiver and transmitter. */
CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
VR_CMD_TX_ON|VR_CMD_RX_ON|
VR_CMD_RX_GO);
CSR_WRITE_4(sc, VR_TXADDR, sc->sc_listmap.vrm_map->dm_segs[0].ds_addr +
offsetof(struct vr_list_data, vr_tx_list[0]));
/*
* Enable interrupts.
*/
CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
/* Restore state of BMCR */
sc->vr_link = 1;
mii_mediachg(mii);
ifp->if_flags |= IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
if (!timeout_pending(&sc->sc_to))
timeout_add_sec(&sc->sc_to, 1);
splx(s);
}
/*
* Set media options.
*/
int
vr_ifmedia_upd(struct ifnet *ifp)
{
struct vr_softc *sc = ifp->if_softc;
if (ifp->if_flags & IFF_UP)
vr_init(sc);
return (0);
}
/*
* Report current media status.
*/
void
vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct vr_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_mii;
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
}
int
vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct vr_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
s = splnet();
switch(command) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
if (!(ifp->if_flags & IFF_RUNNING))
vr_init(sc);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING)
error = ENETRESET;
else
vr_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
vr_stop(sc);
}
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
break;
case SIOCGIFRXR:
error = if_rxr_ioctl((struct if_rxrinfo *)ifr->ifr_data,
NULL, MCLBYTES, &sc->sc_rxring);
break;
default:
error = ether_ioctl(ifp, &sc->arpcom, command, data);
}
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
vr_iff(sc);
error = 0;
}
splx(s);
return(error);
}
void
vr_watchdog(struct ifnet *ifp)
{
struct vr_softc *sc;
sc = ifp->if_softc;
/*
* Since we're only asking for completion interrupts only every
* few packets, occasionally the watchdog will fire when we have
* some TX descriptors to reclaim, so check for that first.
*/
vr_txeof(sc);
if (sc->vr_cdata.vr_tx_cnt == 0)
return;
ifp->if_oerrors++;
printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
vr_init(sc);
if (!ifq_empty(&ifp->if_snd))
vr_start(ifp);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
void
vr_stop(struct vr_softc *sc)
{
int i;
struct ifnet *ifp;
bus_dmamap_t map;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
timeout_del(&sc->sc_to);
2023-12-05 14:40:24 +01:00
timeout_del(&sc->sc_rxto);
ifp->if_flags &= ~IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
/* wait for xfers to shutdown */
for (i = VR_TIMEOUT; i > 0; i--) {
DELAY(10);
if (!(CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON|VR_CMD_RX_ON)))
break;
}
#ifdef VR_DEBUG
if (i == 0)
printf("%s: rx shutdown error!\n", sc->sc_dev.dv_xname);
#endif
CSR_WRITE_2(sc, VR_IMR, 0x0000);
CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
/*
* Free data in the RX lists.
*/
for (i = 0; i < VR_RX_LIST_CNT; i++) {
if (sc->vr_cdata.vr_rx_chain[i].vr_mbuf != NULL) {
m_freem(sc->vr_cdata.vr_rx_chain[i].vr_mbuf);
sc->vr_cdata.vr_rx_chain[i].vr_mbuf = NULL;
}
map = sc->vr_cdata.vr_rx_chain[i].vr_map;
if (map != NULL) {
if (map->dm_nsegs > 0)
bus_dmamap_unload(sc->sc_dmat, map);
bus_dmamap_destroy(sc->sc_dmat, map);
sc->vr_cdata.vr_rx_chain[i].vr_map = NULL;
}
}
bzero(&sc->vr_ldata->vr_rx_list, sizeof(sc->vr_ldata->vr_rx_list));
/*
* Free the TX list buffers.
*/
for (i = 0; i < VR_TX_LIST_CNT; i++) {
if (sc->vr_cdata.vr_tx_chain[i].vr_mbuf != NULL) {
m_freem(sc->vr_cdata.vr_tx_chain[i].vr_mbuf);
sc->vr_cdata.vr_tx_chain[i].vr_mbuf = NULL;
ifp->if_oerrors++;
}
map = sc->vr_cdata.vr_tx_chain[i].vr_map;
if (map != NULL) {
if (map->dm_nsegs > 0)
bus_dmamap_unload(sc->sc_dmat, map);
bus_dmamap_destroy(sc->sc_dmat, map);
sc->vr_cdata.vr_tx_chain[i].vr_map = NULL;
}
}
bzero(&sc->vr_ldata->vr_tx_list, sizeof(sc->vr_ldata->vr_tx_list));
}
#ifndef SMALL_KERNEL
int
vr_wol(struct ifnet *ifp, int enable)
{
struct vr_softc *sc = ifp->if_softc;
/* Clear WOL configuration */
CSR_WRITE_1(sc, VR_WOLCRCLR, 0xFF);
/* Clear event status bits. */
CSR_WRITE_1(sc, VR_PWRCSRCLR, 0xFF);
/* Disable PME# assertion upon wake event. */
VR_CLRBIT(sc, VR_STICKHW, VR_STICKHW_WOL_ENB);
VR_SETBIT(sc, VR_WOLCFGCLR, VR_WOLCFG_PMEOVR);
if (enable) {
VR_SETBIT(sc, VR_WOLCRSET, VR_WOLCR_MAGIC);
/* Enable PME# assertion upon wake event. */
VR_SETBIT(sc, VR_STICKHW, VR_STICKHW_WOL_ENB);
VR_SETBIT(sc, VR_WOLCFGSET, VR_WOLCFG_PMEOVR);
}
return (0);
}
#endif
int
vr_alloc_mbuf(struct vr_softc *sc, struct vr_chain_onefrag *r)
{
struct vr_desc *d;
struct mbuf *m;
if (r == NULL)
return (EINVAL);
m = MCLGETL(NULL, M_DONTWAIT, MCLBYTES);
if (!m)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
m_adj(m, sizeof(u_int64_t));
if (bus_dmamap_load_mbuf(sc->sc_dmat, r->vr_map, m, BUS_DMA_NOWAIT)) {
m_free(m);
return (ENOBUFS);
}
bus_dmamap_sync(sc->sc_dmat, r->vr_map, 0, r->vr_map->dm_mapsize,
BUS_DMASYNC_PREREAD);
/* Reinitialize the RX descriptor */
r->vr_mbuf = m;
d = r->vr_ptr;
d->vr_data = htole32(r->vr_map->dm_segs[0].ds_addr);
if (sc->vr_quirks & VR_Q_BABYJUMBO)
d->vr_ctl = htole32(VR_RXCTL | VR_RXLEN_BABYJUMBO);
else
d->vr_ctl = htole32(VR_RXCTL | VR_RXLEN);
bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap.vrm_map, 0,
sc->sc_listmap.vrm_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
d->vr_status = htole32(VR_RXSTAT);
bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap.vrm_map, 0,
sc->sc_listmap.vrm_map->dm_mapsize,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
return (0);
}