/* $OpenBSD: subr_witness.c,v 1.50 2023/05/30 08:30:01 jsg Exp $ */ /*- * Copyright (c) 2008 Isilon Systems, Inc. * Copyright (c) 2008 Ilya Maykov * Copyright (c) 1998 Berkeley Software Design, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Berkeley Software Design Inc's name may not be used to endorse or * promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from BSDI Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp * and BSDI Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp */ /* * Implementation of the `witness' lock verifier. Originally implemented for * mutexes in BSD/OS. Extended to handle generic lock objects and lock * classes in FreeBSD. */ /* * Main Entry: witness * Pronunciation: 'wit-n&s * Function: noun * Etymology: Middle English witnesse, from Old English witnes knowledge, * testimony, witness, from 2wit * Date: before 12th century * 1 : attestation of a fact or event : TESTIMONY * 2 : one that gives evidence; specifically : one who testifies in * a cause or before a judicial tribunal * 3 : one asked to be present at a transaction so as to be able to * testify to its having taken place * 4 : one who has personal knowledge of something * 5 a : something serving as evidence or proof : SIGN * b : public affirmation by word or example of usually * religious faith or conviction * 6 capitalized : a member of the Jehovah's Witnesses */ /* * Special rules concerning Giant and lock orders: * * 1) Giant must be acquired before any other mutexes. Stated another way, * no other mutex may be held when Giant is acquired. * * 2) Giant must be released when blocking on a sleepable lock. * * This rule is less obvious, but is a result of Giant providing the same * semantics as spl(). Basically, when a thread sleeps, it must release * Giant. When a thread blocks on a sleepable lock, it sleeps. Hence rule * 2). * * 3) Giant may be acquired before or after sleepable locks. * * This rule is also not quite as obvious. Giant may be acquired after * a sleepable lock because it is a non-sleepable lock and non-sleepable * locks may always be acquired while holding a sleepable lock. The second * case, Giant before a sleepable lock, follows from rule 2) above. Suppose * you have two threads T1 and T2 and a sleepable lock X. Suppose that T1 * acquires X and blocks on Giant. Then suppose that T2 acquires Giant and * blocks on X. When T2 blocks on X, T2 will release Giant allowing T1 to * execute. Thus, acquiring Giant both before and after a sleepable lock * will not result in a lock order reversal. */ #include #include #include #include #ifdef MULTIPROCESSOR #include #endif #include #include #include #include #include #include #include #include #include #include #include /* uvm_pageboot_alloc */ #ifndef DDB #error "DDB is required for WITNESS" #endif #include #include #include #include #define LI_RECURSEMASK 0x0000ffff /* Recursion depth of lock instance. */ #define LI_EXCLUSIVE 0x00010000 /* Exclusive lock instance. */ #define LI_NORELEASE 0x00020000 /* Lock not allowed to be released. */ #ifndef WITNESS_COUNT #define WITNESS_COUNT 1536 #endif #define WITNESS_HASH_SIZE 251 /* Prime, gives load factor < 2 */ #define WITNESS_PENDLIST (1024 + MAXCPUS) /* Allocate 256 KB of stack data space */ #define WITNESS_LO_DATA_COUNT 2048 /* Prime, gives load factor of ~2 at full load */ #define WITNESS_LO_HASH_SIZE 1021 /* * XXX: This is somewhat bogus, as we assume here that at most 2048 threads * will hold LOCK_NCHILDREN locks. We handle failure ok, and we should * probably be safe for the most part, but it's still a SWAG. */ #define LOCK_NCHILDREN 5 #define LOCK_CHILDCOUNT 2048 #define FULLGRAPH_SBUF_SIZE 512 /* * These flags go in the witness relationship matrix and describe the * relationship between any two struct witness objects. */ #define WITNESS_UNRELATED 0x00 /* No lock order relation. */ #define WITNESS_PARENT 0x01 /* Parent, aka direct ancestor. */ #define WITNESS_ANCESTOR 0x02 /* Direct or indirect ancestor. */ #define WITNESS_CHILD 0x04 /* Child, aka direct descendant. */ #define WITNESS_DESCENDANT 0x08 /* Direct or indirect descendant. */ #define WITNESS_ANCESTOR_MASK (WITNESS_PARENT | WITNESS_ANCESTOR) #define WITNESS_DESCENDANT_MASK (WITNESS_CHILD | WITNESS_DESCENDANT) #define WITNESS_RELATED_MASK \ (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK) #define WITNESS_REVERSAL 0x10 /* A lock order reversal has been * observed. */ #define WITNESS_RESERVED1 0x20 /* Unused flag, reserved. */ #define WITNESS_RESERVED2 0x40 /* Unused flag, reserved. */ #define WITNESS_LOCK_ORDER_KNOWN 0x80 /* This lock order is known. */ /* Descendant to ancestor flags */ #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2) /* Ancestor to descendant flags */ #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2) #define WITNESS_INDEX_ASSERT(i) \ KASSERT((i) > 0 && (i) <= w_max_used_index && (i) < witness_count) /* * Lock classes. Each lock has a class which describes characteristics * common to all types of locks of a given class. * * Spin locks in general must always protect against preemption, as it is * an error to perform any type of context switch while holding a spin lock. * Also, for an individual lock to be recursable, its class must allow * recursion and the lock itself must explicitly allow recursion. */ struct lock_class { const char *lc_name; u_int lc_flags; }; union lock_stack { union lock_stack *ls_next; struct stacktrace ls_stack; }; #define LC_SLEEPLOCK 0x00000001 /* Sleep lock. */ #define LC_SPINLOCK 0x00000002 /* Spin lock. */ #define LC_SLEEPABLE 0x00000004 /* Sleeping allowed with this lock. */ #define LC_RECURSABLE 0x00000008 /* Locks of this type may recurse. */ #define LC_UPGRADABLE 0x00000010 /* Upgrades and downgrades permitted. */ /* * Lock instances. A lock instance is the data associated with a lock while * it is held by witness. For example, a lock instance will hold the * recursion count of a lock. Lock instances are held in lists. Spin locks * are held in a per-cpu list while sleep locks are held in per-thread list. */ struct lock_instance { struct lock_object *li_lock; union lock_stack *li_stack; u_int li_flags; }; /* * A simple list type used to build the list of locks held by a thread * or CPU. We can't simply embed the list in struct lock_object since a * lock may be held by more than one thread if it is a shared lock. Locks * are added to the head of the list, so we fill up each list entry from * "the back" logically. To ease some of the arithmetic, we actually fill * in each list entry the normal way (children[0] then children[1], etc.) but * when we traverse the list we read children[count-1] as the first entry * down to children[0] as the final entry. */ struct lock_list_entry { struct lock_list_entry *ll_next; struct lock_instance ll_children[LOCK_NCHILDREN]; int ll_count; }; /* * The main witness structure. One of these per named lock type in the system * (for example, "vnode interlock"). */ struct witness { const struct lock_type *w_type; const char *w_subtype; uint32_t w_index; /* Index in the relationship matrix */ struct lock_class *w_class; SLIST_ENTRY(witness) w_list; /* List of all witnesses. */ SLIST_ENTRY(witness) w_typelist; /* Witnesses of a type. */ SLIST_ENTRY(witness) w_hash_next; /* Linked list in * hash buckets. */ uint16_t w_num_ancestors; /* direct/indirect * ancestor count */ uint16_t w_num_descendants; /* direct/indirect * descendant count */ int16_t w_ddb_level; unsigned w_acquired:1; unsigned w_displayed:1; unsigned w_reversed:1; }; SLIST_HEAD(witness_list, witness); /* * The witness hash table. Keys are witness names (const char *), elements are * witness objects (struct witness *). */ struct witness_hash { struct witness_list wh_array[WITNESS_HASH_SIZE]; uint32_t wh_size; uint32_t wh_count; }; /* * Key type for the lock order data hash table. */ struct witness_lock_order_key { uint16_t from; uint16_t to; }; struct witness_lock_order_data { struct stacktrace wlod_stack; struct witness_lock_order_key wlod_key; struct witness_lock_order_data *wlod_next; }; /* * The witness lock order data hash table. Keys are witness index tuples * (struct witness_lock_order_key), elements are lock order data objects * (struct witness_lock_order_data). */ struct witness_lock_order_hash { struct witness_lock_order_data *wloh_array[WITNESS_LO_HASH_SIZE]; u_int wloh_size; u_int wloh_count; }; struct witness_pendhelp { const struct lock_type *wh_type; struct lock_object *wh_lock; }; struct witness_cpu { struct lock_list_entry *wc_spinlocks; struct lock_list_entry *wc_lle_cache; union lock_stack *wc_stk_cache; unsigned int wc_lle_count; unsigned int wc_stk_count; } __aligned(CACHELINESIZE); #define WITNESS_LLE_CACHE_MAX 8 #define WITNESS_STK_CACHE_MAX (WITNESS_LLE_CACHE_MAX * LOCK_NCHILDREN) struct witness_cpu witness_cpu[MAXCPUS]; /* * Returns 0 if one of the locks is a spin lock and the other is not. * Returns 1 otherwise. */ static __inline int witness_lock_type_equal(struct witness *w1, struct witness *w2) { return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) == (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK))); } static __inline int witness_lock_order_key_equal(const struct witness_lock_order_key *a, const struct witness_lock_order_key *b) { return (a->from == b->from && a->to == b->to); } static int _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname); static void adopt(struct witness *parent, struct witness *child); static struct witness *enroll(const struct lock_type *, const char *, struct lock_class *); static struct lock_instance *find_instance(struct lock_list_entry *list, const struct lock_object *lock); static int isitmychild(struct witness *parent, struct witness *child); static int isitmydescendant(struct witness *parent, struct witness *child); static void itismychild(struct witness *parent, struct witness *child); #ifdef DDB static void db_witness_add_fullgraph(struct witness *parent); static void witness_ddb_compute_levels(void); static void witness_ddb_display(int(*)(const char *fmt, ...)); static void witness_ddb_display_descendants(int(*)(const char *fmt, ...), struct witness *, int indent); static void witness_ddb_display_list(int(*prnt)(const char *fmt, ...), struct witness_list *list); static void witness_ddb_level_descendants(struct witness *parent, int l); static void witness_ddb_list(struct proc *td); #endif static int witness_alloc_stacks(void); static void witness_debugger(int dump); static void witness_free(struct witness *m); static struct witness *witness_get(void); static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size); static struct witness *witness_hash_get(const struct lock_type *, const char *); static void witness_hash_put(struct witness *w); static void witness_init_hash_tables(void); static void witness_increment_graph_generation(void); static int witness_list_locks(struct lock_list_entry **, int (*)(const char *, ...)); static void witness_lock_list_free(struct lock_list_entry *lle); static struct lock_list_entry *witness_lock_list_get(void); static void witness_lock_stack_free(union lock_stack *stack); static union lock_stack *witness_lock_stack_get(void); static int witness_lock_order_add(struct witness *parent, struct witness *child); static int witness_lock_order_check(struct witness *parent, struct witness *child); static struct witness_lock_order_data *witness_lock_order_get( struct witness *parent, struct witness *child); static void witness_list_lock(struct lock_instance *instance, int (*prnt)(const char *fmt, ...)); static void witness_setflag(struct lock_object *lock, int flag, int set); /* * If set to 0, lock order checking is disabled. If set to -1, * witness is completely disabled. Otherwise witness performs full * lock order checking for all locks. At runtime, lock order checking * may be toggled. However, witness cannot be reenabled once it is * completely disabled. */ #ifdef WITNESS_WATCH static int witness_watch = 3; #else static int witness_watch = 2; #endif #ifdef WITNESS_LOCKTRACE static int witness_locktrace = 1; #else static int witness_locktrace = 0; #endif int witness_count = WITNESS_COUNT; int witness_uninitialized_report = 5; static struct mutex w_mtx; static struct rwlock w_ctlock = RWLOCK_INITIALIZER("w_ctlock"); /* w_list */ static struct witness_list w_free = SLIST_HEAD_INITIALIZER(w_free); static struct witness_list w_all = SLIST_HEAD_INITIALIZER(w_all); /* w_typelist */ static struct witness_list w_spin = SLIST_HEAD_INITIALIZER(w_spin); static struct witness_list w_sleep = SLIST_HEAD_INITIALIZER(w_sleep); /* lock list */ static struct lock_list_entry *w_lock_list_free = NULL; static struct witness_pendhelp pending_locks[WITNESS_PENDLIST]; static u_int pending_cnt; static int w_free_cnt, w_spin_cnt, w_sleep_cnt; static struct witness *w_data; static uint8_t **w_rmatrix; static struct lock_list_entry *w_locklistdata; static struct witness_hash w_hash; /* The witness hash table. */ /* The lock order data hash */ static struct witness_lock_order_data *w_lodata; static struct witness_lock_order_data *w_lofree = NULL; static struct witness_lock_order_hash w_lohash; static int w_max_used_index = 0; static unsigned int w_generation = 0; static union lock_stack *w_lock_stack_free; static unsigned int w_lock_stack_num; static struct lock_class lock_class_kernel_lock = { .lc_name = "kernel_lock", .lc_flags = LC_SLEEPLOCK | LC_RECURSABLE | LC_SLEEPABLE }; static struct lock_class lock_class_sched_lock = { .lc_name = "sched_lock", .lc_flags = LC_SPINLOCK | LC_RECURSABLE }; static struct lock_class lock_class_mutex = { .lc_name = "mutex", .lc_flags = LC_SPINLOCK }; static struct lock_class lock_class_rwlock = { .lc_name = "rwlock", .lc_flags = LC_SLEEPLOCK | LC_SLEEPABLE | LC_UPGRADABLE }; static struct lock_class lock_class_rrwlock = { .lc_name = "rrwlock", .lc_flags = LC_SLEEPLOCK | LC_RECURSABLE | LC_SLEEPABLE | LC_UPGRADABLE }; static struct lock_class *lock_classes[] = { &lock_class_kernel_lock, &lock_class_sched_lock, &lock_class_mutex, &lock_class_rwlock, &lock_class_rrwlock, }; /* * This global is set to 0 once it becomes safe to use the witness code. */ static int witness_cold = 1; /* * This global is set to 1 once the static lock orders have been enrolled * so that a warning can be issued for any spin locks enrolled later. */ static int witness_spin_warn = 0; /* * The WITNESS-enabled diagnostic code. Note that the witness code does * assume that the early boot is single-threaded at least until after this * routine is completed. */ void witness_initialize(void) { struct lock_object *lock; union lock_stack *stacks; struct witness *w; int i, s; w_data = (void *)uvm_pageboot_alloc(sizeof(struct witness) * witness_count); memset(w_data, 0, sizeof(struct witness) * witness_count); w_rmatrix = (void *)uvm_pageboot_alloc(sizeof(*w_rmatrix) * (witness_count + 1)); for (i = 0; i < witness_count + 1; i++) { w_rmatrix[i] = (void *)uvm_pageboot_alloc( sizeof(*w_rmatrix[i]) * (witness_count + 1)); memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) * (witness_count + 1)); } mtx_init_flags(&w_mtx, IPL_HIGH, "witness lock", MTX_NOWITNESS); for (i = witness_count - 1; i >= 0; i--) { w = &w_data[i]; memset(w, 0, sizeof(*w)); w_data[i].w_index = i; /* Witness index never changes. */ witness_free(w); } KASSERTMSG(SLIST_FIRST(&w_free)->w_index == 0, "%s: Invalid list of free witness objects", __func__); /* Witness with index 0 is not used to aid in debugging. */ SLIST_REMOVE_HEAD(&w_free, w_list); w_free_cnt--; for (i = 0; i < witness_count; i++) { memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) * (witness_count + 1)); } if (witness_locktrace) { w_lock_stack_num = LOCK_CHILDCOUNT * LOCK_NCHILDREN; stacks = (void *)uvm_pageboot_alloc(sizeof(*stacks) * w_lock_stack_num); } w_locklistdata = (void *)uvm_pageboot_alloc( sizeof(struct lock_list_entry) * LOCK_CHILDCOUNT); memset(w_locklistdata, 0, sizeof(struct lock_list_entry) * LOCK_CHILDCOUNT); s = splhigh(); for (i = 0; i < w_lock_stack_num; i++) witness_lock_stack_free(&stacks[i]); for (i = 0; i < LOCK_CHILDCOUNT; i++) witness_lock_list_free(&w_locklistdata[i]); splx(s); witness_init_hash_tables(); witness_spin_warn = 1; /* Iterate through all locks and add them to witness. */ for (i = 0; pending_locks[i].wh_lock != NULL; i++) { lock = pending_locks[i].wh_lock; KASSERTMSG(lock->lo_flags & LO_WITNESS, "%s: lock %s is on pending list but not LO_WITNESS", __func__, lock->lo_name); lock->lo_witness = enroll(pending_locks[i].wh_type, lock->lo_name, LOCK_CLASS(lock)); } /* Mark the witness code as being ready for use. */ witness_cold = 0; } void witness_init(struct lock_object *lock, const struct lock_type *type) { struct lock_class *class; /* Various sanity checks. */ class = LOCK_CLASS(lock); if ((lock->lo_flags & LO_RECURSABLE) != 0 && (class->lc_flags & LC_RECURSABLE) == 0) panic("%s: lock (%s) %s can not be recursable", __func__, class->lc_name, lock->lo_name); if ((lock->lo_flags & LO_SLEEPABLE) != 0 && (class->lc_flags & LC_SLEEPABLE) == 0) panic("%s: lock (%s) %s can not be sleepable", __func__, class->lc_name, lock->lo_name); if ((lock->lo_flags & LO_UPGRADABLE) != 0 && (class->lc_flags & LC_UPGRADABLE) == 0) panic("%s: lock (%s) %s can not be upgradable", __func__, class->lc_name, lock->lo_name); /* * If we shouldn't watch this lock, then just clear lo_witness. * Record the type in case the lock becomes watched later. * Otherwise, if witness_cold is set, then it is too early to * enroll this lock, so defer it to witness_initialize() by adding * it to the pending_locks list. If it is not too early, then enroll * the lock now. */ if (witness_watch < 1 || panicstr != NULL || db_active || (lock->lo_flags & LO_WITNESS) == 0) { lock->lo_witness = NULL; lock->lo_type = type; } else if (witness_cold) { pending_locks[pending_cnt].wh_lock = lock; pending_locks[pending_cnt++].wh_type = type; if (pending_cnt > WITNESS_PENDLIST) panic("%s: pending locks list is too small, " "increase WITNESS_PENDLIST", __func__); } else lock->lo_witness = enroll(type, lock->lo_name, class); } static inline int is_kernel_lock(const struct lock_object *lock) { #ifdef MULTIPROCESSOR return (lock == &kernel_lock.mpl_lock_obj); #else return (0); #endif } #ifdef DDB static void witness_ddb_compute_levels(void) { struct witness *w; /* * First clear all levels. */ SLIST_FOREACH(w, &w_all, w_list) w->w_ddb_level = -1; /* * Look for locks with no parents and level all their descendants. */ SLIST_FOREACH(w, &w_all, w_list) { /* If the witness has ancestors (is not a root), skip it. */ if (w->w_num_ancestors > 0) continue; witness_ddb_level_descendants(w, 0); } } static void witness_ddb_level_descendants(struct witness *w, int l) { int i; if (w->w_ddb_level >= l) return; w->w_ddb_level = l; l++; for (i = 1; i <= w_max_used_index; i++) { if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) witness_ddb_level_descendants(&w_data[i], l); } } static void witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...), struct witness *w, int indent) { int i; for (i = 0; i < indent; i++) prnt(" "); prnt("%s (type: %s, depth: %d)", w->w_type->lt_name, w->w_class->lc_name, w->w_ddb_level); if (w->w_displayed) { prnt(" -- (already displayed)\n"); return; } w->w_displayed = 1; if (!w->w_acquired) prnt(" -- never acquired\n"); else prnt("\n"); indent++; WITNESS_INDEX_ASSERT(w->w_index); for (i = 1; i <= w_max_used_index; i++) { if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) witness_ddb_display_descendants(prnt, &w_data[i], indent); } } static void witness_ddb_display_list(int(*prnt)(const char *fmt, ...), struct witness_list *list) { struct witness *w; SLIST_FOREACH(w, list, w_typelist) { if (!w->w_acquired || w->w_ddb_level > 0) continue; /* This lock has no ancestors - display its descendants. */ witness_ddb_display_descendants(prnt, w, 0); } } static void witness_ddb_display(int(*prnt)(const char *fmt, ...)) { struct witness *w; KASSERTMSG(witness_cold == 0, "%s: witness_cold", __func__); witness_ddb_compute_levels(); /* Clear all the displayed flags. */ SLIST_FOREACH(w, &w_all, w_list) w->w_displayed = 0; /* * First, handle sleep locks which have been acquired at least * once. */ prnt("Sleep locks:\n"); witness_ddb_display_list(prnt, &w_sleep); /* * Now do spin locks which have been acquired at least once. */ prnt("\nSpin locks:\n"); witness_ddb_display_list(prnt, &w_spin); /* * Finally, any locks which have not been acquired yet. */ prnt("\nLocks which were never acquired:\n"); SLIST_FOREACH(w, &w_all, w_list) { if (w->w_acquired) continue; prnt("%s (type: %s, depth: %d)\n", w->w_type->lt_name, w->w_class->lc_name, w->w_ddb_level); } } #endif /* DDB */ int witness_defineorder(struct lock_object *lock1, struct lock_object *lock2) { if (witness_watch < 0 || panicstr != NULL || db_active) return (0); /* Require locks that witness knows about. */ if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL || lock2->lo_witness == NULL) return (EINVAL); MUTEX_ASSERT_UNLOCKED(&w_mtx); mtx_enter(&w_mtx); /* * If we already have either an explicit or implied lock order that * is the other way around, then return an error. */ if (witness_watch && isitmydescendant(lock2->lo_witness, lock1->lo_witness)) { mtx_leave(&w_mtx); return (EINVAL); } /* Try to add the new order. */ itismychild(lock1->lo_witness, lock2->lo_witness); mtx_leave(&w_mtx); return (0); } void witness_checkorder(struct lock_object *lock, int flags, struct lock_object *interlock) { struct lock_list_entry *lock_list, *lle; struct lock_instance *lock1, *lock2, *plock; struct lock_class *class, *iclass; struct proc *p; struct witness *w, *w1; int i, j, s; if (witness_cold || witness_watch < 1 || panicstr != NULL || db_active) return; if ((lock->lo_flags & LO_INITIALIZED) == 0) { if (witness_uninitialized_report > 0) { witness_uninitialized_report--; printf("witness: lock_object uninitialized: %p\n", lock); witness_debugger(1); } lock->lo_flags |= LO_INITIALIZED; } if ((lock->lo_flags & LO_WITNESS) == 0) return; w = lock->lo_witness; class = LOCK_CLASS(lock); if (w == NULL) w = lock->lo_witness = enroll(lock->lo_type, lock->lo_name, class); p = curproc; if (class->lc_flags & LC_SLEEPLOCK) { /* * Since spin locks include a critical section, this check * implicitly enforces a lock order of all sleep locks before * all spin locks. */ lock_list = witness_cpu[cpu_number()].wc_spinlocks; if (lock_list != NULL && lock_list->ll_count > 0) { panic("acquiring blockable sleep lock with " "spinlock or critical section held (%s) %s", class->lc_name, lock->lo_name); } /* * If this is the first lock acquired then just return as * no order checking is needed. */ lock_list = p->p_sleeplocks; if (lock_list == NULL || lock_list->ll_count == 0) return; } else { /* * If this is the first lock, just return as no order * checking is needed. */ lock_list = witness_cpu[cpu_number()].wc_spinlocks; if (lock_list == NULL || lock_list->ll_count == 0) return; } s = splhigh(); /* * Check to see if we are recursing on a lock we already own. If * so, make sure that we don't mismatch exclusive and shared lock * acquires. */ lock1 = find_instance(lock_list, lock); if (lock1 != NULL) { if ((lock1->li_flags & LI_EXCLUSIVE) != 0 && (flags & LOP_EXCLUSIVE) == 0) { printf("witness: shared lock of (%s) %s " "while exclusively locked\n", class->lc_name, lock->lo_name); panic("excl->share"); } if ((lock1->li_flags & LI_EXCLUSIVE) == 0 && (flags & LOP_EXCLUSIVE) != 0) { printf("witness: exclusive lock of (%s) %s " "while share locked\n", class->lc_name, lock->lo_name); panic("share->excl"); } goto out_splx; } /* Warn if the interlock is not locked exactly once. */ if (interlock != NULL) { iclass = LOCK_CLASS(interlock); lock1 = find_instance(lock_list, interlock); if (lock1 == NULL) panic("interlock (%s) %s not locked", iclass->lc_name, interlock->lo_name); else if ((lock1->li_flags & LI_RECURSEMASK) != 0) panic("interlock (%s) %s recursed", iclass->lc_name, interlock->lo_name); } /* * Find the previously acquired lock, but ignore interlocks. */ plock = &lock_list->ll_children[lock_list->ll_count - 1]; if (interlock != NULL && plock->li_lock == interlock) { if (lock_list->ll_count > 1) plock = &lock_list->ll_children[lock_list->ll_count - 2]; else { lle = lock_list->ll_next; /* * The interlock is the only lock we hold, so * simply return. */ if (lle == NULL) goto out_splx; plock = &lle->ll_children[lle->ll_count - 1]; } } /* * Try to perform most checks without a lock. If this succeeds we * can skip acquiring the lock and return success. Otherwise we redo * the check with the lock held to handle races with concurrent updates. */ w1 = plock->li_lock->lo_witness; if (witness_lock_order_check(w1, w)) goto out_splx; mtx_enter(&w_mtx); if (witness_lock_order_check(w1, w)) goto out; witness_lock_order_add(w1, w); /* * Check for duplicate locks of the same type. Note that we only * have to check for this on the last lock we just acquired. Any * other cases will be caught as lock order violations. */ if (w1 == w) { i = w->w_index; if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) && !(w_rmatrix[i][i] & WITNESS_REVERSAL)) { w_rmatrix[i][i] |= WITNESS_REVERSAL; w->w_reversed = 1; mtx_leave(&w_mtx); printf("witness: acquiring duplicate lock of " "same type: \"%s\"\n", w->w_type->lt_name); printf(" 1st %s\n", plock->li_lock->lo_name); printf(" 2nd %s\n", lock->lo_name); witness_debugger(1); } else mtx_leave(&w_mtx); goto out_splx; } MUTEX_ASSERT_LOCKED(&w_mtx); /* * If we know that the lock we are acquiring comes after * the lock we most recently acquired in the lock order tree, * then there is no need for any further checks. */ if (isitmychild(w1, w)) goto out; for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) { for (i = lle->ll_count - 1; i >= 0; i--, j++) { KASSERT(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN); lock1 = &lle->ll_children[i]; /* * Ignore the interlock. */ if (interlock == lock1->li_lock) continue; /* * If this lock doesn't undergo witness checking, * then skip it. */ w1 = lock1->li_lock->lo_witness; if (w1 == NULL) { KASSERTMSG((lock1->li_lock->lo_flags & LO_WITNESS) == 0, "lock missing witness structure"); continue; } /* * If we are locking Giant and this is a sleepable * lock, then skip it. */ if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 && is_kernel_lock(lock)) continue; /* * If we are locking a sleepable lock and this lock * is Giant, then skip it. */ if ((lock->lo_flags & LO_SLEEPABLE) != 0 && is_kernel_lock(lock1->li_lock)) continue; /* * If we are locking a sleepable lock and this lock * isn't sleepable, we want to treat it as a lock * order violation to enforce a general lock order of * sleepable locks before non-sleepable locks. */ if (((lock->lo_flags & LO_SLEEPABLE) != 0 && (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0)) goto reversal; /* * If we are locking Giant and this is a non-sleepable * lock, then treat it as a reversal. */ if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 && is_kernel_lock(lock)) goto reversal; /* * Check the lock order hierarchy for a reveresal. */ if (!isitmydescendant(w, w1)) continue; reversal: /* * We have a lock order violation, check to see if it * is allowed or has already been yelled about. */ /* Bail if this violation is known */ if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL) goto out; /* Record this as a violation */ w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL; w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL; w->w_reversed = w1->w_reversed = 1; witness_increment_graph_generation(); mtx_leave(&w_mtx); /* * There are known LORs between VNODE locks. They are * not an indication of a bug. VNODE locks are flagged * as such (LO_IS_VNODE) and we don't yell if the LOR * is between 2 VNODE locks. */ if ((lock->lo_flags & LO_IS_VNODE) != 0 && (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0) goto out_splx; /* * Ok, yell about it. */ printf("witness: "); if (((lock->lo_flags & LO_SLEEPABLE) != 0 && (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0)) printf("lock order reversal: " "(sleepable after non-sleepable)\n"); else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 && is_kernel_lock(lock)) printf("lock order reversal: " "(Giant after non-sleepable)\n"); else printf("lock order reversal:\n"); /* * Try to locate an earlier lock with * witness w in our list. */ do { lock2 = &lle->ll_children[i]; KASSERT(lock2->li_lock != NULL); if (lock2->li_lock->lo_witness == w) break; if (i == 0 && lle->ll_next != NULL) { lle = lle->ll_next; i = lle->ll_count - 1; KASSERT(i >= 0 && i < LOCK_NCHILDREN); } else i--; } while (i >= 0); if (i < 0) { printf(" 1st %p %s (%s)\n", lock1->li_lock, lock1->li_lock->lo_name, w1->w_type->lt_name); printf(" 2nd %p %s (%s)\n", lock, lock->lo_name, w->w_type->lt_name); } else { printf(" 1st %p %s (%s)\n", lock2->li_lock, lock2->li_lock->lo_name, lock2->li_lock->lo_witness->w_type-> lt_name); printf(" 2nd %p %s (%s)\n", lock1->li_lock, lock1->li_lock->lo_name, w1->w_type->lt_name); printf(" 3rd %p %s (%s)\n", lock, lock->lo_name, w->w_type->lt_name); } if (witness_watch > 1) { struct witness_lock_order_data *wlod1, *wlod2; mtx_enter(&w_mtx); wlod1 = witness_lock_order_get(w, w1); wlod2 = witness_lock_order_get(w1, w); mtx_leave(&w_mtx); /* * It is safe to access saved stack traces, * w_type, and w_class without the lock. * Once written, they never change. */ if (wlod1 != NULL) { printf("lock order \"%s\"(%s) -> " "\"%s\"(%s) first seen at:\n", w->w_type->lt_name, w->w_class->lc_name, w1->w_type->lt_name, w1->w_class->lc_name); stacktrace_print( &wlod1->wlod_stack, printf); } else { printf("lock order data " "w2 -> w1 missing\n"); } if (wlod2 != NULL) { printf("lock order \"%s\"(%s) -> " "\"%s\"(%s) first seen at:\n", w1->w_type->lt_name, w1->w_class->lc_name, w->w_type->lt_name, w->w_class->lc_name); stacktrace_print( &wlod2->wlod_stack, printf); } else { printf("lock order data " "w1 -> w2 missing\n"); } } witness_debugger(0); goto out_splx; } } /* * If requested, build a new lock order. However, don't build a new * relationship between a sleepable lock and Giant if it is in the * wrong direction. The correct lock order is that sleepable locks * always come before Giant. */ if (flags & LOP_NEWORDER && !(is_kernel_lock(plock->li_lock) && (lock->lo_flags & LO_SLEEPABLE) != 0)) itismychild(plock->li_lock->lo_witness, w); out: mtx_leave(&w_mtx); out_splx: splx(s); } void witness_lock(struct lock_object *lock, int flags) { struct lock_list_entry **lock_list, *lle; struct lock_instance *instance; struct proc *p; struct witness *w; int s; if (witness_cold || witness_watch < 0 || panicstr != NULL || db_active || (lock->lo_flags & LO_WITNESS) == 0) return; w = lock->lo_witness; if (w == NULL) w = lock->lo_witness = enroll(lock->lo_type, lock->lo_name, LOCK_CLASS(lock)); p = curproc; /* Determine lock list for this lock. */ if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK) lock_list = &p->p_sleeplocks; else lock_list = &witness_cpu[cpu_number()].wc_spinlocks; s = splhigh(); /* Check to see if we are recursing on a lock we already own. */ instance = find_instance(*lock_list, lock); if (instance != NULL) { instance->li_flags++; goto out; } w->w_acquired = 1; /* Find the next open lock instance in the list and fill it. */ lle = *lock_list; if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) { lle = witness_lock_list_get(); if (lle == NULL) goto out; lle->ll_next = *lock_list; *lock_list = lle; } instance = &lle->ll_children[lle->ll_count++]; instance->li_lock = lock; if ((flags & LOP_EXCLUSIVE) != 0) instance->li_flags = LI_EXCLUSIVE; else instance->li_flags = 0; instance->li_stack = NULL; if (witness_locktrace) { instance->li_stack = witness_lock_stack_get(); if (instance->li_stack != NULL) stacktrace_save(&instance->li_stack->ls_stack); } out: splx(s); } void witness_upgrade(struct lock_object *lock, int flags) { struct lock_instance *instance; struct lock_class *class; int s; KASSERTMSG(witness_cold == 0, "%s: witness_cold", __func__); if (lock->lo_witness == NULL || witness_watch < 0 || panicstr != NULL || db_active) return; class = LOCK_CLASS(lock); if (witness_watch) { if ((lock->lo_flags & LO_UPGRADABLE) == 0) panic("upgrade of non-upgradable lock (%s) %s", class->lc_name, lock->lo_name); if ((class->lc_flags & LC_SLEEPLOCK) == 0) panic("upgrade of non-sleep lock (%s) %s", class->lc_name, lock->lo_name); } s = splhigh(); instance = find_instance(curproc->p_sleeplocks, lock); if (instance == NULL) { panic("upgrade of unlocked lock (%s) %s", class->lc_name, lock->lo_name); goto out; } if (witness_watch) { if ((instance->li_flags & LI_EXCLUSIVE) != 0) panic("upgrade of exclusive lock (%s) %s", class->lc_name, lock->lo_name); if ((instance->li_flags & LI_RECURSEMASK) != 0) panic("upgrade of recursed lock (%s) %s r=%d", class->lc_name, lock->lo_name, instance->li_flags & LI_RECURSEMASK); } instance->li_flags |= LI_EXCLUSIVE; out: splx(s); } void witness_downgrade(struct lock_object *lock, int flags) { struct lock_instance *instance; struct lock_class *class; int s; KASSERTMSG(witness_cold == 0, "%s: witness_cold", __func__); if (lock->lo_witness == NULL || witness_watch < 0 || panicstr != NULL || db_active) return; class = LOCK_CLASS(lock); if (witness_watch) { if ((lock->lo_flags & LO_UPGRADABLE) == 0) panic( "downgrade of non-upgradable lock (%s) %s", class->lc_name, lock->lo_name); if ((class->lc_flags & LC_SLEEPLOCK) == 0) panic("downgrade of non-sleep lock (%s) %s", class->lc_name, lock->lo_name); } s = splhigh(); instance = find_instance(curproc->p_sleeplocks, lock); if (instance == NULL) { panic("downgrade of unlocked lock (%s) %s", class->lc_name, lock->lo_name); goto out; } if (witness_watch) { if ((instance->li_flags & LI_EXCLUSIVE) == 0) panic("downgrade of shared lock (%s) %s", class->lc_name, lock->lo_name); if ((instance->li_flags & LI_RECURSEMASK) != 0) panic("downgrade of recursed lock (%s) %s r=%d", class->lc_name, lock->lo_name, instance->li_flags & LI_RECURSEMASK); } instance->li_flags &= ~LI_EXCLUSIVE; out: splx(s); } void witness_unlock(struct lock_object *lock, int flags) { struct lock_list_entry **lock_list, *lle; struct lock_instance *instance; struct lock_class *class; struct proc *p; int i, j; int s; if (witness_cold || lock->lo_witness == NULL || panicstr != NULL || db_active) return; p = curproc; class = LOCK_CLASS(lock); /* Find lock instance associated with this lock. */ if (class->lc_flags & LC_SLEEPLOCK) lock_list = &p->p_sleeplocks; else lock_list = &witness_cpu[cpu_number()].wc_spinlocks; s = splhigh(); lle = *lock_list; for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next) for (i = 0; i < (*lock_list)->ll_count; i++) { instance = &(*lock_list)->ll_children[i]; if (instance->li_lock == lock) goto found; } /* * When disabling WITNESS through witness_watch we could end up in * having registered locks in the p_sleeplocks queue. * We have to make sure we flush these queues, so just search for * eventual register locks and remove them. */ if (witness_watch > 0) { panic("lock (%s) %s not locked", class->lc_name, lock->lo_name); } goto out; found: /* First, check for shared/exclusive mismatches. */ if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 && (flags & LOP_EXCLUSIVE) == 0) { printf("witness: shared unlock of (%s) %s " "while exclusively locked\n", class->lc_name, lock->lo_name); panic("excl->ushare"); } if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 && (flags & LOP_EXCLUSIVE) != 0) { printf("witness: exclusive unlock of (%s) %s " "while share locked\n", class->lc_name, lock->lo_name); panic("share->uexcl"); } /* If we are recursed, unrecurse. */ if ((instance->li_flags & LI_RECURSEMASK) > 0) { instance->li_flags--; goto out; } /* The lock is now being dropped, check for NORELEASE flag */ if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) { printf("witness: forbidden unlock of (%s) %s\n", class->lc_name, lock->lo_name); panic("lock marked norelease"); } /* Release the stack buffer, if any. */ if (instance->li_stack != NULL) { witness_lock_stack_free(instance->li_stack); instance->li_stack = NULL; } /* Remove this item from the list. */ for (j = i; j < (*lock_list)->ll_count - 1; j++) (*lock_list)->ll_children[j] = (*lock_list)->ll_children[j + 1]; (*lock_list)->ll_count--; /* * In order to reduce contention on w_mtx, we want to keep always an * head object into lists so that frequent allocation from the * free witness pool (and subsequent locking) is avoided. * In order to maintain the current code simple, when the head * object is totally unloaded it means also that we do not have * further objects in the list, so the list ownership needs to be * hand over to another object if the current head needs to be freed. */ if ((*lock_list)->ll_count == 0) { if (*lock_list == lle) { if (lle->ll_next == NULL) goto out; } else lle = *lock_list; *lock_list = lle->ll_next; witness_lock_list_free(lle); } out: splx(s); } void witness_thread_exit(struct proc *p) { struct lock_list_entry *lle; int i, n, s; lle = p->p_sleeplocks; if (lle == NULL || panicstr != NULL || db_active) return; if (lle->ll_count != 0) { for (n = 0; lle != NULL; lle = lle->ll_next) for (i = lle->ll_count - 1; i >= 0; i--) { if (n == 0) printf("witness: thread %p exiting " "with the following locks held:\n", p); n++; witness_list_lock(&lle->ll_children[i], printf); } panic("thread %p cannot exit while holding sleeplocks", p); } KASSERT(lle->ll_next == NULL); s = splhigh(); witness_lock_list_free(lle); splx(s); } /* * Warn if any locks other than 'lock' are held. Flags can be passed in to * exempt Giant and sleepable locks from the checks as well. If any * non-exempt locks are held, then a supplied message is printed to the * output channel along with a list of the offending locks. If indicated in the * flags then a failure results in a panic as well. */ int witness_warn(int flags, struct lock_object *lock, const char *fmt, ...) { struct lock_list_entry *lock_list, *lle; struct lock_instance *lock1; struct proc *p; va_list ap; int i, n; if (witness_cold || witness_watch < 1 || panicstr != NULL || db_active) return (0); n = 0; p = curproc; for (lle = p->p_sleeplocks; lle != NULL; lle = lle->ll_next) for (i = lle->ll_count - 1; i >= 0; i--) { lock1 = &lle->ll_children[i]; if (lock1->li_lock == lock) continue; if (flags & WARN_KERNELOK && is_kernel_lock(lock1->li_lock)) continue; if (flags & WARN_SLEEPOK && (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0) continue; if (n == 0) { printf("witness: "); va_start(ap, fmt); vprintf(fmt, ap); va_end(ap); printf(" with the following %slocks held:\n", (flags & WARN_SLEEPOK) != 0 ? "non-sleepable " : ""); } n++; witness_list_lock(lock1, printf); } lock_list = witness_cpu[cpu_number()].wc_spinlocks; if (lock_list != NULL && lock_list->ll_count != 0) { /* * We should only have one spinlock and as long as * the flags cannot match for this locks class, * check if the first spinlock is the one curproc * should hold. */ lock1 = &lock_list->ll_children[lock_list->ll_count - 1]; if (lock_list->ll_count == 1 && lock_list->ll_next == NULL && lock1->li_lock == lock && n == 0) return (0); printf("witness: "); va_start(ap, fmt); vprintf(fmt, ap); va_end(ap); printf(" with the following %slocks held:\n", (flags & WARN_SLEEPOK) != 0 ? "non-sleepable " : ""); n += witness_list_locks(&lock_list, printf); } if (n > 0) { if (flags & WARN_PANIC) panic("%s", __func__); else witness_debugger(1); } return (n); } static struct witness * enroll(const struct lock_type *type, const char *subtype, struct lock_class *lock_class) { struct witness *w; struct witness_list *typelist; KASSERT(type != NULL); if (witness_watch < 0 || panicstr != NULL || db_active) return (NULL); if ((lock_class->lc_flags & LC_SPINLOCK)) { typelist = &w_spin; } else if ((lock_class->lc_flags & LC_SLEEPLOCK)) { typelist = &w_sleep; } else { panic("lock class %s is not sleep or spin", lock_class->lc_name); return (NULL); } mtx_enter(&w_mtx); w = witness_hash_get(type, subtype); if (w) goto found; if ((w = witness_get()) == NULL) return (NULL); w->w_type = type; w->w_subtype = subtype; w->w_class = lock_class; SLIST_INSERT_HEAD(&w_all, w, w_list); if (lock_class->lc_flags & LC_SPINLOCK) { SLIST_INSERT_HEAD(&w_spin, w, w_typelist); w_spin_cnt++; } else if (lock_class->lc_flags & LC_SLEEPLOCK) { SLIST_INSERT_HEAD(&w_sleep, w, w_typelist); w_sleep_cnt++; } /* Insert new witness into the hash */ witness_hash_put(w); witness_increment_graph_generation(); mtx_leave(&w_mtx); return (w); found: mtx_leave(&w_mtx); if (lock_class != w->w_class) panic("lock (%s) %s does not match earlier (%s) lock", type->lt_name, lock_class->lc_name, w->w_class->lc_name); return (w); } static void adopt(struct witness *parent, struct witness *child) { int pi, ci, i, j; if (witness_cold == 0) MUTEX_ASSERT_LOCKED(&w_mtx); /* If the relationship is already known, there's no work to be done. */ if (isitmychild(parent, child)) return; /* When the structure of the graph changes, bump up the generation. */ witness_increment_graph_generation(); /* * The hard part ... create the direct relationship, then propagate all * indirect relationships. */ pi = parent->w_index; ci = child->w_index; WITNESS_INDEX_ASSERT(pi); WITNESS_INDEX_ASSERT(ci); KASSERT(pi != ci); w_rmatrix[pi][ci] |= WITNESS_PARENT; w_rmatrix[ci][pi] |= WITNESS_CHILD; /* * If parent was not already an ancestor of child, * then we increment the descendant and ancestor counters. */ if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) { parent->w_num_descendants++; child->w_num_ancestors++; } /* * Find each ancestor of 'pi'. Note that 'pi' itself is counted as * an ancestor of 'pi' during this loop. */ for (i = 1; i <= w_max_used_index; i++) { if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && (i != pi)) continue; /* Find each descendant of 'i' and mark it as a descendant. */ for (j = 1; j <= w_max_used_index; j++) { /* * Skip children that are already marked as * descendants of 'i'. */ if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) continue; /* * We are only interested in descendants of 'ci'. Note * that 'ci' itself is counted as a descendant of 'ci'. */ if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && (j != ci)) continue; w_rmatrix[i][j] |= WITNESS_ANCESTOR; w_rmatrix[j][i] |= WITNESS_DESCENDANT; w_data[i].w_num_descendants++; w_data[j].w_num_ancestors++; /* * Make sure we aren't marking a node as both an * ancestor and descendant. We should have caught * this as a lock order reversal earlier. */ if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) && (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) { printf("witness: rmatrix paradox! [%d][%d]=%d " "both ancestor and descendant\n", i, j, w_rmatrix[i][j]); #ifdef DDB db_stack_dump(); #endif printf("witness disabled\n"); witness_watch = -1; } if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) && (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) { printf("witness: rmatrix paradox! [%d][%d]=%d " "both ancestor and descendant\n", j, i, w_rmatrix[j][i]); #ifdef DDB db_stack_dump(); #endif printf("witness disabled\n"); witness_watch = -1; } } } } static void itismychild(struct witness *parent, struct witness *child) { KASSERT(child != NULL && parent != NULL); if (witness_cold == 0) MUTEX_ASSERT_LOCKED(&w_mtx); if (!witness_lock_type_equal(parent, child)) { if (witness_cold == 0) mtx_leave(&w_mtx); panic( "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not " "the same lock type", __func__, parent->w_type->lt_name, parent->w_class->lc_name, child->w_type->lt_name, child->w_class->lc_name); } adopt(parent, child); } /* * Generic code for the isitmy*() functions. The rmask parameter is the * expected relationship of w1 to w2. */ static int _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname) { unsigned char r1, r2; int i1, i2; i1 = w1->w_index; i2 = w2->w_index; WITNESS_INDEX_ASSERT(i1); WITNESS_INDEX_ASSERT(i2); r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK; r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK; /* The flags on one better be the inverse of the flags on the other */ if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) || (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) { /* Don't squawk if we're potentially racing with an update. */ if (w_mtx.mtx_owner != curcpu()) return (0); printf("witness: %s: rmatrix mismatch between %s (index %d) " "and %s (index %d): w_rmatrix[%d][%d] == %x but " "w_rmatrix[%d][%d] == %x\n", fname, w1->w_type->lt_name, i1, w2->w_type->lt_name, i2, i1, i2, r1, i2, i1, r2); #ifdef DDB db_stack_dump(); #endif printf("witness disabled\n"); witness_watch = -1; } return (r1 & rmask); } /* * Checks if @child is a direct child of @parent. */ static int isitmychild(struct witness *parent, struct witness *child) { return (_isitmyx(parent, child, WITNESS_PARENT, __func__)); } /* * Checks if @descendant is a direct or indirect descendant of @ancestor. */ static int isitmydescendant(struct witness *ancestor, struct witness *descendant) { return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK, __func__)); } static struct witness * witness_get(void) { struct witness *w; int index; if (witness_cold == 0) MUTEX_ASSERT_LOCKED(&w_mtx); if (witness_watch < 0) { mtx_leave(&w_mtx); return (NULL); } if (SLIST_EMPTY(&w_free)) { witness_watch = -1; mtx_leave(&w_mtx); printf("WITNESS: unable to allocate a new witness object\n"); return (NULL); } w = SLIST_FIRST(&w_free); SLIST_REMOVE_HEAD(&w_free, w_list); w_free_cnt--; index = w->w_index; KASSERT(index > 0 && index == w_max_used_index + 1 && index < witness_count); memset(w, 0, sizeof(*w)); w->w_index = index; if (index > w_max_used_index) w_max_used_index = index; return (w); } static void witness_free(struct witness *w) { SLIST_INSERT_HEAD(&w_free, w, w_list); w_free_cnt++; } static struct lock_list_entry * witness_lock_list_get(void) { struct lock_list_entry *lle; struct witness_cpu *wcpu = &witness_cpu[cpu_number()]; if (witness_watch < 0) return (NULL); splassert(IPL_HIGH); if (wcpu->wc_lle_count > 0) { lle = wcpu->wc_lle_cache; wcpu->wc_lle_cache = lle->ll_next; wcpu->wc_lle_count--; memset(lle, 0, sizeof(*lle)); return (lle); } mtx_enter(&w_mtx); lle = w_lock_list_free; if (lle == NULL) { witness_watch = -1; mtx_leave(&w_mtx); printf("%s: witness exhausted\n", __func__); return (NULL); } w_lock_list_free = lle->ll_next; mtx_leave(&w_mtx); memset(lle, 0, sizeof(*lle)); return (lle); } static void witness_lock_list_free(struct lock_list_entry *lle) { struct witness_cpu *wcpu = &witness_cpu[cpu_number()]; splassert(IPL_HIGH); if (wcpu->wc_lle_count < WITNESS_LLE_CACHE_MAX) { lle->ll_next = wcpu->wc_lle_cache; wcpu->wc_lle_cache = lle; wcpu->wc_lle_count++; return; } mtx_enter(&w_mtx); lle->ll_next = w_lock_list_free; w_lock_list_free = lle; mtx_leave(&w_mtx); } static union lock_stack * witness_lock_stack_get(void) { union lock_stack *stack = NULL; struct witness_cpu *wcpu = &witness_cpu[cpu_number()]; splassert(IPL_HIGH); if (wcpu->wc_stk_count > 0) { stack = wcpu->wc_stk_cache; wcpu->wc_stk_cache = stack->ls_next; wcpu->wc_stk_count--; return (stack); } mtx_enter(&w_mtx); if (w_lock_stack_free != NULL) { stack = w_lock_stack_free; w_lock_stack_free = stack->ls_next; } mtx_leave(&w_mtx); return (stack); } static void witness_lock_stack_free(union lock_stack *stack) { struct witness_cpu *wcpu = &witness_cpu[cpu_number()]; splassert(IPL_HIGH); if (wcpu->wc_stk_count < WITNESS_STK_CACHE_MAX) { stack->ls_next = wcpu->wc_stk_cache; wcpu->wc_stk_cache = stack; wcpu->wc_stk_count++; return; } mtx_enter(&w_mtx); stack->ls_next = w_lock_stack_free; w_lock_stack_free = stack; mtx_leave(&w_mtx); } static struct lock_instance * find_instance(struct lock_list_entry *list, const struct lock_object *lock) { struct lock_list_entry *lle; struct lock_instance *instance; int i; for (lle = list; lle != NULL; lle = lle->ll_next) { for (i = lle->ll_count - 1; i >= 0; i--) { instance = &lle->ll_children[i]; if (instance->li_lock == lock) return (instance); } } return (NULL); } static void witness_list_lock(struct lock_instance *instance, int (*prnt)(const char *fmt, ...)) { struct lock_object *lock; lock = instance->li_lock; prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ? "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name); prnt(" r = %d (%p)\n", instance->li_flags & LI_RECURSEMASK, lock); if (instance->li_stack != NULL) stacktrace_print(&instance->li_stack->ls_stack, prnt); } #ifdef DDB static int witness_thread_has_locks(struct proc *p) { if (p->p_sleeplocks == NULL) return (0); return (p->p_sleeplocks->ll_count != 0); } static int witness_process_has_locks(struct process *pr) { struct proc *p; TAILQ_FOREACH(p, &pr->ps_threads, p_thr_link) { if (witness_thread_has_locks(p)) return (1); } return (0); } #endif int witness_list_locks(struct lock_list_entry **lock_list, int (*prnt)(const char *fmt, ...)) { struct lock_list_entry *lle; int i, nheld; nheld = 0; for (lle = *lock_list; lle != NULL; lle = lle->ll_next) for (i = lle->ll_count - 1; i >= 0; i--) { witness_list_lock(&lle->ll_children[i], prnt); nheld++; } return (nheld); } /* * This is a bit risky at best. We call this function when we have timed * out acquiring a spin lock, and we assume that the other CPU is stuck * with this lock held. So, we go groveling around in the other CPU's * per-cpu data to try to find the lock instance for this spin lock to * see when it was last acquired. */ void witness_display_spinlock(struct lock_object *lock, struct proc *owner, int (*prnt)(const char *fmt, ...)) { struct lock_instance *instance; if (owner->p_stat != SONPROC) return; instance = find_instance( witness_cpu[owner->p_cpu->ci_cpuid].wc_spinlocks, lock); if (instance != NULL) witness_list_lock(instance, prnt); } void witness_assert(const struct lock_object *lock, int flags) { struct lock_instance *instance; struct lock_class *class; if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL || db_active) return; class = LOCK_CLASS(lock); if ((class->lc_flags & LC_SLEEPLOCK) != 0) instance = find_instance(curproc->p_sleeplocks, lock); else if ((class->lc_flags & LC_SPINLOCK) != 0) instance = find_instance( witness_cpu[cpu_number()].wc_spinlocks, lock); else { panic("lock (%s) %s is not sleep or spin!", class->lc_name, lock->lo_name); return; } switch (flags) { case LA_UNLOCKED: if (instance != NULL) panic("lock (%s) %s locked", class->lc_name, lock->lo_name); break; case LA_LOCKED: case LA_LOCKED | LA_RECURSED: case LA_LOCKED | LA_NOTRECURSED: case LA_SLOCKED: case LA_SLOCKED | LA_RECURSED: case LA_SLOCKED | LA_NOTRECURSED: case LA_XLOCKED: case LA_XLOCKED | LA_RECURSED: case LA_XLOCKED | LA_NOTRECURSED: if (instance == NULL) { panic("lock (%s) %s not locked", class->lc_name, lock->lo_name); break; } if ((flags & LA_XLOCKED) != 0 && (instance->li_flags & LI_EXCLUSIVE) == 0) panic( "lock (%s) %s not exclusively locked", class->lc_name, lock->lo_name); if ((flags & LA_SLOCKED) != 0 && (instance->li_flags & LI_EXCLUSIVE) != 0) panic( "lock (%s) %s exclusively locked", class->lc_name, lock->lo_name); if ((flags & LA_RECURSED) != 0 && (instance->li_flags & LI_RECURSEMASK) == 0) panic("lock (%s) %s not recursed", class->lc_name, lock->lo_name); if ((flags & LA_NOTRECURSED) != 0 && (instance->li_flags & LI_RECURSEMASK) != 0) panic("lock (%s) %s recursed", class->lc_name, lock->lo_name); break; default: panic("invalid lock assertion"); } } static void witness_setflag(struct lock_object *lock, int flag, int set) { struct lock_list_entry *lock_list; struct lock_instance *instance; struct lock_class *class; if (lock->lo_witness == NULL || witness_watch < 0 || panicstr != NULL || db_active) return; class = LOCK_CLASS(lock); if (class->lc_flags & LC_SLEEPLOCK) lock_list = curproc->p_sleeplocks; else lock_list = witness_cpu[cpu_number()].wc_spinlocks; instance = find_instance(lock_list, lock); if (instance == NULL) { panic("%s: lock (%s) %s not locked", __func__, class->lc_name, lock->lo_name); return; } if (set) instance->li_flags |= flag; else instance->li_flags &= ~flag; } void witness_norelease(struct lock_object *lock) { witness_setflag(lock, LI_NORELEASE, 1); } void witness_releaseok(struct lock_object *lock) { witness_setflag(lock, LI_NORELEASE, 0); } #ifdef DDB static void witness_ddb_list(struct proc *p) { struct witness_cpu *wc = &witness_cpu[cpu_number()]; KASSERTMSG(witness_cold == 0, "%s: witness_cold", __func__); KASSERTMSG(db_active, "%s: not in the debugger", __func__); if (witness_watch < 1) return; witness_list_locks(&p->p_sleeplocks, db_printf); /* * We only handle spinlocks if td == curproc. This is somewhat broken * if td is currently executing on some other CPU and holds spin locks * as we won't display those locks. If we had a MI way of getting * the per-cpu data for a given cpu then we could use * td->td_oncpu to get the list of spinlocks for this thread * and "fix" this. * * That still wouldn't really fix this unless we locked the scheduler * lock or stopped the other CPU to make sure it wasn't changing the * list out from under us. It is probably best to just not try to * handle threads on other CPU's for now. */ if (p == curproc && wc->wc_spinlocks != NULL) witness_list_locks(&wc->wc_spinlocks, db_printf); } void db_witness_list(db_expr_t addr, int have_addr, db_expr_t count, char *modif) { struct proc *p; if (have_addr) p = (struct proc *)addr; else p = curproc; witness_ddb_list(p); } void db_witness_list_all(db_expr_t addr, int have_addr, db_expr_t count, char *modif) { CPU_INFO_ITERATOR cii; struct cpu_info *ci; struct lock_list_entry *lock_list; struct process *pr; struct proc *p; CPU_INFO_FOREACH(cii, ci) { lock_list = witness_cpu[CPU_INFO_UNIT(ci)].wc_spinlocks; if (lock_list == NULL || lock_list->ll_count == 0) continue; db_printf("CPU %d:\n", CPU_INFO_UNIT(ci)); witness_list_locks(&lock_list, db_printf); } /* * It would be nice to list only threads and processes that actually * held sleep locks, but that information is currently not exported * by WITNESS. */ LIST_FOREACH(pr, &allprocess, ps_list) { if (!witness_process_has_locks(pr)) continue; TAILQ_FOREACH(p, &pr->ps_threads, p_thr_link) { if (!witness_thread_has_locks(p)) continue; db_printf("Process %d (%s) thread %p (%d)\n", pr->ps_pid, pr->ps_comm, p, p->p_tid); witness_ddb_list(p); } } } void witness_print_badstacks(void) { static struct witness tmp_w1, tmp_w2; static struct witness_lock_order_data tmp_data1, tmp_data2; struct witness_lock_order_data *data1, *data2; struct witness *w1, *w2; int error, generation, i, j; if (witness_watch < 1) { db_printf("witness watch is disabled\n"); return; } if (witness_cold) { db_printf("witness is cold\n"); return; } error = 0; memset(&tmp_w1, 0, sizeof(tmp_w1)); memset(&tmp_w2, 0, sizeof(tmp_w2)); memset(&tmp_data1, 0, sizeof(tmp_data1)); memset(&tmp_data2, 0, sizeof(tmp_data2)); restart: mtx_enter(&w_mtx); generation = w_generation; mtx_leave(&w_mtx); db_printf("Number of known direct relationships is %d\n", w_lohash.wloh_count); for (i = 1; i < w_max_used_index; i++) { mtx_enter(&w_mtx); if (generation != w_generation) { mtx_leave(&w_mtx); /* The graph has changed, try again. */ db_printf("Lock graph changed, restarting trace.\n"); goto restart; } w1 = &w_data[i]; if (w1->w_reversed == 0) { mtx_leave(&w_mtx); continue; } /* Copy w1 locally so we can release the spin lock. */ tmp_w1 = *w1; mtx_leave(&w_mtx); if (tmp_w1.w_reversed == 0) continue; for (j = 1; j < w_max_used_index; j++) { if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j) continue; mtx_enter(&w_mtx); if (generation != w_generation) { mtx_leave(&w_mtx); /* The graph has changed, try again. */ db_printf("Lock graph changed, " "restarting trace.\n"); goto restart; } w2 = &w_data[j]; data1 = witness_lock_order_get(w1, w2); data2 = witness_lock_order_get(w2, w1); /* * Copy information locally so we can release the * spin lock. */ tmp_w2 = *w2; if (data1) tmp_data1.wlod_stack = data1->wlod_stack; if (data2 && data2 != data1) tmp_data2.wlod_stack = data2->wlod_stack; mtx_leave(&w_mtx); db_printf("\nLock order reversal between \"%s\"(%s) " "and \"%s\"(%s)!\n", tmp_w1.w_type->lt_name, tmp_w1.w_class->lc_name, tmp_w2.w_type->lt_name, tmp_w2.w_class->lc_name); if (data1) { db_printf("Lock order \"%s\"(%s) -> \"%s\"(%s) " "first seen at:\n", tmp_w1.w_type->lt_name, tmp_w1.w_class->lc_name, tmp_w2.w_type->lt_name, tmp_w2.w_class->lc_name); stacktrace_print(&tmp_data1.wlod_stack, db_printf); db_printf("\n"); } if (data2 && data2 != data1) { db_printf("Lock order \"%s\"(%s) -> \"%s\"(%s) " "first seen at:\n", tmp_w2.w_type->lt_name, tmp_w2.w_class->lc_name, tmp_w1.w_type->lt_name, tmp_w1.w_class->lc_name); stacktrace_print(&tmp_data2.wlod_stack, db_printf); db_printf("\n"); } } } mtx_enter(&w_mtx); if (generation != w_generation) { mtx_leave(&w_mtx); /* * The graph changed while we were printing stack data, * try again. */ db_printf("Lock graph changed, restarting trace.\n"); goto restart; } mtx_leave(&w_mtx); } void db_witness_display(db_expr_t addr, int have_addr, db_expr_t count, char *modif) { switch (modif[0]) { case 'b': witness_print_badstacks(); break; default: witness_ddb_display(db_printf); break; } } #endif void db_witness_print_fullgraph(void) { struct witness *w; int error; if (witness_watch < 1) { db_printf("witness watch is disabled\n"); return; } if (witness_cold) { db_printf("witness is cold\n"); return; } error = 0; mtx_enter(&w_mtx); SLIST_FOREACH(w, &w_all, w_list) w->w_displayed = 0; SLIST_FOREACH(w, &w_all, w_list) db_witness_add_fullgraph(w); mtx_leave(&w_mtx); } static void db_witness_add_fullgraph(struct witness *w) { int i; if (w->w_displayed != 0 || w->w_acquired == 0) return; w->w_displayed = 1; WITNESS_INDEX_ASSERT(w->w_index); for (i = 1; i <= w_max_used_index; i++) { if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) { db_printf("\"%s\",\"%s\"\n", w->w_type->lt_name, w_data[i].w_type->lt_name); db_witness_add_fullgraph(&w_data[i]); } } } /* * A simple hash function. Takes a key pointer and a key size. If size == 0, * interprets the key as a string and reads until the null * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit * hash value computed from the key. */ static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size) { unsigned int hash = 5381; int i; /* hash = hash * 33 + key[i] */ if (size) for (i = 0; i < size; i++) hash = ((hash << 5) + hash) + (unsigned int)key[i]; else for (i = 0; key[i] != 0; i++) hash = ((hash << 5) + hash) + (unsigned int)key[i]; return (hash); } /* * Initializes the two witness hash tables. Called exactly once from * witness_initialize(). */ static void witness_init_hash_tables(void) { int i; KASSERT(witness_cold); /* Initialize the hash tables. */ for (i = 0; i < WITNESS_HASH_SIZE; i++) SLIST_INIT(&w_hash.wh_array[i]); w_hash.wh_size = WITNESS_HASH_SIZE; w_hash.wh_count = 0; /* Initialize the lock order data hash. */ w_lodata = (void *)uvm_pageboot_alloc( sizeof(struct witness_lock_order_data) * WITNESS_LO_DATA_COUNT); memset(w_lodata, 0, sizeof(struct witness_lock_order_data) * WITNESS_LO_DATA_COUNT); w_lofree = NULL; for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) { w_lodata[i].wlod_next = w_lofree; w_lofree = &w_lodata[i]; } w_lohash.wloh_size = WITNESS_LO_HASH_SIZE; w_lohash.wloh_count = 0; for (i = 0; i < WITNESS_LO_HASH_SIZE; i++) w_lohash.wloh_array[i] = NULL; } static struct witness * witness_hash_get(const struct lock_type *type, const char *subtype) { struct witness *w; uint32_t hash; KASSERT(type != NULL); if (witness_cold == 0) MUTEX_ASSERT_LOCKED(&w_mtx); hash = (uint32_t)((uintptr_t)type ^ (uintptr_t)subtype) % w_hash.wh_size; SLIST_FOREACH(w, &w_hash.wh_array[hash], w_hash_next) { if (w->w_type == type && w->w_subtype == subtype) goto out; } out: return (w); } static void witness_hash_put(struct witness *w) { uint32_t hash; KASSERT(w != NULL); KASSERT(w->w_type != NULL); if (witness_cold == 0) MUTEX_ASSERT_LOCKED(&w_mtx); KASSERTMSG(witness_hash_get(w->w_type, w->w_subtype) == NULL, "%s: trying to add a hash entry that already exists!", __func__); KASSERTMSG(SLIST_NEXT(w, w_hash_next) == NULL, "%s: w->w_hash_next != NULL", __func__); hash = (uint32_t)((uintptr_t)w->w_type ^ (uintptr_t)w->w_subtype) % w_hash.wh_size; SLIST_INSERT_HEAD(&w_hash.wh_array[hash], w, w_hash_next); w_hash.wh_count++; } static struct witness_lock_order_data * witness_lock_order_get(struct witness *parent, struct witness *child) { struct witness_lock_order_data *data = NULL; struct witness_lock_order_key key; unsigned int hash; KASSERT(parent != NULL && child != NULL); key.from = parent->w_index; key.to = child->w_index; WITNESS_INDEX_ASSERT(key.from); WITNESS_INDEX_ASSERT(key.to); if ((w_rmatrix[parent->w_index][child->w_index] & WITNESS_LOCK_ORDER_KNOWN) == 0) goto out; hash = witness_hash_djb2((const char*)&key, sizeof(key)) % w_lohash.wloh_size; data = w_lohash.wloh_array[hash]; while (data != NULL) { if (witness_lock_order_key_equal(&data->wlod_key, &key)) break; data = data->wlod_next; } out: return (data); } /* * Verify that parent and child have a known relationship, are not the same, * and child is actually a child of parent. This is done without w_mtx * to avoid contention in the common case. */ static int witness_lock_order_check(struct witness *parent, struct witness *child) { if (parent != child && w_rmatrix[parent->w_index][child->w_index] & WITNESS_LOCK_ORDER_KNOWN && isitmychild(parent, child)) return (1); return (0); } static int witness_lock_order_add(struct witness *parent, struct witness *child) { static int lofree_empty_reported = 0; struct witness_lock_order_data *data = NULL; struct witness_lock_order_key key; unsigned int hash; KASSERT(parent != NULL && child != NULL); key.from = parent->w_index; key.to = child->w_index; WITNESS_INDEX_ASSERT(key.from); WITNESS_INDEX_ASSERT(key.to); if (w_rmatrix[parent->w_index][child->w_index] & WITNESS_LOCK_ORDER_KNOWN) return (1); hash = witness_hash_djb2((const char*)&key, sizeof(key)) % w_lohash.wloh_size; w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN; data = w_lofree; if (data == NULL) { if (!lofree_empty_reported) { lofree_empty_reported = 1; printf("witness: out of free lock order entries\n"); } return (0); } w_lofree = data->wlod_next; data->wlod_next = w_lohash.wloh_array[hash]; data->wlod_key = key; w_lohash.wloh_array[hash] = data; w_lohash.wloh_count++; stacktrace_save_at(&data->wlod_stack, 1); return (1); } /* Call this whenever the structure of the witness graph changes. */ static void witness_increment_graph_generation(void) { if (witness_cold == 0) MUTEX_ASSERT_LOCKED(&w_mtx); w_generation++; } static void witness_debugger(int dump) { switch (witness_watch) { case 1: break; case 2: if (dump) db_stack_dump(); break; case 3: if (dump) db_stack_dump(); db_enter(); break; default: panic("witness: locking error"); } } static int witness_alloc_stacks(void) { union lock_stack *stacks; unsigned int i, nstacks = LOCK_CHILDCOUNT * LOCK_NCHILDREN; rw_assert_wrlock(&w_ctlock); if (w_lock_stack_num >= nstacks) return (0); nstacks -= w_lock_stack_num; stacks = mallocarray(nstacks, sizeof(*stacks), M_WITNESS, M_WAITOK | M_CANFAIL | M_ZERO); if (stacks == NULL) return (ENOMEM); mtx_enter(&w_mtx); for (i = 0; i < nstacks; i++) { stacks[i].ls_next = w_lock_stack_free; w_lock_stack_free = &stacks[i]; } mtx_leave(&w_mtx); w_lock_stack_num += nstacks; return (0); } int witness_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp, size_t newlen) { int error, value; if (namelen != 1) return (ENOTDIR); rw_enter_write(&w_ctlock); switch (name[0]) { case KERN_WITNESS_WATCH: error = witness_sysctl_watch(oldp, oldlenp, newp, newlen); break; case KERN_WITNESS_LOCKTRACE: value = witness_locktrace; error = sysctl_int(oldp, oldlenp, newp, newlen, &value); if (error == 0 && newp != NULL) { switch (value) { case 1: error = witness_alloc_stacks(); /* FALLTHROUGH */ case 0: if (error == 0) witness_locktrace = value; break; default: error = EINVAL; break; } } break; default: error = EOPNOTSUPP; break; } rw_exit_write(&w_ctlock); return (error); } int witness_sysctl_watch(void *oldp, size_t *oldlenp, void *newp, size_t newlen) { int error; int value; value = witness_watch; error = sysctl_int_bounded(oldp, oldlenp, newp, newlen, &value, -1, 3); if (error == 0 && newp != NULL) { mtx_enter(&w_mtx); if (value < 0 || witness_watch >= 0) witness_watch = value; else error = EINVAL; mtx_leave(&w_mtx); } return (error); }