src/lib/libskey/skeysubr.c

374 lines
7.3 KiB
C

/* OpenBSD S/Key (skeysubr.c)
*
* Authors:
* Neil M. Haller <nmh@thumper.bellcore.com>
* Philip R. Karn <karn@chicago.qualcomm.com>
* John S. Walden <jsw@thumper.bellcore.com>
* Scott Chasin <chasin@crimelab.com>
* Todd C. Miller <millert@openbsd.org>
*
* S/Key misc routines.
*
* $OpenBSD: skeysubr.c,v 1.36 2023/03/08 04:43:05 guenther Exp $
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <signal.h>
#include <termios.h>
#include <unistd.h>
#include <md5.h>
#include <sha1.h>
#include <rmd160.h>
#include "skey.h"
/* Default hash function to use (index into skey_algorithm_table array) */
#ifndef SKEY_HASH_DEFAULT
#define SKEY_HASH_DEFAULT 0 /* md5 */
#endif
static void keycrunch_md5(char *, char *, size_t);
static void keycrunch_sha1(char *, char *, size_t);
static void keycrunch_rmd160(char *, char *, size_t);
static void skey_echo(int);
static void trapped(int);
/* Current hash type (index into skey_algorithm_table array) */
static int skey_hash_type = SKEY_HASH_DEFAULT;
/*
* Hash types we support.
* Each has an associated keycrunch() and f() function.
*/
struct skey_algorithm_table {
const char *name;
void (*keycrunch)(char *, char *, size_t);
};
static struct skey_algorithm_table skey_algorithm_table[] = {
{ "md5", keycrunch_md5 },
{ "sha1", keycrunch_sha1 },
{ "rmd160", keycrunch_rmd160 },
{ NULL }
};
/*
* Crunch a key:
* Concatenate the seed and the password, run through hash function and
* collapse to 64 bits. This is defined as the user's starting key.
* The result pointer must have at least SKEY_BINKEY_SIZE bytes of storage.
* The seed and password may be of any length.
*/
int
keycrunch(char *result, char *seed, char *passwd)
{
char *buf, *p;
size_t buflen;
buflen = strlen(seed) + strlen(passwd);
if ((buf = malloc(buflen + 1)) == NULL)
return(-1);
(void)strlcpy(buf, seed, buflen + 1);
for (p = buf; *p; p++)
*p = (char)tolower((unsigned char)*p);
(void)strlcat(buf, passwd, buflen + 1);
sevenbit(buf);
skey_algorithm_table[skey_hash_type].keycrunch(result, buf, buflen);
(void)free(buf);
return(0);
}
static void
keycrunch_md5(char *result, char *buf, size_t buflen)
{
MD5_CTX md;
u_int32_t results[4];
/* Crunch the key through MD5 */
MD5Init(&md);
MD5Update(&md, (unsigned char *)buf, buflen);
MD5Final((unsigned char *)results, &md);
/* Fold result from 128 to 64 bits */
results[0] ^= results[2];
results[1] ^= results[3];
(void)memcpy((void *)result, (void *)results, SKEY_BINKEY_SIZE);
}
static void
keycrunch_sha1(char *result, char *buf, size_t buflen)
{
SHA1_CTX sha;
int i, j;
/* Crunch the key through SHA1 */
SHA1Init(&sha);
SHA1Update(&sha, (unsigned char *)buf, buflen);
SHA1Pad(&sha);
/* Fold 160 to 64 bits */
sha.state[0] ^= sha.state[2];
sha.state[1] ^= sha.state[3];
sha.state[0] ^= sha.state[4];
/*
* SHA1 is a big endian algorithm but RFC2289 mandates that
* the result be in little endian form, so we copy to the
* result buffer manually.
*/
for (i = 0, j = 0; j < 8; i++, j += 4) {
result[j] = (u_char)(sha.state[i] & 0xff);
result[j+1] = (u_char)((sha.state[i] >> 8) & 0xff);
result[j+2] = (u_char)((sha.state[i] >> 16) & 0xff);
result[j+3] = (u_char)((sha.state[i] >> 24) & 0xff);
}
}
static void
keycrunch_rmd160(char *result, char *buf, size_t buflen)
{
RMD160_CTX rmd;
u_int32_t results[5];
/* Crunch the key through RMD-160 */
RMD160Init(&rmd);
RMD160Update(&rmd, (unsigned char *)buf, buflen);
RMD160Final((unsigned char *)results, &rmd);
/* Fold 160 to 64 bits */
results[0] ^= results[2];
results[1] ^= results[3];
results[0] ^= results[4];
(void)memcpy((void *)result, (void *)results, SKEY_BINKEY_SIZE);
}
/*
* The one-way hash function f().
* Takes SKEY_BINKEY_SIZE bytes and returns SKEY_BINKEY_SIZE bytes in place.
*/
void
f(char *x)
{
skey_algorithm_table[skey_hash_type].keycrunch(x, x, SKEY_BINKEY_SIZE);
}
/* Strip trailing cr/lf from a line of text */
void
rip(char *buf)
{
buf += strcspn(buf, "\r\n");
if (*buf)
*buf = '\0';
}
/* Read in secret password (turns off echo) */
char *
readpass(char *buf, int n)
{
void (*old_handler)(int);
/* Turn off echoing */
skey_echo(0);
/* Catch SIGINT and save old signal handler */
old_handler = signal(SIGINT, trapped);
if (fgets(buf, n, stdin) == NULL)
buf[0] = '\0';
rip(buf);
(void)putc('\n', stderr);
(void)fflush(stderr);
/* Restore signal handler and turn echo back on */
if (old_handler != SIG_ERR)
(void)signal(SIGINT, old_handler);
skey_echo(1);
sevenbit(buf);
return(buf);
}
/* Read in an s/key OTP (does not turn off echo) */
char *
readskey(char *buf, int n)
{
if (fgets(buf, n, stdin) == NULL)
buf[0] = '\0';
rip(buf);
sevenbit(buf);
return(buf);
}
/* Signal handler for trapping ^C */
static void
trapped(int sig)
{
write(STDERR_FILENO, "^C\n", 3);
/* Turn on echo if necessary */
skey_echo(1);
_exit(1);
}
/*
* Convert 16-byte hex-ascii string to 8-byte binary array
* Returns 0 on success, -1 on error
*/
int
atob8(char *out, char *in)
{
int i;
int val;
if (in == NULL || out == NULL)
return(-1);
for (i=0; i < 8; i++) {
if ((in = skipspace(in)) == NULL)
return(-1);
if ((val = htoi(*in++)) == -1)
return(-1);
*out = val << 4;
if ((in = skipspace(in)) == NULL)
return(-1);
if ((val = htoi(*in++)) == -1)
return(-1);
*out++ |= val;
}
return(0);
}
/* Convert 8-byte binary array to 16-byte hex-ascii string */
int
btoa8(char *out, char *in)
{
if (in == NULL || out == NULL)
return(-1);
(void)snprintf(out, 17, "%02x%02x%02x%02x%02x%02x%02x%02x",
in[0] & 0xff, in[1] & 0xff, in[2] & 0xff, in[3] & 0xff,
in[4] & 0xff, in[5] & 0xff, in[6] & 0xff, in[7] & 0xff);
return(0);
}
/* Convert hex digit to binary integer */
int
htoi(int c)
{
if ('0' <= c && c <= '9')
return(c - '0');
if ('a' <= c && c <= 'f')
return(10 + c - 'a');
if ('A' <= c && c <= 'F')
return(10 + c - 'A');
return(-1);
}
/* Skip leading spaces from the string */
char *
skipspace(char *cp)
{
while (*cp == ' ' || *cp == '\t')
cp++;
if (*cp == '\0')
return(NULL);
else
return(cp);
}
/* Remove backspaced over characters from the string */
void
backspace(char *buf)
{
char bs = 0x8;
char *cp = buf;
char *out = buf;
while (*cp) {
if (*cp == bs) {
if (out == buf) {
cp++;
continue;
} else {
cp++;
out--;
}
} else {
*out++ = *cp++;
}
}
*out = '\0';
}
/* Make sure line is all seven bits */
void
sevenbit(char *s)
{
while (*s)
*s++ &= 0x7f;
}
/* Set hash algorithm type */
char *
skey_set_algorithm(char *new)
{
int i;
for (i = 0; skey_algorithm_table[i].name; i++) {
if (strcmp(new, skey_algorithm_table[i].name) == 0) {
skey_hash_type = i;
return(new);
}
}
return(NULL);
}
/* Get current hash type */
const char *
skey_get_algorithm(void)
{
return(skey_algorithm_table[skey_hash_type].name);
}
/* Turn echo on/off */
static void
skey_echo(int action)
{
static struct termios term;
static int echo = 0;
if (action == 0) {
/* Turn echo off */
(void) tcgetattr(fileno(stdin), &term);
if ((echo = (term.c_lflag & ECHO))) {
term.c_lflag &= ~ECHO;
(void) tcsetattr(fileno(stdin), TCSAFLUSH|TCSASOFT, &term);
}
} else if (action && echo) {
/* Turn echo on */
term.c_lflag |= ECHO;
(void) tcsetattr(fileno(stdin), TCSAFLUSH|TCSASOFT, &term);
echo = 0;
}
}