src/sbin/iked/crypto.c

1206 lines
30 KiB
C

/* $OpenBSD: crypto.c,v 1.46 2023/08/04 19:06:25 claudio Exp $ */
/*
* Copyright (c) 2010-2013 Reyk Floeter <reyk@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/types.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/uio.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <fcntl.h>
#include <event.h>
#include <openssl/ecdsa.h>
#include <openssl/hmac.h>
#include <openssl/evp.h>
#include <openssl/sha.h>
#include <openssl/md5.h>
#include <openssl/x509.h>
#include <openssl/rsa.h>
#include "iked.h"
#include "ikev2.h"
/* RFC 7427, A.1 RSA */
static const uint8_t sha256WithRSA[] = {
0x30, 0x0d, 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86,
0xf7, 0x0d, 0x01, 0x01, 0x0b, 0x05, 0x00
};
static const uint8_t sha384WithRSA[] = {
0x30, 0x0d, 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86,
0xf7, 0x0d, 0x01, 0x01, 0x0c, 0x05, 0x00
};
static const uint8_t sha512WithRSA[] = {
0x30, 0x0d, 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86,
0xf7, 0x0d, 0x01, 0x01, 0x0d, 0x05, 0x00
};
/* RFC 7427, A.3 ECDSA */
static const uint8_t ecdsa_sha256[] = {
0x30, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce,
0x3d, 0x04, 0x03, 0x02
};
static const uint8_t ecdsa_sha384[] = {
0x30, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce,
0x3d, 0x04, 0x03, 0x03
};
static const uint8_t ecdsa_sha512[] = {
0x30, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce,
0x3d, 0x04, 0x03, 0x04
};
/* RFC 7427, A.4.3 RSASSA-PSS with SHA-256 */
static const uint8_t rsapss_sha256[] = {
0x30, 0x46, 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86,
0xf7, 0x0d, 0x01, 0x01, 0x0a, 0x30, 0x39, 0xa0,
0x0f, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48,
0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00,
0xa1, 0x1c, 0x30, 0x1a, 0x06, 0x09, 0x2a, 0x86,
0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x08, 0x30,
0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65,
0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0xa2, 0x03,
0x02, 0x01, 0x20, 0xa3, 0x03, 0x02, 0x01, 0x01
};
/* RSASSA-PSS SHA-384 */
static const uint8_t rsapss_sha384[] = {
0x30, 0x46, 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86,
0xf7, 0x0d, 0x01, 0x01, 0x0a, 0x30, 0x34, 0xa0,
0x0f, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48,
0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00,
0xa1, 0x1c, 0x30, 0x1a, 0x06, 0x09, 0x2a, 0x86,
0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x08, 0x30,
0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65,
0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0xa2, 0x03,
0x02, 0x01, 0x30, 0xa3, 0x03, 0x02, 0x01, 0x01
};
/* RSASSA-PSS SHA-512 */
static const uint8_t rsapss_sha512[] = {
0x30, 0x46, 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86,
0xf7, 0x0d, 0x01, 0x01, 0x0a, 0x30, 0x34, 0xa0,
0x0f, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48,
0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00,
0xa1, 0x1c, 0x30, 0x1a, 0x06, 0x09, 0x2a, 0x86,
0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x08, 0x30,
0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65,
0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0xa2, 0x03,
0x02, 0x01, 0x40, 0xa3, 0x03, 0x02, 0x01, 0x01
};
/* RSASSA-PSS SHA-256, no trailer */
static const uint8_t rsapss_sha256nt[] = {
0x30, 0x41, 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86,
0xf7, 0x0d, 0x01, 0x01, 0x0a, 0x30, 0x34, 0xa0,
0x0f, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48,
0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00,
0xa1, 0x1c, 0x30, 0x1a, 0x06, 0x09, 0x2a, 0x86,
0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x08, 0x30,
0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65,
0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0xa2, 0x03,
0x02, 0x01, 0x20
};
/* RSASSA-PSS SHA-384, no trailer */
static const uint8_t rsapss_sha384nt[] = {
0x30, 0x41, 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86,
0xf7, 0x0d, 0x01, 0x01, 0x0a, 0x30, 0x34, 0xa0,
0x0f, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48,
0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00,
0xa1, 0x1c, 0x30, 0x1a, 0x06, 0x09, 0x2a, 0x86,
0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x08, 0x30,
0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65,
0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0xa2, 0x03,
0x02, 0x01, 0x30
};
/* RSASSA-PSS SHA-512, no trailer */
static const uint8_t rsapss_sha512nt[] = {
0x30, 0x41, 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86,
0xf7, 0x0d, 0x01, 0x01, 0x0a, 0x30, 0x34, 0xa0,
0x0f, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48,
0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00,
0xa1, 0x1c, 0x30, 0x1a, 0x06, 0x09, 0x2a, 0x86,
0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x08, 0x30,
0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65,
0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0xa2, 0x03,
0x02, 0x01, 0x40
};
#define FLAG_RSA_PSS 0x00001
int force_rsa_pss = 0; /* XXX move to API */
static const struct {
int sc_keytype;
const EVP_MD *(*sc_md)(void);
uint8_t sc_len;
const uint8_t *sc_oid;
uint32_t sc_flags;
} schemes[] = {
{ EVP_PKEY_RSA, EVP_sha256, sizeof(sha256WithRSA), sha256WithRSA, 0 },
{ EVP_PKEY_RSA, EVP_sha384, sizeof(sha384WithRSA), sha384WithRSA, 0 },
{ EVP_PKEY_RSA, EVP_sha512, sizeof(sha512WithRSA), sha512WithRSA, 0 },
{ EVP_PKEY_EC, EVP_sha256, sizeof(ecdsa_sha256), ecdsa_sha256, 0 },
{ EVP_PKEY_EC, EVP_sha384, sizeof(ecdsa_sha384), ecdsa_sha384, 0 },
{ EVP_PKEY_EC, EVP_sha512, sizeof(ecdsa_sha512), ecdsa_sha512, 0 },
{ EVP_PKEY_RSA, EVP_sha256, sizeof(rsapss_sha256), rsapss_sha256,
FLAG_RSA_PSS },
{ EVP_PKEY_RSA, EVP_sha384, sizeof(rsapss_sha384), rsapss_sha384,
FLAG_RSA_PSS },
{ EVP_PKEY_RSA, EVP_sha512, sizeof(rsapss_sha512), rsapss_sha512,
FLAG_RSA_PSS },
{ EVP_PKEY_RSA, EVP_sha256, sizeof(rsapss_sha256nt), rsapss_sha256nt,
FLAG_RSA_PSS },
{ EVP_PKEY_RSA, EVP_sha384, sizeof(rsapss_sha384nt), rsapss_sha384nt,
FLAG_RSA_PSS },
{ EVP_PKEY_RSA, EVP_sha512, sizeof(rsapss_sha512nt), rsapss_sha512nt,
FLAG_RSA_PSS },
};
int _dsa_verify_init(struct iked_dsa *, const uint8_t *, size_t);
int _dsa_verify_prepare(struct iked_dsa *, uint8_t **, size_t *,
uint8_t **);
int _dsa_sign_encode(struct iked_dsa *, uint8_t *, size_t, size_t *);
int _dsa_sign_ecdsa(struct iked_dsa *, uint8_t *, size_t);
struct iked_hash *
hash_new(uint8_t type, uint16_t id)
{
struct iked_hash *hash;
const EVP_MD *md = NULL;
int length = 0, fixedkey = 0, trunc = 0, isaead = 0;
switch (type) {
case IKEV2_XFORMTYPE_PRF:
switch (id) {
case IKEV2_XFORMPRF_HMAC_MD5:
md = EVP_md5();
length = MD5_DIGEST_LENGTH;
break;
case IKEV2_XFORMPRF_HMAC_SHA1:
md = EVP_sha1();
length = SHA_DIGEST_LENGTH;
break;
case IKEV2_XFORMPRF_HMAC_SHA2_256:
md = EVP_sha256();
length = SHA256_DIGEST_LENGTH;
break;
case IKEV2_XFORMPRF_HMAC_SHA2_384:
md = EVP_sha384();
length = SHA384_DIGEST_LENGTH;
break;
case IKEV2_XFORMPRF_HMAC_SHA2_512:
md = EVP_sha512();
length = SHA512_DIGEST_LENGTH;
break;
case IKEV2_XFORMPRF_AES128_XCBC:
fixedkey = 128 / 8;
length = fixedkey;
/* FALLTHROUGH */
case IKEV2_XFORMPRF_HMAC_TIGER:
case IKEV2_XFORMPRF_AES128_CMAC:
default:
log_debug("%s: prf %s not supported", __func__,
print_map(id, ikev2_xformprf_map));
break;
}
break;
case IKEV2_XFORMTYPE_INTEGR:
switch (id) {
case IKEV2_XFORMAUTH_HMAC_MD5_96:
md = EVP_md5();
length = MD5_DIGEST_LENGTH;
trunc = 12;
break;
case IKEV2_XFORMAUTH_HMAC_SHA1_96:
md = EVP_sha1();
length = SHA_DIGEST_LENGTH;
trunc = 12;
break;
case IKEV2_XFORMAUTH_HMAC_SHA2_256_128:
md = EVP_sha256();
length = SHA256_DIGEST_LENGTH;
trunc = 16;
break;
case IKEV2_XFORMAUTH_HMAC_SHA2_384_192:
md = EVP_sha384();
length = SHA384_DIGEST_LENGTH;
trunc = 24;
break;
case IKEV2_XFORMAUTH_HMAC_SHA2_512_256:
md = EVP_sha512();
length = SHA512_DIGEST_LENGTH;
trunc = 32;
break;
case IKEV2_XFORMAUTH_AES_GCM_12:
length = 12;
isaead = 1;
break;
case IKEV2_XFORMAUTH_AES_GCM_16:
length = 16;
isaead = 1;
break;
case IKEV2_XFORMAUTH_NONE:
case IKEV2_XFORMAUTH_DES_MAC:
case IKEV2_XFORMAUTH_KPDK_MD5:
case IKEV2_XFORMAUTH_AES_XCBC_96:
case IKEV2_XFORMAUTH_HMAC_MD5_128:
case IKEV2_XFORMAUTH_HMAC_SHA1_160:
case IKEV2_XFORMAUTH_AES_CMAC_96:
case IKEV2_XFORMAUTH_AES_128_GMAC:
case IKEV2_XFORMAUTH_AES_192_GMAC:
case IKEV2_XFORMAUTH_AES_256_GMAC:
default:
log_debug("%s: auth %s not supported", __func__,
print_map(id, ikev2_xformauth_map));
break;
}
break;
default:
log_debug("%s: hash type %s not supported", __func__,
print_map(id, ikev2_xformtype_map));
break;
}
if (!isaead && md == NULL)
return (NULL);
if ((hash = calloc(1, sizeof(*hash))) == NULL) {
log_debug("%s: alloc hash", __func__);
return (NULL);
}
hash->hash_type = type;
hash->hash_id = id;
hash->hash_priv = md;
hash->hash_ctx = NULL;
hash->hash_trunc = trunc;
hash->hash_length = length;
hash->hash_fixedkey = fixedkey;
hash->hash_isaead = isaead;
if (isaead)
return (hash);
hash->hash_ctx = HMAC_CTX_new();
if (hash->hash_ctx == NULL) {
log_debug("%s: alloc hash ctx", __func__);
hash_free(hash);
return (NULL);
}
return (hash);
}
struct ibuf *
hash_setkey(struct iked_hash *hash, void *key, size_t keylen)
{
ibuf_free(hash->hash_key);
if ((hash->hash_key = ibuf_new(key, keylen)) == NULL) {
log_debug("%s: alloc hash key", __func__);
return (NULL);
}
return (hash->hash_key);
}
void
hash_free(struct iked_hash *hash)
{
if (hash == NULL)
return;
HMAC_CTX_free(hash->hash_ctx);
ibuf_free(hash->hash_key);
free(hash);
}
void
hash_init(struct iked_hash *hash)
{
HMAC_Init_ex(hash->hash_ctx, ibuf_data(hash->hash_key),
ibuf_size(hash->hash_key), hash->hash_priv, NULL);
}
void
hash_update(struct iked_hash *hash, void *buf, size_t len)
{
HMAC_Update(hash->hash_ctx, buf, len);
}
void
hash_final(struct iked_hash *hash, void *buf, size_t *len)
{
unsigned int length = 0;
HMAC_Final(hash->hash_ctx, buf, &length);
*len = (size_t)length;
/* Truncate the result if required by the alg */
if (hash->hash_trunc && *len > hash->hash_trunc)
*len = hash->hash_trunc;
}
size_t
hash_length(struct iked_hash *hash)
{
if (hash->hash_trunc)
return (hash->hash_trunc);
return (hash->hash_length);
}
size_t
hash_keylength(struct iked_hash *hash)
{
return (hash->hash_length);
}
struct iked_cipher *
cipher_new(uint8_t type, uint16_t id, uint16_t id_length)
{
struct iked_cipher *encr;
const EVP_CIPHER *cipher = NULL;
int length = 0, fixedkey = 0, ivlength = 0;
int saltlength = 0, authid = 0;
switch (type) {
case IKEV2_XFORMTYPE_ENCR:
switch (id) {
case IKEV2_XFORMENCR_3DES:
cipher = EVP_des_ede3_cbc();
length = EVP_CIPHER_block_size(cipher);
fixedkey = EVP_CIPHER_key_length(cipher);
ivlength = EVP_CIPHER_iv_length(cipher);
break;
case IKEV2_XFORMENCR_AES_CBC:
switch (id_length) {
case 128:
cipher = EVP_aes_128_cbc();
break;
case 192:
cipher = EVP_aes_192_cbc();
break;
case 256:
cipher = EVP_aes_256_cbc();
break;
default:
log_debug("%s: invalid key length %d"
" for cipher %s", __func__, id_length,
print_map(id, ikev2_xformencr_map));
break;
}
if (cipher == NULL)
break;
length = EVP_CIPHER_block_size(cipher);
ivlength = EVP_CIPHER_iv_length(cipher);
fixedkey = EVP_CIPHER_key_length(cipher);
break;
case IKEV2_XFORMENCR_AES_GCM_16:
case IKEV2_XFORMENCR_AES_GCM_12:
switch (id_length) {
case 128:
cipher = EVP_aes_128_gcm();
break;
case 256:
cipher = EVP_aes_256_gcm();
break;
default:
log_debug("%s: invalid key length %d"
" for cipher %s", __func__, id_length,
print_map(id, ikev2_xformencr_map));
break;
}
if (cipher == NULL)
break;
switch(id) {
case IKEV2_XFORMENCR_AES_GCM_16:
authid = IKEV2_XFORMAUTH_AES_GCM_16;
break;
case IKEV2_XFORMENCR_AES_GCM_12:
authid = IKEV2_XFORMAUTH_AES_GCM_12;
break;
}
length = EVP_CIPHER_block_size(cipher);
ivlength = 8;
saltlength = 4;
fixedkey = EVP_CIPHER_key_length(cipher) + saltlength;
break;
case IKEV2_XFORMENCR_DES_IV64:
case IKEV2_XFORMENCR_DES:
case IKEV2_XFORMENCR_RC5:
case IKEV2_XFORMENCR_IDEA:
case IKEV2_XFORMENCR_CAST:
case IKEV2_XFORMENCR_BLOWFISH:
case IKEV2_XFORMENCR_3IDEA:
case IKEV2_XFORMENCR_DES_IV32:
case IKEV2_XFORMENCR_NULL:
case IKEV2_XFORMENCR_AES_CTR:
/* FALLTHROUGH */
default:
log_debug("%s: cipher %s not supported", __func__,
print_map(id, ikev2_xformencr_map));
cipher = NULL;
break;
}
break;
default:
log_debug("%s: cipher type %s not supported", __func__,
print_map(id, ikev2_xformtype_map));
break;
}
if (cipher == NULL)
return (NULL);
if ((encr = calloc(1, sizeof(*encr))) == NULL) {
log_debug("%s: alloc cipher", __func__);
return (NULL);
}
encr->encr_id = id;
encr->encr_priv = cipher;
encr->encr_ctx = NULL;
encr->encr_length = length;
encr->encr_fixedkey = fixedkey;
encr->encr_ivlength = ivlength ? ivlength : length;
encr->encr_saltlength = saltlength;
encr->encr_authid = authid;
encr->encr_ctx = EVP_CIPHER_CTX_new();
if (encr->encr_ctx == NULL) {
log_debug("%s: alloc cipher ctx", __func__);
cipher_free(encr);
return (NULL);
}
return (encr);
}
struct ibuf *
cipher_setkey(struct iked_cipher *encr, const void *key, size_t keylen)
{
ibuf_free(encr->encr_key);
if ((encr->encr_key = ibuf_new(key, keylen)) == NULL) {
log_debug("%s: alloc cipher key", __func__);
return (NULL);
}
return (encr->encr_key);
}
struct ibuf *
cipher_setiv(struct iked_cipher *encr, const void *iv, size_t len)
{
ibuf_free(encr->encr_iv);
encr->encr_iv = NULL;
if (iv != NULL) {
if (len < encr->encr_ivlength) {
log_debug("%s: invalid IV length %zu", __func__, len);
return (NULL);
}
encr->encr_iv = ibuf_new(iv, encr->encr_ivlength);
} else {
switch (encr->encr_id) {
case IKEV2_XFORMENCR_AES_GCM_16:
case IKEV2_XFORMENCR_AES_GCM_12:
if (encr->encr_ivlength != sizeof(encr->encr_civ)) {
log_info("%s: ivlen does not match %zu != %zu",
__func__, encr->encr_ivlength,
sizeof(encr->encr_civ));
return (NULL);
}
encr->encr_iv = ibuf_new(&encr->encr_civ, sizeof(encr->encr_civ));
encr->encr_civ++;
break;
default:
/* Get new random IV */
encr->encr_iv = ibuf_random(encr->encr_ivlength);
}
}
if (encr->encr_iv == NULL) {
log_debug("%s: failed to set IV", __func__);
return (NULL);
}
return (encr->encr_iv);
}
int
cipher_settag(struct iked_cipher *encr, uint8_t *data, size_t len)
{
return (EVP_CIPHER_CTX_ctrl(encr->encr_ctx,
EVP_CTRL_GCM_SET_TAG, len, data) != 1);
}
int
cipher_gettag(struct iked_cipher *encr, uint8_t *data, size_t len)
{
return (EVP_CIPHER_CTX_ctrl(encr->encr_ctx,
EVP_CTRL_GCM_GET_TAG, len, data) != 1);
}
void
cipher_free(struct iked_cipher *encr)
{
if (encr == NULL)
return;
EVP_CIPHER_CTX_free(encr->encr_ctx);
ibuf_free(encr->encr_iv);
ibuf_free(encr->encr_key);
free(encr);
}
int
cipher_init(struct iked_cipher *encr, int enc)
{
struct ibuf *nonce = NULL;
int ret = -1;
if (EVP_CipherInit_ex(encr->encr_ctx, encr->encr_priv, NULL,
NULL, NULL, enc) != 1)
return (-1);
if (encr->encr_saltlength > 0) {
/* For AEADs the nonce is salt + IV (see RFC5282) */
nonce = ibuf_new(ibuf_seek(encr->encr_key,
ibuf_size(encr->encr_key) - encr->encr_saltlength,
encr->encr_saltlength), encr->encr_saltlength);
if (nonce == NULL)
return (-1);
if (ibuf_add_buf(nonce, encr->encr_iv) != 0)
goto done;
if (EVP_CipherInit_ex(encr->encr_ctx, NULL, NULL,
ibuf_data(encr->encr_key), ibuf_data(nonce), enc) != 1)
goto done;
} else
if (EVP_CipherInit_ex(encr->encr_ctx, NULL, NULL,
ibuf_data(encr->encr_key), ibuf_data(encr->encr_iv), enc) != 1)
return (-1);
EVP_CIPHER_CTX_set_padding(encr->encr_ctx, 0);
ret = 0;
done:
ibuf_free(nonce);
return (ret);
}
int
cipher_init_encrypt(struct iked_cipher *encr)
{
return (cipher_init(encr, 1));
}
int
cipher_init_decrypt(struct iked_cipher *encr)
{
return (cipher_init(encr, 0));
}
void
cipher_aad(struct iked_cipher *encr, const void *in, size_t inlen,
size_t *outlen)
{
int olen = 0;
if (EVP_CipherUpdate(encr->encr_ctx, NULL, &olen, in, inlen) != 1) {
ca_sslerror(__func__);
*outlen = 0;
return;
}
*outlen = (size_t)olen;
}
int
cipher_update(struct iked_cipher *encr, const void *in, size_t inlen,
void *out, size_t *outlen)
{
int olen;
olen = 0;
if (EVP_CipherUpdate(encr->encr_ctx, out, &olen, in, inlen) != 1) {
ca_sslerror(__func__);
*outlen = 0;
return (-1);
}
*outlen = (size_t)olen;
return (0);
}
int
cipher_final(struct iked_cipher *encr)
{
int olen;
/*
* We always have EVP_CIPH_NO_PADDING set. This means arg
* out is not used and olen should always be 0.
*/
if (EVP_CipherFinal_ex(encr->encr_ctx, NULL, &olen) != 1) {
ca_sslerror(__func__);
return (-1);
}
return (0);
}
size_t
cipher_length(struct iked_cipher *encr)
{
return (encr->encr_length);
}
size_t
cipher_keylength(struct iked_cipher *encr)
{
if (encr->encr_fixedkey)
return (encr->encr_fixedkey);
/* Might return zero */
return (ibuf_length(encr->encr_key));
}
size_t
cipher_ivlength(struct iked_cipher *encr)
{
return (encr->encr_ivlength);
}
size_t
cipher_outlength(struct iked_cipher *encr, size_t inlen)
{
return (roundup(inlen, encr->encr_length));
}
struct iked_dsa *
dsa_new(uint8_t id, struct iked_hash *prf, int sign)
{
struct iked_dsa *dsap = NULL, dsa;
bzero(&dsa, sizeof(dsa));
switch (id) {
case IKEV2_AUTH_SIG:
if (sign)
dsa.dsa_priv = EVP_sha256(); /* XXX should be passed */
else
dsa.dsa_priv = NULL; /* set later by dsa_init() */
break;
case IKEV2_AUTH_RSA_SIG:
/* RFC5996 says we SHOULD use SHA1 here */
dsa.dsa_priv = EVP_sha1();
break;
case IKEV2_AUTH_SHARED_KEY_MIC:
if (prf == NULL || prf->hash_priv == NULL)
fatalx("dsa_new: invalid PRF");
dsa.dsa_priv = prf->hash_priv;
dsa.dsa_hmac = 1;
break;
case IKEV2_AUTH_DSS_SIG:
dsa.dsa_priv = EVP_sha1();
break;
case IKEV2_AUTH_ECDSA_256:
dsa.dsa_priv = EVP_sha256();
break;
case IKEV2_AUTH_ECDSA_384:
dsa.dsa_priv = EVP_sha384();
break;
case IKEV2_AUTH_ECDSA_521:
dsa.dsa_priv = EVP_sha512();
break;
default:
log_debug("%s: auth method %s not supported", __func__,
print_map(id, ikev2_auth_map));
break;
}
if ((dsap = calloc(1, sizeof(*dsap))) == NULL) {
log_debug("%s: alloc dsa ctx", __func__);
return (NULL);
}
memcpy(dsap, &dsa, sizeof(*dsap));
dsap->dsa_method = id;
dsap->dsa_sign = sign;
if (dsap->dsa_hmac) {
if ((dsap->dsa_ctx = HMAC_CTX_new()) == NULL) {
log_debug("%s: alloc hash ctx", __func__);
dsa_free(dsap);
return (NULL);
}
} else {
if ((dsap->dsa_ctx = EVP_MD_CTX_create()) == NULL) {
log_debug("%s: alloc digest ctx", __func__);
dsa_free(dsap);
return (NULL);
}
}
return (dsap);
}
struct iked_dsa *
dsa_sign_new(uint8_t id, struct iked_hash *prf)
{
return (dsa_new(id, prf, 1));
}
struct iked_dsa *
dsa_verify_new(uint8_t id, struct iked_hash *prf)
{
return (dsa_new(id, prf, 0));
}
void
dsa_free(struct iked_dsa *dsa)
{
if (dsa == NULL)
return;
if (dsa->dsa_hmac) {
HMAC_CTX_free((HMAC_CTX *)dsa->dsa_ctx);
} else {
EVP_MD_CTX_free((EVP_MD_CTX *)dsa->dsa_ctx);
EVP_PKEY_free(dsa->dsa_key);
}
ibuf_free(dsa->dsa_keydata);
free(dsa);
}
struct ibuf *
dsa_setkey(struct iked_dsa *dsa, void *key, size_t keylen, uint8_t type)
{
BIO *rawcert = NULL;
X509 *cert = NULL;
RSA *rsa = NULL;
EC_KEY *ec = NULL;
EVP_PKEY *pkey = NULL;
ibuf_free(dsa->dsa_keydata);
if ((dsa->dsa_keydata = ibuf_new(key, keylen)) == NULL) {
log_debug("%s: alloc signature key", __func__);
return (NULL);
}
if ((rawcert = BIO_new_mem_buf(key, keylen)) == NULL)
goto err;
switch (type) {
case IKEV2_CERT_X509_CERT:
if ((cert = d2i_X509_bio(rawcert, NULL)) == NULL)
goto sslerr;
if ((pkey = X509_get_pubkey(cert)) == NULL)
goto sslerr;
dsa->dsa_key = pkey;
break;
case IKEV2_CERT_RSA_KEY:
if (dsa->dsa_sign) {
if ((rsa = d2i_RSAPrivateKey_bio(rawcert,
NULL)) == NULL)
goto sslerr;
} else {
if ((rsa = d2i_RSAPublicKey_bio(rawcert,
NULL)) == NULL)
goto sslerr;
}
if ((pkey = EVP_PKEY_new()) == NULL)
goto sslerr;
if (!EVP_PKEY_set1_RSA(pkey, rsa))
goto sslerr;
RSA_free(rsa); /* pkey now has the reference */
dsa->dsa_key = pkey;
break;
case IKEV2_CERT_ECDSA:
if (dsa->dsa_sign) {
if ((ec = d2i_ECPrivateKey_bio(rawcert, NULL)) == NULL)
goto sslerr;
} else {
if ((ec = d2i_EC_PUBKEY_bio(rawcert, NULL)) == NULL)
goto sslerr;
}
if ((pkey = EVP_PKEY_new()) == NULL)
goto sslerr;
if (!EVP_PKEY_set1_EC_KEY(pkey, ec))
goto sslerr;
EC_KEY_free(ec); /* pkey now has the reference */
dsa->dsa_key = pkey;
break;
default:
if (dsa->dsa_hmac)
break;
log_debug("%s: unsupported key type", __func__);
goto err;
}
X509_free(cert);
BIO_free(rawcert); /* temporary for parsing */
return (dsa->dsa_keydata);
sslerr:
ca_sslerror(__func__);
err:
log_debug("%s: error", __func__);
RSA_free(rsa);
EC_KEY_free(ec);
EVP_PKEY_free(pkey);
X509_free(cert);
BIO_free(rawcert);
ibuf_free(dsa->dsa_keydata);
dsa->dsa_keydata = NULL;
return (NULL);
}
int
_dsa_verify_init(struct iked_dsa *dsa, const uint8_t *sig, size_t len)
{
uint8_t oidlen;
size_t i;
int keytype;
if (dsa->dsa_priv != NULL)
return (0);
/*
* For IKEV2_AUTH_SIG the oid of the authentication signature
* is encoded in the first bytes of the auth message.
*/
if (dsa->dsa_method != IKEV2_AUTH_SIG) {
log_debug("%s: dsa_priv not set for %s", __func__,
print_map(dsa->dsa_method, ikev2_auth_map));
return (-1);
}
if (dsa->dsa_key == NULL) {
log_debug("%s: dsa_key not set for %s", __func__,
print_map(dsa->dsa_method, ikev2_auth_map));
return (-1);
}
keytype = EVP_PKEY_type(EVP_PKEY_id(((EVP_PKEY *)dsa->dsa_key)));
if (sig == NULL) {
log_debug("%s: signature missing", __func__);
return (-1);
}
if (len < sizeof(oidlen)) {
log_debug("%s: signature (%zu) too small for oid length",
__func__, len);
return (-1);
}
memcpy(&oidlen, sig, sizeof(oidlen));
if (len < (size_t)oidlen + sizeof(oidlen)) {
log_debug("%s: signature (%zu) too small for oid (%u)",
__func__, len, oidlen);
return (-1);
}
for (i = 0; i < nitems(schemes); i++) {
if (keytype == schemes[i].sc_keytype &&
oidlen == schemes[i].sc_len &&
memcmp(sig + 1, schemes[i].sc_oid,
schemes[i].sc_len) == 0) {
dsa->dsa_priv = (*schemes[i].sc_md)();
dsa->dsa_flags = schemes[i].sc_flags;
log_debug("%s: signature scheme %zd selected",
__func__, i);
return (0);
}
}
log_debug("%s: unsupported signature (%d)", __func__, oidlen);
return (-1);
}
int
dsa_init(struct iked_dsa *dsa, const void *buf, size_t len)
{
int ret;
EVP_PKEY_CTX *pctx = NULL;
if (dsa->dsa_hmac) {
if (!HMAC_Init_ex(dsa->dsa_ctx, ibuf_data(dsa->dsa_keydata),
ibuf_size(dsa->dsa_keydata), dsa->dsa_priv, NULL))
return (-1);
return (0);
}
if (dsa->dsa_sign) {
if (force_rsa_pss &&
EVP_PKEY_base_id(dsa->dsa_key) == EVP_PKEY_RSA)
dsa->dsa_flags = FLAG_RSA_PSS;
ret = EVP_DigestSignInit(dsa->dsa_ctx, &pctx, dsa->dsa_priv,
NULL, dsa->dsa_key);
} else {
/* sets dsa_priv, dsa_flags */
if ((ret = _dsa_verify_init(dsa, buf, len)) != 0)
return (ret);
ret = EVP_DigestVerifyInit(dsa->dsa_ctx, &pctx, dsa->dsa_priv,
NULL, dsa->dsa_key);
}
if (ret == 1 && dsa->dsa_flags == FLAG_RSA_PSS) {
if (EVP_PKEY_CTX_set_rsa_padding(pctx,
RSA_PKCS1_PSS_PADDING) <= 0 ||
EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, -1) <= 0)
return (-1);
}
if (_dsa_sign_encode(dsa, NULL, 0, NULL) < 0)
return (-1);
return (ret == 1 ? 0 : -1);
}
int
dsa_update(struct iked_dsa *dsa, const void *buf, size_t len)
{
int ret;
if (dsa->dsa_hmac)
ret = HMAC_Update(dsa->dsa_ctx, buf, len);
else if (dsa->dsa_sign)
ret = EVP_DigestSignUpdate(dsa->dsa_ctx, buf, len);
else
ret = EVP_DigestVerifyUpdate(dsa->dsa_ctx, buf, len);
return (ret == 1 ? 0 : -1);
}
/* Prefix signature hash with encoded type */
int
_dsa_sign_encode(struct iked_dsa *dsa, uint8_t *ptr, size_t len, size_t *offp)
{
int keytype;
size_t i, need;
if (offp)
*offp = 0;
if (dsa->dsa_method != IKEV2_AUTH_SIG)
return (0);
if (dsa->dsa_key == NULL)
return (-1);
keytype = EVP_PKEY_type(EVP_PKEY_id(((EVP_PKEY *)dsa->dsa_key)));
for (i = 0; i < nitems(schemes); i++) {
/* XXX should avoid calling sc_md() each time... */
if (keytype == schemes[i].sc_keytype &&
dsa->dsa_flags == schemes[i].sc_flags &&
(dsa->dsa_priv == (*schemes[i].sc_md)()))
break;
}
if (i >= nitems(schemes))
return (-1);
log_debug("%s: signature scheme %zd selected", __func__, i);
need = sizeof(ptr[0]) + schemes[i].sc_len;
if (ptr) {
if (len < need)
return (-1);
ptr[0] = schemes[i].sc_len;
memcpy(ptr + sizeof(ptr[0]), schemes[i].sc_oid,
schemes[i].sc_len);
}
if (offp)
*offp = need;
return (0);
}
/* Export size of encoded signature hash type */
size_t
dsa_prefix(struct iked_dsa *dsa)
{
size_t off = 0;
if (_dsa_sign_encode(dsa, NULL, 0, &off) < 0)
fatal("dsa_prefix: internal error");
return off;
}
size_t
dsa_length(struct iked_dsa *dsa)
{
if (dsa->dsa_hmac)
return (EVP_MD_size(dsa->dsa_priv));
switch (dsa->dsa_method) {
case IKEV2_AUTH_ECDSA_256:
case IKEV2_AUTH_ECDSA_384:
case IKEV2_AUTH_ECDSA_521:
/* size of concat(r|s) */
return (2 * ((EVP_PKEY_bits(dsa->dsa_key) + 7) / 8));
}
return (dsa_prefix(dsa) + EVP_PKEY_size(dsa->dsa_key));
}
int
_dsa_sign_ecdsa(struct iked_dsa *dsa, uint8_t *ptr, size_t len)
{
ECDSA_SIG *obj = NULL;
uint8_t *tmp = NULL;
const uint8_t *p;
size_t tmplen;
int ret = -1;
int bnlen, off;
const BIGNUM *r, *s;
if (len % 2)
goto done; /* must be even */
bnlen = len/2;
/*
* (a) create DER signature into 'tmp' buffer
* (b) convert buffer to ECDSA_SIG object
* (c) concatenate the padded r|s BIGNUMS into 'ptr'
*/
if (EVP_DigestSignFinal(dsa->dsa_ctx, NULL, &tmplen) != 1)
goto done;
if ((tmp = calloc(1, tmplen)) == NULL)
goto done;
if (EVP_DigestSignFinal(dsa->dsa_ctx, tmp, &tmplen) != 1)
goto done;
p = tmp;
if ((obj = d2i_ECDSA_SIG(NULL, &p, tmplen)) == NULL)
goto done;
ECDSA_SIG_get0(obj, &r, &s);
if (BN_num_bytes(r) > bnlen || BN_num_bytes(s) > bnlen)
goto done;
memset(ptr, 0, len);
off = bnlen - BN_num_bytes(r);
BN_bn2bin(r, ptr + off);
off = 2 * bnlen - BN_num_bytes(s);
BN_bn2bin(s, ptr + off);
ret = 0;
done:
free(tmp);
ECDSA_SIG_free(obj);
return (ret);
}
ssize_t
dsa_sign_final(struct iked_dsa *dsa, void *buf, size_t len)
{
unsigned int hmaclen;
size_t off = 0;
uint8_t *ptr = buf;
if (len < dsa_length(dsa))
return (-1);
if (dsa->dsa_hmac) {
if (!HMAC_Final(dsa->dsa_ctx, buf, &hmaclen))
return (-1);
if (hmaclen > INT_MAX)
return (-1);
return (ssize_t)hmaclen;
} else {
switch (dsa->dsa_method) {
case IKEV2_AUTH_ECDSA_256:
case IKEV2_AUTH_ECDSA_384:
case IKEV2_AUTH_ECDSA_521:
if (_dsa_sign_ecdsa(dsa, buf, len) < 0)
return (-1);
return (len);
default:
if (_dsa_sign_encode(dsa, ptr, len, &off) < 0)
return (-1);
if (off > len)
return (-1);
len -= off;
ptr += off;
if (EVP_DigestSignFinal(dsa->dsa_ctx, ptr, &len) != 1)
return (-1);
return (len + off);
}
}
return (-1);
}
int
_dsa_verify_prepare(struct iked_dsa *dsa, uint8_t **sigp, size_t *lenp,
uint8_t **freemep)
{
ECDSA_SIG *obj = NULL;
uint8_t *ptr = NULL;
size_t bnlen, off;
ssize_t len;
int ret = -1;
BIGNUM *r = NULL, *s = NULL;
*freemep = NULL; /* don't return garbage in case of an error */
switch (dsa->dsa_method) {
case IKEV2_AUTH_SIG:
/*
* The first byte of the signature encodes the OID
* prefix length which we need to skip.
*/
off = (*sigp)[0] + 1;
*sigp = *sigp + off;
*lenp = *lenp - off;
*freemep = NULL;
ret = 0;
break;
case IKEV2_AUTH_ECDSA_256:
case IKEV2_AUTH_ECDSA_384:
case IKEV2_AUTH_ECDSA_521:
/*
* sigp points to concatenation r|s, while EVP_VerifyFinal()
* expects the signature as a DER-encoded blob (of the two
* values), so we need to convert the signature in a new
* buffer (we cannot override the given buffer) and the caller
* has to free this buffer ('freeme').
*/
if (*lenp < 64 || *lenp > 132 || *lenp % 2)
goto done;
bnlen = (*lenp)/2;
/* sigp points to concatenation: r|s */
if ((obj = ECDSA_SIG_new()) == NULL ||
(r = BN_bin2bn(*sigp, bnlen, NULL)) == NULL ||
(s = BN_bin2bn(*sigp+bnlen, bnlen, NULL)) == NULL ||
ECDSA_SIG_set0(obj, r, s) == 0 ||
(len = i2d_ECDSA_SIG(obj, &ptr)) <= 0)
goto done;
r = s = NULL;
*lenp = len;
*sigp = ptr;
*freemep = ptr;
ptr = NULL;
ret = 0;
break;
default:
return (0);
}
done:
BN_clear_free(r);
BN_clear_free(s);
free(ptr);
ECDSA_SIG_free(obj);
return (ret);
}
ssize_t
dsa_verify_final(struct iked_dsa *dsa, void *buf, size_t len)
{
uint8_t sig[EVP_MAX_MD_SIZE];
uint8_t *ptr = buf, *freeme = NULL;
unsigned int siglen = sizeof(sig);
if (dsa->dsa_hmac) {
if (!HMAC_Final(dsa->dsa_ctx, sig, &siglen))
return (-1);
if (siglen != len || memcmp(buf, sig, siglen) != 0)
return (-1);
} else {
if (_dsa_verify_prepare(dsa, &ptr, &len, &freeme) < 0)
return (-1);
if (EVP_DigestVerifyFinal(dsa->dsa_ctx, ptr, len) != 1) {
OPENSSL_free(freeme);
ca_sslerror(__func__);
return (-1);
}
OPENSSL_free(freeme);
}
return (0);
}