src/sbin/newfs/mkfs.c

1212 lines
33 KiB
C

/* $OpenBSD: mkfs.c,v 1.102 2024/01/09 03:16:00 guenther Exp $ */
/* $NetBSD: mkfs.c,v 1.25 1995/06/18 21:35:38 cgd Exp $ */
/*
* Copyright (c) 2002 Networks Associates Technology, Inc.
* All rights reserved.
*
* This software was developed for the FreeBSD Project by Marshall
* Kirk McKusick and Network Associates Laboratories, the Security
* Research Division of Network Associates, Inc. under DARPA/SPAWAR
* contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
* research program.
*
* Copyright (c) 1980, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/param.h> /* MAXBSIZE DEV_BSIZE roundup btodb setbit */
#include <sys/signal.h>
#include <sys/time.h>
#include <sys/disklabel.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/resource.h>
#include <sys/sysctl.h>
#include <ufs/ufs/dinode.h>
#include <ufs/ufs/dir.h>
#include <ufs/ffs/fs.h>
#include <err.h>
#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include <unistd.h>
#include <limits.h>
#ifndef STANDALONE
#include <stdio.h>
#include <errno.h>
#endif
#define MINIMUM(a, b) (((a) < (b)) ? (a) : (b))
#define MAXIMUM(a, b) (((a) > (b)) ? (a) : (b))
/*
* Default directory umask.
*/
#define UMASK 0755
#define POWEROF2(num) (((num) & ((num) - 1)) == 0)
/*
* 'Standard' bad FFS magic.
*/
#define FS_BAD_MAGIC 0x19960408
/*
* The minimum number of cylinder groups that should be created.
*/
#define MINCYLGRPS 4
/*
* variables set up by front end.
*/
extern int mfs; /* run as the memory based filesystem */
extern int Nflag; /* run mkfs without writing file system */
extern int Oflag; /* format as an 4.3BSD file system */
extern daddr_t fssize; /* file system size in 512-byte blocks. */
extern long long sectorsize; /* bytes/sector */
extern int fsize; /* fragment size */
extern int bsize; /* block size */
extern int maxfrgspercg; /* maximum fragments per cylinder group */
extern int minfree; /* free space threshold */
extern int opt; /* optimization preference (space or time) */
extern int density; /* number of bytes per inode */
extern int maxbpg; /* maximum blocks per file in a cyl group */
extern int avgfilesize; /* expected average file size */
extern int avgfilesperdir; /* expected number of files per directory */
extern int quiet; /* quiet flag */
extern caddr_t membase; /* start address of memory based filesystem */
union fs_u {
struct fs fs;
char pad[SBSIZE];
} *fsun;
#define sblock fsun->fs
struct csum *fscs;
union cg_u {
struct cg cg;
char pad[MAXBSIZE];
} *cgun;
#define acg cgun->cg
union dinode {
struct ufs1_dinode dp1;
struct ufs2_dinode dp2;
};
int fsi, fso;
static caddr_t iobuf;
static long iobufsize;
daddr_t alloc(int, int);
static int charsperline(void);
static int ilog2(int);
void initcg(u_int, time_t);
void wtfs(daddr_t, int, void *);
int fsinit1(time_t, mode_t, uid_t, gid_t);
int fsinit2(time_t, mode_t, uid_t, gid_t);
int makedir(struct direct *, int);
void iput(union dinode *, ino_t);
void setblock(struct fs *, unsigned char *, int);
void clrblock(struct fs *, unsigned char *, int);
int isblock(struct fs *, unsigned char *, int);
void rdfs(daddr_t, int, void *);
void mkfs(struct partition *, char *, int, int,
mode_t, uid_t, gid_t);
static void checksz(void);
#ifndef STANDALONE
volatile sig_atomic_t cur_cylno;
volatile const char *cur_fsys;
void siginfo(int sig);
void
siginfo(int sig)
{
int save_errno = errno;
dprintf(STDERR_FILENO, "%s: initializing cg %ld/%d\n",
cur_fsys, (long)cur_cylno, sblock.fs_ncg);
errno = save_errno;
}
#endif
void
mkfs(struct partition *pp, char *fsys, int fi, int fo, mode_t mfsmode,
uid_t mfsuid, gid_t mfsgid)
{
time_t utime;
quad_t sizepb;
int i, j, width, origdensity, fragsperinode, minfpg, optimalfpg;
int lastminfpg, mincylgrps;
uint32_t bpg;
long csfrags;
u_int cg;
char tmpbuf[100]; /* XXX this will break in about 2,500 years */
if ((fsun = calloc(1, sizeof (union fs_u))) == NULL ||
(cgun = calloc(1, sizeof (union cg_u))) == NULL)
err(1, "calloc");
#ifndef STANDALONE
time(&utime);
#endif
if (mfs) {
size_t sz;
if (fssize > SIZE_MAX / DEV_BSIZE) {
errno = ENOMEM;
err(12, "mmap");
}
sz = (size_t)fssize * DEV_BSIZE;
membase = mmap(NULL, sz, PROT_READ|PROT_WRITE,
MAP_ANON|MAP_PRIVATE, -1, (off_t)0);
if (membase == MAP_FAILED)
err(12, "mmap");
madvise(membase, sz, MADV_RANDOM);
}
fsi = fi;
fso = fo;
/*
* Validate the given file system size.
* Verify that its last block can actually be accessed.
*/
if (Oflag <= 1 && fssize > INT_MAX)
errx(13, "preposterous size %lld, max is %d", (long long)fssize,
INT_MAX);
if (Oflag == 2 && fssize > MAXDISKSIZE)
errx(13, "preposterous size %lld, max is %lld",
(long long)fssize, MAXDISKSIZE);
wtfs(fssize - (sectorsize / DEV_BSIZE), sectorsize, (char *)&sblock);
sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
sblock.fs_avgfilesize = avgfilesize;
sblock.fs_avgfpdir = avgfilesperdir;
/*
* Collect and verify the block and fragment sizes.
*/
if (!POWEROF2(bsize)) {
errx(16, "block size must be a power of 2, not %d", bsize);
}
if (!POWEROF2(fsize)) {
errx(17, "fragment size must be a power of 2, not %d",
fsize);
}
if (fsize < sectorsize) {
errx(18, "fragment size %d is too small, minimum is %lld",
fsize, sectorsize);
}
if (bsize < MINBSIZE) {
errx(19, "block size %d is too small, minimum is %d",
bsize, MINBSIZE);
}
if (bsize > MAXBSIZE) {
errx(19, "block size %d is too large, maximum is %d",
bsize, MAXBSIZE);
}
if (bsize < fsize) {
errx(20, "block size (%d) cannot be smaller than fragment size (%d)",
bsize, fsize);
}
sblock.fs_bsize = bsize;
sblock.fs_fsize = fsize;
/*
* Calculate the superblock bitmasks and shifts.
*/
sblock.fs_bmask = ~(sblock.fs_bsize - 1);
sblock.fs_fmask = ~(sblock.fs_fsize - 1);
sblock.fs_qbmask = ~sblock.fs_bmask;
sblock.fs_qfmask = ~sblock.fs_fmask;
sblock.fs_bshift = ilog2(sblock.fs_bsize);
sblock.fs_fshift = ilog2(sblock.fs_fsize);
sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
if (sblock.fs_frag > MAXFRAG) {
errx(21, "fragment size %d is too small, minimum with block "
"size %d is %d", sblock.fs_fsize, sblock.fs_bsize,
sblock.fs_bsize / MAXFRAG);
}
sblock.fs_fragshift = ilog2(sblock.fs_frag);
sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / DEV_BSIZE);
sblock.fs_size = dbtofsb(&sblock, fssize);
sblock.fs_nspf = sblock.fs_fsize / DEV_BSIZE;
sblock.fs_maxcontig = 1;
sblock.fs_nrpos = 1;
sblock.fs_cpg = 1;
/*
* Before the file system is fully initialized, mark it as invalid.
*/
sblock.fs_magic = FS_BAD_MAGIC;
/*
* Set the remaining superblock fields. Note that for FFS1, media
* geometry fields are set to fake values. This is for compatibility
* with really ancient kernels that might still inspect these values.
*/
if (Oflag <= 1) {
sblock.fs_sblockloc = SBLOCK_UFS1;
sblock.fs_nindir = sblock.fs_bsize / sizeof(int32_t);
sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
sblock.fs_maxsymlinklen = MAXSYMLINKLEN_UFS1;
sblock.fs_inodefmt = FS_44INODEFMT;
sblock.fs_cgoffset = 0;
sblock.fs_cgmask = 0xffffffff;
sblock.fs_ffs1_size = sblock.fs_size;
sblock.fs_rotdelay = 0;
sblock.fs_rps = 60;
sblock.fs_interleave = 1;
sblock.fs_trackskew = 0;
sblock.fs_cpc = 0;
} else {
sblock.fs_inodefmt = FS_44INODEFMT;
sblock.fs_sblockloc = SBLOCK_UFS2;
sblock.fs_nindir = sblock.fs_bsize / sizeof(int64_t);
sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
sblock.fs_maxsymlinklen = MAXSYMLINKLEN_UFS2;
}
sblock.fs_sblkno =
roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
sblock.fs_frag);
sblock.fs_cblkno = (int32_t)(sblock.fs_sblkno +
roundup(howmany(SBSIZE, sblock.fs_fsize), sblock.fs_frag));
sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
sizepb *= NINDIR(&sblock);
sblock.fs_maxfilesize += sizepb;
}
#ifdef notyet
/*
* It is impossible to create a snapshot in case fs_maxfilesize is
* smaller than fssize.
*/
if (sblock.fs_maxfilesize < (u_quad_t)fssize)
warnx("WARNING: You will be unable to create snapshots on this "
"file system. Correct by using a larger blocksize.");
#endif
/*
* Calculate the number of blocks to put into each cylinder group. The
* first goal is to have at least enough data blocks in each cylinder
* group to meet the density requirement. Once this goal is achieved
* we try to expand to have at least mincylgrps cylinder groups. Once
* this goal is achieved, we pack as many blocks into each cylinder
* group map as will fit.
*
* We start by calculating the smallest number of blocks that we can
* put into each cylinder group. If this is too big, we reduce the
* density until it fits.
*/
origdensity = density;
for (;;) {
fragsperinode = MAXIMUM(numfrags(&sblock, density), 1);
minfpg = fragsperinode * INOPB(&sblock);
if (minfpg > sblock.fs_size)
minfpg = sblock.fs_size;
sblock.fs_ipg = INOPB(&sblock);
sblock.fs_fpg = roundup(sblock.fs_iblkno +
sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
if (sblock.fs_fpg < minfpg)
sblock.fs_fpg = minfpg;
sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
INOPB(&sblock));
sblock.fs_fpg = roundup(sblock.fs_iblkno +
sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
if (sblock.fs_fpg < minfpg)
sblock.fs_fpg = minfpg;
sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
INOPB(&sblock));
if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
break;
density -= sblock.fs_fsize;
}
if (density != origdensity)
warnx("density reduced from %d to %d bytes per inode",
origdensity, density);
/*
* Use a lower value for mincylgrps if the user specified a large
* number of blocks per cylinder group. This is needed for, e.g. the
* install media which needs to pack 2 files very tightly.
*/
mincylgrps = MINCYLGRPS;
if (maxfrgspercg != INT_MAX) {
i = sblock.fs_size / maxfrgspercg;
if (i < MINCYLGRPS)
mincylgrps = i <= 0 ? 1 : i;
}
/*
* Start packing more blocks into the cylinder group until it cannot
* grow any larger, the number of cylinder groups drops below
* mincylgrps, or we reach the requested size.
*/
for (;;) {
sblock.fs_fpg += sblock.fs_frag;
sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
INOPB(&sblock));
if (sblock.fs_fpg > maxfrgspercg ||
sblock.fs_size / sblock.fs_fpg < mincylgrps ||
CGSIZE(&sblock) > (unsigned long)sblock.fs_bsize)
break;
}
sblock.fs_fpg -= sblock.fs_frag;
sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
INOPB(&sblock));
if (sblock.fs_fpg > maxfrgspercg)
warnx("can't honour -c: minimum is %d", sblock.fs_fpg);
/*
* Check to be sure that the last cylinder group has enough blocks to
* be viable. If it is too small, reduce the number of blocks per
* cylinder group which will have the effect of moving more blocks into
* the last cylinder group.
*/
optimalfpg = sblock.fs_fpg;
for (;;) {
sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
lastminfpg = roundup(sblock.fs_iblkno +
sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
if (sblock.fs_size < lastminfpg)
errx(28, "file system size %jd < minimum size of %d "
"fragments", (intmax_t)sblock.fs_size, lastminfpg);
if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
sblock.fs_size % sblock.fs_fpg == 0)
break;
sblock.fs_fpg -= sblock.fs_frag;
sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
INOPB(&sblock));
}
if (optimalfpg != sblock.fs_fpg)
warnx("reduced number of fragments per cylinder group from %d"
" to %d to enlarge last cylinder group", optimalfpg,
sblock.fs_fpg);
if ((ino_t)sblock.fs_ipg * sblock.fs_ncg > UINT_MAX)
errx(42, "more than 2^32 inodes, increase density, block or "
"fragment size");
/*
* Back to filling superblock fields.
*/
if (Oflag <= 1) {
sblock.fs_spc = sblock.fs_fpg * sblock.fs_nspf;
sblock.fs_nsect = sblock.fs_spc;
sblock.fs_npsect = sblock.fs_spc;
sblock.fs_ncyl = sblock.fs_ncg;
}
sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
sblock.fs_csaddr = cgdmin(&sblock, 0);
sblock.fs_cssize =
fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
fscs = calloc(1, sblock.fs_cssize);
if (fscs == NULL)
errx(31, "calloc failed");
sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
if (sblock.fs_sbsize > SBLOCKSIZE)
sblock.fs_sbsize = SBLOCKSIZE;
sblock.fs_minfree = minfree;
sblock.fs_maxbpg = maxbpg;
sblock.fs_optim = opt;
sblock.fs_cgrotor = 0;
sblock.fs_pendingblocks = 0;
sblock.fs_pendinginodes = 0;
sblock.fs_fmod = 0;
sblock.fs_ronly = 0;
sblock.fs_state = 0;
sblock.fs_clean = 1;
sblock.fs_id[0] = (u_int32_t)utime;
sblock.fs_id[1] = (u_int32_t)arc4random();
sblock.fs_fsmnt[0] = '\0';
csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
sblock.fs_cstotal.cs_nbfree = fragstoblks(&sblock, sblock.fs_dsize) -
howmany(csfrags, sblock.fs_frag);
sblock.fs_cstotal.cs_nffree = fragnum(&sblock, sblock.fs_size) +
(fragnum(&sblock, csfrags) > 0 ?
sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO;
sblock.fs_cstotal.cs_ndir = 0;
sblock.fs_dsize -= csfrags;
sblock.fs_time = utime;
if (Oflag <= 1) {
sblock.fs_ffs1_time = sblock.fs_time;
sblock.fs_ffs1_dsize = sblock.fs_dsize;
sblock.fs_ffs1_csaddr = sblock.fs_csaddr;
sblock.fs_ffs1_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
sblock.fs_ffs1_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
sblock.fs_ffs1_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
sblock.fs_ffs1_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
}
/*
* Dump out summary information about file system.
*/
if (!mfs) {
#define B2MBFACTOR (1 / (1024.0 * 1024.0))
printf("%s: %.1fMB in %jd sectors of %lld bytes\n", fsys,
(float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
(intmax_t)fsbtodb(&sblock, sblock.fs_size) /
(sectorsize / DEV_BSIZE), sectorsize);
printf("%u cylinder groups of %.2fMB, %d blocks, %u"
" inodes each\n", sblock.fs_ncg,
(float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
#undef B2MBFACTOR
checksz();
}
/*
* Wipe out old FFS1 superblock if necessary.
*/
if (Oflag >= 2) {
union fs_u *fsun1;
struct fs *fs1;
fsun1 = calloc(1, sizeof(union fs_u));
if (fsun1 == NULL)
err(39, "calloc");
fs1 = &fsun1->fs;
rdfs(SBLOCK_UFS1 / DEV_BSIZE, SBSIZE, (char *)fs1);
if (fs1->fs_magic == FS_UFS1_MAGIC) {
fs1->fs_magic = FS_BAD_MAGIC;
wtfs(SBLOCK_UFS1 / DEV_BSIZE, SBSIZE, (char *)fs1);
}
free(fsun1);
}
wtfs((int)sblock.fs_sblockloc / DEV_BSIZE, SBSIZE, (char *)&sblock);
sblock.fs_magic = (Oflag <= 1) ? FS_UFS1_MAGIC : FS_UFS2_MAGIC;
/*
* Now build the cylinders group blocks and
* then print out indices of cylinder groups.
*/
if (!quiet)
printf("super-block backups (for fsck -b #) at:\n");
#ifndef STANDALONE
else if (!mfs && isatty(STDIN_FILENO)) {
signal(SIGINFO, siginfo);
cur_fsys = fsys;
}
#endif
i = 0;
width = charsperline();
/*
* Allocate space for superblock, cylinder group map, and two sets of
* inode blocks.
*/
if (sblock.fs_bsize < SBLOCKSIZE)
iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
else
iobufsize = 4 * sblock.fs_bsize;
if ((iobuf = malloc(iobufsize)) == NULL)
errx(38, "cannot allocate I/O buffer");
bzero(iobuf, iobufsize);
/*
* Make a copy of the superblock into the buffer that we will be
* writing out in each cylinder group.
*/
bcopy((char *)&sblock, iobuf, SBLOCKSIZE);
for (cg = 0; cg < sblock.fs_ncg; cg++) {
cur_cylno = (sig_atomic_t)cg;
initcg(cg, utime);
if (quiet)
continue;
j = snprintf(tmpbuf, sizeof tmpbuf, " %lld,",
(long long)fsbtodb(&sblock, cgsblock(&sblock, cg)));
if (j >= sizeof tmpbuf)
j = sizeof tmpbuf - 1;
if (j < 0 || i+j >= width) {
printf("\n");
i = 0;
}
i += j;
printf("%s", tmpbuf);
fflush(stdout);
}
if (!quiet)
printf("\n");
if (Nflag && !mfs)
exit(0);
/*
* Now construct the initial file system, then write out the superblock.
*/
if (Oflag <= 1) {
if (fsinit1(utime, mfsmode, mfsuid, mfsgid))
errx(32, "fsinit1 failed");
sblock.fs_ffs1_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
sblock.fs_ffs1_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
sblock.fs_ffs1_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
sblock.fs_ffs1_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
} else {
if (fsinit2(utime, mfsmode, mfsuid, mfsgid))
errx(32, "fsinit2 failed");
}
wtfs((int)sblock.fs_sblockloc / DEV_BSIZE, SBSIZE, (char *)&sblock);
for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
sblock.fs_cssize - i < sblock.fs_bsize ?
sblock.fs_cssize - i : sblock.fs_bsize,
((char *)fscs) + i);
/*
* Update information about this partition in pack label, to that it may
* be updated on disk.
*/
pp->p_fstype = FS_BSDFFS;
pp->p_fragblock =
DISKLABELV1_FFS_FRAGBLOCK(sblock.fs_fsize, sblock.fs_frag);
bpg = sblock.fs_fpg / sblock.fs_frag;
while (bpg > USHRT_MAX)
bpg >>= 1;
pp->p_cpg = bpg;
}
/*
* Initialize a cylinder group.
*/
void
initcg(u_int cg, time_t utime)
{
u_int i, j, d, dlower, dupper, blkno, start;
daddr_t cbase, dmax;
struct ufs1_dinode *dp1;
struct ufs2_dinode *dp2;
struct csum *cs;
/*
* Determine block bounds for cylinder group. Allow space for
* super block summary information in first cylinder group.
*/
cbase = cgbase(&sblock, cg);
dmax = cbase + sblock.fs_fpg;
if (dmax > sblock.fs_size)
dmax = sblock.fs_size;
if (fsbtodb(&sblock, cgsblock(&sblock, cg)) + iobufsize / DEV_BSIZE
> fssize)
errx(40, "inode table does not fit in cylinder group");
dlower = cgsblock(&sblock, cg) - cbase;
dupper = cgdmin(&sblock, cg) - cbase;
if (cg == 0)
dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
cs = &fscs[cg];
memset(&acg, 0, sblock.fs_cgsize);
acg.cg_ffs2_time = utime;
acg.cg_magic = CG_MAGIC;
acg.cg_cgx = cg;
acg.cg_ffs2_niblk = sblock.fs_ipg;
acg.cg_initediblk = MINIMUM(sblock.fs_ipg, 2 * INOPB(&sblock));
acg.cg_ndblk = dmax - cbase;
start = sizeof(struct cg);
if (Oflag <= 1) {
/* Hack to maintain compatibility with old fsck. */
if (cg == sblock.fs_ncg - 1)
acg.cg_ncyl = 0;
else
acg.cg_ncyl = sblock.fs_cpg;
acg.cg_time = acg.cg_ffs2_time;
acg.cg_ffs2_time = 0;
acg.cg_niblk = acg.cg_ffs2_niblk;
acg.cg_ffs2_niblk = 0;
acg.cg_initediblk = 0;
acg.cg_btotoff = start;
acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
acg.cg_iusedoff = acg.cg_boff +
sblock.fs_cpg * sizeof(u_int16_t);
} else {
acg.cg_iusedoff = start;
}
acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
if (acg.cg_nextfreeoff > sblock.fs_cgsize)
errx(37, "panic: cylinder group too big: %u > %d",
acg.cg_nextfreeoff, sblock.fs_cgsize);
acg.cg_cs.cs_nifree += sblock.fs_ipg;
if (cg == 0) {
for (i = 0; i < ROOTINO; i++) {
setbit(cg_inosused(&acg), i);
acg.cg_cs.cs_nifree--;
}
}
if (cg > 0) {
/*
* In cg 0, space is reserved for boot and super blocks.
*/
for (d = 0; d < dlower; d += sblock.fs_frag) {
blkno = d / sblock.fs_frag;
setblock(&sblock, cg_blksfree(&acg), blkno);
acg.cg_cs.cs_nbfree++;
if (Oflag <= 1) {
cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
[cbtorpos(&sblock, d)]++;
}
}
}
if ((i = dupper % sblock.fs_frag)) {
acg.cg_frsum[sblock.fs_frag - i]++;
for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
setbit(cg_blksfree(&acg), dupper);
acg.cg_cs.cs_nffree++;
}
}
for (d = dupper;
d + sblock.fs_frag <= acg.cg_ndblk;
d += sblock.fs_frag) {
blkno = d / sblock.fs_frag;
setblock(&sblock, cg_blksfree(&acg), blkno);
acg.cg_cs.cs_nbfree++;
if (Oflag <= 1) {
cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
[cbtorpos(&sblock, d)]++;
}
}
if (d < acg.cg_ndblk) {
acg.cg_frsum[acg.cg_ndblk - d]++;
for (; d < acg.cg_ndblk; d++) {
setbit(cg_blksfree(&acg), d);
acg.cg_cs.cs_nffree++;
}
}
*cs = acg.cg_cs;
/*
* Write out the duplicate superblock, the cylinder group map
* and two blocks worth of inodes in a single write.
*/
start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
if (cg == 0 && acg.cg_cs.cs_nbfree == 0)
errx(42, "cg 0: summary info is too large to fit");
bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize);
start += sblock.fs_bsize;
dp1 = (struct ufs1_dinode *)(&iobuf[start]);
dp2 = (struct ufs2_dinode *)(&iobuf[start]);
for (i = MINIMUM(sblock.fs_ipg, 2 * INOPB(&sblock)); i != 0; i--) {
if (sblock.fs_magic == FS_UFS1_MAGIC) {
dp1->di_gen = arc4random();
dp1++;
} else {
dp2->di_gen = arc4random();
dp2++;
}
}
wtfs(fsbtodb(&sblock, cgsblock(&sblock, cg)), iobufsize, iobuf);
if (Oflag <= 1) {
/* Initialize inodes for FFS1. */
for (i = 2 * sblock.fs_frag;
i < sblock.fs_ipg / INOPF(&sblock);
i += sblock.fs_frag) {
dp1 = (struct ufs1_dinode *)(&iobuf[start]);
for (j = 0; j < INOPB(&sblock); j++) {
dp1->di_gen = arc4random();
dp1++;
}
wtfs(fsbtodb(&sblock, cgimin(&sblock, cg) + i),
sblock.fs_bsize, &iobuf[start]);
}
}
}
#define PREDEFDIR 2
struct direct root_dir[] = {
{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
};
int
fsinit1(time_t utime, mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
{
union dinode node;
/*
* Initialize the node
*/
memset(&node, 0, sizeof(node));
node.dp1.di_atime = utime;
node.dp1.di_mtime = utime;
node.dp1.di_ctime = utime;
/*
* Create the root directory.
*/
if (mfs) {
node.dp1.di_mode = IFDIR | mfsmode;
node.dp1.di_uid = mfsuid;
node.dp1.di_gid = mfsgid;
} else {
node.dp1.di_mode = IFDIR | UMASK;
node.dp1.di_uid = geteuid();
node.dp1.di_gid = getegid();
}
node.dp1.di_nlink = PREDEFDIR;
node.dp1.di_size = makedir(root_dir, PREDEFDIR);
node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
if (node.dp1.di_db[0] == 0)
return (1);
node.dp1.di_blocks = btodb(fragroundup(&sblock, node.dp1.di_size));
wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, iobuf);
iput(&node, ROOTINO);
#ifdef notyet
/*
* Create the .snap directory.
*/
node.dp1.di_mode |= 020;
node.dp1.di_gid = gid;
node.dp1.di_nlink = SNAPLINKCNT;
node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT);
node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
if (node.dp1.di_db[0] == 0)
return (1);
node.dp1.di_blocks = btodb(fragroundup(&sblock, node.dp1.di_size));
wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize, iobuf);
iput(&node, ROOTINO + 1);
#endif
return (0);
}
int
fsinit2(time_t utime, mode_t mfsmode, uid_t mfsuid, gid_t mfsgid)
{
union dinode node;
/*
* Initialize the node.
*/
memset(&node, 0, sizeof(node));
node.dp2.di_atime = utime;
node.dp2.di_mtime = utime;
node.dp2.di_ctime = utime;
/*
* Create the root directory.
*/
if (mfs) {
node.dp2.di_mode = IFDIR | mfsmode;
node.dp2.di_uid = mfsuid;
node.dp2.di_gid = mfsgid;
} else {
node.dp2.di_mode = IFDIR | UMASK;
node.dp2.di_uid = geteuid();
node.dp2.di_gid = getegid();
}
node.dp2.di_nlink = PREDEFDIR;
node.dp2.di_size = makedir(root_dir, PREDEFDIR);
node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
if (node.dp2.di_db[0] == 0)
return (1);
node.dp2.di_blocks = btodb(fragroundup(&sblock, node.dp2.di_size));
wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, iobuf);
iput(&node, ROOTINO);
#ifdef notyet
/*
* Create the .snap directory.
*/
node.dp2.di_mode |= 020;
node.dp2.di_gid = gid;
node.dp2.di_nlink = SNAPLINKCNT;
node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT);
node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
if (node.dp2.di_db[0] == 0)
return (1);
node.dp2.di_blocks = btodb(fragroundup(&sblock, node.dp2.di_size));
wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize, iobuf);
iput(&node, ROOTINO + 1);
#endif
return (0);
}
/*
* construct a set of directory entries in "buf".
* return size of directory.
*/
int
makedir(struct direct *protodir, int entries)
{
char *cp;
int i, spcleft;
spcleft = DIRBLKSIZ;
for (cp = iobuf, i = 0; i < entries - 1; i++) {
protodir[i].d_reclen = DIRSIZ(&protodir[i]);
memcpy(cp, &protodir[i], protodir[i].d_reclen);
cp += protodir[i].d_reclen;
spcleft -= protodir[i].d_reclen;
}
protodir[i].d_reclen = spcleft;
memcpy(cp, &protodir[i], DIRSIZ(&protodir[i]));
return (DIRBLKSIZ);
}
/*
* allocate a block or frag
*/
daddr_t
alloc(int size, int mode)
{
int i, frag;
daddr_t d, blkno;
rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
(char *)&acg);
if (acg.cg_magic != CG_MAGIC) {
warnx("cg 0: bad magic number");
return (0);
}
if (acg.cg_cs.cs_nbfree == 0) {
warnx("first cylinder group ran out of space");
return (0);
}
for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
goto goth;
warnx("internal error: can't find block in cyl 0");
return (0);
goth:
blkno = fragstoblks(&sblock, d);
clrblock(&sblock, cg_blksfree(&acg), blkno);
acg.cg_cs.cs_nbfree--;
sblock.fs_cstotal.cs_nbfree--;
fscs[0].cs_nbfree--;
if (mode & IFDIR) {
acg.cg_cs.cs_ndir++;
sblock.fs_cstotal.cs_ndir++;
fscs[0].cs_ndir++;
}
if (Oflag <= 1) {
cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
[cbtorpos(&sblock, d)]--;
}
if (size != sblock.fs_bsize) {
frag = howmany(size, sblock.fs_fsize);
fscs[0].cs_nffree += sblock.fs_frag - frag;
sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
acg.cg_frsum[sblock.fs_frag - frag]++;
for (i = frag; i < sblock.fs_frag; i++)
setbit(cg_blksfree(&acg), d + i);
}
wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
(char *)&acg);
return (d);
}
/*
* Allocate an inode on the disk
*/
void
iput(union dinode *ip, ino_t ino)
{
daddr_t d;
if (Oflag <= 1)
ip->dp1.di_gen = arc4random();
else
ip->dp2.di_gen = arc4random();
rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
(char *)&acg);
if (acg.cg_magic != CG_MAGIC)
errx(41, "cg 0: bad magic number");
acg.cg_cs.cs_nifree--;
setbit(cg_inosused(&acg), ino);
wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
(char *)&acg);
sblock.fs_cstotal.cs_nifree--;
fscs[0].cs_nifree--;
if (ino >= sblock.fs_ipg * sblock.fs_ncg)
errx(32, "fsinit: inode value %llu out of range",
(unsigned long long)ino);
d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
rdfs(d, sblock.fs_bsize, iobuf);
if (Oflag <= 1)
((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
ip->dp1;
else
((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
ip->dp2;
wtfs(d, sblock.fs_bsize, iobuf);
}
/*
* read a block from the file system
*/
void
rdfs(daddr_t bno, int size, void *bf)
{
int n;
if (mfs) {
memcpy(bf, membase + bno * DEV_BSIZE, size);
return;
}
n = pread(fsi, bf, size, (off_t)bno * DEV_BSIZE);
if (n != size) {
err(34, "rdfs: read error on block %lld", (long long)bno);
}
}
/*
* write a block to the file system
*/
void
wtfs(daddr_t bno, int size, void *bf)
{
int n;
if (mfs) {
memcpy(membase + bno * DEV_BSIZE, bf, size);
return;
}
if (Nflag)
return;
n = pwrite(fso, bf, size, (off_t)bno * DEV_BSIZE);
if (n != size) {
err(36, "wtfs: write error on block %lld", (long long)bno);
}
}
/*
* check if a block is available
*/
int
isblock(struct fs *fs, unsigned char *cp, int h)
{
unsigned char mask;
switch (fs->fs_frag) {
case 8:
return (cp[h] == 0xff);
case 4:
mask = 0x0f << ((h & 0x1) << 2);
return ((cp[h >> 1] & mask) == mask);
case 2:
mask = 0x03 << ((h & 0x3) << 1);
return ((cp[h >> 2] & mask) == mask);
case 1:
mask = 0x01 << (h & 0x7);
return ((cp[h >> 3] & mask) == mask);
default:
#ifdef STANDALONE
printf("isblock bad fs_frag %d\n", fs->fs_frag);
#else
warnx("isblock bad fs_frag %d", fs->fs_frag);
#endif
return (0);
}
}
/*
* take a block out of the map
*/
void
clrblock(struct fs *fs, unsigned char *cp, int h)
{
switch ((fs)->fs_frag) {
case 8:
cp[h] = 0;
return;
case 4:
cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
return;
case 2:
cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
return;
case 1:
cp[h >> 3] &= ~(0x01 << (h & 0x7));
return;
default:
#ifdef STANDALONE
printf("clrblock bad fs_frag %d\n", fs->fs_frag);
#else
warnx("clrblock bad fs_frag %d", fs->fs_frag);
#endif
return;
}
}
/*
* put a block into the map
*/
void
setblock(struct fs *fs, unsigned char *cp, int h)
{
switch (fs->fs_frag) {
case 8:
cp[h] = 0xff;
return;
case 4:
cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
return;
case 2:
cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
return;
case 1:
cp[h >> 3] |= (0x01 << (h & 0x7));
return;
default:
#ifdef STANDALONE
printf("setblock bad fs_frag %d\n", fs->fs_frag);
#else
warnx("setblock bad fs_frag %d", fs->fs_frag);
#endif
return;
}
}
/*
* Determine the number of characters in a
* single line.
*/
static int
charsperline(void)
{
int columns;
char *cp;
struct winsize ws;
columns = 0;
if ((cp = getenv("COLUMNS")) != NULL)
columns = strtonum(cp, 1, INT_MAX, NULL);
if (columns == 0 && ioctl(STDOUT_FILENO, TIOCGWINSZ, &ws) == 0 &&
ws.ws_col > 0)
columns = ws.ws_col;
if (columns == 0)
columns = 80;
return columns;
}
static int
ilog2(int val)
{
int n;
for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
if (1 << n == val)
return (n);
errx(1, "ilog2: %d is not a power of 2\n", val);
}
struct inoinfo {
struct inoinfo *i_nexthash; /* next entry in hash chain */
struct inoinfo *i_child, *i_sibling, *i_parentp;
size_t i_isize; /* size of inode */
ino_t i_number; /* inode number of this entry */
ino_t i_parent; /* inode number of parent */
ino_t i_dotdot; /* inode number of `..' */
u_int i_numblks; /* size of block array in bytes */
daddr_t i_blks[1]; /* actually longer */
};
static void
checksz(void)
{
unsigned long long allocate, maxino, maxfsblock, ndir, bound;
extern int64_t physmem;
struct rlimit datasz;
if (getrlimit(RLIMIT_DATA, &datasz) != 0)
err(1, "can't get rlimit");
bound = MINIMUM(datasz.rlim_max, physmem);
allocate = 0;
maxino = sblock.fs_ncg * (unsigned long long)sblock.fs_ipg;
maxfsblock = sblock.fs_size;
ndir = maxino / avgfilesperdir;
allocate += roundup(howmany(maxfsblock, NBBY), sizeof(int16_t));
allocate += (maxino + 1) * 3;
allocate += sblock.fs_ncg * sizeof(long);
allocate += (MAXIMUM(ndir, 128) + 10) * sizeof(struct inoinfo);
allocate += MAXIMUM(ndir, 128) * sizeof(struct inoinfo);
if (allocate > bound)
warnx("warning: fsck_ffs will need %lluMB; "
"min(ulimit -dH,physmem) is %lluMB",
allocate / (1024ULL * 1024ULL),
bound / (1024ULL * 1024ULL));
}