src/sys/crypto/cryptosoft.c

1179 lines
29 KiB
C

/* $OpenBSD: cryptosoft.c,v 1.91 2021/10/24 10:26:22 patrick Exp $ */
/*
* The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
*
* This code was written by Angelos D. Keromytis in Athens, Greece, in
* February 2000. Network Security Technologies Inc. (NSTI) kindly
* supported the development of this code.
*
* Copyright (c) 2000, 2001 Angelos D. Keromytis
*
* Permission to use, copy, and modify this software with or without fee
* is hereby granted, provided that this entire notice is included in
* all source code copies of any software which is or includes a copy or
* modification of this software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
* PURPOSE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/errno.h>
#include <crypto/md5.h>
#include <crypto/sha1.h>
#include <crypto/rmd160.h>
#include <crypto/cast.h>
#include <crypto/cryptodev.h>
#include <crypto/cryptosoft.h>
#include <crypto/xform.h>
const u_int8_t hmac_ipad_buffer[HMAC_MAX_BLOCK_LEN] = {
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36
};
const u_int8_t hmac_opad_buffer[HMAC_MAX_BLOCK_LEN] = {
0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C
};
struct swcr_list *swcr_sessions = NULL;
u_int32_t swcr_sesnum = 0;
int32_t swcr_id = -1;
#define COPYBACK(x, a, b, c, d) \
do { \
if ((x) == CRYPTO_BUF_MBUF) \
m_copyback((struct mbuf *)a,b,c,d,M_NOWAIT); \
else \
cuio_copyback((struct uio *)a,b,c,d); \
} while (0)
#define COPYDATA(x, a, b, c, d) \
do { \
if ((x) == CRYPTO_BUF_MBUF) \
m_copydata((struct mbuf *)a,b,c,d); \
else \
cuio_copydata((struct uio *)a,b,c,d); \
} while (0)
/*
* Apply a symmetric encryption/decryption algorithm.
*/
int
swcr_encdec(struct cryptodesc *crd, struct swcr_data *sw, caddr_t buf,
int outtype)
{
unsigned char iv[EALG_MAX_BLOCK_LEN], blk[EALG_MAX_BLOCK_LEN], *idat;
unsigned char *ivp, *nivp, iv2[EALG_MAX_BLOCK_LEN];
const struct enc_xform *exf;
int i, k, j, blks, ind, count, ivlen;
struct mbuf *m = NULL;
struct uio *uio = NULL;
exf = sw->sw_exf;
blks = exf->blocksize;
ivlen = exf->ivsize;
/* Check for non-padded data */
if (crd->crd_len % blks)
return EINVAL;
if (outtype == CRYPTO_BUF_MBUF)
m = (struct mbuf *) buf;
else
uio = (struct uio *) buf;
/* Initialize the IV */
if (crd->crd_flags & CRD_F_ENCRYPT) {
/* IV explicitly provided ? */
if (crd->crd_flags & CRD_F_IV_EXPLICIT)
bcopy(crd->crd_iv, iv, ivlen);
else
arc4random_buf(iv, ivlen);
/* Do we need to write the IV */
if (!(crd->crd_flags & CRD_F_IV_PRESENT))
COPYBACK(outtype, buf, crd->crd_inject, ivlen, iv);
} else { /* Decryption */
/* IV explicitly provided ? */
if (crd->crd_flags & CRD_F_IV_EXPLICIT)
bcopy(crd->crd_iv, iv, ivlen);
else {
/* Get IV off buf */
COPYDATA(outtype, buf, crd->crd_inject, ivlen, iv);
}
}
ivp = iv;
/*
* xforms that provide a reinit method perform all IV
* handling themselves.
*/
if (exf->reinit)
exf->reinit(sw->sw_kschedule, iv);
if (outtype == CRYPTO_BUF_MBUF) {
/* Find beginning of data */
m = m_getptr(m, crd->crd_skip, &k);
if (m == NULL)
return EINVAL;
i = crd->crd_len;
while (i > 0) {
/*
* If there's insufficient data at the end of
* an mbuf, we have to do some copying.
*/
if (m->m_len < k + blks && m->m_len != k) {
m_copydata(m, k, blks, blk);
/* Actual encryption/decryption */
if (exf->reinit) {
if (crd->crd_flags & CRD_F_ENCRYPT) {
exf->encrypt(sw->sw_kschedule,
blk);
} else {
exf->decrypt(sw->sw_kschedule,
blk);
}
} else if (crd->crd_flags & CRD_F_ENCRYPT) {
/* XOR with previous block */
for (j = 0; j < blks; j++)
blk[j] ^= ivp[j];
exf->encrypt(sw->sw_kschedule, blk);
/*
* Keep encrypted block for XOR'ing
* with next block
*/
bcopy(blk, iv, blks);
ivp = iv;
} else { /* decrypt */
/*
* Keep encrypted block for XOR'ing
* with next block
*/
nivp = (ivp == iv) ? iv2 : iv;
bcopy(blk, nivp, blks);
exf->decrypt(sw->sw_kschedule, blk);
/* XOR with previous block */
for (j = 0; j < blks; j++)
blk[j] ^= ivp[j];
ivp = nivp;
}
/* Copy back decrypted block */
m_copyback(m, k, blks, blk, M_NOWAIT);
/* Advance pointer */
m = m_getptr(m, k + blks, &k);
if (m == NULL)
return EINVAL;
i -= blks;
/* Could be done... */
if (i == 0)
break;
}
/* Skip possibly empty mbufs */
if (k == m->m_len) {
for (m = m->m_next; m && m->m_len == 0;
m = m->m_next)
;
k = 0;
}
/* Sanity check */
if (m == NULL)
return EINVAL;
/*
* Warning: idat may point to garbage here, but
* we only use it in the while() loop, only if
* there are indeed enough data.
*/
idat = mtod(m, unsigned char *) + k;
while (m->m_len >= k + blks && i > 0) {
if (exf->reinit) {
if (crd->crd_flags & CRD_F_ENCRYPT) {
exf->encrypt(sw->sw_kschedule,
idat);
} else {
exf->decrypt(sw->sw_kschedule,
idat);
}
} else if (crd->crd_flags & CRD_F_ENCRYPT) {
/* XOR with previous block/IV */
for (j = 0; j < blks; j++)
idat[j] ^= ivp[j];
exf->encrypt(sw->sw_kschedule, idat);
ivp = idat;
} else { /* decrypt */
/*
* Keep encrypted block to be used
* in next block's processing.
*/
nivp = (ivp == iv) ? iv2 : iv;
bcopy(idat, nivp, blks);
exf->decrypt(sw->sw_kschedule, idat);
/* XOR with previous block/IV */
for (j = 0; j < blks; j++)
idat[j] ^= ivp[j];
ivp = nivp;
}
idat += blks;
k += blks;
i -= blks;
}
}
} else {
/* Find beginning of data */
count = crd->crd_skip;
ind = cuio_getptr(uio, count, &k);
if (ind == -1)
return EINVAL;
i = crd->crd_len;
while (i > 0) {
/*
* If there's insufficient data at the end,
* we have to do some copying.
*/
if (uio->uio_iov[ind].iov_len < k + blks &&
uio->uio_iov[ind].iov_len != k) {
cuio_copydata(uio, count, blks, blk);
/* Actual encryption/decryption */
if (exf->reinit) {
if (crd->crd_flags & CRD_F_ENCRYPT) {
exf->encrypt(sw->sw_kschedule,
blk);
} else {
exf->decrypt(sw->sw_kschedule,
blk);
}
} else if (crd->crd_flags & CRD_F_ENCRYPT) {
/* XOR with previous block */
for (j = 0; j < blks; j++)
blk[j] ^= ivp[j];
exf->encrypt(sw->sw_kschedule, blk);
/*
* Keep encrypted block for XOR'ing
* with next block
*/
bcopy(blk, iv, blks);
ivp = iv;
} else { /* decrypt */
/*
* Keep encrypted block for XOR'ing
* with next block
*/
nivp = (ivp == iv) ? iv2 : iv;
bcopy(blk, nivp, blks);
exf->decrypt(sw->sw_kschedule, blk);
/* XOR with previous block */
for (j = 0; j < blks; j++)
blk[j] ^= ivp[j];
ivp = nivp;
}
/* Copy back decrypted block */
cuio_copyback(uio, count, blks, blk);
count += blks;
/* Advance pointer */
ind = cuio_getptr(uio, count, &k);
if (ind == -1)
return (EINVAL);
i -= blks;
/* Could be done... */
if (i == 0)
break;
}
/*
* Warning: idat may point to garbage here, but
* we only use it in the while() loop, only if
* there are indeed enough data.
*/
idat = (char *)uio->uio_iov[ind].iov_base + k;
while (uio->uio_iov[ind].iov_len >= k + blks &&
i > 0) {
if (exf->reinit) {
if (crd->crd_flags & CRD_F_ENCRYPT) {
exf->encrypt(sw->sw_kschedule,
idat);
} else {
exf->decrypt(sw->sw_kschedule,
idat);
}
} else if (crd->crd_flags & CRD_F_ENCRYPT) {
/* XOR with previous block/IV */
for (j = 0; j < blks; j++)
idat[j] ^= ivp[j];
exf->encrypt(sw->sw_kschedule, idat);
ivp = idat;
} else { /* decrypt */
/*
* Keep encrypted block to be used
* in next block's processing.
*/
nivp = (ivp == iv) ? iv2 : iv;
bcopy(idat, nivp, blks);
exf->decrypt(sw->sw_kschedule, idat);
/* XOR with previous block/IV */
for (j = 0; j < blks; j++)
idat[j] ^= ivp[j];
ivp = nivp;
}
idat += blks;
count += blks;
k += blks;
i -= blks;
}
/*
* Advance to the next iov if the end of the current iov
* is aligned with the end of a cipher block.
* Note that the code is equivalent to calling:
* ind = cuio_getptr(uio, count, &k);
*/
if (i > 0 && k == uio->uio_iov[ind].iov_len) {
k = 0;
ind++;
if (ind >= uio->uio_iovcnt)
return (EINVAL);
}
}
}
return 0; /* Done with encryption/decryption */
}
/*
* Compute keyed-hash authenticator.
*/
int
swcr_authcompute(struct cryptop *crp, struct cryptodesc *crd,
struct swcr_data *sw, caddr_t buf, int outtype)
{
unsigned char aalg[AALG_MAX_RESULT_LEN];
const struct auth_hash *axf;
union authctx ctx;
int err;
if (sw->sw_ictx == 0)
return EINVAL;
axf = sw->sw_axf;
bcopy(sw->sw_ictx, &ctx, axf->ctxsize);
if (outtype == CRYPTO_BUF_MBUF)
err = m_apply((struct mbuf *) buf, crd->crd_skip, crd->crd_len,
(int (*)(caddr_t, caddr_t, unsigned int)) axf->Update,
(caddr_t) &ctx);
else
err = cuio_apply((struct uio *) buf, crd->crd_skip,
crd->crd_len,
(int (*)(caddr_t, caddr_t, unsigned int)) axf->Update,
(caddr_t) &ctx);
if (err)
return err;
if (crd->crd_flags & CRD_F_ESN)
axf->Update(&ctx, crd->crd_esn, 4);
switch (sw->sw_alg) {
case CRYPTO_MD5_HMAC:
case CRYPTO_SHA1_HMAC:
case CRYPTO_RIPEMD160_HMAC:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
if (sw->sw_octx == NULL)
return EINVAL;
axf->Final(aalg, &ctx);
bcopy(sw->sw_octx, &ctx, axf->ctxsize);
axf->Update(&ctx, aalg, axf->hashsize);
axf->Final(aalg, &ctx);
break;
}
/* Inject the authentication data */
if (outtype == CRYPTO_BUF_MBUF)
COPYBACK(outtype, buf, crd->crd_inject, axf->authsize, aalg);
else
bcopy(aalg, crp->crp_mac, axf->authsize);
return 0;
}
/*
* Apply a combined encryption-authentication transformation
*/
int
swcr_authenc(struct cryptop *crp)
{
uint32_t blkbuf[howmany(EALG_MAX_BLOCK_LEN, sizeof(uint32_t))];
u_char *blk = (u_char *)blkbuf;
u_char aalg[AALG_MAX_RESULT_LEN];
u_char iv[EALG_MAX_BLOCK_LEN];
union authctx ctx;
struct cryptodesc *crd, *crda = NULL, *crde = NULL;
struct swcr_list *session;
struct swcr_data *sw, *swa, *swe = NULL;
const struct auth_hash *axf = NULL;
const struct enc_xform *exf = NULL;
caddr_t buf = (caddr_t)crp->crp_buf;
uint32_t *blkp;
int aadlen, blksz, i, ivlen, outtype, len, iskip, oskip;
ivlen = blksz = iskip = oskip = 0;
session = &swcr_sessions[crp->crp_sid & 0xffffffff];
for (i = 0; i < crp->crp_ndesc; i++) {
crd = &crp->crp_desc[i];
SLIST_FOREACH(sw, session, sw_next) {
if (sw->sw_alg == crd->crd_alg)
break;
}
if (sw == NULL)
return (EINVAL);
switch (sw->sw_alg) {
case CRYPTO_AES_GCM_16:
case CRYPTO_AES_GMAC:
case CRYPTO_CHACHA20_POLY1305:
swe = sw;
crde = crd;
exf = swe->sw_exf;
ivlen = exf->ivsize;
break;
case CRYPTO_AES_128_GMAC:
case CRYPTO_AES_192_GMAC:
case CRYPTO_AES_256_GMAC:
case CRYPTO_CHACHA20_POLY1305_MAC:
swa = sw;
crda = crd;
axf = swa->sw_axf;
if (swa->sw_ictx == 0)
return (EINVAL);
bcopy(swa->sw_ictx, &ctx, axf->ctxsize);
blksz = axf->blocksize;
break;
default:
return (EINVAL);
}
}
if (crde == NULL || crda == NULL)
return (EINVAL);
if (crp->crp_flags & CRYPTO_F_IMBUF) {
outtype = CRYPTO_BUF_MBUF;
} else {
outtype = CRYPTO_BUF_IOV;
}
/* Initialize the IV */
if (crde->crd_flags & CRD_F_ENCRYPT) {
/* IV explicitly provided ? */
if (crde->crd_flags & CRD_F_IV_EXPLICIT)
bcopy(crde->crd_iv, iv, ivlen);
else
arc4random_buf(iv, ivlen);
/* Do we need to write the IV */
if (!(crde->crd_flags & CRD_F_IV_PRESENT))
COPYBACK(outtype, buf, crde->crd_inject, ivlen, iv);
} else { /* Decryption */
/* IV explicitly provided ? */
if (crde->crd_flags & CRD_F_IV_EXPLICIT)
bcopy(crde->crd_iv, iv, ivlen);
else {
/* Get IV off buf */
COPYDATA(outtype, buf, crde->crd_inject, ivlen, iv);
}
}
/* Supply MAC with IV */
if (axf->Reinit)
axf->Reinit(&ctx, iv, ivlen);
/* Supply MAC with AAD */
aadlen = crda->crd_len;
/*
* Section 5 of RFC 4106 specifies that AAD construction consists of
* {SPI, ESN, SN} whereas the real packet contains only {SPI, SN}.
* Unfortunately it doesn't follow a good example set in the Section
* 3.3.2.1 of RFC 4303 where upper part of the ESN, located in the
* external (to the packet) memory buffer, is processed by the hash
* function in the end thus allowing to retain simple programming
* interfaces and avoid kludges like the one below.
*/
if (crda->crd_flags & CRD_F_ESN) {
aadlen += 4;
/* SPI */
COPYDATA(outtype, buf, crda->crd_skip, 4, blk);
iskip = 4; /* loop below will start with an offset of 4 */
/* ESN */
bcopy(crda->crd_esn, blk + 4, 4);
oskip = iskip + 4; /* offset output buffer blk by 8 */
}
for (i = iskip; i < crda->crd_len; i += axf->hashsize) {
len = MIN(crda->crd_len - i, axf->hashsize - oskip);
COPYDATA(outtype, buf, crda->crd_skip + i, len, blk + oskip);
bzero(blk + len + oskip, axf->hashsize - len - oskip);
axf->Update(&ctx, blk, axf->hashsize);
oskip = 0; /* reset initial output offset */
}
if (exf->reinit)
exf->reinit(swe->sw_kschedule, iv);
/* Do encryption/decryption with MAC */
for (i = 0; i < crde->crd_len; i += blksz) {
len = MIN(crde->crd_len - i, blksz);
if (len < blksz)
bzero(blk, blksz);
COPYDATA(outtype, buf, crde->crd_skip + i, len, blk);
if (crde->crd_flags & CRD_F_ENCRYPT) {
exf->encrypt(swe->sw_kschedule, blk);
axf->Update(&ctx, blk, len);
} else {
axf->Update(&ctx, blk, len);
exf->decrypt(swe->sw_kschedule, blk);
}
COPYBACK(outtype, buf, crde->crd_skip + i, len, blk);
}
/* Do any required special finalization */
switch (crda->crd_alg) {
case CRYPTO_AES_128_GMAC:
case CRYPTO_AES_192_GMAC:
case CRYPTO_AES_256_GMAC:
/* length block */
bzero(blk, axf->hashsize);
blkp = (uint32_t *)blk + 1;
*blkp = htobe32(aadlen * 8);
blkp = (uint32_t *)blk + 3;
*blkp = htobe32(crde->crd_len * 8);
axf->Update(&ctx, blk, axf->hashsize);
break;
case CRYPTO_CHACHA20_POLY1305_MAC:
/* length block */
bzero(blk, axf->hashsize);
blkp = (uint32_t *)blk;
*blkp = htole32(aadlen);
blkp = (uint32_t *)blk + 2;
*blkp = htole32(crde->crd_len);
axf->Update(&ctx, blk, axf->hashsize);
break;
}
/* Finalize MAC */
axf->Final(aalg, &ctx);
/* Inject the authentication data */
if (outtype == CRYPTO_BUF_MBUF)
COPYBACK(outtype, buf, crda->crd_inject, axf->authsize, aalg);
else
bcopy(aalg, crp->crp_mac, axf->authsize);
return (0);
}
/*
* Apply a compression/decompression algorithm
*/
int
swcr_compdec(struct cryptodesc *crd, struct swcr_data *sw,
caddr_t buf, int outtype)
{
u_int8_t *data, *out;
const struct comp_algo *cxf;
int adj;
u_int32_t result;
cxf = sw->sw_cxf;
/* We must handle the whole buffer of data in one time
* then if there is not all the data in the mbuf, we must
* copy in a buffer.
*/
data = malloc(crd->crd_len, M_CRYPTO_DATA, M_NOWAIT);
if (data == NULL)
return (EINVAL);
COPYDATA(outtype, buf, crd->crd_skip, crd->crd_len, data);
if (crd->crd_flags & CRD_F_COMP)
result = cxf->compress(data, crd->crd_len, &out);
else
result = cxf->decompress(data, crd->crd_len, &out);
free(data, M_CRYPTO_DATA, crd->crd_len);
if (result == 0)
return EINVAL;
/* Copy back the (de)compressed data. m_copyback is
* extending the mbuf as necessary.
*/
sw->sw_size = result;
/* Check the compressed size when doing compression */
if (crd->crd_flags & CRD_F_COMP) {
if (result > crd->crd_len) {
/* Compression was useless, we lost time */
free(out, M_CRYPTO_DATA, result);
return 0;
}
}
COPYBACK(outtype, buf, crd->crd_skip, result, out);
if (result < crd->crd_len) {
adj = result - crd->crd_len;
if (outtype == CRYPTO_BUF_MBUF) {
adj = result - crd->crd_len;
m_adj((struct mbuf *)buf, adj);
} else {
struct uio *uio = (struct uio *)buf;
int ind;
adj = crd->crd_len - result;
ind = uio->uio_iovcnt - 1;
while (adj > 0 && ind >= 0) {
if (adj < uio->uio_iov[ind].iov_len) {
uio->uio_iov[ind].iov_len -= adj;
break;
}
adj -= uio->uio_iov[ind].iov_len;
uio->uio_iov[ind].iov_len = 0;
ind--;
uio->uio_iovcnt--;
}
}
}
free(out, M_CRYPTO_DATA, result);
return 0;
}
/*
* Generate a new software session.
*/
int
swcr_newsession(u_int32_t *sid, struct cryptoini *cri)
{
struct swcr_list *session;
struct swcr_data *swd, *prev;
const struct auth_hash *axf;
const struct enc_xform *txf;
const struct comp_algo *cxf;
u_int32_t i;
int k;
if (sid == NULL || cri == NULL)
return EINVAL;
if (swcr_sessions != NULL) {
for (i = 1; i < swcr_sesnum; i++)
if (SLIST_EMPTY(&swcr_sessions[i]))
break;
}
if (swcr_sessions == NULL || i == swcr_sesnum) {
if (swcr_sessions == NULL) {
i = 1; /* We leave swcr_sessions[0] empty */
swcr_sesnum = CRYPTO_SW_SESSIONS;
} else
swcr_sesnum *= 2;
session = mallocarray(swcr_sesnum, sizeof(struct swcr_list),
M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
if (session == NULL) {
/* Reset session number */
if (swcr_sesnum == CRYPTO_SW_SESSIONS)
swcr_sesnum = 0;
else
swcr_sesnum /= 2;
return ENOBUFS;
}
/* Copy existing sessions */
if (swcr_sessions) {
bcopy(swcr_sessions, session,
(swcr_sesnum / 2) * sizeof(struct swcr_list));
free(swcr_sessions, M_CRYPTO_DATA,
(swcr_sesnum / 2) * sizeof(struct swcr_list));
}
swcr_sessions = session;
}
session = &swcr_sessions[i];
*sid = i;
prev = NULL;
while (cri) {
swd = malloc(sizeof(struct swcr_data), M_CRYPTO_DATA,
M_NOWAIT | M_ZERO);
if (swd == NULL) {
swcr_freesession(i);
return ENOBUFS;
}
if (prev == NULL)
SLIST_INSERT_HEAD(session, swd, sw_next);
else
SLIST_INSERT_AFTER(prev, swd, sw_next);
switch (cri->cri_alg) {
case CRYPTO_3DES_CBC:
txf = &enc_xform_3des;
goto enccommon;
case CRYPTO_BLF_CBC:
txf = &enc_xform_blf;
goto enccommon;
case CRYPTO_CAST_CBC:
txf = &enc_xform_cast5;
goto enccommon;
case CRYPTO_AES_CBC:
txf = &enc_xform_aes;
goto enccommon;
case CRYPTO_AES_CTR:
txf = &enc_xform_aes_ctr;
goto enccommon;
case CRYPTO_AES_XTS:
txf = &enc_xform_aes_xts;
goto enccommon;
case CRYPTO_AES_GCM_16:
txf = &enc_xform_aes_gcm;
goto enccommon;
case CRYPTO_AES_GMAC:
txf = &enc_xform_aes_gmac;
swd->sw_exf = txf;
break;
case CRYPTO_CHACHA20_POLY1305:
txf = &enc_xform_chacha20_poly1305;
goto enccommon;
case CRYPTO_NULL:
txf = &enc_xform_null;
goto enccommon;
enccommon:
if (txf->ctxsize > 0) {
swd->sw_kschedule = malloc(txf->ctxsize,
M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
if (swd->sw_kschedule == NULL) {
swcr_freesession(i);
return EINVAL;
}
}
if (txf->setkey(swd->sw_kschedule, cri->cri_key,
cri->cri_klen / 8) < 0) {
swcr_freesession(i);
return EINVAL;
}
swd->sw_exf = txf;
break;
case CRYPTO_MD5_HMAC:
axf = &auth_hash_hmac_md5_96;
goto authcommon;
case CRYPTO_SHA1_HMAC:
axf = &auth_hash_hmac_sha1_96;
goto authcommon;
case CRYPTO_RIPEMD160_HMAC:
axf = &auth_hash_hmac_ripemd_160_96;
goto authcommon;
case CRYPTO_SHA2_256_HMAC:
axf = &auth_hash_hmac_sha2_256_128;
goto authcommon;
case CRYPTO_SHA2_384_HMAC:
axf = &auth_hash_hmac_sha2_384_192;
goto authcommon;
case CRYPTO_SHA2_512_HMAC:
axf = &auth_hash_hmac_sha2_512_256;
goto authcommon;
authcommon:
swd->sw_ictx = malloc(axf->ctxsize, M_CRYPTO_DATA,
M_NOWAIT);
if (swd->sw_ictx == NULL) {
swcr_freesession(i);
return ENOBUFS;
}
swd->sw_octx = malloc(axf->ctxsize, M_CRYPTO_DATA,
M_NOWAIT);
if (swd->sw_octx == NULL) {
swcr_freesession(i);
return ENOBUFS;
}
for (k = 0; k < cri->cri_klen / 8; k++)
cri->cri_key[k] ^= HMAC_IPAD_VAL;
axf->Init(swd->sw_ictx);
axf->Update(swd->sw_ictx, cri->cri_key,
cri->cri_klen / 8);
axf->Update(swd->sw_ictx, hmac_ipad_buffer,
axf->blocksize - (cri->cri_klen / 8));
for (k = 0; k < cri->cri_klen / 8; k++)
cri->cri_key[k] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
axf->Init(swd->sw_octx);
axf->Update(swd->sw_octx, cri->cri_key,
cri->cri_klen / 8);
axf->Update(swd->sw_octx, hmac_opad_buffer,
axf->blocksize - (cri->cri_klen / 8));
for (k = 0; k < cri->cri_klen / 8; k++)
cri->cri_key[k] ^= HMAC_OPAD_VAL;
swd->sw_axf = axf;
break;
case CRYPTO_AES_128_GMAC:
axf = &auth_hash_gmac_aes_128;
goto authenccommon;
case CRYPTO_AES_192_GMAC:
axf = &auth_hash_gmac_aes_192;
goto authenccommon;
case CRYPTO_AES_256_GMAC:
axf = &auth_hash_gmac_aes_256;
goto authenccommon;
case CRYPTO_CHACHA20_POLY1305_MAC:
axf = &auth_hash_chacha20_poly1305;
goto authenccommon;
authenccommon:
swd->sw_ictx = malloc(axf->ctxsize, M_CRYPTO_DATA,
M_NOWAIT);
if (swd->sw_ictx == NULL) {
swcr_freesession(i);
return ENOBUFS;
}
axf->Init(swd->sw_ictx);
axf->Setkey(swd->sw_ictx, cri->cri_key,
cri->cri_klen / 8);
swd->sw_axf = axf;
break;
case CRYPTO_DEFLATE_COMP:
cxf = &comp_algo_deflate;
swd->sw_cxf = cxf;
break;
case CRYPTO_ESN:
/* nothing to do */
break;
default:
swcr_freesession(i);
return EINVAL;
}
swd->sw_alg = cri->cri_alg;
cri = cri->cri_next;
prev = swd;
}
return 0;
}
/*
* Free a session.
*/
int
swcr_freesession(u_int64_t tid)
{
struct swcr_list *session;
struct swcr_data *swd;
const struct enc_xform *txf;
const struct auth_hash *axf;
u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
if (sid > swcr_sesnum || swcr_sessions == NULL ||
SLIST_EMPTY(&swcr_sessions[sid]))
return EINVAL;
/* Silently accept and return */
if (sid == 0)
return 0;
session = &swcr_sessions[sid];
while (!SLIST_EMPTY(session)) {
swd = SLIST_FIRST(session);
SLIST_REMOVE_HEAD(session, sw_next);
switch (swd->sw_alg) {
case CRYPTO_3DES_CBC:
case CRYPTO_BLF_CBC:
case CRYPTO_CAST_CBC:
case CRYPTO_AES_CBC:
case CRYPTO_AES_CTR:
case CRYPTO_AES_XTS:
case CRYPTO_AES_GCM_16:
case CRYPTO_AES_GMAC:
case CRYPTO_CHACHA20_POLY1305:
case CRYPTO_NULL:
txf = swd->sw_exf;
if (swd->sw_kschedule) {
explicit_bzero(swd->sw_kschedule, txf->ctxsize);
free(swd->sw_kschedule, M_CRYPTO_DATA,
txf->ctxsize);
}
break;
case CRYPTO_MD5_HMAC:
case CRYPTO_SHA1_HMAC:
case CRYPTO_RIPEMD160_HMAC:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
axf = swd->sw_axf;
if (swd->sw_ictx) {
explicit_bzero(swd->sw_ictx, axf->ctxsize);
free(swd->sw_ictx, M_CRYPTO_DATA, axf->ctxsize);
}
if (swd->sw_octx) {
explicit_bzero(swd->sw_octx, axf->ctxsize);
free(swd->sw_octx, M_CRYPTO_DATA, axf->ctxsize);
}
break;
case CRYPTO_AES_128_GMAC:
case CRYPTO_AES_192_GMAC:
case CRYPTO_AES_256_GMAC:
case CRYPTO_CHACHA20_POLY1305_MAC:
axf = swd->sw_axf;
if (swd->sw_ictx) {
explicit_bzero(swd->sw_ictx, axf->ctxsize);
free(swd->sw_ictx, M_CRYPTO_DATA, axf->ctxsize);
}
break;
}
free(swd, M_CRYPTO_DATA, sizeof(*swd));
}
return 0;
}
/*
* Process a software request.
*/
int
swcr_process(struct cryptop *crp)
{
struct cryptodesc *crd;
struct swcr_list *session;
struct swcr_data *sw;
u_int32_t lid;
int err = 0;
int type;
int i;
KASSERT(crp->crp_ndesc >= 1);
if (crp->crp_buf == NULL) {
err = EINVAL;
goto done;
}
lid = crp->crp_sid & 0xffffffff;
if (lid >= swcr_sesnum || lid == 0 ||
SLIST_EMPTY(&swcr_sessions[lid])) {
err = ENOENT;
goto done;
}
if (crp->crp_flags & CRYPTO_F_IMBUF)
type = CRYPTO_BUF_MBUF;
else
type = CRYPTO_BUF_IOV;
/* Go through crypto descriptors, processing as we go */
session = &swcr_sessions[lid];
for (i = 0; i < crp->crp_ndesc; i++) {
crd = &crp->crp_desc[i];
/*
* Find the crypto context.
*
* XXX Note that the logic here prevents us from having
* XXX the same algorithm multiple times in a session
* XXX (or rather, we can but it won't give us the right
* XXX results). To do that, we'd need some way of differentiating
* XXX between the various instances of an algorithm (so we can
* XXX locate the correct crypto context).
*/
SLIST_FOREACH(sw, session, sw_next) {
if (sw->sw_alg == crd->crd_alg)
break;
}
/* No such context ? */
if (sw == NULL) {
err = EINVAL;
goto done;
}
switch (sw->sw_alg) {
case CRYPTO_NULL:
break;
case CRYPTO_3DES_CBC:
case CRYPTO_BLF_CBC:
case CRYPTO_CAST_CBC:
case CRYPTO_RIJNDAEL128_CBC:
case CRYPTO_AES_CTR:
case CRYPTO_AES_XTS:
if ((err = swcr_encdec(crd, sw,
crp->crp_buf, type)) != 0)
goto done;
break;
case CRYPTO_MD5_HMAC:
case CRYPTO_SHA1_HMAC:
case CRYPTO_RIPEMD160_HMAC:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
if ((err = swcr_authcompute(crp, crd, sw,
crp->crp_buf, type)) != 0)
goto done;
break;
case CRYPTO_AES_GCM_16:
case CRYPTO_AES_GMAC:
case CRYPTO_AES_128_GMAC:
case CRYPTO_AES_192_GMAC:
case CRYPTO_AES_256_GMAC:
case CRYPTO_CHACHA20_POLY1305:
case CRYPTO_CHACHA20_POLY1305_MAC:
err = swcr_authenc(crp);
goto done;
case CRYPTO_DEFLATE_COMP:
if ((err = swcr_compdec(crd, sw,
crp->crp_buf, type)) != 0)
goto done;
else
crp->crp_olen = (int)sw->sw_size;
break;
default:
/* Unknown/unsupported algorithm */
err = EINVAL;
goto done;
}
}
done:
return err;
}
/*
* Initialize the driver, called from the kernel main().
*/
void
swcr_init(void)
{
int algs[CRYPTO_ALGORITHM_MAX + 1];
int flags = CRYPTOCAP_F_SOFTWARE;
swcr_id = crypto_get_driverid(flags);
if (swcr_id < 0) {
/* This should never happen */
panic("Software crypto device cannot initialize!");
}
bzero(algs, sizeof(algs));
algs[CRYPTO_3DES_CBC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_BLF_CBC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_CAST_CBC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_MD5_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_SHA1_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_RIPEMD160_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_AES_CBC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_AES_CTR] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_AES_XTS] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_AES_GCM_16] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_AES_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_DEFLATE_COMP] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_NULL] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_SHA2_256_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_SHA2_384_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_SHA2_512_HMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_AES_128_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_AES_192_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_AES_256_GMAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_CHACHA20_POLY1305] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_CHACHA20_POLY1305_MAC] = CRYPTO_ALG_FLAG_SUPPORTED;
algs[CRYPTO_ESN] = CRYPTO_ALG_FLAG_SUPPORTED;
crypto_register(swcr_id, algs, swcr_newsession,
swcr_freesession, swcr_process);
}