src/sys/dev/ic/aic6360.c

2095 lines
54 KiB
C

/* $OpenBSD: aic6360.c,v 1.41 2024/09/04 07:54:52 mglocker Exp $ */
/* $NetBSD: aic6360.c,v 1.52 1996/12/10 21:27:51 thorpej Exp $ */
#ifdef DDB
#define integrate
#else
#define integrate static inline
#endif
/*
* Copyright (c) 1994, 1995, 1996 Charles Hannum. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Charles M. Hannum.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Copyright (c) 1994 Jarle Greipsland
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Acknowledgements: Many of the algorithms used in this driver are
* inspired by the work of Julian Elischer (julian@tfs.com) and
* Charles Hannum (mycroft@duality.gnu.ai.mit.edu). Thanks a million!
*/
/* TODO list:
* 1) Get the DMA stuff working.
* 2) Get the iov/uio stuff working. Is this a good thing ???
* 3) Get the synch stuff working.
* 4) Rewrite it to use malloc for the acb structs instead of static alloc.?
*/
/*
* A few customizable items:
*/
/* Use doubleword transfers to/from SCSI chip. Note: This requires
* motherboard support. Basically, some motherboard chipsets are able to
* split a 32 bit I/O operation into two 16 bit I/O operations,
* transparently to the processor. This speeds up some things, notably long
* data transfers.
*/
#define AIC_USE_DWORDS 0
/* Synchronous data transfers? */
#define AIC_USE_SYNCHRONOUS 0
#define AIC_SYNC_REQ_ACK_OFS 8
/* Wide data transfers? */
#define AIC_USE_WIDE 0
#define AIC_MAX_WIDTH 0
/* Max attempts made to transmit a message */
#define AIC_MSG_MAX_ATTEMPT 3 /* Not used now XXX */
/* Use DMA (else we do programmed I/O using string instructions) (not yet!)*/
#define AIC_USE_EISA_DMA 0
#define AIC_USE_ISA_DMA 0
/* How to behave on the (E)ISA bus when/if DMAing (on<<4) + off in us */
#define EISA_BRST_TIM ((15<<4) + 1) /* 15us on, 1us off */
/* Some spin loop parameters (essentially how long to wait some places)
* The problem(?) is that sometimes we expect either to be able to transmit a
* byte or to get a new one from the SCSI bus pretty soon. In order to avoid
* returning from the interrupt just to get yanked back for the next byte we
* may spin in the interrupt routine waiting for this byte to come. How long?
* This is really (SCSI) device and processor dependent. Tuneable, I guess.
*/
#define AIC_MSGIN_SPIN 1 /* Spin upto ?ms for a new msg byte */
#define AIC_MSGOUT_SPIN 1
/* Include debug functions? At the end of this file there are a bunch of
* functions that will print out various information regarding queued SCSI
* commands, driver state and chip contents. You can call them from the
* kernel debugger. If you set AIC_DEBUG to 0 they are not included (the
* kernel uses less memory) but you lose the debugging facilities.
*/
#ifndef SMALL_KERNEL
#define AIC_DEBUG 1
#endif
#define AIC_ABORT_TIMEOUT 2000 /* time to wait for abort */
/* End of customizable parameters */
#if AIC_USE_EISA_DMA || AIC_USE_ISA_DMA
#error "I said not yet! Start paying attention... grumble"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <sys/buf.h>
#include <sys/queue.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <scsi/scsi_all.h>
#include <scsi/scsi_message.h>
#include <scsi/scsiconf.h>
#include <dev/isa/isavar.h>
#include <dev/ic/aic6360reg.h>
#include <dev/ic/aic6360var.h>
#ifndef DDB
#define db_enter() panic("should call debugger here (aic6360.c)")
#endif /* ! DDB */
#ifdef AIC_DEBUG
int aic_debug = 0x00; /* AIC_SHOWSTART|AIC_SHOWMISC|AIC_SHOWTRACE; */
#endif
void aic_init(struct aic_softc *);
void aic_done(struct aic_softc *, struct aic_acb *);
void aic_dequeue(struct aic_softc *, struct aic_acb *);
void aic_scsi_cmd(struct scsi_xfer *);
int aic_poll(struct aic_softc *, struct scsi_xfer *, int);
integrate void aic_sched_msgout(struct aic_softc *, u_char);
integrate void aic_setsync(struct aic_softc *, struct aic_tinfo *);
void aic_select(struct aic_softc *, struct aic_acb *);
void aic_timeout(void *);
void aic_sched(struct aic_softc *);
void aic_scsi_reset(struct aic_softc *);
void aic_reset(struct aic_softc *);
void aic_acb_free(void *, void *);
void *aic_acb_alloc(void *);
int aic_reselect(struct aic_softc *, int);
void aic_sense(struct aic_softc *, struct aic_acb *);
void aic_msgin(struct aic_softc *);
void aic_abort(struct aic_softc *, struct aic_acb *);
void aic_msgout(struct aic_softc *);
int aic_dataout_pio(struct aic_softc *, u_char *, int);
int aic_datain_pio(struct aic_softc *, u_char *, int);
#ifdef AIC_DEBUG
void aic_print_acb(struct aic_acb *);
void aic_dump_driver(struct aic_softc *);
void aic_dump6360(struct aic_softc *);
void aic_show_scsi_cmd(struct aic_acb *);
void aic_print_active_acb(void);
#endif
struct cfdriver aic_cd = {
NULL, "aic", DV_DULL
};
const struct scsi_adapter aic_switch = {
aic_scsi_cmd, NULL, NULL, NULL, NULL
};
/*
* Do the real search-for-device.
*/
int
aic_find(bus_space_tag_t iot, bus_space_handle_t ioh)
{
char chip_id[sizeof(IDSTRING)]; /* For chips that support it */
int i;
/* Remove aic6360 from possible powerdown mode */
bus_space_write_1(iot, ioh, DMACNTRL0, 0);
/* Thanks to mark@aggregate.com for the new method for detecting
* whether the chip is present or not. Bonus: may also work for
* the AIC-6260!
*/
AIC_TRACE(("aic: probing for aic-chip\n"));
/*
* Linux also init's the stack to 1-16 and then clears it,
* 6260's don't appear to have an ID reg - mpg
*/
/* Push the sequence 0,1,..,15 on the stack */
#define STSIZE 16
bus_space_write_1(iot, ioh, DMACNTRL1, 0); /* Reset stack pointer */
for (i = 0; i < STSIZE; i++)
bus_space_write_1(iot, ioh, STACK, i);
/* See if we can pull out the same sequence */
bus_space_write_1(iot, ioh, DMACNTRL1, 0);
for (i = 0; i < STSIZE && bus_space_read_1(iot, ioh, STACK) == i; i++)
;
if (i != STSIZE) {
AIC_START(("STACK futzed at %d.\n", i));
return (0);
}
/* See if we can pull the id string out of the ID register,
* now only used for informational purposes.
*/
bzero(chip_id, sizeof(chip_id));
bus_space_read_multi_1(iot, ioh, ID, chip_id, sizeof(IDSTRING) - 1);
AIC_START(("AIC ID: %s ", chip_id));
AIC_START(("chip revision %d\n",
(int)bus_space_read_1(iot, ioh, REV)));
return (1);
}
/*
* Attach the AIC6360, fill out some high and low level data structures
*/
void
aicattach(struct aic_softc *sc)
{
struct scsibus_attach_args saa;
AIC_TRACE(("aicattach "));
sc->sc_state = AIC_INIT;
sc->sc_initiator = 7;
sc->sc_freq = 20; /* XXXX assume 20 MHz. */
/*
* These are the bounds of the sync period, based on the frequency of
* the chip's clock input and the size and offset of the sync period
* register.
*
* For a 20MHz clock, this gives us 25, or 100nS, or 10MB/s, as a
* maximum transfer rate, and 112.5, or 450nS, or 2.22MB/s, as a
* minimum transfer rate.
*/
sc->sc_minsync = (2 * 250) / sc->sc_freq;
sc->sc_maxsync = (9 * 250) / sc->sc_freq;
aic_init(sc); /* init chip and driver */
saa.saa_adapter_softc = sc;
saa.saa_adapter_target = sc->sc_initiator;
saa.saa_adapter = &aic_switch;
saa.saa_luns = saa.saa_adapter_buswidth = 8;
saa.saa_openings = 2;
saa.saa_pool = &sc->sc_iopool;
saa.saa_quirks = saa.saa_flags = 0;
saa.saa_wwpn = saa.saa_wwnn = 0;
config_found(&sc->sc_dev, &saa, scsiprint);
}
int
aic_detach(struct device *self, int flags)
{
struct aic_softc *sc = (struct aic_softc *) self;
int rv = 0;
rv = config_detach_children(&sc->sc_dev, flags);
return (rv);
}
/* Initialize AIC6360 chip itself
* The following conditions should hold:
* aicprobe should have succeeded, i.e. the ioh handle in aic_softc must
* be valid.
*/
void
aic_reset(struct aic_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
/*
* Doc. recommends to clear these two registers before operations
* commence
*/
bus_space_write_1(iot, ioh, SCSITEST, 0);
bus_space_write_1(iot, ioh, TEST, 0);
/* Reset SCSI-FIFO and abort any transfers */
bus_space_write_1(iot, ioh, SXFRCTL0, CHEN | CLRCH | CLRSTCNT);
/* Reset DMA-FIFO */
bus_space_write_1(iot, ioh, DMACNTRL0, RSTFIFO);
bus_space_write_1(iot, ioh, DMACNTRL1, 0);
/* Disable all selection features */
bus_space_write_1(iot, ioh, SCSISEQ, 0);
bus_space_write_1(iot, ioh, SXFRCTL1, 0);
/* Disable some interrupts */
bus_space_write_1(iot, ioh, SIMODE0, 0x00);
/* Clear a slew of interrupts */
bus_space_write_1(iot, ioh, CLRSINT0, 0x7f);
/* Disable some more interrupts */
bus_space_write_1(iot, ioh, SIMODE1, 0x00);
/* Clear another slew of interrupts */
bus_space_write_1(iot, ioh, CLRSINT1, 0xef);
/* Disable synchronous transfers */
bus_space_write_1(iot, ioh, SCSIRATE, 0);
/* Haven't seen ant errors (yet) */
bus_space_write_1(iot, ioh, CLRSERR, 0x07);
/* Set our SCSI-ID */
bus_space_write_1(iot, ioh, SCSIID, sc->sc_initiator << OID_S);
bus_space_write_1(iot, ioh, BRSTCNTRL, EISA_BRST_TIM);
}
/* Pull the SCSI RST line for 500 us */
void
aic_scsi_reset(struct aic_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
bus_space_write_1(iot, ioh, SCSISEQ, SCSIRSTO);
delay(500);
bus_space_write_1(iot, ioh, SCSISEQ, 0);
delay(50);
}
/*
* Initialize aic SCSI driver.
*/
void
aic_init(struct aic_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct aic_acb *acb;
int r;
aic_reset(sc);
aic_scsi_reset(sc);
aic_reset(sc);
if (sc->sc_state == AIC_INIT) {
/* First time through; initialize. */
TAILQ_INIT(&sc->ready_list);
TAILQ_INIT(&sc->nexus_list);
TAILQ_INIT(&sc->free_list);
mtx_init(&sc->sc_acb_mtx, IPL_BIO);
scsi_iopool_init(&sc->sc_iopool, sc, aic_acb_alloc,
aic_acb_free);
sc->sc_nexus = NULL;
acb = sc->sc_acb;
bzero(acb, sizeof(sc->sc_acb));
for (r = 0; r < sizeof(sc->sc_acb) / sizeof(*acb); r++) {
TAILQ_INSERT_TAIL(&sc->free_list, acb, chain);
acb++;
}
bzero(&sc->sc_tinfo, sizeof(sc->sc_tinfo));
} else {
/* Cancel any active commands. */
sc->sc_state = AIC_CLEANING;
if ((acb = sc->sc_nexus) != NULL) {
acb->xs->error = XS_DRIVER_STUFFUP;
timeout_del(&acb->xs->stimeout);
aic_done(sc, acb);
}
while ((acb = TAILQ_FIRST(&sc->nexus_list)) != NULL) {
acb->xs->error = XS_DRIVER_STUFFUP;
timeout_del(&acb->xs->stimeout);
aic_done(sc, acb);
}
}
sc->sc_prevphase = PH_INVALID;
for (r = 0; r < 8; r++) {
struct aic_tinfo *ti = &sc->sc_tinfo[r];
ti->flags = 0;
#if AIC_USE_SYNCHRONOUS
ti->flags |= DO_SYNC;
ti->period = sc->sc_minsync;
ti->offset = AIC_SYNC_REQ_ACK_OFS;
#else
ti->period = ti->offset = 0;
#endif
#if AIC_USE_WIDE
ti->flags |= DO_WIDE;
ti->width = AIC_MAX_WIDTH;
#else
ti->width = 0;
#endif
}
sc->sc_state = AIC_IDLE;
bus_space_write_1(iot, ioh, DMACNTRL0, INTEN);
}
void
aic_acb_free(void *xsc, void *xacb)
{
struct aic_softc *sc = xsc;
struct aic_acb *acb = xacb;
mtx_enter(&sc->sc_acb_mtx);
acb->flags = 0;
TAILQ_INSERT_HEAD(&sc->free_list, acb, chain);
mtx_leave(&sc->sc_acb_mtx);
}
void *
aic_acb_alloc(void *xsc)
{
struct aic_softc *sc = xsc;
struct aic_acb *acb;
mtx_enter(&sc->sc_acb_mtx);
acb = TAILQ_FIRST(&sc->free_list);
if (acb) {
TAILQ_REMOVE(&sc->free_list, acb, chain);
acb->flags |= ACB_ALLOC;
}
mtx_leave(&sc->sc_acb_mtx);
return acb;
}
/*
* DRIVER FUNCTIONS CALLABLE FROM HIGHER LEVEL DRIVERS
*/
/*
* Expected sequence:
* 1) Command inserted into ready list
* 2) Command selected for execution
* 3) Command won arbitration and has selected target device
* 4) Send message out (identify message, eventually also sync.negotiations)
* 5) Send command
* 5a) Receive disconnect message, disconnect.
* 5b) Reselected by target
* 5c) Receive identify message from target.
* 6) Send or receive data
* 7) Receive status
* 8) Receive message (command complete etc.)
* 9) If status == SCSI_CHECK construct a synthetic request sense SCSI cmd.
* Repeat 2-8 (no disconnects please...)
*/
/*
* Start a SCSI-command
* This function is called by the higher level SCSI-driver to queue/run
* SCSI-commands.
*/
void
aic_scsi_cmd(struct scsi_xfer *xs)
{
struct scsi_link *sc_link = xs->sc_link;
struct aic_softc *sc = sc_link->bus->sb_adapter_softc;
struct aic_acb *acb;
int s, flags;
AIC_TRACE(("aic_scsi_cmd "));
AIC_CMDS(("[0x%x, %d]->%d ", (int)xs->cmd.opcode, xs->cmdlen,
sc_link->target));
flags = xs->flags;
acb = xs->io;
/* Initialize acb */
acb->xs = xs;
acb->timeout = xs->timeout;
timeout_set(&xs->stimeout, aic_timeout, acb);
if (xs->flags & SCSI_RESET) {
acb->flags |= ACB_RESET;
acb->scsi_cmd_length = 0;
acb->data_length = 0;
} else {
bcopy(&xs->cmd, &acb->scsi_cmd, xs->cmdlen);
acb->scsi_cmd_length = xs->cmdlen;
acb->data_addr = xs->data;
acb->data_length = xs->datalen;
}
acb->target_stat = 0;
s = splbio();
TAILQ_INSERT_TAIL(&sc->ready_list, acb, chain);
if (sc->sc_state == AIC_IDLE)
aic_sched(sc);
splx(s);
if ((flags & SCSI_POLL) == 0)
return;
/* Not allowed to use interrupts, use polling instead */
if (aic_poll(sc, xs, acb->timeout)) {
aic_timeout(acb);
if (aic_poll(sc, xs, acb->timeout))
aic_timeout(acb);
}
}
/*
* Used when interrupt driven I/O isn't allowed, e.g. during boot.
*/
int
aic_poll(struct aic_softc *sc, struct scsi_xfer *xs, int count)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int s;
AIC_TRACE(("aic_poll "));
while (count) {
/*
* If we had interrupts enabled, would we
* have got an interrupt?
*/
if ((bus_space_read_1(iot, ioh, DMASTAT) & INTSTAT) != 0) {
s = splbio();
aicintr(sc);
splx(s);
}
if ((xs->flags & ITSDONE) != 0)
return 0;
delay(1000);
count--;
}
return 1;
}
/*
* LOW LEVEL SCSI UTILITIES
*/
integrate void
aic_sched_msgout(struct aic_softc *sc, u_char m)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
if (sc->sc_msgpriq == 0)
bus_space_write_1(iot, ioh, SCSISIG, sc->sc_phase | ATNO);
sc->sc_msgpriq |= m;
}
/*
* Set synchronous transfer offset and period.
*/
integrate void
aic_setsync(struct aic_softc *sc, struct aic_tinfo *ti)
{
#if AIC_USE_SYNCHRONOUS
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
if (ti->offset != 0)
bus_space_write_1(iot, ioh, SCSIRATE,
((ti->period * sc->sc_freq) / 250 - 2) << 4 | ti->offset);
else
bus_space_write_1(iot, ioh, SCSIRATE, 0);
#endif
}
/*
* Start a selection. This is used by aic_sched() to select an idle target,
* and by aic_done() to immediately reselect a target to get sense information.
*/
void
aic_select(struct aic_softc *sc, struct aic_acb *acb)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct scsi_link *sc_link = acb->xs->sc_link;
int target = sc_link->target;
struct aic_tinfo *ti = &sc->sc_tinfo[target];
bus_space_write_1(iot, ioh, SCSIID,
sc->sc_initiator << OID_S | target);
aic_setsync(sc, ti);
bus_space_write_1(iot, ioh, SXFRCTL1, STIMO_256ms | ENSTIMER);
/* Always enable reselections. */
bus_space_write_1(iot, ioh, SIMODE0, ENSELDI | ENSELDO);
bus_space_write_1(iot, ioh, SIMODE1, ENSCSIRST | ENSELTIMO);
bus_space_write_1(iot, ioh, SCSISEQ, ENRESELI | ENSELO | ENAUTOATNO);
sc->sc_state = AIC_SELECTING;
}
int
aic_reselect(struct aic_softc *sc, int message)
{
u_char selid, target, lun;
struct aic_acb *acb;
struct scsi_link *sc_link;
struct aic_tinfo *ti;
/*
* The SCSI chip made a snapshot of the data bus while the reselection
* was being negotiated. This enables us to determine which target did
* the reselect.
*/
selid = sc->sc_selid & ~(1 << sc->sc_initiator);
if (selid & (selid - 1)) {
printf("%s: reselect with invalid selid %02x; ",
sc->sc_dev.dv_xname, selid);
printf("sending DEVICE RESET\n");
AIC_BREAK();
goto reset;
}
/* Search wait queue for disconnected cmd
* The list should be short, so I haven't bothered with
* any more sophisticated structures than a simple
* singly linked list.
*/
target = ffs(selid) - 1;
lun = message & 0x07;
TAILQ_FOREACH(acb, &sc->nexus_list, chain) {
sc_link = acb->xs->sc_link;
if (sc_link->target == target && sc_link->lun == lun)
break;
}
if (acb == NULL) {
printf("%s: reselect from target %d lun %d with no nexus; ",
sc->sc_dev.dv_xname, target, lun);
printf("sending ABORT\n");
AIC_BREAK();
goto abort;
}
/* Make this nexus active again. */
TAILQ_REMOVE(&sc->nexus_list, acb, chain);
sc->sc_state = AIC_CONNECTED;
sc->sc_nexus = acb;
ti = &sc->sc_tinfo[target];
ti->lubusy |= (1 << lun);
aic_setsync(sc, ti);
if (acb->flags & ACB_RESET)
aic_sched_msgout(sc, SEND_DEV_RESET);
else if (acb->flags & ACB_ABORT)
aic_sched_msgout(sc, SEND_ABORT);
/* Do an implicit RESTORE POINTERS. */
sc->sc_dp = acb->data_addr;
sc->sc_dleft = acb->data_length;
sc->sc_cp = (u_char *)&acb->scsi_cmd;
sc->sc_cleft = acb->scsi_cmd_length;
return (0);
reset:
aic_sched_msgout(sc, SEND_DEV_RESET);
return (1);
abort:
aic_sched_msgout(sc, SEND_ABORT);
return (1);
}
/*
* Schedule a SCSI operation. This has now been pulled out of the interrupt
* handler so that we may call it from aic_scsi_cmd and aic_done. This may
* save us an unnecessary interrupt just to get things going. Should only be
* called when state == AIC_IDLE and at bio pl.
*/
void
aic_sched(struct aic_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct aic_acb *acb;
struct scsi_link *sc_link;
struct aic_tinfo *ti;
/*
* Find first acb in ready queue that is for a target/lunit pair that
* is not busy.
*/
bus_space_write_1(iot, ioh, CLRSINT1,
CLRSELTIMO | CLRBUSFREE | CLRSCSIPERR);
TAILQ_FOREACH(acb, &sc->ready_list, chain) {
sc_link = acb->xs->sc_link;
ti = &sc->sc_tinfo[sc_link->target];
if ((ti->lubusy & (1 << sc_link->lun)) == 0) {
AIC_MISC(("selecting %d:%d ",
sc_link->target, sc_link->lun));
TAILQ_REMOVE(&sc->ready_list, acb, chain);
sc->sc_nexus = acb;
aic_select(sc, acb);
return;
} else
AIC_MISC(("%d:%d busy\n",
sc_link->target, sc_link->lun));
}
AIC_MISC(("idle "));
/* Nothing to start; just enable reselections and wait. */
bus_space_write_1(iot, ioh, SIMODE0, ENSELDI);
bus_space_write_1(iot, ioh, SIMODE1, ENSCSIRST);
bus_space_write_1(iot, ioh, SCSISEQ, ENRESELI);
}
void
aic_sense(struct aic_softc *sc, struct aic_acb *acb)
{
struct scsi_xfer *xs = acb->xs;
struct scsi_link *sc_link = xs->sc_link;
struct aic_tinfo *ti = &sc->sc_tinfo[sc_link->target];
struct scsi_sense *ss = (void *)&acb->scsi_cmd;
AIC_MISC(("requesting sense "));
/* Next, setup a request sense command block */
bzero(ss, sizeof(*ss));
ss->opcode = REQUEST_SENSE;
ss->byte2 = sc_link->lun << 5;
ss->length = sizeof(struct scsi_sense_data);
acb->scsi_cmd_length = sizeof(*ss);
acb->data_addr = (char *)&xs->sense;
acb->data_length = sizeof(struct scsi_sense_data);
acb->flags |= ACB_SENSE;
ti->senses++;
if (acb->flags & ACB_NEXUS)
ti->lubusy &= ~(1 << sc_link->lun);
if (acb == sc->sc_nexus) {
aic_select(sc, acb);
} else {
aic_dequeue(sc, acb);
TAILQ_INSERT_HEAD(&sc->ready_list, acb, chain);
if (sc->sc_state == AIC_IDLE)
aic_sched(sc);
}
}
/*
* POST PROCESSING OF SCSI_CMD (usually current)
*/
void
aic_done(struct aic_softc *sc, struct aic_acb *acb)
{
struct scsi_xfer *xs = acb->xs;
struct scsi_link *sc_link = xs->sc_link;
struct aic_tinfo *ti = &sc->sc_tinfo[sc_link->target];
AIC_TRACE(("aic_done "));
/*
* Now, if we've come here with no error code, i.e. we've kept the
* initial XS_NOERROR, and the status code signals that we should
* check sense, we'll need to set up a request sense cmd block and
* push the command back into the ready queue *before* any other
* commands for this target/lunit, else we lose the sense info.
* We don't support chk sense conditions for the request sense cmd.
*/
if (xs->error == XS_NOERROR) {
if (acb->flags & ACB_ABORT) {
xs->error = XS_DRIVER_STUFFUP;
} else if (acb->flags & ACB_SENSE) {
xs->error = XS_SENSE;
} else if (acb->target_stat == SCSI_CHECK) {
/* First, save the return values */
xs->resid = acb->data_length;
xs->status = acb->target_stat;
aic_sense(sc, acb);
return;
} else {
xs->resid = acb->data_length;
}
}
#ifdef AIC_DEBUG
if ((aic_debug & AIC_SHOWMISC) != 0) {
if (xs->resid != 0)
printf("resid=%lu ", (u_long)xs->resid);
if (xs->error == XS_SENSE)
printf("sense=0x%02x\n", xs->sense.error_code);
else
printf("error=%d\n", xs->error);
}
#endif
/*
* Remove the ACB from whatever queue it happens to be on.
*/
if (acb->flags & ACB_NEXUS)
ti->lubusy &= ~(1 << sc_link->lun);
if (acb == sc->sc_nexus) {
sc->sc_nexus = NULL;
sc->sc_state = AIC_IDLE;
aic_sched(sc);
} else
aic_dequeue(sc, acb);
ti->cmds++;
scsi_done(xs);
}
void
aic_dequeue(struct aic_softc *sc, struct aic_acb *acb)
{
if (acb->flags & ACB_NEXUS) {
TAILQ_REMOVE(&sc->nexus_list, acb, chain);
} else {
TAILQ_REMOVE(&sc->ready_list, acb, chain);
}
}
/*
* INTERRUPT/PROTOCOL ENGINE
*/
/*
* Precondition:
* The SCSI bus is already in the MSGI phase and there is a message byte
* on the bus, along with an asserted REQ signal.
*/
void
aic_msgin(struct aic_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_char sstat1;
int n;
AIC_TRACE(("aic_msgin "));
if (sc->sc_prevphase == PH_MSGIN) {
/* This is a continuation of the previous message. */
n = sc->sc_imp - sc->sc_imess;
goto nextbyte;
}
/* This is a new MESSAGE IN phase. Clean up our state. */
sc->sc_flags &= ~AIC_DROP_MSGIN;
nextmsg:
n = 0;
sc->sc_imp = &sc->sc_imess[n];
nextbyte:
/*
* Read a whole message, but don't ack the last byte. If we reject the
* message, we have to assert ATN during the message transfer phase
* itself.
*/
for (;;) {
for (;;) {
sstat1 = bus_space_read_1(iot, ioh, SSTAT1);
if ((sstat1 & (REQINIT | PHASECHG | BUSFREE)) != 0)
break;
/* Wait for REQINIT. XXX Need timeout. */
}
if ((sstat1 & (PHASECHG | BUSFREE)) != 0) {
/*
* Target left MESSAGE IN, probably because it
* a) noticed our ATN signal, or
* b) ran out of messages.
*/
goto out;
}
/* If parity error, just dump everything on the floor. */
if ((sstat1 & SCSIPERR) != 0) {
sc->sc_flags |= AIC_DROP_MSGIN;
aic_sched_msgout(sc, SEND_PARITY_ERROR);
}
/* Gather incoming message bytes if needed. */
if ((sc->sc_flags & AIC_DROP_MSGIN) == 0) {
if (n >= AIC_MAX_MSG_LEN) {
(void) bus_space_read_1(iot, ioh, SCSIDAT);
sc->sc_flags |= AIC_DROP_MSGIN;
aic_sched_msgout(sc, SEND_REJECT);
} else {
*sc->sc_imp++ = bus_space_read_1(iot, ioh,
SCSIDAT);
n++;
/*
* This testing is suboptimal, but most
* messages will be of the one byte variety, so
* it should not affect performance
* significantly.
*/
if (n == 1 && IS1BYTEMSG(sc->sc_imess[0]))
break;
if (n == 2 && IS2BYTEMSG(sc->sc_imess[0]))
break;
if (n >= 3 && ISEXTMSG(sc->sc_imess[0]) &&
n == sc->sc_imess[1] + 2)
break;
}
} else
(void) bus_space_read_1(iot, ioh, SCSIDAT);
/*
* If we reach this spot we're either:
* a) in the middle of a multi-byte message, or
* b) dropping bytes.
*/
bus_space_write_1(iot, ioh, SXFRCTL0, CHEN | SPIOEN);
/* Ack the last byte read. */
(void) bus_space_read_1(iot, ioh, SCSIDAT);
bus_space_write_1(iot, ioh, SXFRCTL0, CHEN);
while ((bus_space_read_1(iot, ioh, SCSISIG) & ACKI) != 0)
;
}
AIC_MISC(("n=%d imess=0x%02x ", n, sc->sc_imess[0]));
/* We now have a complete message. Parse it. */
switch (sc->sc_state) {
struct aic_acb *acb;
struct scsi_link *sc_link;
struct aic_tinfo *ti;
case AIC_CONNECTED:
AIC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
ti = &sc->sc_tinfo[acb->xs->sc_link->target];
switch (sc->sc_imess[0]) {
case MSG_CMDCOMPLETE:
if ((long)sc->sc_dleft < 0) {
sc_link = acb->xs->sc_link;
printf("%s: %lu extra bytes from %d:%d\n",
sc->sc_dev.dv_xname, (u_long)-sc->sc_dleft,
sc_link->target, sc_link->lun);
acb->data_length = 0;
}
acb->xs->resid = acb->data_length = sc->sc_dleft;
sc->sc_state = AIC_CMDCOMPLETE;
break;
case MSG_PARITY_ERROR:
/* Resend the last message. */
aic_sched_msgout(sc, sc->sc_lastmsg);
break;
case MSG_MESSAGE_REJECT:
AIC_MISC(("message rejected %02x ", sc->sc_lastmsg));
switch (sc->sc_lastmsg) {
#if AIC_USE_SYNCHRONOUS + AIC_USE_WIDE
case SEND_IDENTIFY:
ti->flags &= ~(DO_SYNC | DO_WIDE);
ti->period = ti->offset = 0;
aic_setsync(sc, ti);
ti->width = 0;
break;
#endif
#if AIC_USE_SYNCHRONOUS
case SEND_SDTR:
ti->flags &= ~DO_SYNC;
ti->period = ti->offset = 0;
aic_setsync(sc, ti);
break;
#endif
#if AIC_USE_WIDE
case SEND_WDTR:
ti->flags &= ~DO_WIDE;
ti->width = 0;
break;
#endif
case SEND_INIT_DET_ERR:
aic_sched_msgout(sc, SEND_ABORT);
break;
}
break;
case MSG_NOOP:
break;
case MSG_DISCONNECT:
ti->dconns++;
sc->sc_state = AIC_DISCONNECT;
break;
case MSG_SAVEDATAPOINTER:
acb->data_addr = sc->sc_dp;
acb->data_length = sc->sc_dleft;
break;
case MSG_RESTOREPOINTERS:
sc->sc_dp = acb->data_addr;
sc->sc_dleft = acb->data_length;
sc->sc_cp = (u_char *)&acb->scsi_cmd;
sc->sc_cleft = acb->scsi_cmd_length;
break;
case MSG_EXTENDED:
switch (sc->sc_imess[2]) {
#if AIC_USE_SYNCHRONOUS
case MSG_EXT_SDTR:
if (sc->sc_imess[1] != 3)
goto reject;
ti->period = sc->sc_imess[3];
ti->offset = sc->sc_imess[4];
ti->flags &= ~DO_SYNC;
if (ti->offset == 0) {
} else if (ti->period < sc->sc_minsync ||
ti->period > sc->sc_maxsync ||
ti->offset > 8) {
ti->period = ti->offset = 0;
aic_sched_msgout(sc, SEND_SDTR);
} else {
sc_print_addr(acb->xs->sc_link);
printf("sync, offset %d, ",
ti->offset);
printf("period %dnsec\n",
ti->period * 4);
}
aic_setsync(sc, ti);
break;
#endif
#if AIC_USE_WIDE
case MSG_EXT_WDTR:
if (sc->sc_imess[1] != 2)
goto reject;
ti->width = sc->sc_imess[3];
ti->flags &= ~DO_WIDE;
if (ti->width == 0) {
} else if (ti->width > AIC_MAX_WIDTH) {
ti->width = 0;
aic_sched_msgout(sc, SEND_WDTR);
} else {
sc_print_addr(acb->xs->sc_link);
printf("wide, width %d\n",
1 << (3 + ti->width));
}
break;
#endif
default:
printf("%s: unrecognized MESSAGE EXTENDED; ",
sc->sc_dev.dv_xname);
printf("sending REJECT\n");
AIC_BREAK();
goto reject;
}
break;
default:
printf("%s: unrecognized MESSAGE; sending REJECT\n",
sc->sc_dev.dv_xname);
AIC_BREAK();
reject:
aic_sched_msgout(sc, SEND_REJECT);
break;
}
break;
case AIC_RESELECTED:
if (!MSG_ISIDENTIFY(sc->sc_imess[0])) {
printf("%s: reselect without IDENTIFY; ",
sc->sc_dev.dv_xname);
printf("sending DEVICE RESET\n");
AIC_BREAK();
goto reset;
}
(void) aic_reselect(sc, sc->sc_imess[0]);
break;
default:
printf("%s: unexpected MESSAGE IN; sending DEVICE RESET\n",
sc->sc_dev.dv_xname);
AIC_BREAK();
reset:
aic_sched_msgout(sc, SEND_DEV_RESET);
break;
#ifdef notdef
abort:
aic_sched_msgout(sc, SEND_ABORT);
break;
#endif
}
bus_space_write_1(iot, ioh, SXFRCTL0, CHEN | SPIOEN);
/* Ack the last message byte. */
(void) bus_space_read_1(iot, ioh, SCSIDAT);
bus_space_write_1(iot, ioh, SXFRCTL0, CHEN);
while ((bus_space_read_1(iot, ioh, SCSISIG) & ACKI) != 0)
;
/* Go get the next message, if any. */
goto nextmsg;
out:
AIC_MISC(("n=%d imess=0x%02x ", n, sc->sc_imess[0]));
}
/*
* Send the highest priority, scheduled message.
*/
void
aic_msgout(struct aic_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
#if AIC_USE_SYNCHRONOUS
struct aic_tinfo *ti;
#endif
u_char sstat1;
int n;
AIC_TRACE(("aic_msgout "));
/* Reset the FIFO. */
bus_space_write_1(iot, ioh, DMACNTRL0, RSTFIFO);
/* Enable REQ/ACK protocol. */
bus_space_write_1(iot, ioh, SXFRCTL0, CHEN | SPIOEN);
if (sc->sc_prevphase == PH_MSGOUT) {
if (sc->sc_omp == sc->sc_omess) {
/*
* This is a retransmission.
*
* We get here if the target stayed in MESSAGE OUT
* phase. Section 5.1.9.2 of the SCSI 2 spec indicates
* that all of the previously transmitted messages must
* be sent again, in the same order. Therefore, we
* requeue all the previously transmitted messages, and
* start again from the top. Our simple priority
* scheme keeps the messages in the right order.
*/
AIC_MISC(("retransmitting "));
sc->sc_msgpriq |= sc->sc_msgoutq;
/*
* Set ATN. If we're just sending a trivial 1-byte
* message, we'll clear ATN later on anyway.
*/
bus_space_write_1(iot, ioh, SCSISIG, PH_MSGOUT | ATNO);
} else {
/* This is a continuation of the previous message. */
n = sc->sc_omp - sc->sc_omess;
goto nextbyte;
}
}
/* No messages transmitted so far. */
sc->sc_msgoutq = 0;
sc->sc_lastmsg = 0;
nextmsg:
/* Pick up highest priority message. */
sc->sc_currmsg = sc->sc_msgpriq & -sc->sc_msgpriq;
sc->sc_msgpriq &= ~sc->sc_currmsg;
sc->sc_msgoutq |= sc->sc_currmsg;
/* Build the outgoing message data. */
switch (sc->sc_currmsg) {
case SEND_IDENTIFY:
AIC_ASSERT(sc->sc_nexus != NULL);
sc->sc_omess[0] =
MSG_IDENTIFY(sc->sc_nexus->xs->sc_link->lun, 1);
n = 1;
break;
#if AIC_USE_SYNCHRONOUS
case SEND_SDTR:
AIC_ASSERT(sc->sc_nexus != NULL);
ti = &sc->sc_tinfo[sc->sc_nexus->xs->sc_link->target];
sc->sc_omess[4] = MSG_EXTENDED;
sc->sc_omess[3] = 3;
sc->sc_omess[2] = MSG_EXT_SDTR;
sc->sc_omess[1] = ti->period >> 2;
sc->sc_omess[0] = ti->offset;
n = 5;
break;
#endif
#if AIC_USE_WIDE
case SEND_WDTR:
AIC_ASSERT(sc->sc_nexus != NULL);
ti = &sc->sc_tinfo[sc->sc_nexus->xs->sc_link->target];
sc->sc_omess[3] = MSG_EXTENDED;
sc->sc_omess[2] = 2;
sc->sc_omess[1] = MSG_EXT_WDTR;
sc->sc_omess[0] = ti->width;
n = 4;
break;
#endif
case SEND_DEV_RESET:
sc->sc_flags |= AIC_ABORTING;
sc->sc_omess[0] = MSG_BUS_DEV_RESET;
n = 1;
break;
case SEND_REJECT:
sc->sc_omess[0] = MSG_MESSAGE_REJECT;
n = 1;
break;
case SEND_PARITY_ERROR:
sc->sc_omess[0] = MSG_PARITY_ERROR;
n = 1;
break;
case SEND_INIT_DET_ERR:
sc->sc_omess[0] = MSG_INITIATOR_DET_ERR;
n = 1;
break;
case SEND_ABORT:
sc->sc_flags |= AIC_ABORTING;
sc->sc_omess[0] = MSG_ABORT;
n = 1;
break;
default:
printf("%s: unexpected MESSAGE OUT; sending NOOP\n",
sc->sc_dev.dv_xname);
AIC_BREAK();
sc->sc_omess[0] = MSG_NOOP;
n = 1;
break;
}
sc->sc_omp = &sc->sc_omess[n];
nextbyte:
/* Send message bytes. */
for (;;) {
for (;;) {
sstat1 = bus_space_read_1(iot, ioh, SSTAT1);
if ((sstat1 & (REQINIT | PHASECHG | BUSFREE)) != 0)
break;
/* Wait for REQINIT. XXX Need timeout. */
}
if ((sstat1 & (PHASECHG | BUSFREE)) != 0) {
/*
* Target left MESSAGE OUT, possibly to reject
* our message.
*
* If this is the last message being sent, then we
* deassert ATN, since either the target is going to
* ignore this message, or it's going to ask for a
* retransmission via MESSAGE PARITY ERROR (in which
* case we reassert ATN anyway).
*/
if (sc->sc_msgpriq == 0)
bus_space_write_1(iot, ioh, CLRSINT1, CLRATNO);
goto out;
}
/* Clear ATN before last byte if this is the last message. */
if (n == 1 && sc->sc_msgpriq == 0)
bus_space_write_1(iot, ioh, CLRSINT1, CLRATNO);
/* Send message byte. */
bus_space_write_1(iot, ioh, SCSIDAT, *--sc->sc_omp);
--n;
/* Keep track of the last message we've sent any bytes of. */
sc->sc_lastmsg = sc->sc_currmsg;
/* Wait for ACK to be negated. XXX Need timeout. */
while ((bus_space_read_1(iot, ioh, SCSISIG) & ACKI) != 0)
;
if (n == 0)
break;
}
/* We get here only if the entire message has been transmitted. */
if (sc->sc_msgpriq != 0) {
/* There are more outgoing messages. */
goto nextmsg;
}
/*
* The last message has been transmitted. We need to remember the last
* message transmitted (in case the target switches to MESSAGE IN phase
* and sends a MESSAGE REJECT), and the list of messages transmitted
* this time around (in case the target stays in MESSAGE OUT phase to
* request a retransmit).
*/
out:
/* Disable REQ/ACK protocol. */
bus_space_write_1(iot, ioh, SXFRCTL0, CHEN);
}
/* aic_dataout_pio: perform a data transfer using the FIFO datapath in the aic6360
* Precondition: The SCSI bus should be in the DOUT phase, with REQ asserted
* and ACK deasserted (i.e. waiting for a data byte).
* This new revision has been optimized (I tried) to make the common case fast,
* and the rarer cases (as a result) somewhat more complex.
*/
int
aic_dataout_pio(struct aic_softc *sc, u_char *p, int n)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_char dmastat = 0;
int out = 0;
#define DOUTAMOUNT 128 /* Full FIFO */
AIC_MISC(("%02x%02x ", bus_space_read_1(iot, ioh, FIFOSTAT),
bus_space_read_1(iot, ioh, SSTAT2)));
/* Clear host FIFO and counter. */
bus_space_write_1(iot, ioh, DMACNTRL0, RSTFIFO | WRITE);
/* Enable FIFOs. */
bus_space_write_1(iot, ioh, DMACNTRL0, ENDMA | DWORDPIO | WRITE);
bus_space_write_1(iot, ioh, SXFRCTL0, SCSIEN | DMAEN | CHEN);
/* Turn off ENREQINIT for now. */
bus_space_write_1(iot, ioh, SIMODE1,
ENSCSIRST | ENSCSIPERR | ENBUSFREE | ENPHASECHG);
/* I have tried to make the main loop as tight as possible. This
* means that some of the code following the loop is a bit more
* complex than otherwise.
*/
while (n > 0) {
for (;;) {
dmastat = bus_space_read_1(iot, ioh, DMASTAT);
if ((dmastat & (DFIFOEMP | INTSTAT)) != 0)
break;
}
if ((dmastat & INTSTAT) != 0)
goto phasechange;
if (n >= DOUTAMOUNT) {
n -= DOUTAMOUNT;
out += DOUTAMOUNT;
#if AIC_USE_DWORDS
bus_space_write_multi_4(iot, ioh, DMADATALONG,
(u_int32_t *)p, DOUTAMOUNT >> 2);
#else
bus_space_write_multi_2(iot, ioh, DMADATA,
(u_int16_t *)p, DOUTAMOUNT >> 1);
#endif
p += DOUTAMOUNT;
} else {
int xfer;
xfer = n;
AIC_MISC(("%d> ", xfer));
n -= xfer;
out += xfer;
#if AIC_USE_DWORDS
if (xfer >= 12) {
bus_space_write_multi_4(iot, ioh, DMADATALONG,
(u_int32_t *)p, xfer >> 2);
p += xfer & ~3;
xfer &= 3;
}
#else
if (xfer >= 8) {
bus_space_write_multi_2(iot, ioh, DMADATA,
(u_int16_t *)p, xfer >> 1);
p += xfer & ~1;
xfer &= 1;
}
#endif
if (xfer > 0) {
bus_space_write_1(iot, ioh, DMACNTRL0,
ENDMA | B8MODE | WRITE);
bus_space_write_multi_1(iot, ioh, DMADATA, p,
xfer);
p += xfer;
bus_space_write_1(iot, ioh, DMACNTRL0,
ENDMA | DWORDPIO | WRITE);
}
}
}
if (out == 0) {
bus_space_write_1(iot, ioh, SXFRCTL1, BITBUCKET);
for (;;) {
if ((bus_space_read_1(iot, ioh, DMASTAT) & INTSTAT) !=
0)
break;
}
bus_space_write_1(iot, ioh, SXFRCTL1, 0);
AIC_MISC(("extra data "));
} else {
/* See the bytes off chip */
for (;;) {
dmastat = bus_space_read_1(iot, ioh, DMASTAT);
if ((dmastat & INTSTAT) != 0)
goto phasechange;
if ((dmastat & DFIFOEMP) != 0 &&
(bus_space_read_1(iot, ioh, SSTAT2) & SEMPTY) != 0)
break;
}
}
phasechange:
if ((dmastat & INTSTAT) != 0) {
/* Some sort of phase change. */
int amount;
/* Stop transfers, do some accounting */
amount = bus_space_read_1(iot, ioh, FIFOSTAT) +
(bus_space_read_1(iot, ioh, SSTAT2) & 15);
if (amount > 0) {
out -= amount;
bus_space_write_1(iot, ioh, DMACNTRL0,
RSTFIFO | WRITE);
bus_space_write_1(iot, ioh, SXFRCTL0, CHEN | CLRCH);
AIC_MISC(("+%d ", amount));
}
}
/* Turn on ENREQINIT again. */
bus_space_write_1(iot, ioh, SIMODE1,
ENSCSIRST | ENSCSIPERR | ENBUSFREE | ENREQINIT | ENPHASECHG);
/* Stop the FIFO data path. */
bus_space_write_1(iot, ioh, SXFRCTL0, CHEN);
bus_space_write_1(iot, ioh, DMACNTRL0, 0);
return out;
}
/* aic_datain_pio: perform data transfers using the FIFO datapath in the aic6360
* Precondition: The SCSI bus should be in the DIN phase, with REQ asserted
* and ACK deasserted (i.e. at least one byte is ready).
* For now, uses a pretty dumb algorithm, hangs around until all data has been
* transferred. This, is OK for fast targets, but not so smart for slow
* targets which don't disconnect or for huge transfers.
*/
int
aic_datain_pio(struct aic_softc *sc, u_char *p, int n)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_char dmastat;
int in = 0;
#define DINAMOUNT 128 /* Full FIFO */
AIC_MISC(("%02x%02x ", bus_space_read_1(iot, ioh, FIFOSTAT),
bus_space_read_1(iot, ioh, SSTAT2)));
/* Clear host FIFO and counter. */
bus_space_write_1(iot, ioh, DMACNTRL0, RSTFIFO);
/* Enable FIFOs. */
bus_space_write_1(iot, ioh, DMACNTRL0, ENDMA | DWORDPIO);
bus_space_write_1(iot, ioh, SXFRCTL0, SCSIEN | DMAEN | CHEN);
/* Turn off ENREQINIT for now. */
bus_space_write_1(iot, ioh, SIMODE1,
ENSCSIRST | ENSCSIPERR | ENBUSFREE | ENPHASECHG);
/* We leave this loop if one or more of the following is true:
* a) phase != PH_DATAIN && FIFOs are empty
* b) SCSIRSTI is set (a reset has occurred) or busfree is detected.
*/
while (n > 0) {
/* Wait for fifo half full or phase mismatch */
for (;;) {
dmastat = bus_space_read_1(iot, ioh, DMASTAT);
if ((dmastat & (DFIFOFULL | INTSTAT)) != 0)
break;
}
if ((dmastat & DFIFOFULL) != 0) {
n -= DINAMOUNT;
in += DINAMOUNT;
#if AIC_USE_DWORDS
bus_space_read_multi_4(iot, ioh, DMADATALONG,
(u_int32_t *)p, DINAMOUNT >> 2);
#else
bus_space_read_multi_2(iot, ioh, DMADATA,
(u_int16_t *)p, DINAMOUNT >> 1);
#endif
p += DINAMOUNT;
} else {
int xfer;
xfer = min(bus_space_read_1(iot, ioh, FIFOSTAT), n);
AIC_MISC((">%d ", xfer));
n -= xfer;
in += xfer;
#if AIC_USE_DWORDS
if (xfer >= 12) {
bus_space_read_multi_4(iot, ioh, DMADATALONG,
(u_int32_t *)p, xfer >> 2);
p += xfer & ~3;
xfer &= 3;
}
#else
if (xfer >= 8) {
bus_space_read_multi_2(iot, ioh, DMADATA,
(u_int16_t *)p, xfer >> 1);
p += xfer & ~1;
xfer &= 1;
}
#endif
if (xfer > 0) {
bus_space_write_1(iot, ioh, DMACNTRL0,
ENDMA | B8MODE);
bus_space_read_multi_1(iot, ioh, DMADATA, p,
xfer);
p += xfer;
bus_space_write_1(iot, ioh, DMACNTRL0,
ENDMA | DWORDPIO);
}
}
if ((dmastat & INTSTAT) != 0)
goto phasechange;
}
/* Some SCSI-devices are rude enough to transfer more data than what
* was requested, e.g. 2048 bytes from a CD-ROM instead of the
* requested 512. Test for progress, i.e. real transfers. If no real
* transfers have been performed (n is probably already zero) and the
* FIFO is not empty, waste some bytes....
*/
if (in == 0) {
bus_space_write_1(iot, ioh, SXFRCTL1, BITBUCKET);
for (;;) {
if ((bus_space_read_1(iot, ioh, DMASTAT) & INTSTAT) !=
0)
break;
}
bus_space_write_1(iot, ioh, SXFRCTL1, 0);
AIC_MISC(("extra data "));
}
phasechange:
/* Turn on ENREQINIT again. */
bus_space_write_1(iot, ioh, SIMODE1,
ENSCSIRST | ENSCSIPERR | ENBUSFREE | ENREQINIT | ENPHASECHG);
/* Stop the FIFO data path. */
bus_space_write_1(iot, ioh, SXFRCTL0, CHEN);
bus_space_write_1(iot, ioh, DMACNTRL0, 0);
return in;
}
/*
* This is the workhorse routine of the driver.
* Deficiencies (for now):
* 1) always uses programmed I/O
*/
int
aicintr(void *arg)
{
struct aic_softc *sc = arg;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_char sstat0, sstat1;
struct aic_acb *acb;
struct scsi_link *sc_link;
struct aic_tinfo *ti;
int n;
/*
* Clear INTEN. We enable it again before returning. This makes the
* interrupt essentially level-triggered.
*/
bus_space_write_1(iot, ioh, DMACNTRL0, 0);
AIC_TRACE(("aicintr "));
loop:
/*
* First check for abnormal conditions, such as reset.
*/
sstat1 = bus_space_read_1(iot, ioh, SSTAT1);
AIC_MISC(("sstat1:0x%02x ", sstat1));
if ((sstat1 & SCSIRSTI) != 0) {
printf("%s: SCSI bus reset\n", sc->sc_dev.dv_xname);
goto reset;
}
/*
* Check for less serious errors.
*/
if ((sstat1 & SCSIPERR) != 0) {
printf("%s: SCSI bus parity error\n", sc->sc_dev.dv_xname);
bus_space_write_1(iot, ioh, CLRSINT1, CLRSCSIPERR);
if (sc->sc_prevphase == PH_MSGIN) {
sc->sc_flags |= AIC_DROP_MSGIN;
aic_sched_msgout(sc, SEND_PARITY_ERROR);
} else
aic_sched_msgout(sc, SEND_INIT_DET_ERR);
}
/*
* If we're not already busy doing something test for the following
* conditions:
* 1) We have been reselected by something
* 2) We have selected something successfully
* 3) Our selection process has timed out
* 4) This is really a bus free interrupt just to get a new command
* going?
* 5) Spurious interrupt?
*/
switch (sc->sc_state) {
case AIC_IDLE:
case AIC_SELECTING:
sstat0 = bus_space_read_1(iot, ioh, SSTAT0);
AIC_MISC(("sstat0:0x%02x ", sstat0));
if ((sstat0 & TARGET) != 0) {
/*
* We don't currently support target mode.
*/
printf("%s: target mode selected; going to BUS FREE\n",
sc->sc_dev.dv_xname);
bus_space_write_1(iot, ioh, SCSISIG, 0);
goto sched;
} else if ((sstat0 & SELDI) != 0) {
AIC_MISC(("reselected "));
/*
* If we're trying to select a target ourselves,
* push our command back into the ready list.
*/
if (sc->sc_state == AIC_SELECTING) {
AIC_MISC(("backoff selector "));
AIC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
sc->sc_nexus = NULL;
TAILQ_INSERT_HEAD(&sc->ready_list, acb, chain);
}
/* Save reselection ID. */
sc->sc_selid = bus_space_read_1(iot, ioh, SELID);
sc->sc_state = AIC_RESELECTED;
} else if ((sstat0 & SELDO) != 0) {
AIC_MISC(("selected "));
/* We have selected a target. Things to do:
* a) Determine what message(s) to send.
* b) Verify that we're still selecting the target.
* c) Mark device as busy.
*/
if (sc->sc_state != AIC_SELECTING) {
printf("%s: selection out while idle; ",
sc->sc_dev.dv_xname);
printf("resetting\n");
AIC_BREAK();
goto reset;
}
AIC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
sc_link = acb->xs->sc_link;
ti = &sc->sc_tinfo[sc_link->target];
sc->sc_msgpriq = SEND_IDENTIFY;
if (acb->flags & ACB_RESET)
sc->sc_msgpriq |= SEND_DEV_RESET;
else if (acb->flags & ACB_ABORT)
sc->sc_msgpriq |= SEND_ABORT;
else {
#if AIC_USE_SYNCHRONOUS
if ((ti->flags & DO_SYNC) != 0)
sc->sc_msgpriq |= SEND_SDTR;
#endif
#if AIC_USE_WIDE
if ((ti->flags & DO_WIDE) != 0)
sc->sc_msgpriq |= SEND_WDTR;
#endif
}
acb->flags |= ACB_NEXUS;
ti->lubusy |= (1 << sc_link->lun);
/* Do an implicit RESTORE POINTERS. */
sc->sc_dp = acb->data_addr;
sc->sc_dleft = acb->data_length;
sc->sc_cp = (u_char *)&acb->scsi_cmd;
sc->sc_cleft = acb->scsi_cmd_length;
/* On our first connection, schedule a timeout. */
if ((acb->xs->flags & SCSI_POLL) == 0)
timeout_add_msec(&acb->xs->stimeout, acb->timeout);
sc->sc_state = AIC_CONNECTED;
} else if ((sstat1 & SELTO) != 0) {
AIC_MISC(("selection timeout "));
if (sc->sc_state != AIC_SELECTING) {
printf("%s: selection timeout while idle; ",
sc->sc_dev.dv_xname);
printf("resetting\n");
AIC_BREAK();
goto reset;
}
AIC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
bus_space_write_1(iot, ioh, SXFRCTL1, 0);
bus_space_write_1(iot, ioh, SCSISEQ, ENRESELI);
bus_space_write_1(iot, ioh, CLRSINT1, CLRSELTIMO);
delay(250);
acb->xs->error = XS_SELTIMEOUT;
goto finish;
} else {
if (sc->sc_state != AIC_IDLE) {
printf("%s: BUS FREE while not idle; ",
sc->sc_dev.dv_xname);
printf("state=%d\n", sc->sc_state);
AIC_BREAK();
goto out;
}
goto sched;
}
/*
* Turn off selection stuff, and prepare to catch bus free
* interrupts, parity errors, and phase changes.
*/
bus_space_write_1(iot, ioh, SXFRCTL0, CHEN | CLRSTCNT | CLRCH);
bus_space_write_1(iot, ioh, SXFRCTL1, 0);
bus_space_write_1(iot, ioh, SCSISEQ, ENAUTOATNP);
bus_space_write_1(iot, ioh, CLRSINT0, CLRSELDI | CLRSELDO);
bus_space_write_1(iot, ioh, CLRSINT1,
CLRBUSFREE | CLRPHASECHG);
bus_space_write_1(iot, ioh, SIMODE0, 0);
bus_space_write_1(iot, ioh, SIMODE1,
ENSCSIRST | ENSCSIPERR | ENBUSFREE | ENREQINIT |
ENPHASECHG);
sc->sc_flags = 0;
sc->sc_prevphase = PH_INVALID;
goto dophase;
}
if ((sstat1 & BUSFREE) != 0) {
/* We've gone to BUS FREE phase. */
bus_space_write_1(iot, ioh, CLRSINT1,
CLRBUSFREE | CLRPHASECHG);
switch (sc->sc_state) {
case AIC_RESELECTED:
goto sched;
case AIC_CONNECTED:
AIC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
#if AIC_USE_SYNCHRONOUS + AIC_USE_WIDE
if (sc->sc_prevphase == PH_MSGOUT) {
/*
* If the target went to BUS FREE phase during
* or immediately after sending a SDTR or WDTR
* message, disable negotiation.
*/
sc_link = acb->xs->sc_link;
ti = &sc->sc_tinfo[sc_link->target];
switch (sc->sc_lastmsg) {
#if AIC_USE_SYNCHRONOUS
case SEND_SDTR:
ti->flags &= ~DO_SYNC;
ti->period = ti->offset = 0;
break;
#endif
#if AIC_USE_WIDE
case SEND_WDTR:
ti->flags &= ~DO_WIDE;
ti->width = 0;
break;
#endif
}
}
#endif
if ((sc->sc_flags & AIC_ABORTING) == 0) {
/*
* Section 5.1.1 of the SCSI 2 spec suggests
* issuing a REQUEST SENSE following an
* unexpected disconnect. Some devices go into
* a contingent allegiance condition when
* disconnecting, and this is necessary to
* clean up their state.
*/
printf("%s: unexpected disconnect; ",
sc->sc_dev.dv_xname);
printf("sending REQUEST SENSE\n");
AIC_BREAK();
aic_sense(sc, acb);
goto out;
}
acb->xs->error = XS_DRIVER_STUFFUP;
goto finish;
case AIC_DISCONNECT:
AIC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
#if 1 /* XXXX */
acb->data_addr = sc->sc_dp;
acb->data_length = sc->sc_dleft;
#endif
TAILQ_INSERT_HEAD(&sc->nexus_list, acb, chain);
sc->sc_nexus = NULL;
goto sched;
case AIC_CMDCOMPLETE:
AIC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
goto finish;
}
}
bus_space_write_1(iot, ioh, CLRSINT1, CLRPHASECHG);
dophase:
if ((sstat1 & REQINIT) == 0) {
/* Wait for REQINIT. */
goto out;
}
sc->sc_phase = bus_space_read_1(iot, ioh, SCSISIG) & PH_MASK;
bus_space_write_1(iot, ioh, SCSISIG, sc->sc_phase);
switch (sc->sc_phase) {
case PH_MSGOUT:
if (sc->sc_state != AIC_CONNECTED &&
sc->sc_state != AIC_RESELECTED)
break;
aic_msgout(sc);
sc->sc_prevphase = PH_MSGOUT;
goto loop;
case PH_MSGIN:
if (sc->sc_state != AIC_CONNECTED &&
sc->sc_state != AIC_RESELECTED)
break;
aic_msgin(sc);
sc->sc_prevphase = PH_MSGIN;
goto loop;
case PH_CMD:
if (sc->sc_state != AIC_CONNECTED)
break;
#ifdef AIC_DEBUG
if ((aic_debug & AIC_SHOWMISC) != 0) {
AIC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
printf("cmd=0x%02x+%d ",
acb->scsi_cmd.opcode, acb->scsi_cmd_length-1);
}
#endif
n = aic_dataout_pio(sc, sc->sc_cp, sc->sc_cleft);
sc->sc_cp += n;
sc->sc_cleft -= n;
sc->sc_prevphase = PH_CMD;
goto loop;
case PH_DATAOUT:
if (sc->sc_state != AIC_CONNECTED)
break;
AIC_MISC(("dataout dleft=%lu ", (u_long)sc->sc_dleft));
n = aic_dataout_pio(sc, sc->sc_dp, sc->sc_dleft);
sc->sc_dp += n;
sc->sc_dleft -= n;
sc->sc_prevphase = PH_DATAOUT;
goto loop;
case PH_DATAIN:
if (sc->sc_state != AIC_CONNECTED)
break;
AIC_MISC(("datain %lu ", (u_long)sc->sc_dleft));
n = aic_datain_pio(sc, sc->sc_dp, sc->sc_dleft);
sc->sc_dp += n;
sc->sc_dleft -= n;
sc->sc_prevphase = PH_DATAIN;
goto loop;
case PH_STAT:
if (sc->sc_state != AIC_CONNECTED)
break;
AIC_ASSERT(sc->sc_nexus != NULL);
acb = sc->sc_nexus;
bus_space_write_1(iot, ioh, SXFRCTL0, CHEN | SPIOEN);
acb->target_stat = bus_space_read_1(iot, ioh, SCSIDAT);
bus_space_write_1(iot, ioh, SXFRCTL0, CHEN);
AIC_MISC(("target_stat=0x%02x ", acb->target_stat));
sc->sc_prevphase = PH_STAT;
goto loop;
}
printf("%s: unexpected bus phase; resetting\n", sc->sc_dev.dv_xname);
AIC_BREAK();
reset:
aic_init(sc);
return 1;
finish:
timeout_del(&acb->xs->stimeout);
aic_done(sc, acb);
goto out;
sched:
sc->sc_state = AIC_IDLE;
aic_sched(sc);
goto out;
out:
bus_space_write_1(iot, ioh, DMACNTRL0, INTEN);
return 1;
}
void
aic_abort(struct aic_softc *sc, struct aic_acb *acb)
{
/* 2 secs for the abort */
acb->timeout = AIC_ABORT_TIMEOUT;
acb->flags |= ACB_ABORT;
if (acb == sc->sc_nexus) {
/*
* If we're still selecting, the message will be scheduled
* after selection is complete.
*/
if (sc->sc_state == AIC_CONNECTED)
aic_sched_msgout(sc, SEND_ABORT);
} else {
aic_dequeue(sc, acb);
TAILQ_INSERT_HEAD(&sc->ready_list, acb, chain);
if (sc->sc_state == AIC_IDLE)
aic_sched(sc);
}
}
void
aic_timeout(void *arg)
{
struct aic_acb *acb = arg;
struct scsi_xfer *xs = acb->xs;
struct scsi_link *sc_link = xs->sc_link;
struct aic_softc *sc = sc_link->bus->sb_adapter_softc;
int s;
sc_print_addr(sc_link);
printf("timed out");
s = splbio();
if (acb->flags & ACB_ABORT) {
/* abort timed out */
printf(" AGAIN\n");
/* XXX Must reset! */
} else {
/* abort the operation that has timed out */
printf("\n");
acb->xs->error = XS_TIMEOUT;
aic_abort(sc, acb);
}
splx(s);
}
#ifdef AIC_DEBUG
/*
* The following functions are mostly used for debugging purposes, either
* directly called from the driver or from the kernel debugger.
*/
void
aic_show_scsi_cmd(struct aic_acb *acb)
{
u_char *b = (u_char *)&acb->scsi_cmd;
struct scsi_link *sc_link = acb->xs->sc_link;
int i;
sc_print_addr(sc_link);
if ((acb->xs->flags & SCSI_RESET) == 0) {
for (i = 0; i < acb->scsi_cmd_length; i++) {
if (i)
printf(",");
printf("%x", b[i]);
}
printf("\n");
} else
printf("RESET\n");
}
void
aic_print_acb(struct aic_acb *acb)
{
printf("acb@%p xs=%p flags=%x", acb, acb->xs, acb->flags);
printf(" dp=%p dleft=%d target_stat=%x\n",
acb->data_addr, acb->data_length, acb->target_stat);
aic_show_scsi_cmd(acb);
}
void
aic_print_active_acb(void)
{
struct aic_acb *acb;
struct aic_softc *sc = aic_cd.cd_devs[0];
printf("ready list:\n");
TAILQ_FOREACH(acb, &sc->ready_list, chain)
aic_print_acb(acb);
printf("nexus:\n");
if (sc->sc_nexus != NULL)
aic_print_acb(sc->sc_nexus);
printf("nexus list:\n");
TAILQ_FOREACH(acb, &sc->nexus_list, chain)
aic_print_acb(acb);
}
void
aic_dump6360(struct aic_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
printf("aic6360: SCSISEQ=%x SXFRCTL0=%x SXFRCTL1=%x SCSISIG=%x\n",
bus_space_read_1(iot, ioh, SCSISEQ),
bus_space_read_1(iot, ioh, SXFRCTL0),
bus_space_read_1(iot, ioh, SXFRCTL1),
bus_space_read_1(iot, ioh, SCSISIG));
printf(" SSTAT0=%x SSTAT1=%x SSTAT2=%x SSTAT3=%x SSTAT4=%x\n",
bus_space_read_1(iot, ioh, SSTAT0),
bus_space_read_1(iot, ioh, SSTAT1),
bus_space_read_1(iot, ioh, SSTAT2),
bus_space_read_1(iot, ioh, SSTAT3),
bus_space_read_1(iot, ioh, SSTAT4));
printf(" SIMODE0=%x SIMODE1=%x ",
bus_space_read_1(iot, ioh, SIMODE0),
bus_space_read_1(iot, ioh, SIMODE1));
printf("DMACNTRL0=%x DMACNTRL1=%x DMASTAT=%x\n",
bus_space_read_1(iot, ioh, DMACNTRL0),
bus_space_read_1(iot, ioh, DMACNTRL1),
bus_space_read_1(iot, ioh, DMASTAT));
printf(" FIFOSTAT=%d SCSIBUS=0x%x\n",
bus_space_read_1(iot, ioh, FIFOSTAT),
bus_space_read_1(iot, ioh, SCSIBUS));
}
void
aic_dump_driver(struct aic_softc *sc)
{
struct aic_tinfo *ti;
int i;
printf("nexus=%p prevphase=%x\n", sc->sc_nexus, sc->sc_prevphase);
printf("state=%x msgin=%x ", sc->sc_state, sc->sc_imess[0]);
printf("msgpriq=%x msgoutq=%x lastmsg=%x currmsg=%x\n", sc->sc_msgpriq,
sc->sc_msgoutq, sc->sc_lastmsg, sc->sc_currmsg);
for (i = 0; i < 7; i++) {
ti = &sc->sc_tinfo[i];
printf("tinfo%d: %d cmds %d disconnects %d timeouts",
i, ti->cmds, ti->dconns, ti->touts);
printf(" %d senses flags=%x\n", ti->senses, ti->flags);
}
}
#endif