3168 lines
85 KiB
C
3168 lines
85 KiB
C
/* $OpenBSD: ath.c,v 1.125 2023/11/10 15:51:20 bluhm Exp $ */
|
|
/* $NetBSD: ath.c,v 1.37 2004/08/18 21:59:39 dyoung Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2002-2004 Sam Leffler, Errno Consulting
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer,
|
|
* without modification.
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
|
|
* redistribution must be conditioned upon including a substantially
|
|
* similar Disclaimer requirement for further binary redistribution.
|
|
* 3. Neither the names of the above-listed copyright holders nor the names
|
|
* of any contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* NO WARRANTY
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
|
|
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
|
|
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGES.
|
|
*/
|
|
|
|
/*
|
|
* Driver for the Atheros Wireless LAN controller.
|
|
*
|
|
* This software is derived from work of Atsushi Onoe; his contribution
|
|
* is greatly appreciated. It has been modified for OpenBSD to use an
|
|
* open source HAL instead of the original binary-only HAL.
|
|
*/
|
|
|
|
#include "bpfilter.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/device.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/timeout.h>
|
|
#include <sys/gpio.h>
|
|
#include <sys/endian.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
|
|
#include <net80211/ieee80211_var.h>
|
|
#include <net80211/ieee80211_rssadapt.h>
|
|
|
|
#include <dev/pci/pcidevs.h>
|
|
#include <dev/gpio/gpiovar.h>
|
|
|
|
#include <dev/ic/athvar.h>
|
|
|
|
int ath_init(struct ifnet *);
|
|
int ath_init1(struct ath_softc *);
|
|
int ath_intr1(struct ath_softc *);
|
|
void ath_stop(struct ifnet *);
|
|
void ath_start(struct ifnet *);
|
|
void ath_reset(struct ath_softc *, int);
|
|
int ath_media_change(struct ifnet *);
|
|
void ath_watchdog(struct ifnet *);
|
|
int ath_ioctl(struct ifnet *, u_long, caddr_t);
|
|
void ath_fatal_proc(void *, int);
|
|
void ath_rxorn_proc(void *, int);
|
|
void ath_bmiss_proc(void *, int);
|
|
int ath_initkeytable(struct ath_softc *);
|
|
void ath_mcastfilter_accum(caddr_t, u_int32_t (*)[2]);
|
|
void ath_mcastfilter_compute(struct ath_softc *, u_int32_t (*)[2]);
|
|
u_int32_t ath_calcrxfilter(struct ath_softc *);
|
|
void ath_mode_init(struct ath_softc *);
|
|
#ifndef IEEE80211_STA_ONLY
|
|
int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
|
|
void ath_beacon_proc(void *, int);
|
|
void ath_beacon_free(struct ath_softc *);
|
|
#endif
|
|
void ath_beacon_config(struct ath_softc *);
|
|
int ath_desc_alloc(struct ath_softc *);
|
|
void ath_desc_free(struct ath_softc *);
|
|
struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
|
|
struct mbuf *ath_getmbuf(int, int, u_int);
|
|
void ath_node_free(struct ieee80211com *, struct ieee80211_node *);
|
|
void ath_node_copy(struct ieee80211com *,
|
|
struct ieee80211_node *, const struct ieee80211_node *);
|
|
u_int8_t ath_node_getrssi(struct ieee80211com *,
|
|
const struct ieee80211_node *);
|
|
int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
|
|
void ath_rx_proc(void *, int);
|
|
int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
|
|
struct ath_buf *, struct mbuf *);
|
|
void ath_tx_proc(void *, int);
|
|
int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
|
|
void ath_draintxq(struct ath_softc *);
|
|
void ath_stoprecv(struct ath_softc *);
|
|
int ath_startrecv(struct ath_softc *);
|
|
void ath_next_scan(void *);
|
|
int ath_set_slot_time(struct ath_softc *);
|
|
void ath_calibrate(void *);
|
|
void ath_ledstate(struct ath_softc *, enum ieee80211_state);
|
|
int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
|
|
void ath_newassoc(struct ieee80211com *,
|
|
struct ieee80211_node *, int);
|
|
int ath_getchannels(struct ath_softc *, HAL_BOOL outdoor,
|
|
HAL_BOOL xchanmode);
|
|
int ath_rate_setup(struct ath_softc *sc, u_int mode);
|
|
void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
|
|
void ath_rssadapt_updatenode(void *, struct ieee80211_node *);
|
|
void ath_rssadapt_updatestats(void *);
|
|
#ifndef IEEE80211_STA_ONLY
|
|
void ath_recv_mgmt(struct ieee80211com *, struct mbuf *,
|
|
struct ieee80211_node *, struct ieee80211_rxinfo *, int);
|
|
#endif
|
|
void ath_disable(struct ath_softc *);
|
|
|
|
int ath_gpio_attach(struct ath_softc *, u_int16_t);
|
|
int ath_gpio_pin_read(void *, int);
|
|
void ath_gpio_pin_write(void *, int, int);
|
|
void ath_gpio_pin_ctl(void *, int, int);
|
|
|
|
#ifdef AR_DEBUG
|
|
void ath_printrxbuf(struct ath_buf *, int);
|
|
void ath_printtxbuf(struct ath_buf *, int);
|
|
int ath_debug = 0;
|
|
#endif
|
|
|
|
int ath_dwelltime = 200; /* 5 channels/second */
|
|
int ath_calinterval = 30; /* calibrate every 30 secs */
|
|
int ath_outdoor = AH_TRUE; /* outdoor operation */
|
|
int ath_xchanmode = AH_TRUE; /* enable extended channels */
|
|
int ath_softcrypto = 1; /* 1=enable software crypto */
|
|
|
|
struct cfdriver ath_cd = {
|
|
NULL, "ath", DV_IFNET
|
|
};
|
|
|
|
int
|
|
ath_activate(struct device *self, int act)
|
|
{
|
|
struct ath_softc *sc = (struct ath_softc *)self;
|
|
struct ifnet *ifp = &sc->sc_ic.ic_if;
|
|
|
|
switch (act) {
|
|
case DVACT_SUSPEND:
|
|
if (ifp->if_flags & IFF_RUNNING) {
|
|
ath_stop(ifp);
|
|
if (sc->sc_power != NULL)
|
|
(*sc->sc_power)(sc, act);
|
|
}
|
|
break;
|
|
case DVACT_RESUME:
|
|
if (ifp->if_flags & IFF_UP) {
|
|
ath_init(ifp);
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
ath_start(ifp);
|
|
}
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ath_enable(struct ath_softc *sc)
|
|
{
|
|
if (ATH_IS_ENABLED(sc) == 0) {
|
|
if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
|
|
printf("%s: device enable failed\n",
|
|
sc->sc_dev.dv_xname);
|
|
return (EIO);
|
|
}
|
|
sc->sc_flags |= ATH_ENABLED;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
ath_disable(struct ath_softc *sc)
|
|
{
|
|
if (!ATH_IS_ENABLED(sc))
|
|
return;
|
|
if (sc->sc_disable != NULL)
|
|
(*sc->sc_disable)(sc);
|
|
sc->sc_flags &= ~ATH_ENABLED;
|
|
}
|
|
|
|
int
|
|
ath_attach(u_int16_t devid, struct ath_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
struct ath_hal *ah;
|
|
HAL_STATUS status;
|
|
HAL_TXQ_INFO qinfo;
|
|
int error = 0, i;
|
|
|
|
DPRINTF(ATH_DEBUG_ANY, ("%s: devid 0x%x\n", __func__, devid));
|
|
|
|
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
|
|
sc->sc_flags &= ~ATH_ATTACHED; /* make sure that it's not attached */
|
|
|
|
ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
|
|
sc->sc_pcie, &status);
|
|
if (ah == NULL) {
|
|
printf("%s: unable to attach hardware; HAL status %d\n",
|
|
ifp->if_xname, status);
|
|
error = ENXIO;
|
|
goto bad;
|
|
}
|
|
if (ah->ah_abi != HAL_ABI_VERSION) {
|
|
printf("%s: HAL ABI mismatch detected (0x%x != 0x%x)\n",
|
|
ifp->if_xname, ah->ah_abi, HAL_ABI_VERSION);
|
|
error = ENXIO;
|
|
goto bad;
|
|
}
|
|
|
|
if (ah->ah_single_chip == AH_TRUE) {
|
|
printf("%s: AR%s %u.%u phy %u.%u rf %u.%u", ifp->if_xname,
|
|
ar5k_printver(AR5K_VERSION_DEV, devid),
|
|
ah->ah_mac_version, ah->ah_mac_revision,
|
|
ah->ah_phy_revision >> 4, ah->ah_phy_revision & 0xf,
|
|
ah->ah_radio_5ghz_revision >> 4,
|
|
ah->ah_radio_5ghz_revision & 0xf);
|
|
} else {
|
|
printf("%s: AR%s %u.%u phy %u.%u", ifp->if_xname,
|
|
ar5k_printver(AR5K_VERSION_VER, ah->ah_mac_srev),
|
|
ah->ah_mac_version, ah->ah_mac_revision,
|
|
ah->ah_phy_revision >> 4, ah->ah_phy_revision & 0xf);
|
|
printf(" rf%s %u.%u",
|
|
ar5k_printver(AR5K_VERSION_RAD, ah->ah_radio_5ghz_revision),
|
|
ah->ah_radio_5ghz_revision >> 4,
|
|
ah->ah_radio_5ghz_revision & 0xf);
|
|
if (ah->ah_radio_2ghz_revision != 0) {
|
|
printf(" rf%s %u.%u",
|
|
ar5k_printver(AR5K_VERSION_RAD,
|
|
ah->ah_radio_2ghz_revision),
|
|
ah->ah_radio_2ghz_revision >> 4,
|
|
ah->ah_radio_2ghz_revision & 0xf);
|
|
}
|
|
}
|
|
if (ah->ah_ee_version == AR5K_EEPROM_VERSION_4_7)
|
|
printf(" eeprom 4.7");
|
|
else
|
|
printf(" eeprom %1x.%1x", ah->ah_ee_version >> 12,
|
|
ah->ah_ee_version & 0xff);
|
|
|
|
#if 0
|
|
if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_UNSUPP ||
|
|
ah->ah_radio_2ghz_revision >= AR5K_SREV_RAD_UNSUPP) {
|
|
printf(": RF radio not supported\n");
|
|
error = EOPNOTSUPP;
|
|
goto bad;
|
|
}
|
|
#endif
|
|
|
|
sc->sc_ah = ah;
|
|
sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
|
|
|
|
/*
|
|
* Get regulation domain either stored in the EEPROM or defined
|
|
* as the default value. Some devices are known to have broken
|
|
* regulation domain values in their EEPROM.
|
|
*/
|
|
ath_hal_get_regdomain(ah, &ah->ah_regdomain);
|
|
|
|
/*
|
|
* Construct channel list based on the current regulation domain.
|
|
*/
|
|
error = ath_getchannels(sc, ath_outdoor, ath_xchanmode);
|
|
if (error != 0)
|
|
goto bad;
|
|
|
|
/*
|
|
* Setup rate tables for all potential media types.
|
|
*/
|
|
ath_rate_setup(sc, IEEE80211_MODE_11A);
|
|
ath_rate_setup(sc, IEEE80211_MODE_11B);
|
|
ath_rate_setup(sc, IEEE80211_MODE_11G);
|
|
|
|
error = ath_desc_alloc(sc);
|
|
if (error != 0) {
|
|
printf(": failed to allocate descriptors: %d\n", error);
|
|
goto bad;
|
|
}
|
|
timeout_set(&sc->sc_scan_to, ath_next_scan, sc);
|
|
timeout_set(&sc->sc_cal_to, ath_calibrate, sc);
|
|
timeout_set(&sc->sc_rssadapt_to, ath_rssadapt_updatestats, sc);
|
|
|
|
ATH_TASK_INIT(&sc->sc_txtask, ath_tx_proc, sc);
|
|
ATH_TASK_INIT(&sc->sc_rxtask, ath_rx_proc, sc);
|
|
ATH_TASK_INIT(&sc->sc_rxorntask, ath_rxorn_proc, sc);
|
|
ATH_TASK_INIT(&sc->sc_fataltask, ath_fatal_proc, sc);
|
|
ATH_TASK_INIT(&sc->sc_bmisstask, ath_bmiss_proc, sc);
|
|
#ifndef IEEE80211_STA_ONLY
|
|
ATH_TASK_INIT(&sc->sc_swbatask, ath_beacon_proc, sc);
|
|
#endif
|
|
|
|
/*
|
|
* For now just pre-allocate one data queue and one
|
|
* beacon queue. Note that the HAL handles resetting
|
|
* them at the needed time. Eventually we'll want to
|
|
* allocate more tx queues for splitting management
|
|
* frames and for QOS support.
|
|
*/
|
|
sc->sc_bhalq = ath_hal_setup_tx_queue(ah, HAL_TX_QUEUE_BEACON, NULL);
|
|
if (sc->sc_bhalq == (u_int) -1) {
|
|
printf(": unable to setup a beacon xmit queue!\n");
|
|
goto bad2;
|
|
}
|
|
|
|
for (i = 0; i <= HAL_TX_QUEUE_ID_DATA_MAX; i++) {
|
|
bzero(&qinfo, sizeof(qinfo));
|
|
qinfo.tqi_type = HAL_TX_QUEUE_DATA;
|
|
qinfo.tqi_subtype = i; /* should be mapped to WME types */
|
|
sc->sc_txhalq[i] = ath_hal_setup_tx_queue(ah,
|
|
HAL_TX_QUEUE_DATA, &qinfo);
|
|
if (sc->sc_txhalq[i] == (u_int) -1) {
|
|
printf(": unable to setup a data xmit queue %u!\n", i);
|
|
goto bad2;
|
|
}
|
|
}
|
|
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
|
|
ifp->if_start = ath_start;
|
|
ifp->if_watchdog = ath_watchdog;
|
|
ifp->if_ioctl = ath_ioctl;
|
|
ifq_init_maxlen(&ifp->if_snd, ATH_TXBUF * ATH_TXDESC);
|
|
|
|
ic->ic_softc = sc;
|
|
ic->ic_newassoc = ath_newassoc;
|
|
/* XXX not right but it's not used anywhere important */
|
|
ic->ic_phytype = IEEE80211_T_OFDM;
|
|
ic->ic_opmode = IEEE80211_M_STA;
|
|
ic->ic_caps = IEEE80211_C_WEP /* wep supported */
|
|
| IEEE80211_C_PMGT /* power management */
|
|
#ifndef IEEE80211_STA_ONLY
|
|
| IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
|
|
| IEEE80211_C_HOSTAP /* hostap mode */
|
|
#endif
|
|
| IEEE80211_C_MONITOR /* monitor mode */
|
|
| IEEE80211_C_SHSLOT /* short slot time supported */
|
|
| IEEE80211_C_SHPREAMBLE; /* short preamble supported */
|
|
if (ath_softcrypto)
|
|
ic->ic_caps |= IEEE80211_C_RSN; /* wpa/rsn supported */
|
|
|
|
/*
|
|
* Not all chips have the VEOL support we want to use with
|
|
* IBSS beacon; check here for it.
|
|
*/
|
|
sc->sc_veol = ath_hal_has_veol(ah);
|
|
|
|
/* get mac address from hardware */
|
|
ath_hal_get_lladdr(ah, ic->ic_myaddr);
|
|
|
|
if_attach(ifp);
|
|
|
|
/* call MI attach routine. */
|
|
ieee80211_ifattach(ifp);
|
|
|
|
/* override default methods */
|
|
ic->ic_node_alloc = ath_node_alloc;
|
|
sc->sc_node_free = ic->ic_node_free;
|
|
ic->ic_node_free = ath_node_free;
|
|
sc->sc_node_copy = ic->ic_node_copy;
|
|
ic->ic_node_copy = ath_node_copy;
|
|
ic->ic_node_getrssi = ath_node_getrssi;
|
|
sc->sc_newstate = ic->ic_newstate;
|
|
ic->ic_newstate = ath_newstate;
|
|
#ifndef IEEE80211_STA_ONLY
|
|
sc->sc_recv_mgmt = ic->ic_recv_mgmt;
|
|
ic->ic_recv_mgmt = ath_recv_mgmt;
|
|
#endif
|
|
ic->ic_max_rssi = AR5K_MAX_RSSI;
|
|
bcopy(etherbroadcastaddr, sc->sc_broadcast_addr, IEEE80211_ADDR_LEN);
|
|
|
|
/* complete initialization */
|
|
ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
|
|
|
|
#if NBPFILTER > 0
|
|
bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
|
|
sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
|
|
|
|
sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
|
|
bzero(&sc->sc_rxtapu, sc->sc_rxtap_len);
|
|
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
|
|
sc->sc_rxtap.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
|
|
|
|
sc->sc_txtap_len = sizeof(sc->sc_txtapu);
|
|
bzero(&sc->sc_txtapu, sc->sc_txtap_len);
|
|
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
|
|
sc->sc_txtap.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
|
|
#endif
|
|
|
|
sc->sc_flags |= ATH_ATTACHED;
|
|
|
|
/*
|
|
* Print regulation domain and the mac address. The regulation domain
|
|
* will be marked with a * if the EEPROM value has been overwritten.
|
|
*/
|
|
printf(", %s%s, address %s\n",
|
|
ieee80211_regdomain2name(ah->ah_regdomain),
|
|
ah->ah_regdomain != ah->ah_regdomain_hw ? "*" : "",
|
|
ether_sprintf(ic->ic_myaddr));
|
|
|
|
if (ath_gpio_attach(sc, devid) == 0)
|
|
sc->sc_flags |= ATH_GPIO;
|
|
|
|
return 0;
|
|
bad2:
|
|
ath_desc_free(sc);
|
|
bad:
|
|
if (ah)
|
|
ath_hal_detach(ah);
|
|
sc->sc_invalid = 1;
|
|
return error;
|
|
}
|
|
|
|
int
|
|
ath_detach(struct ath_softc *sc, int flags)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ic.ic_if;
|
|
int s;
|
|
|
|
if ((sc->sc_flags & ATH_ATTACHED) == 0)
|
|
return (0);
|
|
|
|
config_detach_children(&sc->sc_dev, flags);
|
|
|
|
DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
|
|
|
|
timeout_del(&sc->sc_scan_to);
|
|
timeout_del(&sc->sc_cal_to);
|
|
timeout_del(&sc->sc_rssadapt_to);
|
|
|
|
s = splnet();
|
|
ath_stop(ifp);
|
|
ath_desc_free(sc);
|
|
ath_hal_detach(sc->sc_ah);
|
|
|
|
ieee80211_ifdetach(ifp);
|
|
if_detach(ifp);
|
|
|
|
splx(s);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ath_intr(void *arg)
|
|
{
|
|
return ath_intr1((struct ath_softc *)arg);
|
|
}
|
|
|
|
int
|
|
ath_intr1(struct ath_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_INT status;
|
|
|
|
if (sc->sc_invalid) {
|
|
/*
|
|
* The hardware is not ready/present, don't touch anything.
|
|
* Note this can happen early on if the IRQ is shared.
|
|
*/
|
|
DPRINTF(ATH_DEBUG_ANY, ("%s: invalid; ignored\n", __func__));
|
|
return 0;
|
|
}
|
|
if (!ath_hal_is_intr_pending(ah)) /* shared irq, not for us */
|
|
return 0;
|
|
if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
|
|
DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n",
|
|
__func__, ifp->if_flags));
|
|
ath_hal_get_isr(ah, &status); /* clear ISR */
|
|
ath_hal_set_intr(ah, 0); /* disable further intr's */
|
|
return 1; /* XXX */
|
|
}
|
|
ath_hal_get_isr(ah, &status); /* NB: clears ISR too */
|
|
DPRINTF(ATH_DEBUG_INTR, ("%s: status 0x%x\n", __func__, status));
|
|
status &= sc->sc_imask; /* discard unasked for bits */
|
|
if (status & HAL_INT_FATAL) {
|
|
sc->sc_stats.ast_hardware++;
|
|
ath_hal_set_intr(ah, 0); /* disable intr's until reset */
|
|
ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
|
|
} else if (status & HAL_INT_RXORN) {
|
|
sc->sc_stats.ast_rxorn++;
|
|
ath_hal_set_intr(ah, 0); /* disable intr's until reset */
|
|
ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
|
|
} else if (status & HAL_INT_MIB) {
|
|
DPRINTF(ATH_DEBUG_INTR,
|
|
("%s: resetting MIB counters\n", __func__));
|
|
sc->sc_stats.ast_mib++;
|
|
ath_hal_update_mib_counters(ah, &sc->sc_mib_stats);
|
|
} else {
|
|
if (status & HAL_INT_RXEOL) {
|
|
/*
|
|
* NB: the hardware should re-read the link when
|
|
* RXE bit is written, but it doesn't work at
|
|
* least on older hardware revs.
|
|
*/
|
|
sc->sc_stats.ast_rxeol++;
|
|
sc->sc_rxlink = NULL;
|
|
}
|
|
if (status & HAL_INT_TXURN) {
|
|
sc->sc_stats.ast_txurn++;
|
|
/* bump tx trigger level */
|
|
ath_hal_update_tx_triglevel(ah, AH_TRUE);
|
|
}
|
|
if (status & HAL_INT_RX)
|
|
ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
|
|
if (status & HAL_INT_TX)
|
|
ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
|
|
if (status & HAL_INT_SWBA)
|
|
ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_swbatask);
|
|
if (status & HAL_INT_BMISS) {
|
|
sc->sc_stats.ast_bmiss++;
|
|
ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
ath_fatal_proc(void *arg, int pending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
|
|
if (ifp->if_flags & IFF_DEBUG)
|
|
printf("%s: hardware error; resetting\n", ifp->if_xname);
|
|
ath_reset(sc, 1);
|
|
}
|
|
|
|
void
|
|
ath_rxorn_proc(void *arg, int pending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
|
|
if (ifp->if_flags & IFF_DEBUG)
|
|
printf("%s: rx FIFO overrun; resetting\n", ifp->if_xname);
|
|
ath_reset(sc, 1);
|
|
}
|
|
|
|
void
|
|
ath_bmiss_proc(void *arg, int pending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
DPRINTF(ATH_DEBUG_ANY, ("%s: pending %u\n", __func__, pending));
|
|
if (ic->ic_opmode != IEEE80211_M_STA)
|
|
return;
|
|
if (ic->ic_state == IEEE80211_S_RUN) {
|
|
/*
|
|
* Rather than go directly to scan state, try to
|
|
* reassociate first. If that fails then the state
|
|
* machine will drop us into scanning after timing
|
|
* out waiting for a probe response.
|
|
*/
|
|
ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
|
|
}
|
|
}
|
|
|
|
int
|
|
ath_init(struct ifnet *ifp)
|
|
{
|
|
return ath_init1((struct ath_softc *)ifp->if_softc);
|
|
}
|
|
|
|
int
|
|
ath_init1(struct ath_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
struct ieee80211_node *ni;
|
|
enum ieee80211_phymode mode;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_STATUS status;
|
|
HAL_CHANNEL hchan;
|
|
int error = 0, s;
|
|
|
|
DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n",
|
|
__func__, ifp->if_flags));
|
|
|
|
if ((error = ath_enable(sc)) != 0)
|
|
return error;
|
|
|
|
s = splnet();
|
|
/*
|
|
* Stop anything previously setup. This is safe
|
|
* whether this is the first time through or not.
|
|
*/
|
|
ath_stop(ifp);
|
|
|
|
/*
|
|
* Reset the link layer address to the latest value.
|
|
*/
|
|
IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
|
|
ath_hal_set_lladdr(ah, ic->ic_myaddr);
|
|
|
|
/*
|
|
* The basic interface to setting the hardware in a good
|
|
* state is ``reset''. On return the hardware is known to
|
|
* be powered up and with interrupts disabled. This must
|
|
* be followed by initialization of the appropriate bits
|
|
* and then setup of the interrupt mask.
|
|
*/
|
|
hchan.channel = ic->ic_ibss_chan->ic_freq;
|
|
hchan.channelFlags = ic->ic_ibss_chan->ic_flags;
|
|
if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
|
|
printf("%s: unable to reset hardware; hal status %u\n",
|
|
ifp->if_xname, status);
|
|
error = EIO;
|
|
goto done;
|
|
}
|
|
ath_set_slot_time(sc);
|
|
|
|
if ((error = ath_initkeytable(sc)) != 0) {
|
|
printf("%s: unable to reset the key cache\n",
|
|
ifp->if_xname);
|
|
goto done;
|
|
}
|
|
|
|
if ((error = ath_startrecv(sc)) != 0) {
|
|
printf("%s: unable to start recv logic\n", ifp->if_xname);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Enable interrupts.
|
|
*/
|
|
sc->sc_imask = HAL_INT_RX | HAL_INT_TX
|
|
| HAL_INT_RXEOL | HAL_INT_RXORN
|
|
| HAL_INT_FATAL | HAL_INT_GLOBAL;
|
|
#ifndef IEEE80211_STA_ONLY
|
|
if (ic->ic_opmode == IEEE80211_M_HOSTAP)
|
|
sc->sc_imask |= HAL_INT_MIB;
|
|
#endif
|
|
ath_hal_set_intr(ah, sc->sc_imask);
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ic->ic_state = IEEE80211_S_INIT;
|
|
|
|
/*
|
|
* The hardware should be ready to go now so it's safe
|
|
* to kick the 802.11 state machine as it's likely to
|
|
* immediately call back to us to send mgmt frames.
|
|
*/
|
|
ni = ic->ic_bss;
|
|
ni->ni_chan = ic->ic_ibss_chan;
|
|
mode = ieee80211_chan2mode(ic, ni->ni_chan);
|
|
if (mode != sc->sc_curmode)
|
|
ath_setcurmode(sc, mode);
|
|
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
|
|
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
|
|
} else {
|
|
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
|
|
}
|
|
done:
|
|
splx(s);
|
|
return error;
|
|
}
|
|
|
|
void
|
|
ath_stop(struct ifnet *ifp)
|
|
{
|
|
struct ieee80211com *ic = (struct ieee80211com *) ifp;
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
int s;
|
|
|
|
DPRINTF(ATH_DEBUG_ANY, ("%s: invalid %u if_flags 0x%x\n",
|
|
__func__, sc->sc_invalid, ifp->if_flags));
|
|
|
|
s = splnet();
|
|
if (ifp->if_flags & IFF_RUNNING) {
|
|
/*
|
|
* Shutdown the hardware and driver:
|
|
* disable interrupts
|
|
* turn off timers
|
|
* clear transmit machinery
|
|
* clear receive machinery
|
|
* drain and release tx queues
|
|
* reclaim beacon resources
|
|
* reset 802.11 state machine
|
|
* power down hardware
|
|
*
|
|
* Note that some of this work is not possible if the
|
|
* hardware is gone (invalid).
|
|
*/
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
ifp->if_timer = 0;
|
|
if (!sc->sc_invalid)
|
|
ath_hal_set_intr(ah, 0);
|
|
ath_draintxq(sc);
|
|
if (!sc->sc_invalid) {
|
|
ath_stoprecv(sc);
|
|
} else {
|
|
sc->sc_rxlink = NULL;
|
|
}
|
|
ifq_purge(&ifp->if_snd);
|
|
#ifndef IEEE80211_STA_ONLY
|
|
ath_beacon_free(sc);
|
|
#endif
|
|
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
|
|
if (!sc->sc_invalid) {
|
|
ath_hal_set_power(ah, HAL_PM_FULL_SLEEP, 0);
|
|
}
|
|
ath_disable(sc);
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Reset the hardware w/o losing operational state. This is
|
|
* basically a more efficient way of doing ath_stop, ath_init,
|
|
* followed by state transitions to the current 802.11
|
|
* operational state. Used to recover from errors rx overrun
|
|
* and to reset the hardware when rf gain settings must be reset.
|
|
*/
|
|
void
|
|
ath_reset(struct ath_softc *sc, int full)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211_channel *c;
|
|
HAL_STATUS status;
|
|
HAL_CHANNEL hchan;
|
|
|
|
/*
|
|
* Convert to a HAL channel description.
|
|
*/
|
|
c = ic->ic_ibss_chan;
|
|
hchan.channel = c->ic_freq;
|
|
hchan.channelFlags = c->ic_flags;
|
|
|
|
ath_hal_set_intr(ah, 0); /* disable interrupts */
|
|
ath_draintxq(sc); /* stop xmit side */
|
|
ath_stoprecv(sc); /* stop recv side */
|
|
/* NB: indicate channel change so we do a full reset */
|
|
if (!ath_hal_reset(ah, ic->ic_opmode, &hchan,
|
|
full ? AH_TRUE : AH_FALSE, &status)) {
|
|
printf("%s: %s: unable to reset hardware; hal status %u\n",
|
|
ifp->if_xname, __func__, status);
|
|
}
|
|
ath_set_slot_time(sc);
|
|
/* In case channel changed, save as a node channel */
|
|
ic->ic_bss->ni_chan = ic->ic_ibss_chan;
|
|
ath_hal_set_intr(ah, sc->sc_imask);
|
|
if (ath_startrecv(sc) != 0) /* restart recv */
|
|
printf("%s: %s: unable to start recv logic\n", ifp->if_xname,
|
|
__func__);
|
|
ath_start(ifp); /* restart xmit */
|
|
if (ic->ic_state == IEEE80211_S_RUN)
|
|
ath_beacon_config(sc); /* restart beacons */
|
|
}
|
|
|
|
void
|
|
ath_start(struct ifnet *ifp)
|
|
{
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni;
|
|
struct ath_buf *bf;
|
|
struct mbuf *m;
|
|
struct ieee80211_frame *wh;
|
|
int s;
|
|
|
|
if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd) ||
|
|
sc->sc_invalid)
|
|
return;
|
|
for (;;) {
|
|
/*
|
|
* Grab a TX buffer and associated resources.
|
|
*/
|
|
s = splnet();
|
|
bf = TAILQ_FIRST(&sc->sc_txbuf);
|
|
if (bf != NULL)
|
|
TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
|
|
splx(s);
|
|
if (bf == NULL) {
|
|
DPRINTF(ATH_DEBUG_ANY, ("%s: out of xmit buffers\n",
|
|
__func__));
|
|
sc->sc_stats.ast_tx_qstop++;
|
|
ifq_set_oactive(&ifp->if_snd);
|
|
break;
|
|
}
|
|
/*
|
|
* Poll the management queue for frames; they
|
|
* have priority over normal data frames.
|
|
*/
|
|
m = mq_dequeue(&ic->ic_mgtq);
|
|
if (m == NULL) {
|
|
/*
|
|
* No data frames go out unless we're associated.
|
|
*/
|
|
if (ic->ic_state != IEEE80211_S_RUN) {
|
|
DPRINTF(ATH_DEBUG_ANY,
|
|
("%s: ignore data packet, state %u\n",
|
|
__func__, ic->ic_state));
|
|
sc->sc_stats.ast_tx_discard++;
|
|
s = splnet();
|
|
TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
|
|
splx(s);
|
|
break;
|
|
}
|
|
m = ifq_dequeue(&ifp->if_snd);
|
|
if (m == NULL) {
|
|
s = splnet();
|
|
TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
|
|
splx(s);
|
|
break;
|
|
}
|
|
|
|
#if NBPFILTER > 0
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
|
|
#endif
|
|
|
|
/*
|
|
* Encapsulate the packet in prep for transmission.
|
|
*/
|
|
m = ieee80211_encap(ifp, m, &ni);
|
|
if (m == NULL) {
|
|
DPRINTF(ATH_DEBUG_ANY,
|
|
("%s: encapsulation failure\n",
|
|
__func__));
|
|
sc->sc_stats.ast_tx_encap++;
|
|
goto bad;
|
|
}
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
} else {
|
|
ni = m->m_pkthdr.ph_cookie;
|
|
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
|
|
IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
|
|
/* fill time stamp */
|
|
u_int64_t tsf;
|
|
u_int32_t *tstamp;
|
|
|
|
tsf = ath_hal_get_tsf64(ah);
|
|
/* XXX: adjust 100us delay to xmit */
|
|
tsf += 100;
|
|
tstamp = (u_int32_t *)&wh[1];
|
|
tstamp[0] = htole32(tsf & 0xffffffff);
|
|
tstamp[1] = htole32(tsf >> 32);
|
|
}
|
|
sc->sc_stats.ast_tx_mgmt++;
|
|
}
|
|
|
|
if (ath_tx_start(sc, ni, bf, m)) {
|
|
bad:
|
|
s = splnet();
|
|
TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
|
|
splx(s);
|
|
ifp->if_oerrors++;
|
|
if (ni != NULL)
|
|
ieee80211_release_node(ic, ni);
|
|
continue;
|
|
}
|
|
|
|
sc->sc_tx_timer = 5;
|
|
ifp->if_timer = 1;
|
|
}
|
|
}
|
|
|
|
int
|
|
ath_media_change(struct ifnet *ifp)
|
|
{
|
|
int error;
|
|
|
|
error = ieee80211_media_change(ifp);
|
|
if (error == ENETRESET) {
|
|
if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
|
|
(IFF_RUNNING|IFF_UP))
|
|
ath_init(ifp); /* XXX lose error */
|
|
error = 0;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
void
|
|
ath_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
|
|
ifp->if_timer = 0;
|
|
if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
|
|
return;
|
|
if (sc->sc_tx_timer) {
|
|
if (--sc->sc_tx_timer == 0) {
|
|
printf("%s: device timeout\n", ifp->if_xname);
|
|
ath_reset(sc, 1);
|
|
ifp->if_oerrors++;
|
|
sc->sc_stats.ast_watchdog++;
|
|
return;
|
|
}
|
|
ifp->if_timer = 1;
|
|
}
|
|
|
|
ieee80211_watchdog(ifp);
|
|
}
|
|
|
|
int
|
|
ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
int error = 0, s;
|
|
|
|
s = splnet();
|
|
switch (cmd) {
|
|
case SIOCSIFADDR:
|
|
ifp->if_flags |= IFF_UP;
|
|
/* FALLTHROUGH */
|
|
case SIOCSIFFLAGS:
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (ifp->if_flags & IFF_RUNNING) {
|
|
/*
|
|
* To avoid rescanning another access point,
|
|
* do not call ath_init() here. Instead,
|
|
* only reflect promisc mode settings.
|
|
*/
|
|
ath_mode_init(sc);
|
|
} else {
|
|
/*
|
|
* Beware of being called during detach to
|
|
* reset promiscuous mode. In that case we
|
|
* will still be marked UP but not RUNNING.
|
|
* However trying to re-init the interface
|
|
* is the wrong thing to do as we've already
|
|
* torn down much of our state. There's
|
|
* probably a better way to deal with this.
|
|
*/
|
|
if (!sc->sc_invalid)
|
|
ath_init(ifp); /* XXX lose error */
|
|
}
|
|
} else
|
|
ath_stop(ifp);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
error = (cmd == SIOCADDMULTI) ?
|
|
ether_addmulti(ifr, &sc->sc_ic.ic_ac) :
|
|
ether_delmulti(ifr, &sc->sc_ic.ic_ac);
|
|
if (error == ENETRESET) {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
ath_mode_init(sc);
|
|
error = 0;
|
|
}
|
|
break;
|
|
case SIOCGATHSTATS:
|
|
error = copyout(&sc->sc_stats,
|
|
ifr->ifr_data, sizeof (sc->sc_stats));
|
|
break;
|
|
default:
|
|
error = ieee80211_ioctl(ifp, cmd, data);
|
|
if (error == ENETRESET) {
|
|
if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
|
|
(IFF_RUNNING|IFF_UP)) {
|
|
if (ic->ic_opmode != IEEE80211_M_MONITOR)
|
|
ath_init(ifp); /* XXX lose error */
|
|
else
|
|
ath_reset(sc, 1);
|
|
}
|
|
error = 0;
|
|
}
|
|
break;
|
|
}
|
|
splx(s);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Fill the hardware key cache with key entries.
|
|
*/
|
|
int
|
|
ath_initkeytable(struct ath_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
int i;
|
|
|
|
if (ath_softcrypto) {
|
|
/*
|
|
* Disable the hardware crypto engine and reset the key cache
|
|
* to allow software crypto operation for WEP/RSN/WPA2
|
|
*/
|
|
if (ic->ic_flags & (IEEE80211_F_WEPON|IEEE80211_F_RSNON))
|
|
(void)ath_hal_softcrypto(ah, AH_TRUE);
|
|
else
|
|
(void)ath_hal_softcrypto(ah, AH_FALSE);
|
|
return (0);
|
|
}
|
|
|
|
/* WEP is disabled, we only support WEP in hardware yet */
|
|
if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
|
|
return (0);
|
|
|
|
/*
|
|
* Setup the hardware after reset: the key cache is filled as
|
|
* needed and the receive engine is set going. Frame transmit
|
|
* is handled entirely in the frame output path; there's nothing
|
|
* to do here except setup the interrupt mask.
|
|
*/
|
|
|
|
/* XXX maybe should reset all keys when !WEPON */
|
|
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
|
|
struct ieee80211_key *k = &ic->ic_nw_keys[i];
|
|
if (k->k_len == 0)
|
|
ath_hal_reset_key(ah, i);
|
|
else {
|
|
HAL_KEYVAL hk;
|
|
|
|
bzero(&hk, sizeof(hk));
|
|
/*
|
|
* Pad the key to a supported key length. It
|
|
* is always a good idea to use full-length
|
|
* keys without padded zeros but this seems
|
|
* to be the default behaviour used by many
|
|
* implementations.
|
|
*/
|
|
if (k->k_cipher == IEEE80211_CIPHER_WEP40)
|
|
hk.wk_len = AR5K_KEYVAL_LENGTH_40;
|
|
else if (k->k_cipher == IEEE80211_CIPHER_WEP104)
|
|
hk.wk_len = AR5K_KEYVAL_LENGTH_104;
|
|
else
|
|
return (EINVAL);
|
|
bcopy(k->k_key, hk.wk_key, hk.wk_len);
|
|
|
|
if (ath_hal_set_key(ah, i, &hk) != AH_TRUE)
|
|
return (EINVAL);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
ath_mcastfilter_accum(caddr_t dl, u_int32_t (*mfilt)[2])
|
|
{
|
|
u_int32_t val;
|
|
u_int8_t pos;
|
|
|
|
val = LE_READ_4(dl + 0);
|
|
pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
|
|
val = LE_READ_4(dl + 3);
|
|
pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
|
|
pos &= 0x3f;
|
|
(*mfilt)[pos / 32] |= (1 << (pos % 32));
|
|
}
|
|
|
|
void
|
|
ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
|
|
{
|
|
struct arpcom *ac = &sc->sc_ic.ic_ac;
|
|
struct ifnet *ifp = &sc->sc_ic.ic_if;
|
|
struct ether_multi *enm;
|
|
struct ether_multistep estep;
|
|
|
|
if (ac->ac_multirangecnt > 0) {
|
|
/* XXX Punt on ranges. */
|
|
(*mfilt)[0] = (*mfilt)[1] = ~((u_int32_t)0);
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
return;
|
|
}
|
|
|
|
ETHER_FIRST_MULTI(estep, ac, enm);
|
|
while (enm != NULL) {
|
|
ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
|
|
ETHER_NEXT_MULTI(estep, enm);
|
|
}
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
}
|
|
|
|
/*
|
|
* Calculate the receive filter according to the
|
|
* operating mode and state:
|
|
*
|
|
* o always accept unicast, broadcast, and multicast traffic
|
|
* o maintain current state of phy error reception
|
|
* o probe request frames are accepted only when operating in
|
|
* hostap, adhoc, or monitor modes
|
|
* o enable promiscuous mode according to the interface state
|
|
* o accept beacons:
|
|
* - when operating in adhoc mode so the 802.11 layer creates
|
|
* node table entries for peers,
|
|
* - when operating in station mode for collecting rssi data when
|
|
* the station is otherwise quiet, or
|
|
* - when scanning
|
|
*/
|
|
u_int32_t
|
|
ath_calcrxfilter(struct ath_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
u_int32_t rfilt;
|
|
|
|
rfilt = (ath_hal_get_rx_filter(ah) & HAL_RX_FILTER_PHYERR)
|
|
| HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
|
|
if (ic->ic_opmode != IEEE80211_M_STA)
|
|
rfilt |= HAL_RX_FILTER_PROBEREQ;
|
|
#ifndef IEEE80211_STA_ONLY
|
|
if (ic->ic_opmode != IEEE80211_M_AHDEMO)
|
|
#endif
|
|
rfilt |= HAL_RX_FILTER_BEACON;
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
rfilt |= HAL_RX_FILTER_PROM;
|
|
return rfilt;
|
|
}
|
|
|
|
void
|
|
ath_mode_init(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
u_int32_t rfilt, mfilt[2];
|
|
|
|
/* configure rx filter */
|
|
rfilt = ath_calcrxfilter(sc);
|
|
ath_hal_set_rx_filter(ah, rfilt);
|
|
|
|
/* configure operational mode */
|
|
ath_hal_set_opmode(ah);
|
|
|
|
/* calculate and install multicast filter */
|
|
mfilt[0] = mfilt[1] = 0;
|
|
ath_mcastfilter_compute(sc, &mfilt);
|
|
ath_hal_set_mcast_filter(ah, mfilt[0], mfilt[1]);
|
|
DPRINTF(ATH_DEBUG_MODE, ("%s: RX filter 0x%x, MC filter %08x:%08x\n",
|
|
__func__, rfilt, mfilt[0], mfilt[1]));
|
|
}
|
|
|
|
struct mbuf *
|
|
ath_getmbuf(int flags, int type, u_int pktlen)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
KASSERT(pktlen <= MCLBYTES, ("802.11 packet too large: %u", pktlen));
|
|
MGETHDR(m, flags, type);
|
|
if (m != NULL && pktlen > MHLEN) {
|
|
MCLGET(m, flags);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_free(m);
|
|
m = NULL;
|
|
}
|
|
}
|
|
return m;
|
|
}
|
|
|
|
#ifndef IEEE80211_STA_ONLY
|
|
int
|
|
ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_buf *bf;
|
|
struct ath_desc *ds;
|
|
struct mbuf *m;
|
|
int error;
|
|
u_int8_t rate;
|
|
const HAL_RATE_TABLE *rt;
|
|
u_int flags = 0;
|
|
|
|
bf = sc->sc_bcbuf;
|
|
if (bf->bf_m != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
bf->bf_node = NULL;
|
|
}
|
|
/*
|
|
* NB: the beacon data buffer must be 32-bit aligned;
|
|
* we assume the mbuf routines will return us something
|
|
* with this alignment (perhaps should assert).
|
|
*/
|
|
m = ieee80211_beacon_alloc(ic, ni);
|
|
if (m == NULL) {
|
|
DPRINTF(ATH_DEBUG_BEACON, ("%s: cannot get mbuf/cluster\n",
|
|
__func__));
|
|
sc->sc_stats.ast_be_nombuf++;
|
|
return ENOMEM;
|
|
}
|
|
|
|
DPRINTF(ATH_DEBUG_BEACON, ("%s: m %p len %u\n", __func__, m, m->m_len));
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
m_freem(m);
|
|
return error;
|
|
}
|
|
KASSERT(bf->bf_nseg == 1,
|
|
("%s: multi-segment packet; nseg %u", __func__, bf->bf_nseg));
|
|
bf->bf_m = m;
|
|
|
|
/* setup descriptors */
|
|
ds = bf->bf_desc;
|
|
bzero(ds, sizeof(struct ath_desc));
|
|
|
|
if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_veol) {
|
|
ds->ds_link = bf->bf_daddr; /* link to self */
|
|
flags |= HAL_TXDESC_VEOL;
|
|
} else {
|
|
ds->ds_link = 0;
|
|
}
|
|
ds->ds_data = bf->bf_segs[0].ds_addr;
|
|
|
|
DPRINTF(ATH_DEBUG_ANY, ("%s: segaddr %p seglen %u\n", __func__,
|
|
(caddr_t)bf->bf_segs[0].ds_addr, (u_int)bf->bf_segs[0].ds_len));
|
|
|
|
/*
|
|
* Calculate rate code.
|
|
* XXX everything at min xmit rate
|
|
*/
|
|
rt = sc->sc_currates;
|
|
KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
|
|
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) {
|
|
rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
|
|
} else {
|
|
rate = rt->info[0].rateCode;
|
|
}
|
|
|
|
flags = HAL_TXDESC_NOACK;
|
|
if (ic->ic_opmode == IEEE80211_M_IBSS)
|
|
flags |= HAL_TXDESC_VEOL;
|
|
|
|
if (!ath_hal_setup_tx_desc(ah, ds
|
|
, m->m_pkthdr.len + IEEE80211_CRC_LEN /* packet length */
|
|
, sizeof(struct ieee80211_frame) /* header length */
|
|
, HAL_PKT_TYPE_BEACON /* Atheros packet type */
|
|
, 60 /* txpower XXX */
|
|
, rate, 1 /* series 0 rate/tries */
|
|
, HAL_TXKEYIX_INVALID /* no encryption */
|
|
, 0 /* antenna mode */
|
|
, flags /* no ack for beacons */
|
|
, 0 /* rts/cts rate */
|
|
, 0 /* rts/cts duration */
|
|
)) {
|
|
printf("%s: ath_hal_setup_tx_desc failed\n", __func__);
|
|
return -1;
|
|
}
|
|
/* NB: beacon's BufLen must be a multiple of 4 bytes */
|
|
/* XXX verify mbuf data area covers this roundup */
|
|
if (!ath_hal_fill_tx_desc(ah, ds
|
|
, roundup(bf->bf_segs[0].ds_len, 4) /* buffer length */
|
|
, AH_TRUE /* first segment */
|
|
, AH_TRUE /* last segment */
|
|
)) {
|
|
printf("%s: ath_hal_fill_tx_desc failed\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
/* XXX it is not appropriate to bus_dmamap_sync? -dcy */
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ath_beacon_proc(void *arg, int pending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_buf *bf = sc->sc_bcbuf;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
DPRINTF(ATH_DEBUG_BEACON_PROC, ("%s: pending %u\n", __func__, pending));
|
|
if (ic->ic_opmode == IEEE80211_M_STA ||
|
|
bf == NULL || bf->bf_m == NULL) {
|
|
DPRINTF(ATH_DEBUG_ANY, ("%s: ic_flags=%x bf=%p bf_m=%p\n",
|
|
__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
|
|
return;
|
|
}
|
|
/* TODO: update beacon to reflect PS poll state */
|
|
if (!ath_hal_stop_tx_dma(ah, sc->sc_bhalq)) {
|
|
DPRINTF(ATH_DEBUG_ANY, ("%s: beacon queue %u did not stop?\n",
|
|
__func__, sc->sc_bhalq));
|
|
}
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
|
|
bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
|
|
|
|
ath_hal_put_tx_buf(ah, sc->sc_bhalq, bf->bf_daddr);
|
|
ath_hal_tx_start(ah, sc->sc_bhalq);
|
|
DPRINTF(ATH_DEBUG_BEACON_PROC,
|
|
("%s: TXDP%u = %p (%p)\n", __func__,
|
|
sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
|
|
}
|
|
|
|
void
|
|
ath_beacon_free(struct ath_softc *sc)
|
|
{
|
|
struct ath_buf *bf = sc->sc_bcbuf;
|
|
|
|
if (bf->bf_m != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
bf->bf_node = NULL;
|
|
}
|
|
}
|
|
#endif /* IEEE80211_STA_ONLY */
|
|
|
|
/*
|
|
* Configure the beacon and sleep timers.
|
|
*
|
|
* When operating as an AP this resets the TSF and sets
|
|
* up the hardware to notify us when we need to issue beacons.
|
|
*
|
|
* When operating in station mode this sets up the beacon
|
|
* timers according to the timestamp of the last received
|
|
* beacon and the current TSF, configures PCF and DTIM
|
|
* handling, programs the sleep registers so the hardware
|
|
* will wakeup in time to receive beacons, and configures
|
|
* the beacon miss handling so we'll receive a BMISS
|
|
* interrupt when we stop seeing beacons from the AP
|
|
* we've associated with.
|
|
*/
|
|
void
|
|
ath_beacon_config(struct ath_softc *sc)
|
|
{
|
|
#define MS_TO_TU(x) (((x) * 1000) / 1024)
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni = ic->ic_bss;
|
|
u_int32_t nexttbtt, intval;
|
|
|
|
nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
|
|
(LE_READ_4(ni->ni_tstamp) >> 10);
|
|
intval = MAX(1, ni->ni_intval) & HAL_BEACON_PERIOD;
|
|
if (nexttbtt == 0) { /* e.g. for ap mode */
|
|
nexttbtt = intval;
|
|
} else if (intval) {
|
|
nexttbtt = roundup(nexttbtt, intval);
|
|
}
|
|
DPRINTF(ATH_DEBUG_BEACON, ("%s: intval %u nexttbtt %u\n",
|
|
__func__, ni->ni_intval, nexttbtt));
|
|
if (ic->ic_opmode == IEEE80211_M_STA) {
|
|
HAL_BEACON_STATE bs;
|
|
|
|
/* NB: no PCF support right now */
|
|
bzero(&bs, sizeof(bs));
|
|
bs.bs_intval = intval;
|
|
bs.bs_nexttbtt = nexttbtt;
|
|
bs.bs_dtimperiod = bs.bs_intval;
|
|
bs.bs_nextdtim = nexttbtt;
|
|
/*
|
|
* Calculate the number of consecutive beacons to miss
|
|
* before taking a BMISS interrupt.
|
|
* Note that we clamp the result to at most 7 beacons.
|
|
*/
|
|
bs.bs_bmissthreshold = ic->ic_bmissthres;
|
|
if (bs.bs_bmissthreshold > 7) {
|
|
bs.bs_bmissthreshold = 7;
|
|
} else if (bs.bs_bmissthreshold <= 0) {
|
|
bs.bs_bmissthreshold = 1;
|
|
}
|
|
|
|
/*
|
|
* Calculate sleep duration. The configuration is
|
|
* given in ms. We insure a multiple of the beacon
|
|
* period is used. Also, if the sleep duration is
|
|
* greater than the DTIM period then it makes senses
|
|
* to make it a multiple of that.
|
|
*
|
|
* XXX fixed at 100ms
|
|
*/
|
|
bs.bs_sleepduration =
|
|
roundup(MS_TO_TU(100), bs.bs_intval);
|
|
if (bs.bs_sleepduration > bs.bs_dtimperiod) {
|
|
bs.bs_sleepduration =
|
|
roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
|
|
}
|
|
|
|
DPRINTF(ATH_DEBUG_BEACON,
|
|
("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u"
|
|
" sleep %u\n"
|
|
, __func__
|
|
, bs.bs_intval
|
|
, bs.bs_nexttbtt
|
|
, bs.bs_dtimperiod
|
|
, bs.bs_nextdtim
|
|
, bs.bs_bmissthreshold
|
|
, bs.bs_sleepduration
|
|
));
|
|
ath_hal_set_intr(ah, 0);
|
|
ath_hal_set_beacon_timers(ah, &bs, 0/*XXX*/, 0, 0);
|
|
sc->sc_imask |= HAL_INT_BMISS;
|
|
ath_hal_set_intr(ah, sc->sc_imask);
|
|
}
|
|
#ifndef IEEE80211_STA_ONLY
|
|
else {
|
|
ath_hal_set_intr(ah, 0);
|
|
if (nexttbtt == intval)
|
|
intval |= HAL_BEACON_RESET_TSF;
|
|
if (ic->ic_opmode == IEEE80211_M_IBSS) {
|
|
/*
|
|
* In IBSS mode enable the beacon timers but only
|
|
* enable SWBA interrupts if we need to manually
|
|
* prepare beacon frames. Otherwise we use a
|
|
* self-linked tx descriptor and let the hardware
|
|
* deal with things.
|
|
*/
|
|
intval |= HAL_BEACON_ENA;
|
|
if (!sc->sc_veol)
|
|
sc->sc_imask |= HAL_INT_SWBA;
|
|
} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
|
|
/*
|
|
* In AP mode we enable the beacon timers and
|
|
* SWBA interrupts to prepare beacon frames.
|
|
*/
|
|
intval |= HAL_BEACON_ENA;
|
|
sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
|
|
}
|
|
ath_hal_init_beacon(ah, nexttbtt, intval);
|
|
ath_hal_set_intr(ah, sc->sc_imask);
|
|
/*
|
|
* When using a self-linked beacon descriptor in IBBS
|
|
* mode load it once here.
|
|
*/
|
|
if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_veol)
|
|
ath_beacon_proc(sc, 0);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
int
|
|
ath_desc_alloc(struct ath_softc *sc)
|
|
{
|
|
int i, bsize, error = -1;
|
|
struct ath_desc *ds;
|
|
struct ath_buf *bf;
|
|
|
|
/* allocate descriptors */
|
|
sc->sc_desc_len = sizeof(struct ath_desc) *
|
|
(ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
|
|
if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_desc_len, PAGE_SIZE,
|
|
0, &sc->sc_dseg, 1, &sc->sc_dnseg, 0)) != 0) {
|
|
printf("%s: unable to allocate control data, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
goto fail0;
|
|
}
|
|
|
|
if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg,
|
|
sc->sc_desc_len, (caddr_t *)&sc->sc_desc, BUS_DMA_COHERENT)) != 0) {
|
|
printf("%s: unable to map control data, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
goto fail1;
|
|
}
|
|
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_desc_len, 1,
|
|
sc->sc_desc_len, 0, 0, &sc->sc_ddmamap)) != 0) {
|
|
printf("%s: unable to create control data DMA map, "
|
|
"error = %d\n", sc->sc_dev.dv_xname, error);
|
|
goto fail2;
|
|
}
|
|
|
|
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, sc->sc_desc,
|
|
sc->sc_desc_len, NULL, 0)) != 0) {
|
|
printf("%s: unable to load control data DMA map, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
goto fail3;
|
|
}
|
|
|
|
ds = sc->sc_desc;
|
|
sc->sc_desc_paddr = sc->sc_ddmamap->dm_segs[0].ds_addr;
|
|
|
|
DPRINTF(ATH_DEBUG_XMIT_DESC|ATH_DEBUG_RECV_DESC,
|
|
("ath_desc_alloc: DMA map: %p (%lu) -> %p (%lu)\n",
|
|
ds, (u_long)sc->sc_desc_len,
|
|
(caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
|
|
|
|
/* allocate buffers */
|
|
bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
|
|
bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (bf == NULL) {
|
|
printf("%s: unable to allocate Tx/Rx buffers\n",
|
|
sc->sc_dev.dv_xname);
|
|
error = ENOMEM;
|
|
goto fail3;
|
|
}
|
|
sc->sc_bufptr = bf;
|
|
|
|
TAILQ_INIT(&sc->sc_rxbuf);
|
|
for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
|
|
bf->bf_desc = ds;
|
|
bf->bf_daddr = sc->sc_desc_paddr +
|
|
((caddr_t)ds - (caddr_t)sc->sc_desc);
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
|
|
MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
|
|
printf("%s: unable to create Rx dmamap, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
goto fail4;
|
|
}
|
|
TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
|
|
}
|
|
|
|
TAILQ_INIT(&sc->sc_txbuf);
|
|
for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
|
|
bf->bf_desc = ds;
|
|
bf->bf_daddr = sc->sc_desc_paddr +
|
|
((caddr_t)ds - (caddr_t)sc->sc_desc);
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
|
|
ATH_TXDESC, MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
|
|
printf("%s: unable to create Tx dmamap, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
goto fail5;
|
|
}
|
|
TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
|
|
}
|
|
TAILQ_INIT(&sc->sc_txq);
|
|
|
|
/* beacon buffer */
|
|
bf->bf_desc = ds;
|
|
bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
|
|
&bf->bf_dmamap)) != 0) {
|
|
printf("%s: unable to create beacon dmamap, error = %d\n",
|
|
sc->sc_dev.dv_xname, error);
|
|
goto fail5;
|
|
}
|
|
sc->sc_bcbuf = bf;
|
|
return 0;
|
|
|
|
fail5:
|
|
for (i = ATH_RXBUF; i < ATH_RXBUF + ATH_TXBUF; i++) {
|
|
if (sc->sc_bufptr[i].bf_dmamap == NULL)
|
|
continue;
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
|
|
}
|
|
fail4:
|
|
for (i = 0; i < ATH_RXBUF; i++) {
|
|
if (sc->sc_bufptr[i].bf_dmamap == NULL)
|
|
continue;
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
|
|
}
|
|
fail3:
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
|
|
fail2:
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
|
|
sc->sc_ddmamap = NULL;
|
|
fail1:
|
|
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_desc, sc->sc_desc_len);
|
|
fail0:
|
|
bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
|
|
return error;
|
|
}
|
|
|
|
void
|
|
ath_desc_free(struct ath_softc *sc)
|
|
{
|
|
struct ath_buf *bf;
|
|
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
|
|
bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
|
|
|
|
TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
|
|
m_freem(bf->bf_m);
|
|
}
|
|
TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
|
|
bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
|
|
TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
|
|
if (bf->bf_m) {
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
}
|
|
}
|
|
if (sc->sc_bcbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
|
|
sc->sc_bcbuf = NULL;
|
|
}
|
|
|
|
TAILQ_INIT(&sc->sc_rxbuf);
|
|
TAILQ_INIT(&sc->sc_txbuf);
|
|
TAILQ_INIT(&sc->sc_txq);
|
|
free(sc->sc_bufptr, M_DEVBUF, 0);
|
|
sc->sc_bufptr = NULL;
|
|
}
|
|
|
|
struct ieee80211_node *
|
|
ath_node_alloc(struct ieee80211com *ic)
|
|
{
|
|
struct ath_node *an;
|
|
|
|
an = malloc(sizeof(*an), M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (an) {
|
|
int i;
|
|
for (i = 0; i < ATH_RHIST_SIZE; i++)
|
|
an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME;
|
|
an->an_rx_hist_next = ATH_RHIST_SIZE-1;
|
|
return &an->an_node;
|
|
} else
|
|
return NULL;
|
|
}
|
|
|
|
void
|
|
ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
|
|
{
|
|
struct ath_softc *sc = ic->ic_if.if_softc;
|
|
struct ath_buf *bf;
|
|
|
|
TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
|
|
if (bf->bf_node == ni)
|
|
bf->bf_node = NULL;
|
|
}
|
|
(*sc->sc_node_free)(ic, ni);
|
|
}
|
|
|
|
void
|
|
ath_node_copy(struct ieee80211com *ic,
|
|
struct ieee80211_node *dst, const struct ieee80211_node *src)
|
|
{
|
|
struct ath_softc *sc = ic->ic_if.if_softc;
|
|
|
|
bcopy(&src[1], &dst[1],
|
|
sizeof(struct ath_node) - sizeof(struct ieee80211_node));
|
|
(*sc->sc_node_copy)(ic, dst, src);
|
|
}
|
|
|
|
u_int8_t
|
|
ath_node_getrssi(struct ieee80211com *ic, const struct ieee80211_node *ni)
|
|
{
|
|
const struct ath_node *an = ATH_NODE(ni);
|
|
int i, now, nsamples, rssi;
|
|
|
|
/*
|
|
* Calculate the average over the last second of sampled data.
|
|
*/
|
|
now = ATH_TICKS();
|
|
nsamples = 0;
|
|
rssi = 0;
|
|
i = an->an_rx_hist_next;
|
|
do {
|
|
const struct ath_recv_hist *rh = &an->an_rx_hist[i];
|
|
if (rh->arh_ticks == ATH_RHIST_NOTIME)
|
|
goto done;
|
|
if (now - rh->arh_ticks > hz)
|
|
goto done;
|
|
rssi += rh->arh_rssi;
|
|
nsamples++;
|
|
if (i == 0) {
|
|
i = ATH_RHIST_SIZE-1;
|
|
} else {
|
|
i--;
|
|
}
|
|
} while (i != an->an_rx_hist_next);
|
|
done:
|
|
/*
|
|
* Return either the average or the last known
|
|
* value if there is no recent data.
|
|
*/
|
|
return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi);
|
|
}
|
|
|
|
int
|
|
ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
int error;
|
|
struct mbuf *m;
|
|
struct ath_desc *ds;
|
|
|
|
m = bf->bf_m;
|
|
if (m == NULL) {
|
|
/*
|
|
* NB: by assigning a page to the rx dma buffer we
|
|
* implicitly satisfy the Atheros requirement that
|
|
* this buffer be cache-line-aligned and sized to be
|
|
* multiple of the cache line size. Not doing this
|
|
* causes weird stuff to happen (for the 5210 at least).
|
|
*/
|
|
m = ath_getmbuf(M_DONTWAIT, MT_DATA, MCLBYTES);
|
|
if (m == NULL) {
|
|
DPRINTF(ATH_DEBUG_ANY,
|
|
("%s: no mbuf/cluster\n", __func__));
|
|
sc->sc_stats.ast_rx_nombuf++;
|
|
return ENOMEM;
|
|
}
|
|
bf->bf_m = m;
|
|
m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
|
|
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
DPRINTF(ATH_DEBUG_ANY,
|
|
("%s: ath_bus_dmamap_load_mbuf failed;"
|
|
" error %d\n", __func__, error));
|
|
sc->sc_stats.ast_rx_busdma++;
|
|
return error;
|
|
}
|
|
KASSERT(bf->bf_nseg == 1,
|
|
("ath_rxbuf_init: multi-segment packet; nseg %u",
|
|
bf->bf_nseg));
|
|
}
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
|
|
bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
|
|
/*
|
|
* Setup descriptors. For receive we always terminate
|
|
* the descriptor list with a self-linked entry so we'll
|
|
* not get overrun under high load (as can happen with a
|
|
* 5212 when ANI processing enables PHY errors).
|
|
*
|
|
* To insure the last descriptor is self-linked we create
|
|
* each descriptor as self-linked and add it to the end. As
|
|
* each additional descriptor is added the previous self-linked
|
|
* entry is ``fixed'' naturally. This should be safe even
|
|
* if DMA is happening. When processing RX interrupts we
|
|
* never remove/process the last, self-linked, entry on the
|
|
* descriptor list. This insures the hardware always has
|
|
* someplace to write a new frame.
|
|
*/
|
|
ds = bf->bf_desc;
|
|
bzero(ds, sizeof(struct ath_desc));
|
|
#ifndef IEEE80211_STA_ONLY
|
|
if (sc->sc_ic.ic_opmode != IEEE80211_M_HOSTAP)
|
|
ds->ds_link = bf->bf_daddr; /* link to self */
|
|
#endif
|
|
ds->ds_data = bf->bf_segs[0].ds_addr;
|
|
ath_hal_setup_rx_desc(ah, ds
|
|
, m->m_len /* buffer size */
|
|
, 0
|
|
);
|
|
|
|
if (sc->sc_rxlink != NULL)
|
|
*sc->sc_rxlink = bf->bf_daddr;
|
|
sc->sc_rxlink = &ds->ds_link;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ath_rx_proc(void *arg, int npending)
|
|
{
|
|
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
|
|
#define PA2DESC(_sc, _pa) \
|
|
((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
|
|
((_pa) - (_sc)->sc_desc_paddr)))
|
|
struct ath_softc *sc = arg;
|
|
struct ath_buf *bf;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_desc *ds;
|
|
struct mbuf *m;
|
|
struct ieee80211_frame *wh;
|
|
struct ieee80211_frame whbuf;
|
|
struct ieee80211_rxinfo rxi;
|
|
struct ieee80211_node *ni;
|
|
struct ath_node *an;
|
|
struct ath_recv_hist *rh;
|
|
int len;
|
|
u_int phyerr;
|
|
HAL_STATUS status;
|
|
|
|
DPRINTF(ATH_DEBUG_RX_PROC, ("%s: pending %u\n", __func__, npending));
|
|
do {
|
|
bf = TAILQ_FIRST(&sc->sc_rxbuf);
|
|
if (bf == NULL) { /* NB: shouldn't happen */
|
|
printf("%s: ath_rx_proc: no buffer!\n", ifp->if_xname);
|
|
break;
|
|
}
|
|
ds = bf->bf_desc;
|
|
if (ds->ds_link == bf->bf_daddr) {
|
|
/* NB: never process the self-linked entry at the end */
|
|
break;
|
|
}
|
|
m = bf->bf_m;
|
|
if (m == NULL) { /* NB: shouldn't happen */
|
|
printf("%s: ath_rx_proc: no mbuf!\n", ifp->if_xname);
|
|
continue;
|
|
}
|
|
/* XXX sync descriptor memory */
|
|
/*
|
|
* Must provide the virtual address of the current
|
|
* descriptor, the physical address, and the virtual
|
|
* address of the next descriptor in the h/w chain.
|
|
* This allows the HAL to look ahead to see if the
|
|
* hardware is done with a descriptor by checking the
|
|
* done bit in the following descriptor and the address
|
|
* of the current descriptor the DMA engine is working
|
|
* on. All this is necessary because of our use of
|
|
* a self-linked list to avoid rx overruns.
|
|
*/
|
|
status = ath_hal_proc_rx_desc(ah, ds,
|
|
bf->bf_daddr, PA2DESC(sc, ds->ds_link));
|
|
#ifdef AR_DEBUG
|
|
if (ath_debug & ATH_DEBUG_RECV_DESC)
|
|
ath_printrxbuf(bf, status == HAL_OK);
|
|
#endif
|
|
if (status == HAL_EINPROGRESS)
|
|
break;
|
|
TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
|
|
|
|
if (ds->ds_rxstat.rs_more) {
|
|
/*
|
|
* Frame spans multiple descriptors; this
|
|
* cannot happen yet as we don't support
|
|
* jumbograms. If not in monitor mode,
|
|
* discard the frame.
|
|
*/
|
|
|
|
/*
|
|
* Enable this if you want to see error
|
|
* frames in Monitor mode.
|
|
*/
|
|
#ifdef ERROR_FRAMES
|
|
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
|
|
/* XXX statistic */
|
|
goto rx_next;
|
|
}
|
|
#endif
|
|
/* fall thru for monitor mode handling... */
|
|
|
|
} else if (ds->ds_rxstat.rs_status != 0) {
|
|
if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
|
|
sc->sc_stats.ast_rx_crcerr++;
|
|
if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
|
|
sc->sc_stats.ast_rx_fifoerr++;
|
|
if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
|
|
sc->sc_stats.ast_rx_badcrypt++;
|
|
if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
|
|
sc->sc_stats.ast_rx_phyerr++;
|
|
phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
|
|
sc->sc_stats.ast_rx_phy[phyerr]++;
|
|
}
|
|
|
|
/*
|
|
* reject error frames, we normally don't want
|
|
* to see them in monitor mode.
|
|
*/
|
|
if ((ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT ) ||
|
|
(ds->ds_rxstat.rs_status & HAL_RXERR_PHY))
|
|
goto rx_next;
|
|
|
|
/*
|
|
* In monitor mode, allow through packets that
|
|
* cannot be decrypted
|
|
*/
|
|
if ((ds->ds_rxstat.rs_status & ~HAL_RXERR_DECRYPT) ||
|
|
sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
|
|
goto rx_next;
|
|
}
|
|
|
|
len = ds->ds_rxstat.rs_datalen;
|
|
if (len < IEEE80211_MIN_LEN) {
|
|
DPRINTF(ATH_DEBUG_RECV, ("%s: short packet %d\n",
|
|
__func__, len));
|
|
sc->sc_stats.ast_rx_tooshort++;
|
|
goto rx_next;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
|
|
bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
bf->bf_m = NULL;
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
|
|
#if NBPFILTER > 0
|
|
if (sc->sc_drvbpf) {
|
|
sc->sc_rxtap.wr_flags = IEEE80211_RADIOTAP_F_FCS;
|
|
sc->sc_rxtap.wr_rate =
|
|
sc->sc_hwmap[ds->ds_rxstat.rs_rate] &
|
|
IEEE80211_RATE_VAL;
|
|
sc->sc_rxtap.wr_antenna = ds->ds_rxstat.rs_antenna;
|
|
sc->sc_rxtap.wr_rssi = ds->ds_rxstat.rs_rssi;
|
|
sc->sc_rxtap.wr_max_rssi = ic->ic_max_rssi;
|
|
|
|
bpf_mtap_hdr(sc->sc_drvbpf, &sc->sc_rxtap,
|
|
sc->sc_rxtap_len, m, BPF_DIRECTION_IN);
|
|
}
|
|
#endif
|
|
m_adj(m, -IEEE80211_CRC_LEN);
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
memset(&rxi, 0, sizeof(rxi));
|
|
if (!ath_softcrypto && (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
|
|
/*
|
|
* WEP is decrypted by hardware. Clear WEP bit
|
|
* and trim WEP header for ieee80211_inputm().
|
|
*/
|
|
wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
|
|
bcopy(wh, &whbuf, sizeof(whbuf));
|
|
m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
bcopy(&whbuf, wh, sizeof(whbuf));
|
|
/*
|
|
* Also trim WEP ICV from the tail.
|
|
*/
|
|
m_adj(m, -IEEE80211_WEP_CRCLEN);
|
|
/*
|
|
* The header has probably moved.
|
|
*/
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
|
|
rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
|
|
}
|
|
|
|
/*
|
|
* Locate the node for sender, track state, and
|
|
* then pass this node (referenced) up to the 802.11
|
|
* layer for its use.
|
|
*/
|
|
ni = ieee80211_find_rxnode(ic, wh);
|
|
|
|
/*
|
|
* Record driver-specific state.
|
|
*/
|
|
an = ATH_NODE(ni);
|
|
if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE)
|
|
an->an_rx_hist_next = 0;
|
|
rh = &an->an_rx_hist[an->an_rx_hist_next];
|
|
rh->arh_ticks = ATH_TICKS();
|
|
rh->arh_rssi = ds->ds_rxstat.rs_rssi;
|
|
rh->arh_antenna = ds->ds_rxstat.rs_antenna;
|
|
|
|
/*
|
|
* Send frame up for processing.
|
|
*/
|
|
rxi.rxi_rssi = ds->ds_rxstat.rs_rssi;
|
|
rxi.rxi_tstamp = ds->ds_rxstat.rs_tstamp;
|
|
ieee80211_inputm(ifp, m, ni, &rxi, &ml);
|
|
|
|
/* Handle the rate adaption */
|
|
ieee80211_rssadapt_input(ic, ni, &an->an_rssadapt,
|
|
ds->ds_rxstat.rs_rssi);
|
|
|
|
/*
|
|
* The frame may have caused the node to be marked for
|
|
* reclamation (e.g. in response to a DEAUTH message)
|
|
* so use release_node here instead of unref_node.
|
|
*/
|
|
ieee80211_release_node(ic, ni);
|
|
|
|
rx_next:
|
|
TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
|
|
} while (ath_rxbuf_init(sc, bf) == 0);
|
|
|
|
if_input(ifp, &ml);
|
|
|
|
ath_hal_set_rx_signal(ah); /* rx signal state monitoring */
|
|
ath_hal_start_rx(ah); /* in case of RXEOL */
|
|
#undef PA2DESC
|
|
}
|
|
|
|
/*
|
|
* XXX Size of an ACK control frame in bytes.
|
|
*/
|
|
#define IEEE80211_ACK_SIZE (2+2+IEEE80211_ADDR_LEN+4)
|
|
|
|
int
|
|
ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni,
|
|
struct ath_buf *bf, struct mbuf *m0)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ifnet *ifp = &sc->sc_ic.ic_if;
|
|
int i, error, iswep, hdrlen, pktlen, len, s, tries;
|
|
u_int8_t rix, cix, txrate, ctsrate;
|
|
struct ath_desc *ds;
|
|
struct ieee80211_frame *wh;
|
|
struct ieee80211_key *k;
|
|
u_int32_t iv;
|
|
u_int8_t *ivp;
|
|
u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
|
|
IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
|
|
u_int subtype, flags, ctsduration, antenna;
|
|
HAL_PKT_TYPE atype;
|
|
const HAL_RATE_TABLE *rt;
|
|
HAL_BOOL shortPreamble;
|
|
struct ath_node *an;
|
|
u_int8_t hwqueue = HAL_TX_QUEUE_ID_DATA_MIN;
|
|
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
iswep = wh->i_fc[1] & IEEE80211_FC1_PROTECTED;
|
|
hdrlen = sizeof(struct ieee80211_frame);
|
|
pktlen = m0->m_pkthdr.len;
|
|
|
|
if (ath_softcrypto && iswep) {
|
|
k = ieee80211_get_txkey(ic, wh, ni);
|
|
if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL)
|
|
return ENOMEM;
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
|
|
/* reset len in case we got a new mbuf */
|
|
pktlen = m0->m_pkthdr.len;
|
|
} else if (!ath_softcrypto && iswep) {
|
|
bcopy(mtod(m0, caddr_t), hdrbuf, hdrlen);
|
|
m_adj(m0, hdrlen);
|
|
M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
|
|
if (m0 == NULL) {
|
|
sc->sc_stats.ast_tx_nombuf++;
|
|
return ENOMEM;
|
|
}
|
|
ivp = hdrbuf + hdrlen;
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
/*
|
|
* XXX
|
|
* IV must not duplicate during the lifetime of the key.
|
|
* But no mechanism to renew keys is defined in IEEE 802.11
|
|
* for WEP. And the IV may be duplicated at other stations
|
|
* because the session key itself is shared. So we use a
|
|
* pseudo random IV for now, though it is not the right way.
|
|
*
|
|
* NB: Rather than use a strictly random IV we select a
|
|
* random one to start and then increment the value for
|
|
* each frame. This is an explicit tradeoff between
|
|
* overhead and security. Given the basic insecurity of
|
|
* WEP this seems worthwhile.
|
|
*/
|
|
|
|
/*
|
|
* Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
|
|
* (B, 255, N) with 3 <= B < 16 and 0 <= N <= 255
|
|
*/
|
|
iv = ic->ic_iv;
|
|
if ((iv & 0xff00) == 0xff00) {
|
|
int B = (iv & 0xff0000) >> 16;
|
|
if (3 <= B && B < 16)
|
|
iv = (B+1) << 16;
|
|
}
|
|
ic->ic_iv = iv + 1;
|
|
|
|
/*
|
|
* NB: Preserve byte order of IV for packet
|
|
* sniffers; it doesn't matter otherwise.
|
|
*/
|
|
#if BYTE_ORDER == BIG_ENDIAN
|
|
ivp[0] = iv >> 0;
|
|
ivp[1] = iv >> 8;
|
|
ivp[2] = iv >> 16;
|
|
#else
|
|
ivp[2] = iv >> 0;
|
|
ivp[1] = iv >> 8;
|
|
ivp[0] = iv >> 16;
|
|
#endif
|
|
ivp[3] = ic->ic_wep_txkey << 6; /* Key ID and pad */
|
|
bcopy(hdrbuf, mtod(m0, caddr_t), sizeof(hdrbuf));
|
|
/*
|
|
* The length of hdrlen and pktlen must be increased for WEP
|
|
*/
|
|
len = IEEE80211_WEP_IVLEN +
|
|
IEEE80211_WEP_KIDLEN +
|
|
IEEE80211_WEP_CRCLEN;
|
|
hdrlen += len;
|
|
pktlen += len;
|
|
}
|
|
pktlen += IEEE80211_CRC_LEN;
|
|
|
|
/*
|
|
* Load the DMA map so any coalescing is done. This
|
|
* also calculates the number of descriptors we need.
|
|
*/
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
|
|
BUS_DMA_NOWAIT);
|
|
/*
|
|
* Discard null packets and check for packets that
|
|
* require too many TX descriptors. We try to convert
|
|
* the latter to a cluster.
|
|
*/
|
|
if (error == EFBIG) { /* too many desc's, linearize */
|
|
sc->sc_stats.ast_tx_linear++;
|
|
if (m_defrag(m0, M_DONTWAIT)) {
|
|
sc->sc_stats.ast_tx_nomcl++;
|
|
m_freem(m0);
|
|
return ENOMEM;
|
|
}
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
sc->sc_stats.ast_tx_busdma++;
|
|
m_freem(m0);
|
|
return error;
|
|
}
|
|
KASSERT(bf->bf_nseg == 1,
|
|
("ath_tx_start: packet not one segment; nseg %u",
|
|
bf->bf_nseg));
|
|
} else if (error != 0) {
|
|
sc->sc_stats.ast_tx_busdma++;
|
|
m_freem(m0);
|
|
return error;
|
|
} else if (bf->bf_nseg == 0) { /* null packet, discard */
|
|
sc->sc_stats.ast_tx_nodata++;
|
|
m_freem(m0);
|
|
return EIO;
|
|
}
|
|
DPRINTF(ATH_DEBUG_XMIT, ("%s: m %p len %u\n", __func__, m0, pktlen));
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
|
|
bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
|
|
bf->bf_m = m0;
|
|
bf->bf_node = ni; /* NB: held reference */
|
|
an = ATH_NODE(ni);
|
|
|
|
/* setup descriptors */
|
|
ds = bf->bf_desc;
|
|
rt = sc->sc_currates;
|
|
KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
|
|
|
|
/*
|
|
* Calculate Atheros packet type from IEEE80211 packet header
|
|
* and setup for rate calculations.
|
|
*/
|
|
bf->bf_id.id_node = NULL;
|
|
atype = HAL_PKT_TYPE_NORMAL; /* default */
|
|
switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
|
|
case IEEE80211_FC0_TYPE_MGT:
|
|
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
|
|
if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
|
|
atype = HAL_PKT_TYPE_BEACON;
|
|
} else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
|
|
atype = HAL_PKT_TYPE_PROBE_RESP;
|
|
} else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) {
|
|
atype = HAL_PKT_TYPE_ATIM;
|
|
}
|
|
rix = 0; /* XXX lowest rate */
|
|
break;
|
|
case IEEE80211_FC0_TYPE_CTL:
|
|
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
|
|
if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
|
|
atype = HAL_PKT_TYPE_PSPOLL;
|
|
rix = 0; /* XXX lowest rate */
|
|
break;
|
|
default:
|
|
/* remember link conditions for rate adaptation algorithm */
|
|
if (ic->ic_fixed_rate == -1) {
|
|
bf->bf_id.id_len = m0->m_pkthdr.len;
|
|
bf->bf_id.id_rateidx = ni->ni_txrate;
|
|
bf->bf_id.id_node = ni;
|
|
bf->bf_id.id_rssi = ath_node_getrssi(ic, ni);
|
|
}
|
|
ni->ni_txrate = ieee80211_rssadapt_choose(&an->an_rssadapt,
|
|
&ni->ni_rates, wh, m0->m_pkthdr.len, ic->ic_fixed_rate,
|
|
ifp->if_xname, 0);
|
|
rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
|
|
IEEE80211_RATE_VAL];
|
|
if (rix == 0xff) {
|
|
printf("%s: bogus xmit rate 0x%x (idx 0x%x)\n",
|
|
ifp->if_xname, ni->ni_rates.rs_rates[ni->ni_txrate],
|
|
ni->ni_txrate);
|
|
sc->sc_stats.ast_tx_badrate++;
|
|
m_freem(m0);
|
|
return EIO;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* NB: the 802.11 layer marks whether or not we should
|
|
* use short preamble based on the current mode and
|
|
* negotiated parameters.
|
|
*/
|
|
if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
|
|
(ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
|
|
txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
|
|
shortPreamble = AH_TRUE;
|
|
sc->sc_stats.ast_tx_shortpre++;
|
|
} else {
|
|
txrate = rt->info[rix].rateCode;
|
|
shortPreamble = AH_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Calculate miscellaneous flags.
|
|
*/
|
|
flags = HAL_TXDESC_CLRDMASK; /* XXX needed for wep errors */
|
|
if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
|
|
flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
|
|
sc->sc_stats.ast_tx_noack++;
|
|
} else if (pktlen > ic->ic_rtsthreshold) {
|
|
flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
|
|
sc->sc_stats.ast_tx_rts++;
|
|
}
|
|
|
|
/*
|
|
* Calculate duration. This logically belongs in the 802.11
|
|
* layer but it lacks sufficient information to calculate it.
|
|
*/
|
|
if ((flags & HAL_TXDESC_NOACK) == 0 &&
|
|
(wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
|
|
u_int16_t dur;
|
|
/*
|
|
* XXX not right with fragmentation.
|
|
*/
|
|
dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE,
|
|
rix, shortPreamble);
|
|
*((u_int16_t*) wh->i_dur) = htole16(dur);
|
|
}
|
|
|
|
/*
|
|
* Calculate RTS/CTS rate and duration if needed.
|
|
*/
|
|
ctsduration = 0;
|
|
if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
|
|
/*
|
|
* CTS transmit rate is derived from the transmit rate
|
|
* by looking in the h/w rate table. We must also factor
|
|
* in whether or not a short preamble is to be used.
|
|
*/
|
|
cix = rt->info[rix].controlRate;
|
|
ctsrate = rt->info[cix].rateCode;
|
|
if (shortPreamble)
|
|
ctsrate |= rt->info[cix].shortPreamble;
|
|
/*
|
|
* Compute the transmit duration based on the size
|
|
* of an ACK frame. We call into the HAL to do the
|
|
* computation since it depends on the characteristics
|
|
* of the actual PHY being used.
|
|
*/
|
|
if (flags & HAL_TXDESC_RTSENA) { /* SIFS + CTS */
|
|
ctsduration += ath_hal_computetxtime(ah,
|
|
rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
|
|
}
|
|
/* SIFS + data */
|
|
ctsduration += ath_hal_computetxtime(ah,
|
|
rt, pktlen, rix, shortPreamble);
|
|
if ((flags & HAL_TXDESC_NOACK) == 0) { /* SIFS + ACK */
|
|
ctsduration += ath_hal_computetxtime(ah,
|
|
rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
|
|
}
|
|
} else
|
|
ctsrate = 0;
|
|
|
|
/*
|
|
* For now use the antenna on which the last good
|
|
* frame was received on. We assume this field is
|
|
* initialized to 0 which gives us ``auto'' or the
|
|
* ``default'' antenna.
|
|
*/
|
|
if (an->an_tx_antenna) {
|
|
antenna = an->an_tx_antenna;
|
|
} else {
|
|
antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna;
|
|
}
|
|
|
|
#if NBPFILTER > 0
|
|
if (ic->ic_rawbpf)
|
|
bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
|
|
|
|
if (sc->sc_drvbpf) {
|
|
sc->sc_txtap.wt_flags = 0;
|
|
if (shortPreamble)
|
|
sc->sc_txtap.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
|
|
if (!ath_softcrypto && iswep)
|
|
sc->sc_txtap.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
|
|
sc->sc_txtap.wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate] &
|
|
IEEE80211_RATE_VAL;
|
|
sc->sc_txtap.wt_txpower = 30;
|
|
sc->sc_txtap.wt_antenna = antenna;
|
|
|
|
bpf_mtap_hdr(sc->sc_drvbpf, &sc->sc_txtap, sc->sc_txtap_len,
|
|
m0, BPF_DIRECTION_OUT);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Formulate first tx descriptor with tx controls.
|
|
*/
|
|
tries = IEEE80211_IS_MULTICAST(wh->i_addr1) ? 1 : 15;
|
|
/* XXX check return value? */
|
|
ath_hal_setup_tx_desc(ah, ds
|
|
, pktlen /* packet length */
|
|
, hdrlen /* header length */
|
|
, atype /* Atheros packet type */
|
|
, 60 /* txpower XXX */
|
|
, txrate, tries /* series 0 rate/tries */
|
|
, iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
|
|
, antenna /* antenna mode */
|
|
, flags /* flags */
|
|
, ctsrate /* rts/cts rate */
|
|
, ctsduration /* rts/cts duration */
|
|
);
|
|
#ifdef notyet
|
|
ath_hal_setup_xtx_desc(ah, ds
|
|
, AH_FALSE /* short preamble */
|
|
, 0, 0 /* series 1 rate/tries */
|
|
, 0, 0 /* series 2 rate/tries */
|
|
, 0, 0 /* series 3 rate/tries */
|
|
);
|
|
#endif
|
|
/*
|
|
* Fillin the remainder of the descriptor info.
|
|
*/
|
|
for (i = 0; i < bf->bf_nseg; i++, ds++) {
|
|
ds->ds_data = bf->bf_segs[i].ds_addr;
|
|
if (i == bf->bf_nseg - 1) {
|
|
ds->ds_link = 0;
|
|
} else {
|
|
ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
|
|
}
|
|
ath_hal_fill_tx_desc(ah, ds
|
|
, bf->bf_segs[i].ds_len /* segment length */
|
|
, i == 0 /* first segment */
|
|
, i == bf->bf_nseg - 1 /* last segment */
|
|
);
|
|
DPRINTF(ATH_DEBUG_XMIT,
|
|
("%s: %d: %08x %08x %08x %08x %08x %08x\n",
|
|
__func__, i, ds->ds_link, ds->ds_data,
|
|
ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]));
|
|
}
|
|
|
|
/*
|
|
* Insert the frame on the outbound list and
|
|
* pass it on to the hardware.
|
|
*/
|
|
s = splnet();
|
|
TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
|
|
if (sc->sc_txlink == NULL) {
|
|
ath_hal_put_tx_buf(ah, sc->sc_txhalq[hwqueue], bf->bf_daddr);
|
|
DPRINTF(ATH_DEBUG_XMIT, ("%s: TXDP0 = %p (%p)\n", __func__,
|
|
(caddr_t)bf->bf_daddr, bf->bf_desc));
|
|
} else {
|
|
*sc->sc_txlink = bf->bf_daddr;
|
|
DPRINTF(ATH_DEBUG_XMIT, ("%s: link(%p)=%p (%p)\n", __func__,
|
|
sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
|
|
}
|
|
sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
|
|
splx(s);
|
|
|
|
ath_hal_tx_start(ah, sc->sc_txhalq[hwqueue]);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ath_tx_proc(void *arg, int npending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_buf *bf;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
struct ath_desc *ds;
|
|
struct ieee80211_node *ni;
|
|
struct ath_node *an;
|
|
int sr, lr, s;
|
|
HAL_STATUS status;
|
|
|
|
for (;;) {
|
|
s = splnet();
|
|
bf = TAILQ_FIRST(&sc->sc_txq);
|
|
if (bf == NULL) {
|
|
sc->sc_txlink = NULL;
|
|
splx(s);
|
|
break;
|
|
}
|
|
/* only the last descriptor is needed */
|
|
ds = &bf->bf_desc[bf->bf_nseg - 1];
|
|
status = ath_hal_proc_tx_desc(ah, ds);
|
|
#ifdef AR_DEBUG
|
|
if (ath_debug & ATH_DEBUG_XMIT_DESC)
|
|
ath_printtxbuf(bf, status == HAL_OK);
|
|
#endif
|
|
if (status == HAL_EINPROGRESS) {
|
|
splx(s);
|
|
break;
|
|
}
|
|
TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
|
|
splx(s);
|
|
|
|
ni = bf->bf_node;
|
|
if (ni != NULL) {
|
|
an = (struct ath_node *) ni;
|
|
if (ds->ds_txstat.ts_status == 0) {
|
|
if (bf->bf_id.id_node != NULL)
|
|
ieee80211_rssadapt_raise_rate(ic,
|
|
&an->an_rssadapt, &bf->bf_id);
|
|
an->an_tx_antenna = ds->ds_txstat.ts_antenna;
|
|
} else {
|
|
if (bf->bf_id.id_node != NULL)
|
|
ieee80211_rssadapt_lower_rate(ic, ni,
|
|
&an->an_rssadapt, &bf->bf_id);
|
|
if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
|
|
sc->sc_stats.ast_tx_xretries++;
|
|
if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
|
|
sc->sc_stats.ast_tx_fifoerr++;
|
|
if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
|
|
sc->sc_stats.ast_tx_filtered++;
|
|
an->an_tx_antenna = 0; /* invalidate */
|
|
}
|
|
sr = ds->ds_txstat.ts_shortretry;
|
|
lr = ds->ds_txstat.ts_longretry;
|
|
sc->sc_stats.ast_tx_shortretry += sr;
|
|
sc->sc_stats.ast_tx_longretry += lr;
|
|
/*
|
|
* Reclaim reference to node.
|
|
*
|
|
* NB: the node may be reclaimed here if, for example
|
|
* this is a DEAUTH message that was sent and the
|
|
* node was timed out due to inactivity.
|
|
*/
|
|
ieee80211_release_node(ic, ni);
|
|
}
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
|
|
bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
bf->bf_node = NULL;
|
|
|
|
s = splnet();
|
|
TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
|
|
splx(s);
|
|
}
|
|
ifq_clr_oactive(&ifp->if_snd);
|
|
sc->sc_tx_timer = 0;
|
|
|
|
ath_start(ifp);
|
|
}
|
|
|
|
/*
|
|
* Drain the transmit queue and reclaim resources.
|
|
*/
|
|
void
|
|
ath_draintxq(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
struct ieee80211_node *ni;
|
|
struct ath_buf *bf;
|
|
int s, i;
|
|
|
|
/* XXX return value */
|
|
if (!sc->sc_invalid) {
|
|
for (i = 0; i <= HAL_TX_QUEUE_ID_DATA_MAX; i++) {
|
|
/* don't touch the hardware if marked invalid */
|
|
(void) ath_hal_stop_tx_dma(ah, sc->sc_txhalq[i]);
|
|
DPRINTF(ATH_DEBUG_RESET,
|
|
("%s: tx queue %d (%p), link %p\n", __func__, i,
|
|
(caddr_t)(u_intptr_t)ath_hal_get_tx_buf(ah,
|
|
sc->sc_txhalq[i]), sc->sc_txlink));
|
|
}
|
|
(void) ath_hal_stop_tx_dma(ah, sc->sc_bhalq);
|
|
DPRINTF(ATH_DEBUG_RESET,
|
|
("%s: beacon queue (%p)\n", __func__,
|
|
(caddr_t)(u_intptr_t)ath_hal_get_tx_buf(ah, sc->sc_bhalq)));
|
|
}
|
|
for (;;) {
|
|
s = splnet();
|
|
bf = TAILQ_FIRST(&sc->sc_txq);
|
|
if (bf == NULL) {
|
|
sc->sc_txlink = NULL;
|
|
splx(s);
|
|
break;
|
|
}
|
|
TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
|
|
splx(s);
|
|
#ifdef AR_DEBUG
|
|
if (ath_debug & ATH_DEBUG_RESET) {
|
|
ath_printtxbuf(bf,
|
|
ath_hal_proc_tx_desc(ah, bf->bf_desc) == HAL_OK);
|
|
}
|
|
#endif /* AR_DEBUG */
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
ni = bf->bf_node;
|
|
bf->bf_node = NULL;
|
|
s = splnet();
|
|
if (ni != NULL) {
|
|
/*
|
|
* Reclaim node reference.
|
|
*/
|
|
ieee80211_release_node(ic, ni);
|
|
}
|
|
TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
|
|
splx(s);
|
|
}
|
|
ifq_clr_oactive(&ifp->if_snd);
|
|
sc->sc_tx_timer = 0;
|
|
}
|
|
|
|
/*
|
|
* Disable the receive h/w in preparation for a reset.
|
|
*/
|
|
void
|
|
ath_stoprecv(struct ath_softc *sc)
|
|
{
|
|
#define PA2DESC(_sc, _pa) \
|
|
((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
|
|
((_pa) - (_sc)->sc_desc_paddr)))
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
ath_hal_stop_pcu_recv(ah); /* disable PCU */
|
|
ath_hal_set_rx_filter(ah, 0); /* clear recv filter */
|
|
ath_hal_stop_rx_dma(ah); /* disable DMA engine */
|
|
#ifdef AR_DEBUG
|
|
if (ath_debug & ATH_DEBUG_RESET) {
|
|
struct ath_buf *bf;
|
|
|
|
printf("%s: rx queue %p, link %p\n", __func__,
|
|
(caddr_t)(u_intptr_t)ath_hal_get_rx_buf(ah), sc->sc_rxlink);
|
|
TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
|
|
struct ath_desc *ds = bf->bf_desc;
|
|
if (ath_hal_proc_rx_desc(ah, ds, bf->bf_daddr,
|
|
PA2DESC(sc, ds->ds_link)) == HAL_OK)
|
|
ath_printrxbuf(bf, 1);
|
|
}
|
|
}
|
|
#endif
|
|
sc->sc_rxlink = NULL; /* just in case */
|
|
#undef PA2DESC
|
|
}
|
|
|
|
/*
|
|
* Enable the receive h/w following a reset.
|
|
*/
|
|
int
|
|
ath_startrecv(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_buf *bf;
|
|
|
|
sc->sc_rxlink = NULL;
|
|
TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
|
|
int error = ath_rxbuf_init(sc, bf);
|
|
if (error != 0) {
|
|
DPRINTF(ATH_DEBUG_RECV,
|
|
("%s: ath_rxbuf_init failed %d\n",
|
|
__func__, error));
|
|
return error;
|
|
}
|
|
}
|
|
|
|
bf = TAILQ_FIRST(&sc->sc_rxbuf);
|
|
ath_hal_put_rx_buf(ah, bf->bf_daddr);
|
|
ath_hal_start_rx(ah); /* enable recv descriptors */
|
|
ath_mode_init(sc); /* set filters, etc. */
|
|
ath_hal_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set/change channels. If the channel is really being changed,
|
|
* it's done by resetting the chip. To accomplish this we must
|
|
* first cleanup any pending DMA, then restart stuff after a la
|
|
* ath_init.
|
|
*/
|
|
int
|
|
ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
|
|
DPRINTF(ATH_DEBUG_ANY, ("%s: %u (%u MHz) -> %u (%u MHz)\n", __func__,
|
|
ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
|
|
ic->ic_ibss_chan->ic_freq,
|
|
ieee80211_chan2ieee(ic, chan), chan->ic_freq));
|
|
if (chan != ic->ic_ibss_chan) {
|
|
HAL_STATUS status;
|
|
HAL_CHANNEL hchan;
|
|
enum ieee80211_phymode mode;
|
|
|
|
/*
|
|
* To switch channels clear any pending DMA operations;
|
|
* wait long enough for the RX fifo to drain, reset the
|
|
* hardware at the new frequency, and then re-enable
|
|
* the relevant bits of the h/w.
|
|
*/
|
|
ath_hal_set_intr(ah, 0); /* disable interrupts */
|
|
ath_draintxq(sc); /* clear pending tx frames */
|
|
ath_stoprecv(sc); /* turn off frame recv */
|
|
/*
|
|
* Convert to a HAL channel description.
|
|
*/
|
|
hchan.channel = chan->ic_freq;
|
|
hchan.channelFlags = chan->ic_flags;
|
|
if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE,
|
|
&status)) {
|
|
printf("%s: ath_chan_set: unable to reset "
|
|
"channel %u (%u MHz)\n", ifp->if_xname,
|
|
ieee80211_chan2ieee(ic, chan), chan->ic_freq);
|
|
return EIO;
|
|
}
|
|
ath_set_slot_time(sc);
|
|
/*
|
|
* Re-enable rx framework.
|
|
*/
|
|
if (ath_startrecv(sc) != 0) {
|
|
printf("%s: ath_chan_set: unable to restart recv "
|
|
"logic\n", ifp->if_xname);
|
|
return EIO;
|
|
}
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Update BPF state.
|
|
*/
|
|
sc->sc_txtap.wt_chan_freq = sc->sc_rxtap.wr_chan_freq =
|
|
htole16(chan->ic_freq);
|
|
sc->sc_txtap.wt_chan_flags = sc->sc_rxtap.wr_chan_flags =
|
|
htole16(chan->ic_flags);
|
|
#endif
|
|
|
|
/*
|
|
* Change channels and update the h/w rate map
|
|
* if we're switching; e.g. 11a to 11b/g.
|
|
*/
|
|
ic->ic_ibss_chan = chan;
|
|
mode = ieee80211_chan2mode(ic, chan);
|
|
if (mode != sc->sc_curmode)
|
|
ath_setcurmode(sc, mode);
|
|
|
|
/*
|
|
* Re-enable interrupts.
|
|
*/
|
|
ath_hal_set_intr(ah, sc->sc_imask);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ath_next_scan(void *arg)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
int s;
|
|
|
|
/* don't call ath_start w/o network interrupts blocked */
|
|
s = splnet();
|
|
|
|
if (ic->ic_state == IEEE80211_S_SCAN)
|
|
ieee80211_next_scan(ifp);
|
|
splx(s);
|
|
}
|
|
|
|
int
|
|
ath_set_slot_time(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
if (ic->ic_flags & IEEE80211_F_SHSLOT)
|
|
return (ath_hal_set_slot_time(ah, HAL_SLOT_TIME_9));
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Periodically recalibrate the PHY to account
|
|
* for temperature/environment changes.
|
|
*/
|
|
void
|
|
ath_calibrate(void *arg)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_channel *c;
|
|
HAL_CHANNEL hchan;
|
|
int s;
|
|
|
|
sc->sc_stats.ast_per_cal++;
|
|
|
|
/*
|
|
* Convert to a HAL channel description.
|
|
*/
|
|
c = ic->ic_ibss_chan;
|
|
hchan.channel = c->ic_freq;
|
|
hchan.channelFlags = c->ic_flags;
|
|
|
|
s = splnet();
|
|
DPRINTF(ATH_DEBUG_CALIBRATE,
|
|
("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
|
|
|
|
if (ath_hal_get_rf_gain(ah) == HAL_RFGAIN_NEED_CHANGE) {
|
|
/*
|
|
* Rfgain is out of bounds, reset the chip
|
|
* to load new gain values.
|
|
*/
|
|
sc->sc_stats.ast_per_rfgain++;
|
|
ath_reset(sc, 1);
|
|
}
|
|
if (!ath_hal_calibrate(ah, &hchan)) {
|
|
DPRINTF(ATH_DEBUG_ANY,
|
|
("%s: calibration of channel %u failed\n",
|
|
__func__, c->ic_freq));
|
|
sc->sc_stats.ast_per_calfail++;
|
|
}
|
|
timeout_add_sec(&sc->sc_cal_to, ath_calinterval);
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
ath_ledstate(struct ath_softc *sc, enum ieee80211_state state)
|
|
{
|
|
HAL_LED_STATE led = HAL_LED_INIT;
|
|
u_int32_t softled = AR5K_SOFTLED_OFF;
|
|
|
|
switch (state) {
|
|
case IEEE80211_S_INIT:
|
|
break;
|
|
case IEEE80211_S_SCAN:
|
|
led = HAL_LED_SCAN;
|
|
break;
|
|
case IEEE80211_S_AUTH:
|
|
led = HAL_LED_AUTH;
|
|
break;
|
|
case IEEE80211_S_ASSOC:
|
|
led = HAL_LED_ASSOC;
|
|
softled = AR5K_SOFTLED_ON;
|
|
break;
|
|
case IEEE80211_S_RUN:
|
|
led = HAL_LED_RUN;
|
|
softled = AR5K_SOFTLED_ON;
|
|
break;
|
|
}
|
|
|
|
ath_hal_set_ledstate(sc->sc_ah, led);
|
|
if (sc->sc_softled) {
|
|
ath_hal_set_gpio_output(sc->sc_ah, AR5K_SOFTLED_PIN);
|
|
ath_hal_set_gpio(sc->sc_ah, AR5K_SOFTLED_PIN, softled);
|
|
}
|
|
}
|
|
|
|
int
|
|
ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
|
|
{
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211_node *ni;
|
|
const u_int8_t *bssid;
|
|
int error, i;
|
|
|
|
u_int32_t rfilt;
|
|
|
|
DPRINTF(ATH_DEBUG_ANY, ("%s: %s -> %s\n", __func__,
|
|
ieee80211_state_name[ic->ic_state],
|
|
ieee80211_state_name[nstate]));
|
|
|
|
timeout_del(&sc->sc_scan_to);
|
|
timeout_del(&sc->sc_cal_to);
|
|
ath_ledstate(sc, nstate);
|
|
|
|
if (nstate == IEEE80211_S_INIT) {
|
|
timeout_del(&sc->sc_rssadapt_to);
|
|
sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
|
|
ath_hal_set_intr(ah, sc->sc_imask);
|
|
return (*sc->sc_newstate)(ic, nstate, arg);
|
|
}
|
|
ni = ic->ic_bss;
|
|
error = ath_chan_set(sc, ni->ni_chan);
|
|
if (error != 0)
|
|
goto bad;
|
|
rfilt = ath_calcrxfilter(sc);
|
|
if (nstate == IEEE80211_S_SCAN ||
|
|
ic->ic_opmode == IEEE80211_M_MONITOR) {
|
|
bssid = sc->sc_broadcast_addr;
|
|
} else {
|
|
bssid = ni->ni_bssid;
|
|
}
|
|
ath_hal_set_rx_filter(ah, rfilt);
|
|
DPRINTF(ATH_DEBUG_ANY, ("%s: RX filter 0x%x bssid %s\n",
|
|
__func__, rfilt, ether_sprintf((u_char*)bssid)));
|
|
|
|
if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA) {
|
|
ath_hal_set_associd(ah, bssid, ni->ni_associd);
|
|
} else {
|
|
ath_hal_set_associd(ah, bssid, 0);
|
|
}
|
|
|
|
if (!ath_softcrypto && (ic->ic_flags & IEEE80211_F_WEPON)) {
|
|
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
|
|
if (ath_hal_is_key_valid(ah, i))
|
|
ath_hal_set_key_lladdr(ah, i, bssid);
|
|
}
|
|
}
|
|
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
|
|
/* nothing to do */
|
|
} else if (nstate == IEEE80211_S_RUN) {
|
|
DPRINTF(ATH_DEBUG_ANY, ("%s(RUN): "
|
|
"ic_flags=0x%08x iv=%d bssid=%s "
|
|
"capinfo=0x%04x chan=%d\n",
|
|
__func__,
|
|
ic->ic_flags,
|
|
ni->ni_intval,
|
|
ether_sprintf(ni->ni_bssid),
|
|
ni->ni_capinfo,
|
|
ieee80211_chan2ieee(ic, ni->ni_chan)));
|
|
|
|
/*
|
|
* Allocate and setup the beacon frame for AP or adhoc mode.
|
|
*/
|
|
#ifndef IEEE80211_STA_ONLY
|
|
if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
|
|
ic->ic_opmode == IEEE80211_M_IBSS) {
|
|
error = ath_beacon_alloc(sc, ni);
|
|
if (error != 0)
|
|
goto bad;
|
|
}
|
|
#endif
|
|
/*
|
|
* Configure the beacon and sleep timers.
|
|
*/
|
|
ath_beacon_config(sc);
|
|
} else {
|
|
sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
|
|
ath_hal_set_intr(ah, sc->sc_imask);
|
|
}
|
|
|
|
/*
|
|
* Invoke the parent method to complete the work.
|
|
*/
|
|
error = (*sc->sc_newstate)(ic, nstate, arg);
|
|
|
|
if (nstate == IEEE80211_S_RUN) {
|
|
/* start periodic recalibration timer */
|
|
timeout_add_sec(&sc->sc_cal_to, ath_calinterval);
|
|
|
|
if (ic->ic_opmode != IEEE80211_M_MONITOR)
|
|
timeout_add_msec(&sc->sc_rssadapt_to, 100);
|
|
} else if (nstate == IEEE80211_S_SCAN) {
|
|
/* start ap/neighbor scan timer */
|
|
timeout_add_msec(&sc->sc_scan_to, ath_dwelltime);
|
|
}
|
|
bad:
|
|
return error;
|
|
}
|
|
|
|
#ifndef IEEE80211_STA_ONLY
|
|
void
|
|
ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
|
|
struct ieee80211_node *ni, struct ieee80211_rxinfo *rxi, int subtype)
|
|
{
|
|
struct ath_softc *sc = (struct ath_softc*)ic->ic_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
(*sc->sc_recv_mgmt)(ic, m, ni, rxi, subtype);
|
|
|
|
switch (subtype) {
|
|
case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
|
|
case IEEE80211_FC0_SUBTYPE_BEACON:
|
|
if (ic->ic_opmode != IEEE80211_M_IBSS ||
|
|
ic->ic_state != IEEE80211_S_RUN)
|
|
break;
|
|
if (ieee80211_ibss_merge(ic, ni, ath_hal_get_tsf64(ah)) ==
|
|
ENETRESET)
|
|
ath_hal_set_associd(ah, ic->ic_bss->ni_bssid, 0);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Setup driver-specific state for a newly associated node.
|
|
* Note that we're called also on a re-associate, the isnew
|
|
* param tells us if this is the first time or not.
|
|
*/
|
|
void
|
|
ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
|
|
{
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR)
|
|
return;
|
|
}
|
|
|
|
int
|
|
ath_getchannels(struct ath_softc *sc, HAL_BOOL outdoor, HAL_BOOL xchanmode)
|
|
{
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ifnet *ifp = &ic->ic_if;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_CHANNEL *chans;
|
|
int i, ix, nchan;
|
|
|
|
sc->sc_nchan = 0;
|
|
chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
|
|
M_TEMP, M_NOWAIT);
|
|
if (chans == NULL) {
|
|
printf("%s: unable to allocate channel table\n", ifp->if_xname);
|
|
return ENOMEM;
|
|
}
|
|
if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
|
|
HAL_MODE_ALL, outdoor, xchanmode)) {
|
|
printf("%s: unable to collect channel list from hal\n",
|
|
ifp->if_xname);
|
|
free(chans, M_TEMP, 0);
|
|
return EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Convert HAL channels to ieee80211 ones and insert
|
|
* them in the table according to their channel number.
|
|
*/
|
|
for (i = 0; i < nchan; i++) {
|
|
HAL_CHANNEL *c = &chans[i];
|
|
ix = ieee80211_mhz2ieee(c->channel, c->channelFlags);
|
|
if (ix > IEEE80211_CHAN_MAX) {
|
|
printf("%s: bad hal channel %u (%u/%x) ignored\n",
|
|
ifp->if_xname, ix, c->channel, c->channelFlags);
|
|
continue;
|
|
}
|
|
DPRINTF(ATH_DEBUG_ANY,
|
|
("%s: HAL channel %d/%d freq %d flags %#04x idx %d\n",
|
|
sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags,
|
|
ix));
|
|
/* NB: flags are known to be compatible */
|
|
if (ic->ic_channels[ix].ic_freq == 0) {
|
|
ic->ic_channels[ix].ic_freq = c->channel;
|
|
ic->ic_channels[ix].ic_flags = c->channelFlags;
|
|
} else {
|
|
/* channels overlap; e.g. 11g and 11b */
|
|
ic->ic_channels[ix].ic_flags |= c->channelFlags;
|
|
}
|
|
/* count valid channels */
|
|
sc->sc_nchan++;
|
|
}
|
|
free(chans, M_TEMP, 0);
|
|
|
|
if (sc->sc_nchan < 1) {
|
|
printf("%s: no valid channels for regdomain %s(%u)\n",
|
|
ifp->if_xname, ieee80211_regdomain2name(ah->ah_regdomain),
|
|
ah->ah_regdomain);
|
|
return ENOENT;
|
|
}
|
|
|
|
/* set an initial channel */
|
|
ic->ic_ibss_chan = &ic->ic_channels[0];
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ath_rate_setup(struct ath_softc *sc, u_int mode)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
const HAL_RATE_TABLE *rt;
|
|
struct ieee80211_rateset *rs;
|
|
int i, maxrates;
|
|
|
|
switch (mode) {
|
|
case IEEE80211_MODE_11A:
|
|
sc->sc_rates[mode] = ath_hal_get_rate_table(ah, HAL_MODE_11A);
|
|
break;
|
|
case IEEE80211_MODE_11B:
|
|
sc->sc_rates[mode] = ath_hal_get_rate_table(ah, HAL_MODE_11B);
|
|
break;
|
|
case IEEE80211_MODE_11G:
|
|
sc->sc_rates[mode] = ath_hal_get_rate_table(ah, HAL_MODE_11G);
|
|
break;
|
|
default:
|
|
DPRINTF(ATH_DEBUG_ANY,
|
|
("%s: invalid mode %u\n", __func__, mode));
|
|
return 0;
|
|
}
|
|
rt = sc->sc_rates[mode];
|
|
if (rt == NULL)
|
|
return 0;
|
|
if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
|
|
DPRINTF(ATH_DEBUG_ANY,
|
|
("%s: rate table too small (%u > %u)\n",
|
|
__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
|
|
maxrates = IEEE80211_RATE_MAXSIZE;
|
|
} else {
|
|
maxrates = rt->rateCount;
|
|
}
|
|
rs = &ic->ic_sup_rates[mode];
|
|
for (i = 0; i < maxrates; i++)
|
|
rs->rs_rates[i] = rt->info[i].dot11Rate;
|
|
rs->rs_nrates = maxrates;
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
|
|
{
|
|
const HAL_RATE_TABLE *rt;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
struct ieee80211_node *ni;
|
|
int i;
|
|
|
|
memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
|
|
rt = sc->sc_rates[mode];
|
|
KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
|
|
for (i = 0; i < rt->rateCount; i++)
|
|
sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
|
|
bzero(sc->sc_hwmap, sizeof(sc->sc_hwmap));
|
|
for (i = 0; i < 32; i++)
|
|
sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
|
|
sc->sc_currates = rt;
|
|
sc->sc_curmode = mode;
|
|
ni = ic->ic_bss;
|
|
ni->ni_rates.rs_nrates = sc->sc_currates->rateCount;
|
|
if (ni->ni_txrate >= ni->ni_rates.rs_nrates)
|
|
ni->ni_txrate = 0;
|
|
}
|
|
|
|
void
|
|
ath_rssadapt_updatenode(void *arg, struct ieee80211_node *ni)
|
|
{
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
|
|
ieee80211_rssadapt_updatestats(&an->an_rssadapt);
|
|
}
|
|
|
|
void
|
|
ath_rssadapt_updatestats(void *arg)
|
|
{
|
|
struct ath_softc *sc = (struct ath_softc *)arg;
|
|
struct ieee80211com *ic = &sc->sc_ic;
|
|
|
|
if (ic->ic_opmode == IEEE80211_M_STA) {
|
|
ath_rssadapt_updatenode(arg, ic->ic_bss);
|
|
} else {
|
|
ieee80211_iterate_nodes(ic, ath_rssadapt_updatenode, arg);
|
|
}
|
|
|
|
timeout_add_msec(&sc->sc_rssadapt_to, 100);
|
|
}
|
|
|
|
#ifdef AR_DEBUG
|
|
void
|
|
ath_printrxbuf(struct ath_buf *bf, int done)
|
|
{
|
|
struct ath_desc *ds;
|
|
int i;
|
|
|
|
for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
|
|
printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
|
|
i, ds, (struct ath_desc *)bf->bf_daddr + i,
|
|
ds->ds_link, ds->ds_data,
|
|
ds->ds_ctl0, ds->ds_ctl1,
|
|
ds->ds_hw[0], ds->ds_hw[1],
|
|
!done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
|
|
}
|
|
}
|
|
|
|
void
|
|
ath_printtxbuf(struct ath_buf *bf, int done)
|
|
{
|
|
struct ath_desc *ds;
|
|
int i;
|
|
|
|
for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
|
|
printf("T%d (%p %p) "
|
|
"%08x %08x %08x %08x %08x %08x %08x %08x %c\n",
|
|
i, ds, (struct ath_desc *)bf->bf_daddr + i,
|
|
ds->ds_link, ds->ds_data,
|
|
ds->ds_ctl0, ds->ds_ctl1,
|
|
ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
|
|
!done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
|
|
}
|
|
}
|
|
#endif /* AR_DEBUG */
|
|
|
|
int
|
|
ath_gpio_attach(struct ath_softc *sc, u_int16_t devid)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct gpiobus_attach_args gba;
|
|
int i;
|
|
|
|
if (ah->ah_gpio_npins < 1)
|
|
return 0;
|
|
|
|
/* Initialize gpio pins array */
|
|
for (i = 0; i < ah->ah_gpio_npins && i < AR5K_MAX_GPIO; i++) {
|
|
sc->sc_gpio_pins[i].pin_num = i;
|
|
sc->sc_gpio_pins[i].pin_caps = GPIO_PIN_INPUT |
|
|
GPIO_PIN_OUTPUT;
|
|
|
|
/* Set pin mode to input */
|
|
ath_hal_set_gpio_input(ah, i);
|
|
sc->sc_gpio_pins[i].pin_flags = GPIO_PIN_INPUT;
|
|
|
|
/* Get pin input */
|
|
sc->sc_gpio_pins[i].pin_state = ath_hal_get_gpio(ah, i) ?
|
|
GPIO_PIN_HIGH : GPIO_PIN_LOW;
|
|
}
|
|
|
|
/* Enable GPIO-controlled software LED if available */
|
|
if ((ah->ah_version == AR5K_AR5211) ||
|
|
(devid == PCI_PRODUCT_ATHEROS_AR5212_IBM)) {
|
|
sc->sc_softled = 1;
|
|
ath_hal_set_gpio_output(ah, AR5K_SOFTLED_PIN);
|
|
ath_hal_set_gpio(ah, AR5K_SOFTLED_PIN, AR5K_SOFTLED_OFF);
|
|
}
|
|
|
|
/* Create gpio controller tag */
|
|
sc->sc_gpio_gc.gp_cookie = sc;
|
|
sc->sc_gpio_gc.gp_pin_read = ath_gpio_pin_read;
|
|
sc->sc_gpio_gc.gp_pin_write = ath_gpio_pin_write;
|
|
sc->sc_gpio_gc.gp_pin_ctl = ath_gpio_pin_ctl;
|
|
|
|
gba.gba_name = "gpio";
|
|
gba.gba_gc = &sc->sc_gpio_gc;
|
|
gba.gba_pins = sc->sc_gpio_pins;
|
|
gba.gba_npins = ah->ah_gpio_npins;
|
|
|
|
#ifdef notyet
|
|
#if NGPIO > 0
|
|
if (config_found(&sc->sc_dev, &gba, gpiobus_print) == NULL)
|
|
return (ENODEV);
|
|
#endif
|
|
#endif
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ath_gpio_pin_read(void *arg, int pin)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
return (ath_hal_get_gpio(ah, pin) ? GPIO_PIN_HIGH : GPIO_PIN_LOW);
|
|
}
|
|
|
|
void
|
|
ath_gpio_pin_write(void *arg, int pin, int value)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
ath_hal_set_gpio(ah, pin, value ? GPIO_PIN_HIGH : GPIO_PIN_LOW);
|
|
}
|
|
|
|
void
|
|
ath_gpio_pin_ctl(void *arg, int pin, int flags)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
if (flags & GPIO_PIN_INPUT) {
|
|
ath_hal_set_gpio_input(ah, pin);
|
|
} else if (flags & GPIO_PIN_OUTPUT) {
|
|
ath_hal_set_gpio_output(ah, pin);
|
|
}
|
|
}
|