src/sys/dev/rnd.c

829 lines
21 KiB
C

/* $OpenBSD: rnd.c,v 1.226 2023/03/08 04:43:08 guenther Exp $ */
/*
* Copyright (c) 2011,2020 Theo de Raadt.
* Copyright (c) 2008 Damien Miller.
* Copyright (c) 1996, 1997, 2000-2002 Michael Shalayeff.
* Copyright (c) 2013 Markus Friedl.
* Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, and the entire permission notice in its entirety,
* including the disclaimer of warranties.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* ALTERNATIVELY, this product may be distributed under the terms of
* the GNU Public License, in which case the provisions of the GPL are
* required INSTEAD OF the above restrictions. (This clause is
* necessary due to a potential bad interaction between the GPL and
* the restrictions contained in a BSD-style copyright.)
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* The bootblocks pre-fill the kernel .openbsd.randomdata section with seed
* material (on-disk from previous boot, hopefully mixed with a hardware rng).
* The first arc4random(9) call initializes this seed material as a chacha
* state. Calls can be done early in kernel bootstrap code -- early use is
* encouraged.
*
* After the kernel timeout subsystem is initialized, random_start() prepares
* the entropy collection mechanism enqueue_randomness() and timeout-driven
* mixing into the chacha state. The first submissions come from device
* probes, later on interrupt-time submissions are more common. Entropy
* data (and timing information) get mixed over the entropy input ring
* rnd_event_space[] -- the goal is to collect damage.
*
* Based upon timeouts, a selection of the entropy ring rnd_event_space[]
* CRC bit-distributed and XOR mixed into entropy_pool[].
*
* From time to time, entropy_pool[] is SHA512-whitened, mixed with time
* information again, XOR'd with the inner and outer states of the existing
* chacha state, to create a new chacha state.
*
* During early boot (until cold=0), enqueue operations are immediately
* dequeued, and mixed into the chacha.
*/
#include <sys/param.h>
#include <sys/event.h>
#include <sys/ioctl.h>
#include <sys/malloc.h>
#include <sys/timeout.h>
#include <sys/atomic.h>
#include <sys/task.h>
#include <sys/msgbuf.h>
#include <sys/mount.h>
#include <sys/syscallargs.h>
#include <crypto/sha2.h>
#define KEYSTREAM_ONLY
#include <crypto/chacha_private.h>
#include <uvm/uvm_extern.h>
/*
* For the purposes of better mixing, we use the CRC-32 polynomial as
* well to make a twisted Generalized Feedback Shift Register
*
* (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
* Transactions on Modeling and Computer Simulation 2(3):179-194.
* Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
* II. ACM Transactions on Modeling and Computer Simulation 4:254-266)
*/
/*
* Stirring polynomial over GF(2). Used in add_entropy_words() below.
*
* The polynomial terms are chosen to be evenly spaced (minimum RMS
* distance from evenly spaced; except for the last tap, which is 1 to
* get the twisting happening as fast as possible.
*
* The resultant polynomial is:
* 2^POOLWORDS + 2^POOL_TAP1 + 2^POOL_TAP2 + 2^POOL_TAP3 + 2^POOL_TAP4 + 1
*/
#define POOLWORDS 2048
#define POOLBYTES (POOLWORDS*4)
#define POOLMASK (POOLWORDS - 1)
#define POOL_TAP1 1638
#define POOL_TAP2 1231
#define POOL_TAP3 819
#define POOL_TAP4 411
/*
* Raw entropy collection from device drivers; at interrupt context or not.
* enqueue_randomness() is used to submit data into the entropy input ring.
*/
#define QEVLEN 128 /* must be a power of 2 */
#define QEVCONSUME 8 /* how many events to consume a time */
#define KEYSZ 32
#define IVSZ 8
#define BLOCKSZ 64
#define RSBUFSZ (16*BLOCKSZ)
#define EBUFSIZE KEYSZ + IVSZ
struct rand_event {
u_int re_time;
u_int re_val;
} rnd_event_space[QEVLEN];
u_int rnd_event_cons;
u_int rnd_event_prod;
int rnd_cold = 1;
int rnd_slowextract = 1;
void rnd_reinit(void *v); /* timeout to start reinit */
void rnd_init(void *); /* actually do the reinit */
static u_int32_t entropy_pool[POOLWORDS];
u_int32_t entropy_pool0[POOLWORDS] __attribute__((section(".openbsd.randomdata")));
void dequeue_randomness(void *);
void add_entropy_words(const u_int32_t *, u_int);
void extract_entropy(u_int8_t *)
__attribute__((__bounded__(__minbytes__,1,EBUFSIZE)));
struct timeout rnd_timeout = TIMEOUT_INITIALIZER(dequeue_randomness, NULL);
int filt_randomread(struct knote *, long);
void filt_randomdetach(struct knote *);
int filt_randomwrite(struct knote *, long);
static void _rs_seed(u_char *, size_t);
static void _rs_clearseed(const void *p, size_t s);
const struct filterops randomread_filtops = {
.f_flags = FILTEROP_ISFD,
.f_attach = NULL,
.f_detach = filt_randomdetach,
.f_event = filt_randomread,
};
const struct filterops randomwrite_filtops = {
.f_flags = FILTEROP_ISFD,
.f_attach = NULL,
.f_detach = filt_randomdetach,
.f_event = filt_randomwrite,
};
/*
* This function mixes entropy and timing into the entropy input ring.
*/
void
enqueue_randomness(u_int val)
{
struct rand_event *rep;
int e;
e = (atomic_inc_int_nv(&rnd_event_prod) - 1) & (QEVLEN-1);
rep = &rnd_event_space[e];
rep->re_time += cpu_rnd_messybits();
rep->re_val += val;
if (rnd_cold) {
dequeue_randomness(NULL);
rnd_init(NULL);
if (!cold)
rnd_cold = 0;
} else if (!timeout_pending(&rnd_timeout) &&
(rnd_event_prod - rnd_event_cons) > QEVCONSUME) {
rnd_slowextract = min(rnd_slowextract * 2, 5000);
timeout_add_msec(&rnd_timeout, rnd_slowextract * 10);
}
}
/*
* This function merges entropy ring information into the buffer using
* a polynomial to spread the bits.
*/
void
add_entropy_words(const u_int32_t *buf, u_int n)
{
/* derived from IEEE 802.3 CRC-32 */
static const u_int32_t twist_table[8] = {
0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278
};
static u_int entropy_add_ptr;
static u_char entropy_input_rotate;
for (; n--; buf++) {
u_int32_t w = (*buf << entropy_input_rotate) |
(*buf >> ((32 - entropy_input_rotate) & 31));
u_int i = entropy_add_ptr =
(entropy_add_ptr - 1) & POOLMASK;
/*
* Normally, we add 7 bits of rotation to the pool.
* At the beginning of the pool, add an extra 7 bits
* rotation, so that successive passes spread the
* input bits across the pool evenly.
*/
entropy_input_rotate =
(entropy_input_rotate + (i ? 7 : 14)) & 31;
/* XOR pool contents corresponding to polynomial terms */
w ^= entropy_pool[(i + POOL_TAP1) & POOLMASK] ^
entropy_pool[(i + POOL_TAP2) & POOLMASK] ^
entropy_pool[(i + POOL_TAP3) & POOLMASK] ^
entropy_pool[(i + POOL_TAP4) & POOLMASK] ^
entropy_pool[(i + 1) & POOLMASK] ^
entropy_pool[i]; /* + 2^POOLWORDS */
entropy_pool[i] = (w >> 3) ^ twist_table[w & 7];
}
}
/*
* Pulls entropy out of the queue and merges it into the pool with the
* CRC. This takes a mix of fresh entries from the producer end of the
* queue and entries from the consumer end of the queue which are
* likely to have collected more damage.
*/
void
dequeue_randomness(void *v)
{
u_int32_t buf[2];
u_int startp, startc, i;
if (!rnd_cold)
timeout_del(&rnd_timeout);
/* Some very new damage */
startp = rnd_event_prod - QEVCONSUME;
for (i = 0; i < QEVCONSUME; i++) {
u_int e = (startp + i) & (QEVLEN-1);
buf[0] = rnd_event_space[e].re_time;
buf[1] = rnd_event_space[e].re_val;
add_entropy_words(buf, 2);
}
/* and some probably more damaged */
startc = rnd_event_cons;
for (i = 0; i < QEVCONSUME; i++) {
u_int e = (startc + i) & (QEVLEN-1);
buf[0] = rnd_event_space[e].re_time;
buf[1] = rnd_event_space[e].re_val;
add_entropy_words(buf, 2);
}
rnd_event_cons = startp + QEVCONSUME;
}
/*
* Grabs a chunk from the entropy_pool[] and slams it through SHA512 when
* requested.
*/
void
extract_entropy(u_int8_t *buf)
{
static u_int32_t extract_pool[POOLWORDS];
u_char digest[SHA512_DIGEST_LENGTH];
SHA2_CTX shactx;
#if SHA512_DIGEST_LENGTH < EBUFSIZE
#error "need more bigger hash output"
#endif
/*
* INTENTIONALLY not protected by any lock. Races during
* memcpy() result in acceptable input data; races during
* SHA512Update() would create nasty data dependencies. We
* do not rely on this as a benefit, but if it happens, cool.
*/
memcpy(extract_pool, entropy_pool, sizeof(extract_pool));
/* Hash the pool to get the output */
SHA512Init(&shactx);
SHA512Update(&shactx, (u_int8_t *)extract_pool, sizeof(extract_pool));
SHA512Final(digest, &shactx);
/* Copy data to destination buffer */
memcpy(buf, digest, EBUFSIZE);
/*
* Modify pool so next hash will produce different results.
* During boot-time enqueue/dequeue stage, avoid recursion.
*/
if (!rnd_cold)
enqueue_randomness(extract_pool[0]);
dequeue_randomness(NULL);
/* Wipe data from memory */
explicit_bzero(extract_pool, sizeof(extract_pool));
explicit_bzero(digest, sizeof(digest));
}
/* random keystream by ChaCha */
struct mutex rndlock = MUTEX_INITIALIZER(IPL_HIGH);
struct timeout rndreinit_timeout = TIMEOUT_INITIALIZER(rnd_reinit, NULL);
struct task rnd_task = TASK_INITIALIZER(rnd_init, NULL);
static chacha_ctx rs; /* chacha context for random keystream */
/* keystream blocks (also chacha seed from boot) */
static u_char rs_buf[RSBUFSZ];
u_char rs_buf0[RSBUFSZ] __attribute__((section(".openbsd.randomdata")));
static size_t rs_have; /* valid bytes at end of rs_buf */
static size_t rs_count; /* bytes till reseed */
void
suspend_randomness(void)
{
struct timespec ts;
getnanotime(&ts);
enqueue_randomness(ts.tv_sec);
enqueue_randomness(ts.tv_nsec);
dequeue_randomness(NULL);
rs_count = 0;
arc4random_buf(entropy_pool, sizeof(entropy_pool));
}
void
resume_randomness(char *buf, size_t buflen)
{
struct timespec ts;
if (buf && buflen)
_rs_seed(buf, buflen);
getnanotime(&ts);
enqueue_randomness(ts.tv_sec);
enqueue_randomness(ts.tv_nsec);
dequeue_randomness(NULL);
rs_count = 0;
}
static inline void _rs_rekey(u_char *dat, size_t datlen);
static inline void
_rs_init(u_char *buf, size_t n)
{
KASSERT(n >= KEYSZ + IVSZ);
chacha_keysetup(&rs, buf, KEYSZ * 8);
chacha_ivsetup(&rs, buf + KEYSZ, NULL);
}
static void
_rs_seed(u_char *buf, size_t n)
{
_rs_rekey(buf, n);
/* invalidate rs_buf */
rs_have = 0;
memset(rs_buf, 0, sizeof(rs_buf));
rs_count = 1600000;
}
static void
_rs_stir(int do_lock)
{
struct timespec ts;
u_int8_t buf[EBUFSIZE], *p;
int i;
/*
* Use SHA512 PRNG data and a system timespec; early in the boot
* process this is the best we can do -- some architectures do
* not collect entropy very well during this time, but may have
* clock information which is better than nothing.
*/
extract_entropy(buf);
nanotime(&ts);
for (p = (u_int8_t *)&ts, i = 0; i < sizeof(ts); i++)
buf[i] ^= p[i];
if (do_lock)
mtx_enter(&rndlock);
_rs_seed(buf, sizeof(buf));
if (do_lock)
mtx_leave(&rndlock);
explicit_bzero(buf, sizeof(buf));
/* encourage fast-dequeue again */
rnd_slowextract = 1;
}
static inline void
_rs_stir_if_needed(size_t len)
{
static int rs_initialized;
if (!rs_initialized) {
memcpy(entropy_pool, entropy_pool0, sizeof(entropy_pool));
memcpy(rs_buf, rs_buf0, sizeof(rs_buf));
/* seeds cannot be cleaned yet, random_start() will do so */
_rs_init(rs_buf, KEYSZ + IVSZ);
rs_count = 1024 * 1024 * 1024; /* until main() runs */
rs_initialized = 1;
} else if (rs_count <= len)
_rs_stir(0);
else
rs_count -= len;
}
static void
_rs_clearseed(const void *p, size_t s)
{
struct kmem_dyn_mode kd_avoidalias;
vaddr_t va = trunc_page((vaddr_t)p);
vsize_t off = (vaddr_t)p - va;
vsize_t len;
vaddr_t rwva;
paddr_t pa;
while (s > 0) {
pmap_extract(pmap_kernel(), va, &pa);
memset(&kd_avoidalias, 0, sizeof(kd_avoidalias));
kd_avoidalias.kd_prefer = pa;
kd_avoidalias.kd_waitok = 1;
rwva = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, &kp_none,
&kd_avoidalias);
if (!rwva)
panic("_rs_clearseed");
pmap_kenter_pa(rwva, pa, PROT_READ | PROT_WRITE);
pmap_update(pmap_kernel());
len = MIN(s, PAGE_SIZE - off);
explicit_bzero((void *)(rwva + off), len);
pmap_kremove(rwva, PAGE_SIZE);
km_free((void *)rwva, PAGE_SIZE, &kv_any, &kp_none);
va += PAGE_SIZE;
s -= len;
off = 0;
}
}
static inline void
_rs_rekey(u_char *dat, size_t datlen)
{
#ifndef KEYSTREAM_ONLY
memset(rs_buf, 0, sizeof(rs_buf));
#endif
/* fill rs_buf with the keystream */
chacha_encrypt_bytes(&rs, rs_buf, rs_buf, sizeof(rs_buf));
/* mix in optional user provided data */
if (dat) {
size_t i, m;
m = MIN(datlen, KEYSZ + IVSZ);
for (i = 0; i < m; i++)
rs_buf[i] ^= dat[i];
}
/* immediately reinit for backtracking resistance */
_rs_init(rs_buf, KEYSZ + IVSZ);
memset(rs_buf, 0, KEYSZ + IVSZ);
rs_have = sizeof(rs_buf) - KEYSZ - IVSZ;
}
static inline void
_rs_random_buf(void *_buf, size_t n)
{
u_char *buf = (u_char *)_buf;
size_t m;
_rs_stir_if_needed(n);
while (n > 0) {
if (rs_have > 0) {
m = MIN(n, rs_have);
memcpy(buf, rs_buf + sizeof(rs_buf) - rs_have, m);
memset(rs_buf + sizeof(rs_buf) - rs_have, 0, m);
buf += m;
n -= m;
rs_have -= m;
}
if (rs_have == 0)
_rs_rekey(NULL, 0);
}
}
static inline void
_rs_random_u32(u_int32_t *val)
{
_rs_stir_if_needed(sizeof(*val));
if (rs_have < sizeof(*val))
_rs_rekey(NULL, 0);
memcpy(val, rs_buf + sizeof(rs_buf) - rs_have, sizeof(*val));
memset(rs_buf + sizeof(rs_buf) - rs_have, 0, sizeof(*val));
rs_have -= sizeof(*val);
}
/* Return one word of randomness from a ChaCha20 generator */
u_int32_t
arc4random(void)
{
u_int32_t ret;
mtx_enter(&rndlock);
_rs_random_u32(&ret);
mtx_leave(&rndlock);
return ret;
}
/*
* Fill a buffer of arbitrary length with ChaCha20-derived randomness.
*/
void
arc4random_buf(void *buf, size_t n)
{
mtx_enter(&rndlock);
_rs_random_buf(buf, n);
mtx_leave(&rndlock);
}
/*
* Allocate a new ChaCha20 context for the caller to use.
*/
struct arc4random_ctx *
arc4random_ctx_new(void)
{
char keybuf[KEYSZ + IVSZ];
chacha_ctx *ctx = malloc(sizeof(chacha_ctx), M_TEMP, M_WAITOK);
arc4random_buf(keybuf, KEYSZ + IVSZ);
chacha_keysetup(ctx, keybuf, KEYSZ * 8);
chacha_ivsetup(ctx, keybuf + KEYSZ, NULL);
explicit_bzero(keybuf, sizeof(keybuf));
return (struct arc4random_ctx *)ctx;
}
/*
* Free a ChaCha20 context created by arc4random_ctx_new()
*/
void
arc4random_ctx_free(struct arc4random_ctx *ctx)
{
explicit_bzero(ctx, sizeof(chacha_ctx));
free(ctx, M_TEMP, sizeof(chacha_ctx));
}
/*
* Use a given ChaCha20 context to fill a buffer
*/
void
arc4random_ctx_buf(struct arc4random_ctx *ctx, void *buf, size_t n)
{
#ifndef KEYSTREAM_ONLY
memset(buf, 0, n);
#endif
chacha_encrypt_bytes((chacha_ctx *)ctx, buf, buf, n);
}
/*
* Calculate a uniformly distributed random number less than upper_bound
* avoiding "modulo bias".
*
* Uniformity is achieved by generating new random numbers until the one
* returned is outside the range [0, 2**32 % upper_bound). This
* guarantees the selected random number will be inside
* [2**32 % upper_bound, 2**32) which maps back to [0, upper_bound)
* after reduction modulo upper_bound.
*/
u_int32_t
arc4random_uniform(u_int32_t upper_bound)
{
u_int32_t r, min;
if (upper_bound < 2)
return 0;
/* 2**32 % x == (2**32 - x) % x */
min = -upper_bound % upper_bound;
/*
* This could theoretically loop forever but each retry has
* p > 0.5 (worst case, usually far better) of selecting a
* number inside the range we need, so it should rarely need
* to re-roll.
*/
for (;;) {
r = arc4random();
if (r >= min)
break;
}
return r % upper_bound;
}
void
rnd_init(void *null)
{
_rs_stir(1);
}
/*
* Called by timeout to mark arc4 for stirring,
*/
void
rnd_reinit(void *v)
{
task_add(systq, &rnd_task);
/* 10 minutes, per dm@'s suggestion */
timeout_add_sec(&rndreinit_timeout, 10 * 60);
}
/*
* Start periodic services inside the random subsystem, which pull
* entropy forward, hash it, and re-seed the random stream as needed.
*/
void
random_start(int goodseed)
{
extern char etext[];
#if !defined(NO_PROPOLICE)
extern long __guard_local;
if (__guard_local == 0)
printf("warning: no entropy supplied by boot loader\n");
#endif
_rs_clearseed(entropy_pool0, sizeof(entropy_pool0));
_rs_clearseed(rs_buf0, sizeof(rs_buf0));
/* Message buffer may contain data from previous boot */
if (msgbufp->msg_magic == MSG_MAGIC)
add_entropy_words((u_int32_t *)msgbufp->msg_bufc,
msgbufp->msg_bufs / sizeof(u_int32_t));
add_entropy_words((u_int32_t *)etext - 32*1024,
8192/sizeof(u_int32_t));
dequeue_randomness(NULL);
rnd_init(NULL);
rnd_reinit(NULL);
if (goodseed)
printf("random: good seed from bootblocks\n");
else {
/* XXX kernel should work harder here */
printf("random: boothowto does not indicate good seed\n");
}
}
int
randomopen(dev_t dev, int flag, int mode, struct proc *p)
{
return 0;
}
int
randomclose(dev_t dev, int flag, int mode, struct proc *p)
{
return 0;
}
/*
* Maximum number of bytes to serve directly from the main ChaCha
* pool. Larger requests are served from a discrete ChaCha instance keyed
* from the main pool.
*/
#define RND_MAIN_MAX_BYTES 2048
int
randomread(dev_t dev, struct uio *uio, int ioflag)
{
struct arc4random_ctx *lctx = NULL;
size_t total = uio->uio_resid;
u_char *buf;
int ret = 0;
if (uio->uio_resid == 0)
return 0;
buf = malloc(POOLBYTES, M_TEMP, M_WAITOK);
if (total > RND_MAIN_MAX_BYTES)
lctx = arc4random_ctx_new();
while (ret == 0 && uio->uio_resid > 0) {
size_t n = ulmin(POOLBYTES, uio->uio_resid);
if (lctx != NULL)
arc4random_ctx_buf(lctx, buf, n);
else
arc4random_buf(buf, n);
ret = uiomove(buf, n, uio);
if (ret == 0 && uio->uio_resid > 0)
yield();
}
if (lctx != NULL)
arc4random_ctx_free(lctx);
explicit_bzero(buf, POOLBYTES);
free(buf, M_TEMP, POOLBYTES);
return ret;
}
int
randomwrite(dev_t dev, struct uio *uio, int flags)
{
int ret = 0, newdata = 0;
u_int32_t *buf;
if (uio->uio_resid == 0)
return 0;
buf = malloc(POOLBYTES, M_TEMP, M_WAITOK);
while (ret == 0 && uio->uio_resid > 0) {
size_t n = ulmin(POOLBYTES, uio->uio_resid);
ret = uiomove(buf, n, uio);
if (ret != 0)
break;
while (n % sizeof(u_int32_t))
((u_int8_t *)buf)[n++] = 0;
add_entropy_words(buf, n / 4);
if (uio->uio_resid > 0)
yield();
newdata = 1;
}
if (newdata)
rnd_init(NULL);
explicit_bzero(buf, POOLBYTES);
free(buf, M_TEMP, POOLBYTES);
return ret;
}
int
randomkqfilter(dev_t dev, struct knote *kn)
{
switch (kn->kn_filter) {
case EVFILT_READ:
kn->kn_fop = &randomread_filtops;
break;
case EVFILT_WRITE:
kn->kn_fop = &randomwrite_filtops;
break;
default:
return (EINVAL);
}
return (0);
}
void
filt_randomdetach(struct knote *kn)
{
}
int
filt_randomread(struct knote *kn, long hint)
{
kn->kn_data = RND_MAIN_MAX_BYTES;
return (1);
}
int
filt_randomwrite(struct knote *kn, long hint)
{
kn->kn_data = POOLBYTES;
return (1);
}
int
randomioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
{
switch (cmd) {
case FIOASYNC:
/* No async flag in softc so this is a no-op. */
break;
case FIONBIO:
/* Handled in the upper FS layer. */
break;
default:
return ENOTTY;
}
return 0;
}
int
sys_getentropy(struct proc *p, void *v, register_t *retval)
{
struct sys_getentropy_args /* {
syscallarg(void *) buf;
syscallarg(size_t) nbyte;
} */ *uap = v;
char buf[256];
int error;
if (SCARG(uap, nbyte) > sizeof(buf))
return (EIO);
arc4random_buf(buf, SCARG(uap, nbyte));
if ((error = copyout(buf, SCARG(uap, buf), SCARG(uap, nbyte))) != 0)
return (error);
explicit_bzero(buf, sizeof(buf));
*retval = 0;
return (0);
}