src/sys/dev/softraid.c

5186 lines
129 KiB
C

/* $OpenBSD: softraid.c,v 1.430 2024/02/03 18:51:58 beck Exp $ */
/*
* Copyright (c) 2007, 2008, 2009 Marco Peereboom <marco@peereboom.us>
* Copyright (c) 2008 Chris Kuethe <ckuethe@openbsd.org>
* Copyright (c) 2009 Joel Sing <jsing@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "bio.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/device.h>
#include <sys/ioctl.h>
#include <sys/malloc.h>
#include <sys/pool.h>
#include <sys/kernel.h>
#include <sys/disk.h>
#include <sys/rwlock.h>
#include <sys/queue.h>
#include <sys/fcntl.h>
#include <sys/disklabel.h>
#include <sys/vnode.h>
#include <sys/lock.h>
#include <sys/mount.h>
#include <sys/sensors.h>
#include <sys/stat.h>
#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/task.h>
#include <sys/kthread.h>
#include <sys/dkio.h>
#include <sys/stdint.h>
#include <scsi/scsi_all.h>
#include <scsi/scsiconf.h>
#include <scsi/scsi_disk.h>
#include <dev/softraidvar.h>
#ifdef HIBERNATE
#include <lib/libsa/aes_xts.h>
#include <sys/hibernate.h>
#include <scsi/sdvar.h>
#endif /* HIBERNATE */
/* #define SR_FANCY_STATS */
#ifdef SR_DEBUG
#define SR_FANCY_STATS
uint32_t sr_debug = 0
/* | SR_D_CMD */
/* | SR_D_MISC */
/* | SR_D_INTR */
/* | SR_D_IOCTL */
/* | SR_D_CCB */
/* | SR_D_WU */
/* | SR_D_META */
/* | SR_D_DIS */
/* | SR_D_STATE */
/* | SR_D_REBUILD */
;
#endif
struct sr_softc *softraid0;
struct sr_uuid sr_bootuuid;
u_int8_t sr_bootkey[SR_CRYPTO_MAXKEYBYTES];
int sr_match(struct device *, void *, void *);
void sr_attach(struct device *, struct device *, void *);
int sr_detach(struct device *, int);
void sr_map_root(void);
const struct cfattach softraid_ca = {
sizeof(struct sr_softc), sr_match, sr_attach, sr_detach,
};
struct cfdriver softraid_cd = {
NULL, "softraid", DV_DULL
};
/* scsi & discipline */
void sr_scsi_cmd(struct scsi_xfer *);
int sr_scsi_probe(struct scsi_link *);
int sr_scsi_ioctl(struct scsi_link *, u_long,
caddr_t, int);
int sr_bio_ioctl(struct device *, u_long, caddr_t);
int sr_bio_handler(struct sr_softc *,
struct sr_discipline *, u_long, struct bio *);
int sr_ioctl_inq(struct sr_softc *, struct bioc_inq *);
int sr_ioctl_vol(struct sr_softc *, struct bioc_vol *);
int sr_ioctl_disk(struct sr_softc *, struct bioc_disk *);
int sr_ioctl_setstate(struct sr_softc *,
struct bioc_setstate *);
int sr_ioctl_createraid(struct sr_softc *,
struct bioc_createraid *, int, void *);
int sr_ioctl_deleteraid(struct sr_softc *,
struct sr_discipline *, struct bioc_deleteraid *);
int sr_ioctl_discipline(struct sr_softc *,
struct sr_discipline *, struct bioc_discipline *);
int sr_ioctl_installboot(struct sr_softc *,
struct sr_discipline *, struct bioc_installboot *);
void sr_chunks_unwind(struct sr_softc *,
struct sr_chunk_head *);
void sr_discipline_free(struct sr_discipline *);
void sr_discipline_shutdown(struct sr_discipline *, int, int);
int sr_discipline_init(struct sr_discipline *, int);
int sr_alloc_resources(struct sr_discipline *);
void sr_free_resources(struct sr_discipline *);
void sr_set_chunk_state(struct sr_discipline *, int, int);
void sr_set_vol_state(struct sr_discipline *);
/* utility functions */
void sr_shutdown(int);
void sr_uuid_generate(struct sr_uuid *);
char *sr_uuid_format(struct sr_uuid *);
void sr_uuid_print(struct sr_uuid *, int);
void sr_checksum_print(u_int8_t *);
int sr_boot_assembly(struct sr_softc *);
int sr_already_assembled(struct sr_discipline *);
int sr_hotspare(struct sr_softc *, dev_t);
void sr_hotspare_rebuild(struct sr_discipline *);
int sr_rebuild_init(struct sr_discipline *, dev_t, int);
void sr_rebuild_start(void *);
void sr_rebuild_thread(void *);
void sr_rebuild(struct sr_discipline *);
void sr_roam_chunks(struct sr_discipline *);
int sr_chunk_in_use(struct sr_softc *, dev_t);
int sr_rw(struct sr_softc *, dev_t, char *, size_t,
daddr_t, long);
void sr_wu_done_callback(void *);
struct sr_discipline *sr_find_discipline(struct sr_softc *sc, const char *);
/* don't include these on RAMDISK */
#ifndef SMALL_KERNEL
void sr_sensors_refresh(void *);
int sr_sensors_create(struct sr_discipline *);
void sr_sensors_delete(struct sr_discipline *);
#endif
/* metadata */
int sr_meta_probe(struct sr_discipline *, dev_t *, int);
int sr_meta_attach(struct sr_discipline *, int, int);
int sr_meta_rw(struct sr_discipline *, dev_t, void *, long);
int sr_meta_clear(struct sr_discipline *);
void sr_meta_init(struct sr_discipline *, int, int);
void sr_meta_init_complete(struct sr_discipline *);
void sr_meta_opt_handler(struct sr_discipline *,
struct sr_meta_opt_hdr *);
/* hotplug magic */
void sr_disk_attach(struct disk *, int);
struct sr_hotplug_list {
void (*sh_hotplug)(struct sr_discipline *,
struct disk *, int);
struct sr_discipline *sh_sd;
SLIST_ENTRY(sr_hotplug_list) shl_link;
};
SLIST_HEAD(sr_hotplug_list_head, sr_hotplug_list);
struct sr_hotplug_list_head sr_hotplug_callbacks;
extern void (*softraid_disk_attach)(struct disk *, int);
/* scsi glue */
const struct scsi_adapter sr_switch = {
sr_scsi_cmd, NULL, sr_scsi_probe, NULL, sr_scsi_ioctl
};
/* native metadata format */
int sr_meta_native_bootprobe(struct sr_softc *, dev_t,
struct sr_boot_chunk_head *);
#define SR_META_NOTCLAIMED (0)
#define SR_META_CLAIMED (1)
int sr_meta_native_probe(struct sr_softc *,
struct sr_chunk *);
int sr_meta_native_attach(struct sr_discipline *, int);
int sr_meta_native_write(struct sr_discipline *, dev_t,
struct sr_metadata *,void *);
#ifdef SR_DEBUG
void sr_meta_print(struct sr_metadata *);
#else
#define sr_meta_print(m)
#endif
/* the metadata driver should remain stateless */
struct sr_meta_driver {
daddr_t smd_offset; /* metadata location */
u_int32_t smd_size; /* size of metadata */
int (*smd_probe)(struct sr_softc *,
struct sr_chunk *);
int (*smd_attach)(struct sr_discipline *, int);
int (*smd_detach)(struct sr_discipline *);
int (*smd_read)(struct sr_discipline *, dev_t,
struct sr_metadata *, void *);
int (*smd_write)(struct sr_discipline *, dev_t,
struct sr_metadata *, void *);
int (*smd_validate)(struct sr_discipline *,
struct sr_metadata *, void *);
} smd[] = {
{ SR_META_OFFSET, SR_META_SIZE * DEV_BSIZE,
sr_meta_native_probe, sr_meta_native_attach, NULL,
sr_meta_native_read, sr_meta_native_write, NULL },
{ 0, 0, NULL, NULL, NULL, NULL }
};
int
sr_meta_attach(struct sr_discipline *sd, int chunk_no, int force)
{
struct sr_softc *sc = sd->sd_sc;
struct sr_chunk_head *cl;
struct sr_chunk *ch_entry, *chunk1, *chunk2;
int rv = 1, i = 0;
DNPRINTF(SR_D_META, "%s: sr_meta_attach(%d)\n", DEVNAME(sc), chunk_no);
/* in memory copy of metadata */
sd->sd_meta = malloc(SR_META_SIZE * DEV_BSIZE, M_DEVBUF,
M_ZERO | M_NOWAIT);
if (!sd->sd_meta) {
sr_error(sc, "could not allocate memory for metadata");
goto bad;
}
if (sd->sd_meta_type != SR_META_F_NATIVE) {
/* in memory copy of foreign metadata */
sd->sd_meta_foreign = malloc(smd[sd->sd_meta_type].smd_size,
M_DEVBUF, M_ZERO | M_NOWAIT);
if (!sd->sd_meta_foreign) {
/* unwind frees sd_meta */
sr_error(sc, "could not allocate memory for foreign "
"metadata");
goto bad;
}
}
/* we have a valid list now create an array index */
cl = &sd->sd_vol.sv_chunk_list;
sd->sd_vol.sv_chunks = mallocarray(chunk_no, sizeof(struct sr_chunk *),
M_DEVBUF, M_WAITOK | M_ZERO);
/* fill out chunk array */
i = 0;
SLIST_FOREACH(ch_entry, cl, src_link)
sd->sd_vol.sv_chunks[i++] = ch_entry;
/* attach metadata */
if (smd[sd->sd_meta_type].smd_attach(sd, force))
goto bad;
/* Force chunks into correct order now that metadata is attached. */
SLIST_INIT(cl);
for (i = 0; i < chunk_no; i++) {
ch_entry = sd->sd_vol.sv_chunks[i];
chunk2 = NULL;
SLIST_FOREACH(chunk1, cl, src_link) {
if (chunk1->src_meta.scmi.scm_chunk_id >
ch_entry->src_meta.scmi.scm_chunk_id)
break;
chunk2 = chunk1;
}
if (chunk2 == NULL)
SLIST_INSERT_HEAD(cl, ch_entry, src_link);
else
SLIST_INSERT_AFTER(chunk2, ch_entry, src_link);
}
i = 0;
SLIST_FOREACH(ch_entry, cl, src_link)
sd->sd_vol.sv_chunks[i++] = ch_entry;
rv = 0;
bad:
return (rv);
}
int
sr_meta_probe(struct sr_discipline *sd, dev_t *dt, int no_chunk)
{
struct sr_softc *sc = sd->sd_sc;
struct vnode *vn;
struct sr_chunk *ch_entry, *ch_prev = NULL;
struct sr_chunk_head *cl;
char devname[32];
int i, d, type, found, prevf, error;
dev_t dev;
DNPRINTF(SR_D_META, "%s: sr_meta_probe(%d)\n", DEVNAME(sc), no_chunk);
if (no_chunk == 0)
goto unwind;
cl = &sd->sd_vol.sv_chunk_list;
for (d = 0, prevf = SR_META_F_INVALID; d < no_chunk; d++) {
ch_entry = malloc(sizeof(struct sr_chunk), M_DEVBUF,
M_WAITOK | M_ZERO);
/* keep disks in user supplied order */
if (ch_prev)
SLIST_INSERT_AFTER(ch_prev, ch_entry, src_link);
else
SLIST_INSERT_HEAD(cl, ch_entry, src_link);
ch_prev = ch_entry;
dev = dt[d];
ch_entry->src_dev_mm = dev;
if (dev == NODEV) {
ch_entry->src_meta.scm_status = BIOC_SDOFFLINE;
continue;
} else {
sr_meta_getdevname(sc, dev, devname, sizeof(devname));
if (bdevvp(dev, &vn)) {
sr_error(sc, "sr_meta_probe: cannot allocate "
"vnode");
goto unwind;
}
/*
* XXX leaving dev open for now; move this to attach
* and figure out the open/close dance for unwind.
*/
error = VOP_OPEN(vn, FREAD | FWRITE, NOCRED, curproc);
if (error) {
DNPRINTF(SR_D_META,"%s: sr_meta_probe can't "
"open %s\n", DEVNAME(sc), devname);
vput(vn);
goto unwind;
}
strlcpy(ch_entry->src_devname, devname,
sizeof(ch_entry->src_devname));
ch_entry->src_vn = vn;
}
/* determine if this is a device we understand */
for (i = 0, found = SR_META_F_INVALID; smd[i].smd_probe; i++) {
type = smd[i].smd_probe(sc, ch_entry);
if (type == SR_META_F_INVALID)
continue;
else {
found = type;
break;
}
}
if (found == SR_META_F_INVALID)
goto unwind;
if (prevf == SR_META_F_INVALID)
prevf = found;
if (prevf != found) {
DNPRINTF(SR_D_META, "%s: prevf != found\n",
DEVNAME(sc));
goto unwind;
}
}
return (prevf);
unwind:
return (SR_META_F_INVALID);
}
void
sr_meta_getdevname(struct sr_softc *sc, dev_t dev, char *buf, int size)
{
int maj, unit, part;
char *name;
DNPRINTF(SR_D_META, "%s: sr_meta_getdevname(%p, %d)\n",
DEVNAME(sc), buf, size);
if (!buf)
return;
maj = major(dev);
part = DISKPART(dev);
unit = DISKUNIT(dev);
name = findblkname(maj);
if (name == NULL)
return;
snprintf(buf, size, "%s%d%c", name, unit, part + 'a');
}
int
sr_rw(struct sr_softc *sc, dev_t dev, char *buf, size_t size, daddr_t blkno,
long flags)
{
struct vnode *vp;
struct buf b;
size_t bufsize, dma_bufsize;
int rv = 1;
char *dma_buf;
int s;
DNPRINTF(SR_D_MISC, "%s: sr_rw(0x%x, %p, %zu, %lld 0x%lx)\n",
DEVNAME(sc), dev, buf, size, (long long)blkno, flags);
dma_bufsize = (size > MAXPHYS) ? MAXPHYS : size;
dma_buf = dma_alloc(dma_bufsize, PR_WAITOK);
if (bdevvp(dev, &vp)) {
printf("%s: sr_rw: failed to allocate vnode\n", DEVNAME(sc));
goto done;
}
while (size > 0) {
DNPRINTF(SR_D_MISC, "%s: dma_buf %p, size %zu, blkno %lld)\n",
DEVNAME(sc), dma_buf, size, (long long)blkno);
bufsize = (size > MAXPHYS) ? MAXPHYS : size;
if (flags == B_WRITE)
memcpy(dma_buf, buf, bufsize);
bzero(&b, sizeof(b));
b.b_flags = flags | B_PHYS;
b.b_proc = curproc;
b.b_dev = dev;
b.b_iodone = NULL;
b.b_error = 0;
b.b_blkno = blkno;
b.b_data = dma_buf;
b.b_bcount = bufsize;
b.b_bufsize = bufsize;
b.b_resid = bufsize;
b.b_vp = vp;
if ((b.b_flags & B_READ) == 0) {
s = splbio();
vp->v_numoutput++;
splx(s);
}
VOP_STRATEGY(vp, &b);
biowait(&b);
if (b.b_flags & B_ERROR) {
printf("%s: I/O error %d on dev 0x%x at block %llu\n",
DEVNAME(sc), b.b_error, dev, b.b_blkno);
goto done;
}
if (flags == B_READ)
memcpy(buf, dma_buf, bufsize);
size -= bufsize;
buf += bufsize;
blkno += howmany(bufsize, DEV_BSIZE);
}
rv = 0;
done:
if (vp)
vput(vp);
dma_free(dma_buf, dma_bufsize);
return (rv);
}
int
sr_meta_rw(struct sr_discipline *sd, dev_t dev, void *md, long flags)
{
int rv = 1;
DNPRINTF(SR_D_META, "%s: sr_meta_rw(0x%x, %p, 0x%lx)\n",
DEVNAME(sd->sd_sc), dev, md, flags);
if (md == NULL) {
printf("%s: sr_meta_rw: invalid metadata pointer\n",
DEVNAME(sd->sd_sc));
goto done;
}
rv = sr_rw(sd->sd_sc, dev, md, SR_META_SIZE * DEV_BSIZE,
SR_META_OFFSET, flags);
done:
return (rv);
}
int
sr_meta_clear(struct sr_discipline *sd)
{
struct sr_softc *sc = sd->sd_sc;
struct sr_chunk_head *cl = &sd->sd_vol.sv_chunk_list;
struct sr_chunk *ch_entry;
void *m;
int rv = 1;
DNPRINTF(SR_D_META, "%s: sr_meta_clear\n", DEVNAME(sc));
if (sd->sd_meta_type != SR_META_F_NATIVE) {
sr_error(sc, "cannot clear foreign metadata");
goto done;
}
m = malloc(SR_META_SIZE * DEV_BSIZE, M_DEVBUF, M_WAITOK | M_ZERO);
SLIST_FOREACH(ch_entry, cl, src_link) {
if (sr_meta_native_write(sd, ch_entry->src_dev_mm, m, NULL)) {
/* XXX mark disk offline */
DNPRINTF(SR_D_META, "%s: sr_meta_clear failed to "
"clear %s\n", DEVNAME(sc), ch_entry->src_devname);
rv++;
continue;
}
bzero(&ch_entry->src_meta, sizeof(ch_entry->src_meta));
}
bzero(sd->sd_meta, SR_META_SIZE * DEV_BSIZE);
free(m, M_DEVBUF, SR_META_SIZE * DEV_BSIZE);
rv = 0;
done:
return (rv);
}
void
sr_meta_init(struct sr_discipline *sd, int level, int no_chunk)
{
struct sr_softc *sc = sd->sd_sc;
struct sr_metadata *sm = sd->sd_meta;
struct sr_chunk_head *cl = &sd->sd_vol.sv_chunk_list;
struct sr_meta_chunk *scm;
struct sr_chunk *chunk;
int cid = 0;
u_int64_t max_chunk_sz = 0, min_chunk_sz = 0;
u_int32_t secsize = DEV_BSIZE;
DNPRINTF(SR_D_META, "%s: sr_meta_init\n", DEVNAME(sc));
if (!sm)
return;
/* Initialise volume metadata. */
sm->ssdi.ssd_magic = SR_MAGIC;
sm->ssdi.ssd_version = SR_META_VERSION;
sm->ssdi.ssd_vol_flags = sd->sd_meta_flags;
sm->ssdi.ssd_volid = 0;
sm->ssdi.ssd_chunk_no = no_chunk;
sm->ssdi.ssd_level = level;
sm->ssd_data_blkno = SR_DATA_OFFSET;
sm->ssd_ondisk = 0;
sr_uuid_generate(&sm->ssdi.ssd_uuid);
/* Initialise chunk metadata and get min/max chunk sizes & secsize. */
SLIST_FOREACH(chunk, cl, src_link) {
scm = &chunk->src_meta;
scm->scmi.scm_size = chunk->src_size;
scm->scmi.scm_chunk_id = cid++;
scm->scm_status = BIOC_SDONLINE;
scm->scmi.scm_volid = 0;
strlcpy(scm->scmi.scm_devname, chunk->src_devname,
sizeof(scm->scmi.scm_devname));
memcpy(&scm->scmi.scm_uuid, &sm->ssdi.ssd_uuid,
sizeof(scm->scmi.scm_uuid));
sr_checksum(sc, scm, &scm->scm_checksum,
sizeof(scm->scm_checksum));
if (min_chunk_sz == 0)
min_chunk_sz = scm->scmi.scm_size;
if (chunk->src_secsize > secsize)
secsize = chunk->src_secsize;
min_chunk_sz = MIN(min_chunk_sz, scm->scmi.scm_size);
max_chunk_sz = MAX(max_chunk_sz, scm->scmi.scm_size);
}
sm->ssdi.ssd_secsize = secsize;
/* Equalize chunk sizes. */
SLIST_FOREACH(chunk, cl, src_link)
chunk->src_meta.scmi.scm_coerced_size = min_chunk_sz;
sd->sd_vol.sv_chunk_minsz = min_chunk_sz;
sd->sd_vol.sv_chunk_maxsz = max_chunk_sz;
}
void
sr_meta_init_complete(struct sr_discipline *sd)
{
#ifdef SR_DEBUG
struct sr_softc *sc = sd->sd_sc;
#endif
struct sr_metadata *sm = sd->sd_meta;
DNPRINTF(SR_D_META, "%s: sr_meta_complete\n", DEVNAME(sc));
/* Complete initialisation of volume metadata. */
strlcpy(sm->ssdi.ssd_vendor, "OPENBSD", sizeof(sm->ssdi.ssd_vendor));
snprintf(sm->ssdi.ssd_product, sizeof(sm->ssdi.ssd_product),
"SR %s", sd->sd_name);
snprintf(sm->ssdi.ssd_revision, sizeof(sm->ssdi.ssd_revision),
"%03d", sm->ssdi.ssd_version);
}
void
sr_meta_opt_handler(struct sr_discipline *sd, struct sr_meta_opt_hdr *om)
{
if (om->som_type != SR_OPT_BOOT)
panic("unknown optional metadata type");
}
void
sr_meta_save_callback(void *xsd)
{
struct sr_discipline *sd = xsd;
int s;
s = splbio();
if (sr_meta_save(sd, SR_META_DIRTY))
printf("%s: save metadata failed\n", DEVNAME(sd->sd_sc));
sd->sd_must_flush = 0;
splx(s);
}
int
sr_meta_save(struct sr_discipline *sd, u_int32_t flags)
{
struct sr_softc *sc = sd->sd_sc;
struct sr_metadata *sm = sd->sd_meta, *m;
struct sr_meta_driver *s;
struct sr_chunk *src;
struct sr_meta_chunk *cm;
struct sr_workunit wu;
struct sr_meta_opt_hdr *omh;
struct sr_meta_opt_item *omi;
int i;
DNPRINTF(SR_D_META, "%s: sr_meta_save %s\n",
DEVNAME(sc), sd->sd_meta->ssd_devname);
if (!sm) {
printf("%s: no in memory copy of metadata\n", DEVNAME(sc));
goto bad;
}
/* meta scratchpad */
s = &smd[sd->sd_meta_type];
m = malloc(SR_META_SIZE * DEV_BSIZE, M_DEVBUF, M_ZERO | M_NOWAIT);
if (!m) {
printf("%s: could not allocate metadata scratch area\n",
DEVNAME(sc));
goto bad;
}
/* from here on out metadata is updated */
restart:
sm->ssd_ondisk++;
sm->ssd_meta_flags = flags;
memcpy(m, sm, sizeof(*m));
/* Chunk metadata. */
cm = (struct sr_meta_chunk *)(m + 1);
for (i = 0; i < sm->ssdi.ssd_chunk_no; i++) {
src = sd->sd_vol.sv_chunks[i];
memcpy(cm, &src->src_meta, sizeof(*cm));
cm++;
}
/* Optional metadata. */
omh = (struct sr_meta_opt_hdr *)(cm);
SLIST_FOREACH(omi, &sd->sd_meta_opt, omi_link) {
DNPRINTF(SR_D_META, "%s: saving optional metadata type %u with "
"length %u\n", DEVNAME(sc), omi->omi_som->som_type,
omi->omi_som->som_length);
bzero(&omi->omi_som->som_checksum, MD5_DIGEST_LENGTH);
sr_checksum(sc, omi->omi_som, &omi->omi_som->som_checksum,
omi->omi_som->som_length);
memcpy(omh, omi->omi_som, omi->omi_som->som_length);
omh = (struct sr_meta_opt_hdr *)((u_int8_t *)omh +
omi->omi_som->som_length);
}
for (i = 0; i < sm->ssdi.ssd_chunk_no; i++) {
src = sd->sd_vol.sv_chunks[i];
/* skip disks that are offline */
if (src->src_meta.scm_status == BIOC_SDOFFLINE)
continue;
/* calculate metadata checksum for correct chunk */
m->ssdi.ssd_chunk_id = i;
sr_checksum(sc, m, &m->ssd_checksum,
sizeof(struct sr_meta_invariant));
#ifdef SR_DEBUG
DNPRINTF(SR_D_META, "%s: sr_meta_save %s: volid: %d "
"chunkid: %d checksum: ",
DEVNAME(sc), src->src_meta.scmi.scm_devname,
m->ssdi.ssd_volid, m->ssdi.ssd_chunk_id);
if (sr_debug & SR_D_META)
sr_checksum_print((u_int8_t *)&m->ssd_checksum);
DNPRINTF(SR_D_META, "\n");
sr_meta_print(m);
#endif
/* translate and write to disk */
if (s->smd_write(sd, src->src_dev_mm, m, NULL /* XXX */)) {
printf("%s: could not write metadata to %s\n",
DEVNAME(sc), src->src_devname);
/* restart the meta write */
src->src_meta.scm_status = BIOC_SDOFFLINE;
/* XXX recalculate volume status */
goto restart;
}
}
/* not all disciplines have sync */
if (sd->sd_scsi_sync) {
bzero(&wu, sizeof(wu));
wu.swu_flags |= SR_WUF_FAKE;
wu.swu_dis = sd;
sd->sd_scsi_sync(&wu);
}
free(m, M_DEVBUF, SR_META_SIZE * DEV_BSIZE);
return (0);
bad:
return (1);
}
int
sr_meta_read(struct sr_discipline *sd)
{
struct sr_softc *sc = sd->sd_sc;
struct sr_chunk_head *cl = &sd->sd_vol.sv_chunk_list;
struct sr_metadata *sm;
struct sr_chunk *ch_entry;
struct sr_meta_chunk *cp;
struct sr_meta_driver *s;
void *fm = NULL;
int no_disk = 0, got_meta = 0;
DNPRINTF(SR_D_META, "%s: sr_meta_read\n", DEVNAME(sc));
sm = malloc(SR_META_SIZE * DEV_BSIZE, M_DEVBUF, M_WAITOK | M_ZERO);
s = &smd[sd->sd_meta_type];
if (sd->sd_meta_type != SR_META_F_NATIVE)
fm = malloc(s->smd_size, M_DEVBUF, M_WAITOK | M_ZERO);
cp = (struct sr_meta_chunk *)(sm + 1);
SLIST_FOREACH(ch_entry, cl, src_link) {
/* skip disks that are offline */
if (ch_entry->src_meta.scm_status == BIOC_SDOFFLINE) {
DNPRINTF(SR_D_META,
"%s: %s chunk marked offline, spoofing status\n",
DEVNAME(sc), ch_entry->src_devname);
cp++; /* adjust chunk pointer to match failure */
continue;
} else if (s->smd_read(sd, ch_entry->src_dev_mm, sm, fm)) {
/* read and translate */
/* XXX mark chunk offline, elsewhere!! */
ch_entry->src_meta.scm_status = BIOC_SDOFFLINE;
cp++; /* adjust chunk pointer to match failure */
DNPRINTF(SR_D_META, "%s: sr_meta_read failed\n",
DEVNAME(sc));
continue;
}
if (sm->ssdi.ssd_magic != SR_MAGIC) {
DNPRINTF(SR_D_META, "%s: sr_meta_read !SR_MAGIC\n",
DEVNAME(sc));
continue;
}
/* validate metadata */
if (sr_meta_validate(sd, ch_entry->src_dev_mm, sm, fm)) {
DNPRINTF(SR_D_META, "%s: invalid metadata\n",
DEVNAME(sc));
no_disk = -1;
goto done;
}
/* assume first chunk contains metadata */
if (got_meta == 0) {
sr_meta_opt_load(sc, sm, &sd->sd_meta_opt);
memcpy(sd->sd_meta, sm, sizeof(*sd->sd_meta));
got_meta = 1;
}
memcpy(&ch_entry->src_meta, cp, sizeof(ch_entry->src_meta));
no_disk++;
cp++;
}
free(sm, M_DEVBUF, SR_META_SIZE * DEV_BSIZE);
free(fm, M_DEVBUF, s->smd_size);
done:
DNPRINTF(SR_D_META, "%s: sr_meta_read found %d parts\n", DEVNAME(sc),
no_disk);
return (no_disk);
}
void
sr_meta_opt_load(struct sr_softc *sc, struct sr_metadata *sm,
struct sr_meta_opt_head *som)
{
struct sr_meta_opt_hdr *omh;
struct sr_meta_opt_item *omi;
u_int8_t checksum[MD5_DIGEST_LENGTH];
int i;
/* Process optional metadata. */
omh = (struct sr_meta_opt_hdr *)((u_int8_t *)(sm + 1) +
sizeof(struct sr_meta_chunk) * sm->ssdi.ssd_chunk_no);
for (i = 0; i < sm->ssdi.ssd_opt_no; i++) {
omi = malloc(sizeof(struct sr_meta_opt_item), M_DEVBUF,
M_WAITOK | M_ZERO);
SLIST_INSERT_HEAD(som, omi, omi_link);
if (omh->som_length == 0) {
/* Load old fixed length optional metadata. */
DNPRINTF(SR_D_META, "%s: old optional metadata of type "
"%u\n", DEVNAME(sc), omh->som_type);
/* Validate checksum. */
sr_checksum(sc, (void *)omh, &checksum,
SR_OLD_META_OPT_SIZE - MD5_DIGEST_LENGTH);
if (bcmp(&checksum, (void *)omh + SR_OLD_META_OPT_MD5,
sizeof(checksum)))
panic("%s: invalid optional metadata checksum",
DEVNAME(sc));
/* Determine correct length. */
switch (omh->som_type) {
case SR_OPT_CRYPTO:
omh->som_length = sizeof(struct sr_meta_crypto);
break;
case SR_OPT_BOOT:
omh->som_length = sizeof(struct sr_meta_boot);
break;
case SR_OPT_KEYDISK:
omh->som_length =
sizeof(struct sr_meta_keydisk);
break;
default:
panic("unknown old optional metadata type %u",
omh->som_type);
}
omi->omi_som = malloc(omh->som_length, M_DEVBUF,
M_WAITOK | M_ZERO);
memcpy((u_int8_t *)omi->omi_som + sizeof(*omi->omi_som),
(u_int8_t *)omh + SR_OLD_META_OPT_OFFSET,
omh->som_length - sizeof(*omi->omi_som));
omi->omi_som->som_type = omh->som_type;
omi->omi_som->som_length = omh->som_length;
omh = (struct sr_meta_opt_hdr *)((void *)omh +
SR_OLD_META_OPT_SIZE);
} else {
/* Load variable length optional metadata. */
DNPRINTF(SR_D_META, "%s: optional metadata of type %u, "
"length %u\n", DEVNAME(sc), omh->som_type,
omh->som_length);
omi->omi_som = malloc(omh->som_length, M_DEVBUF,
M_WAITOK | M_ZERO);
memcpy(omi->omi_som, omh, omh->som_length);
/* Validate checksum. */
memcpy(&checksum, &omi->omi_som->som_checksum,
MD5_DIGEST_LENGTH);
bzero(&omi->omi_som->som_checksum, MD5_DIGEST_LENGTH);
sr_checksum(sc, omi->omi_som,
&omi->omi_som->som_checksum, omh->som_length);
if (bcmp(&checksum, &omi->omi_som->som_checksum,
sizeof(checksum)))
panic("%s: invalid optional metadata checksum",
DEVNAME(sc));
omh = (struct sr_meta_opt_hdr *)((void *)omh +
omh->som_length);
}
}
}
int
sr_meta_validate(struct sr_discipline *sd, dev_t dev, struct sr_metadata *sm,
void *fm)
{
struct sr_softc *sc = sd->sd_sc;
struct sr_meta_driver *s;
#ifdef SR_DEBUG
struct sr_meta_chunk *mc;
#endif
u_int8_t checksum[MD5_DIGEST_LENGTH];
char devname[32];
int rv = 1;
DNPRINTF(SR_D_META, "%s: sr_meta_validate(%p)\n", DEVNAME(sc), sm);
sr_meta_getdevname(sc, dev, devname, sizeof(devname));
s = &smd[sd->sd_meta_type];
if (sd->sd_meta_type != SR_META_F_NATIVE)
if (s->smd_validate(sd, sm, fm)) {
sr_error(sc, "invalid foreign metadata");
goto done;
}
/*
* at this point all foreign metadata has been translated to the native
* format and will be treated just like the native format
*/
if (sm->ssdi.ssd_magic != SR_MAGIC) {
sr_error(sc, "not valid softraid metadata");
goto done;
}
/* Verify metadata checksum. */
sr_checksum(sc, sm, &checksum, sizeof(struct sr_meta_invariant));
if (bcmp(&checksum, &sm->ssd_checksum, sizeof(checksum))) {
sr_error(sc, "invalid metadata checksum");
goto done;
}
/* Handle changes between versions. */
if (sm->ssdi.ssd_version == 3) {
/*
* Version 3 - update metadata version and fix up data blkno
* value since this did not exist in version 3.
*/
if (sm->ssd_data_blkno == 0)
sm->ssd_data_blkno = SR_META_V3_DATA_OFFSET;
sm->ssdi.ssd_secsize = DEV_BSIZE;
} else if (sm->ssdi.ssd_version == 4) {
/*
* Version 4 - original metadata format did not store
* data blkno so fix this up if necessary.
*/
if (sm->ssd_data_blkno == 0)
sm->ssd_data_blkno = SR_DATA_OFFSET;
sm->ssdi.ssd_secsize = DEV_BSIZE;
} else if (sm->ssdi.ssd_version == 5) {
/*
* Version 5 - variable length optional metadata. Migration
* from earlier fixed length optional metadata is handled
* in sr_meta_read().
*/
sm->ssdi.ssd_secsize = DEV_BSIZE;
} else if (sm->ssdi.ssd_version == SR_META_VERSION) {
/*
* Version 6 - store & report a sector size.
*/
} else {
sr_error(sc, "cannot read metadata version %u on %s, "
"expected version %u or earlier",
sm->ssdi.ssd_version, devname, SR_META_VERSION);
goto done;
}
/* Update version number and revision string. */
sm->ssdi.ssd_version = SR_META_VERSION;
snprintf(sm->ssdi.ssd_revision, sizeof(sm->ssdi.ssd_revision),
"%03d", SR_META_VERSION);
#ifdef SR_DEBUG
/* warn if disk changed order */
mc = (struct sr_meta_chunk *)(sm + 1);
if (strncmp(mc[sm->ssdi.ssd_chunk_id].scmi.scm_devname, devname,
sizeof(mc[sm->ssdi.ssd_chunk_id].scmi.scm_devname)))
DNPRINTF(SR_D_META, "%s: roaming device %s -> %s\n",
DEVNAME(sc), mc[sm->ssdi.ssd_chunk_id].scmi.scm_devname,
devname);
#endif
/* we have meta data on disk */
DNPRINTF(SR_D_META, "%s: sr_meta_validate valid metadata %s\n",
DEVNAME(sc), devname);
rv = 0;
done:
return (rv);
}
int
sr_meta_native_bootprobe(struct sr_softc *sc, dev_t devno,
struct sr_boot_chunk_head *bch)
{
struct vnode *vn;
struct disklabel label;
struct sr_metadata *md = NULL;
struct sr_discipline *fake_sd = NULL;
struct sr_boot_chunk *bc;
char devname[32];
dev_t chrdev, rawdev;
int error, i;
int rv = SR_META_NOTCLAIMED;
DNPRINTF(SR_D_META, "%s: sr_meta_native_bootprobe\n", DEVNAME(sc));
/*
* Use character raw device to avoid SCSI complaints about missing
* media on removable media devices.
*/
chrdev = blktochr(devno);
rawdev = MAKEDISKDEV(major(chrdev), DISKUNIT(devno), RAW_PART);
if (cdevvp(rawdev, &vn)) {
sr_error(sc, "sr_meta_native_bootprobe: cannot allocate vnode");
goto done;
}
/* open device */
error = VOP_OPEN(vn, FREAD, NOCRED, curproc);
if (error) {
DNPRINTF(SR_D_META, "%s: sr_meta_native_bootprobe open "
"failed\n", DEVNAME(sc));
vput(vn);
goto done;
}
/* get disklabel */
error = VOP_IOCTL(vn, DIOCGDINFO, (caddr_t)&label, FREAD, NOCRED,
curproc);
if (error) {
DNPRINTF(SR_D_META, "%s: sr_meta_native_bootprobe ioctl "
"failed\n", DEVNAME(sc));
VOP_CLOSE(vn, FREAD, NOCRED, curproc);
vput(vn);
goto done;
}
/* we are done, close device */
error = VOP_CLOSE(vn, FREAD, NOCRED, curproc);
if (error) {
DNPRINTF(SR_D_META, "%s: sr_meta_native_bootprobe close "
"failed\n", DEVNAME(sc));
vput(vn);
goto done;
}
vput(vn);
md = malloc(SR_META_SIZE * DEV_BSIZE, M_DEVBUF, M_ZERO | M_NOWAIT);
if (md == NULL) {
sr_error(sc, "not enough memory for metadata buffer");
goto done;
}
/* create fake sd to use utility functions */
fake_sd = malloc(sizeof(struct sr_discipline), M_DEVBUF,
M_ZERO | M_NOWAIT);
if (fake_sd == NULL) {
sr_error(sc, "not enough memory for fake discipline");
goto done;
}
fake_sd->sd_sc = sc;
fake_sd->sd_meta_type = SR_META_F_NATIVE;
for (i = 0; i < MAXPARTITIONS; i++) {
if (label.d_partitions[i].p_fstype != FS_RAID)
continue;
/* open partition */
rawdev = MAKEDISKDEV(major(devno), DISKUNIT(devno), i);
if (bdevvp(rawdev, &vn)) {
sr_error(sc, "sr_meta_native_bootprobe: cannot "
"allocate vnode for partition");
goto done;
}
error = VOP_OPEN(vn, FREAD, NOCRED, curproc);
if (error) {
DNPRINTF(SR_D_META, "%s: sr_meta_native_bootprobe "
"open failed, partition %d\n",
DEVNAME(sc), i);
vput(vn);
continue;
}
if (sr_meta_native_read(fake_sd, rawdev, md, NULL)) {
sr_error(sc, "native bootprobe could not read native "
"metadata");
VOP_CLOSE(vn, FREAD, NOCRED, curproc);
vput(vn);
continue;
}
/* are we a softraid partition? */
if (md->ssdi.ssd_magic != SR_MAGIC) {
VOP_CLOSE(vn, FREAD, NOCRED, curproc);
vput(vn);
continue;
}
sr_meta_getdevname(sc, rawdev, devname, sizeof(devname));
if (sr_meta_validate(fake_sd, rawdev, md, NULL) == 0) {
/* XXX fix M_WAITOK, this is boot time */
bc = malloc(sizeof(struct sr_boot_chunk),
M_DEVBUF, M_WAITOK | M_ZERO);
bc->sbc_metadata = malloc(sizeof(struct sr_metadata),
M_DEVBUF, M_WAITOK | M_ZERO);
memcpy(bc->sbc_metadata, md, sizeof(struct sr_metadata));
bc->sbc_mm = rawdev;
SLIST_INSERT_HEAD(bch, bc, sbc_link);
rv = SR_META_CLAIMED;
}
/* we are done, close partition */
VOP_CLOSE(vn, FREAD, NOCRED, curproc);
vput(vn);
}
done:
free(fake_sd, M_DEVBUF, sizeof(struct sr_discipline));
free(md, M_DEVBUF, SR_META_SIZE * DEV_BSIZE);
return (rv);
}
int
sr_boot_assembly(struct sr_softc *sc)
{
struct sr_boot_volume_head bvh;
struct sr_boot_chunk_head bch, kdh;
struct sr_boot_volume *bv, *bv1, *bv2;
struct sr_boot_chunk *bc, *bcnext, *bc1, *bc2;
struct sr_disk_head sdklist;
struct sr_disk *sdk;
struct disk *dk;
struct bioc_createraid bcr;
struct sr_meta_chunk *hm;
struct sr_chunk_head *cl;
struct sr_chunk *hotspare, *chunk, *last;
u_int64_t *ondisk = NULL;
dev_t *devs = NULL;
void *data;
char devname[32];
int rv = 0, i;
DNPRINTF(SR_D_META, "%s: sr_boot_assembly\n", DEVNAME(sc));
SLIST_INIT(&sdklist);
SLIST_INIT(&bvh);
SLIST_INIT(&bch);
SLIST_INIT(&kdh);
dk = TAILQ_FIRST(&disklist);
while (dk != NULL) {
/* See if this disk has been checked. */
SLIST_FOREACH(sdk, &sdklist, sdk_link)
if (sdk->sdk_devno == dk->dk_devno)
break;
if (sdk != NULL || dk->dk_devno == NODEV) {
dk = TAILQ_NEXT(dk, dk_link);
continue;
}
/* Add this disk to the list that we've checked. */
sdk = malloc(sizeof(struct sr_disk), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (sdk == NULL)
goto unwind;
sdk->sdk_devno = dk->dk_devno;
SLIST_INSERT_HEAD(&sdklist, sdk, sdk_link);
/* Only check sd(4) and wd(4) devices. */
if (strncmp(dk->dk_name, "sd", 2) &&
strncmp(dk->dk_name, "wd", 2)) {
dk = TAILQ_NEXT(dk, dk_link);
continue;
}
/* native softraid uses partitions */
rw_enter_write(&sc->sc_lock);
bio_status_init(&sc->sc_status, &sc->sc_dev);
sr_meta_native_bootprobe(sc, dk->dk_devno, &bch);
rw_exit_write(&sc->sc_lock);
/* probe non-native disks if native failed. */
/* Restart scan since we may have slept. */
dk = TAILQ_FIRST(&disklist);
}
/*
* Create a list of volumes and associate chunks with each volume.
*/
for (bc = SLIST_FIRST(&bch); bc != NULL; bc = bcnext) {
bcnext = SLIST_NEXT(bc, sbc_link);
SLIST_REMOVE(&bch, bc, sr_boot_chunk, sbc_link);
bc->sbc_chunk_id = bc->sbc_metadata->ssdi.ssd_chunk_id;
/* Handle key disks separately. */
if (bc->sbc_metadata->ssdi.ssd_level == SR_KEYDISK_LEVEL) {
SLIST_INSERT_HEAD(&kdh, bc, sbc_link);
continue;
}
SLIST_FOREACH(bv, &bvh, sbv_link) {
if (bcmp(&bc->sbc_metadata->ssdi.ssd_uuid,
&bv->sbv_uuid,
sizeof(bc->sbc_metadata->ssdi.ssd_uuid)) == 0)
break;
}
if (bv == NULL) {
bv = malloc(sizeof(struct sr_boot_volume),
M_DEVBUF, M_NOWAIT | M_ZERO);
if (bv == NULL) {
printf("%s: failed to allocate boot volume\n",
DEVNAME(sc));
goto unwind;
}
bv->sbv_level = bc->sbc_metadata->ssdi.ssd_level;
bv->sbv_volid = bc->sbc_metadata->ssdi.ssd_volid;
bv->sbv_chunk_no = bc->sbc_metadata->ssdi.ssd_chunk_no;
bv->sbv_flags = bc->sbc_metadata->ssdi.ssd_vol_flags;
memcpy(&bv->sbv_uuid, &bc->sbc_metadata->ssdi.ssd_uuid,
sizeof(bc->sbc_metadata->ssdi.ssd_uuid));
SLIST_INIT(&bv->sbv_chunks);
/* Maintain volume order. */
bv2 = NULL;
SLIST_FOREACH(bv1, &bvh, sbv_link) {
if (bv1->sbv_volid > bv->sbv_volid)
break;
bv2 = bv1;
}
if (bv2 == NULL) {
DNPRINTF(SR_D_META, "%s: insert volume %u "
"at head\n", DEVNAME(sc), bv->sbv_volid);
SLIST_INSERT_HEAD(&bvh, bv, sbv_link);
} else {
DNPRINTF(SR_D_META, "%s: insert volume %u "
"after %u\n", DEVNAME(sc), bv->sbv_volid,
bv2->sbv_volid);
SLIST_INSERT_AFTER(bv2, bv, sbv_link);
}
}
/* Maintain chunk order. */
bc2 = NULL;
SLIST_FOREACH(bc1, &bv->sbv_chunks, sbc_link) {
if (bc1->sbc_chunk_id > bc->sbc_chunk_id)
break;
bc2 = bc1;
}
if (bc2 == NULL) {
DNPRINTF(SR_D_META, "%s: volume %u insert chunk %u "
"at head\n", DEVNAME(sc), bv->sbv_volid,
bc->sbc_chunk_id);
SLIST_INSERT_HEAD(&bv->sbv_chunks, bc, sbc_link);
} else {
DNPRINTF(SR_D_META, "%s: volume %u insert chunk %u "
"after %u\n", DEVNAME(sc), bv->sbv_volid,
bc->sbc_chunk_id, bc2->sbc_chunk_id);
SLIST_INSERT_AFTER(bc2, bc, sbc_link);
}
bv->sbv_chunks_found++;
}
/* Allocate memory for device and ondisk version arrays. */
devs = mallocarray(BIOC_CRMAXLEN, sizeof(dev_t), M_DEVBUF,
M_NOWAIT);
if (devs == NULL) {
printf("%s: failed to allocate device array\n", DEVNAME(sc));
goto unwind;
}
ondisk = mallocarray(BIOC_CRMAXLEN, sizeof(u_int64_t), M_DEVBUF,
M_NOWAIT);
if (ondisk == NULL) {
printf("%s: failed to allocate ondisk array\n", DEVNAME(sc));
goto unwind;
}
/*
* Assemble hotspare "volumes".
*/
SLIST_FOREACH(bv, &bvh, sbv_link) {
/* Check if this is a hotspare "volume". */
if (bv->sbv_level != SR_HOTSPARE_LEVEL ||
bv->sbv_chunk_no != 1)
continue;
#ifdef SR_DEBUG
DNPRINTF(SR_D_META, "%s: assembling hotspare volume ",
DEVNAME(sc));
if (sr_debug & SR_D_META)
sr_uuid_print(&bv->sbv_uuid, 0);
DNPRINTF(SR_D_META, " volid %u with %u chunks\n",
bv->sbv_volid, bv->sbv_chunk_no);
#endif
/* Create hotspare chunk metadata. */
hotspare = malloc(sizeof(struct sr_chunk), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (hotspare == NULL) {
printf("%s: failed to allocate hotspare\n",
DEVNAME(sc));
goto unwind;
}
bc = SLIST_FIRST(&bv->sbv_chunks);
sr_meta_getdevname(sc, bc->sbc_mm, devname, sizeof(devname));
hotspare->src_dev_mm = bc->sbc_mm;
strlcpy(hotspare->src_devname, devname,
sizeof(hotspare->src_devname));
hotspare->src_size = bc->sbc_metadata->ssdi.ssd_size;
hm = &hotspare->src_meta;
hm->scmi.scm_volid = SR_HOTSPARE_VOLID;
hm->scmi.scm_chunk_id = 0;
hm->scmi.scm_size = bc->sbc_metadata->ssdi.ssd_size;
hm->scmi.scm_coerced_size = bc->sbc_metadata->ssdi.ssd_size;
strlcpy(hm->scmi.scm_devname, devname,
sizeof(hm->scmi.scm_devname));
memcpy(&hm->scmi.scm_uuid, &bc->sbc_metadata->ssdi.ssd_uuid,
sizeof(struct sr_uuid));
sr_checksum(sc, hm, &hm->scm_checksum,
sizeof(struct sr_meta_chunk_invariant));
hm->scm_status = BIOC_SDHOTSPARE;
/* Add chunk to hotspare list. */
rw_enter_write(&sc->sc_hs_lock);
cl = &sc->sc_hotspare_list;
if (SLIST_EMPTY(cl))
SLIST_INSERT_HEAD(cl, hotspare, src_link);
else {
SLIST_FOREACH(chunk, cl, src_link)
last = chunk;
SLIST_INSERT_AFTER(last, hotspare, src_link);
}
sc->sc_hotspare_no++;
rw_exit_write(&sc->sc_hs_lock);
}
/*
* Assemble RAID volumes.
*/
SLIST_FOREACH(bv, &bvh, sbv_link) {
bzero(&bcr, sizeof(bcr));
data = NULL;
/* Check if this is a hotspare "volume". */
if (bv->sbv_level == SR_HOTSPARE_LEVEL &&
bv->sbv_chunk_no == 1)
continue;
/*
* Skip volumes that are marked as no auto assemble, unless
* this was the volume which we actually booted from.
*/
if (bcmp(&sr_bootuuid, &bv->sbv_uuid, sizeof(sr_bootuuid)) != 0)
if (bv->sbv_flags & BIOC_SCNOAUTOASSEMBLE)
continue;
#ifdef SR_DEBUG
DNPRINTF(SR_D_META, "%s: assembling volume ", DEVNAME(sc));
if (sr_debug & SR_D_META)
sr_uuid_print(&bv->sbv_uuid, 0);
DNPRINTF(SR_D_META, " volid %u with %u chunks\n",
bv->sbv_volid, bv->sbv_chunk_no);
#endif
/*
* If this is a crypto volume, try to find a matching
* key disk...
*/
bcr.bc_key_disk = NODEV;
if (bv->sbv_level == 'C' || bv->sbv_level == 0x1C) {
SLIST_FOREACH(bc, &kdh, sbc_link) {
if (bcmp(&bc->sbc_metadata->ssdi.ssd_uuid,
&bv->sbv_uuid,
sizeof(bc->sbc_metadata->ssdi.ssd_uuid))
== 0)
bcr.bc_key_disk = bc->sbc_mm;
}
}
for (i = 0; i < BIOC_CRMAXLEN; i++) {
devs[i] = NODEV; /* mark device as illegal */
ondisk[i] = 0;
}
SLIST_FOREACH(bc, &bv->sbv_chunks, sbc_link) {
if (devs[bc->sbc_chunk_id] != NODEV) {
bv->sbv_chunks_found--;
sr_meta_getdevname(sc, bc->sbc_mm, devname,
sizeof(devname));
printf("%s: found duplicate chunk %u for "
"volume %u on device %s\n", DEVNAME(sc),
bc->sbc_chunk_id, bv->sbv_volid, devname);
}
if (devs[bc->sbc_chunk_id] == NODEV ||
bc->sbc_metadata->ssd_ondisk >
ondisk[bc->sbc_chunk_id]) {
devs[bc->sbc_chunk_id] = bc->sbc_mm;
ondisk[bc->sbc_chunk_id] =
bc->sbc_metadata->ssd_ondisk;
DNPRINTF(SR_D_META, "%s: using ondisk "
"metadata version %llu for chunk %u\n",
DEVNAME(sc), ondisk[bc->sbc_chunk_id],
bc->sbc_chunk_id);
}
}
if (bv->sbv_chunk_no != bv->sbv_chunks_found) {
printf("%s: not all chunks were provided; "
"attempting to bring volume %d online\n",
DEVNAME(sc), bv->sbv_volid);
}
bcr.bc_level = bv->sbv_level;
bcr.bc_dev_list_len = bv->sbv_chunk_no * sizeof(dev_t);
bcr.bc_dev_list = devs;
bcr.bc_flags = BIOC_SCDEVT |
(bv->sbv_flags & BIOC_SCNOAUTOASSEMBLE);
if ((bv->sbv_level == 'C' || bv->sbv_level == 0x1C) &&
bcmp(&sr_bootuuid, &bv->sbv_uuid, sizeof(sr_bootuuid)) == 0)
data = sr_bootkey;
rw_enter_write(&sc->sc_lock);
bio_status_init(&sc->sc_status, &sc->sc_dev);
sr_ioctl_createraid(sc, &bcr, 0, data);
rw_exit_write(&sc->sc_lock);
rv++;
}
/* done with metadata */
unwind:
/* Free boot volumes and associated chunks. */
for (bv1 = SLIST_FIRST(&bvh); bv1 != NULL; bv1 = bv2) {
bv2 = SLIST_NEXT(bv1, sbv_link);
for (bc1 = SLIST_FIRST(&bv1->sbv_chunks); bc1 != NULL;
bc1 = bc2) {
bc2 = SLIST_NEXT(bc1, sbc_link);
free(bc1->sbc_metadata, M_DEVBUF,
sizeof(*bc1->sbc_metadata));
free(bc1, M_DEVBUF, sizeof(*bc1));
}
free(bv1, M_DEVBUF, sizeof(*bv1));
}
/* Free keydisks chunks. */
for (bc1 = SLIST_FIRST(&kdh); bc1 != NULL; bc1 = bc2) {
bc2 = SLIST_NEXT(bc1, sbc_link);
free(bc1->sbc_metadata, M_DEVBUF, sizeof(*bc1->sbc_metadata));
free(bc1, M_DEVBUF, sizeof(*bc1));
}
/* Free unallocated chunks. */
for (bc1 = SLIST_FIRST(&bch); bc1 != NULL; bc1 = bc2) {
bc2 = SLIST_NEXT(bc1, sbc_link);
free(bc1->sbc_metadata, M_DEVBUF, sizeof(*bc1->sbc_metadata));
free(bc1, M_DEVBUF, sizeof(*bc1));
}
while (!SLIST_EMPTY(&sdklist)) {
sdk = SLIST_FIRST(&sdklist);
SLIST_REMOVE_HEAD(&sdklist, sdk_link);
free(sdk, M_DEVBUF, sizeof(*sdk));
}
free(devs, M_DEVBUF, BIOC_CRMAXLEN * sizeof(dev_t));
free(ondisk, M_DEVBUF, BIOC_CRMAXLEN * sizeof(u_int64_t));
return (rv);
}
void
sr_map_root(void)
{
struct sr_softc *sc = softraid0;
struct sr_discipline *sd;
struct sr_meta_opt_item *omi;
struct sr_meta_boot *sbm;
u_char duid[8];
int i;
if (sc == NULL)
return;
DNPRINTF(SR_D_MISC, "%s: sr_map_root\n", DEVNAME(sc));
bzero(duid, sizeof(duid));
if (bcmp(rootduid, duid, sizeof(duid)) == 0) {
DNPRINTF(SR_D_MISC, "%s: root duid is zero\n", DEVNAME(sc));
return;
}
TAILQ_FOREACH(sd, &sc->sc_dis_list, sd_link) {
SLIST_FOREACH(omi, &sd->sd_meta_opt, omi_link) {
if (omi->omi_som->som_type != SR_OPT_BOOT)
continue;
sbm = (struct sr_meta_boot *)omi->omi_som;
for (i = 0; i < SR_MAX_BOOT_DISKS; i++) {
if (bcmp(rootduid, sbm->sbm_boot_duid[i],
sizeof(rootduid)) == 0) {
memcpy(rootduid, sbm->sbm_root_duid,
sizeof(rootduid));
DNPRINTF(SR_D_MISC, "%s: root duid "
"mapped to %s\n", DEVNAME(sc),
duid_format(rootduid));
return;
}
}
}
}
}
int
sr_meta_native_probe(struct sr_softc *sc, struct sr_chunk *ch_entry)
{
struct disklabel label;
char *devname;
int error, part;
u_int64_t size;
DNPRINTF(SR_D_META, "%s: sr_meta_native_probe(%s)\n",
DEVNAME(sc), ch_entry->src_devname);
devname = ch_entry->src_devname;
part = DISKPART(ch_entry->src_dev_mm);
/* get disklabel */
error = VOP_IOCTL(ch_entry->src_vn, DIOCGDINFO, (caddr_t)&label, FREAD,
NOCRED, curproc);
if (error) {
DNPRINTF(SR_D_META, "%s: %s can't obtain disklabel\n",
DEVNAME(sc), devname);
goto unwind;
}
memcpy(ch_entry->src_duid, label.d_uid, sizeof(ch_entry->src_duid));
/* make sure the partition is of the right type */
if (label.d_partitions[part].p_fstype != FS_RAID) {
DNPRINTF(SR_D_META,
"%s: %s partition not of type RAID (%d)\n", DEVNAME(sc),
devname,
label.d_partitions[part].p_fstype);
goto unwind;
}
size = DL_SECTOBLK(&label, DL_GETPSIZE(&label.d_partitions[part]));
if (size <= SR_DATA_OFFSET) {
DNPRINTF(SR_D_META, "%s: %s partition too small\n", DEVNAME(sc),
devname);
goto unwind;
}
size -= SR_DATA_OFFSET;
if (size > INT64_MAX) {
DNPRINTF(SR_D_META, "%s: %s partition too large\n", DEVNAME(sc),
devname);
goto unwind;
}
ch_entry->src_size = size;
ch_entry->src_secsize = label.d_secsize;
DNPRINTF(SR_D_META, "%s: probe found %s size %lld\n", DEVNAME(sc),
devname, (long long)size);
return (SR_META_F_NATIVE);
unwind:
DNPRINTF(SR_D_META, "%s: invalid device: %s\n", DEVNAME(sc),
devname ? devname : "nodev");
return (SR_META_F_INVALID);
}
int
sr_meta_native_attach(struct sr_discipline *sd, int force)
{
struct sr_softc *sc = sd->sd_sc;
struct sr_chunk_head *cl = &sd->sd_vol.sv_chunk_list;
struct sr_metadata *md = NULL;
struct sr_chunk *ch_entry, *ch_next;
struct sr_uuid uuid;
u_int64_t version = 0;
int sr, not_sr, rv = 1, d, expected = -1, old_meta = 0;
DNPRINTF(SR_D_META, "%s: sr_meta_native_attach\n", DEVNAME(sc));
md = malloc(SR_META_SIZE * DEV_BSIZE, M_DEVBUF, M_ZERO | M_NOWAIT);
if (md == NULL) {
sr_error(sc, "not enough memory for metadata buffer");
goto bad;
}
bzero(&uuid, sizeof uuid);
sr = not_sr = d = 0;
SLIST_FOREACH(ch_entry, cl, src_link) {
if (ch_entry->src_dev_mm == NODEV)
continue;
if (sr_meta_native_read(sd, ch_entry->src_dev_mm, md, NULL)) {
sr_error(sc, "could not read native metadata");
goto bad;
}
if (md->ssdi.ssd_magic == SR_MAGIC) {
sr++;
ch_entry->src_meta.scmi.scm_chunk_id =
md->ssdi.ssd_chunk_id;
if (d == 0) {
memcpy(&uuid, &md->ssdi.ssd_uuid, sizeof uuid);
expected = md->ssdi.ssd_chunk_no;
version = md->ssd_ondisk;
d++;
continue;
} else if (bcmp(&md->ssdi.ssd_uuid, &uuid,
sizeof uuid)) {
sr_error(sc, "not part of the same volume");
goto bad;
}
if (md->ssd_ondisk != version) {
old_meta++;
version = MAX(md->ssd_ondisk, version);
}
} else
not_sr++;
}
if (sr && not_sr && !force) {
sr_error(sc, "not all chunks are of the native metadata "
"format");
goto bad;
}
/* mixed metadata versions; mark bad disks offline */
if (old_meta) {
d = 0;
for (ch_entry = SLIST_FIRST(cl); ch_entry != NULL;
ch_entry = ch_next, d++) {
ch_next = SLIST_NEXT(ch_entry, src_link);
/* XXX do we want to read this again? */
if (ch_entry->src_dev_mm == NODEV)
panic("src_dev_mm == NODEV");
if (sr_meta_native_read(sd, ch_entry->src_dev_mm, md,
NULL))
sr_warn(sc, "could not read native metadata");
if (md->ssd_ondisk != version)
sd->sd_vol.sv_chunks[d]->src_meta.scm_status =
BIOC_SDOFFLINE;
}
}
if (expected != sr && !force && expected != -1) {
DNPRINTF(SR_D_META, "%s: not all chunks were provided, trying "
"anyway\n", DEVNAME(sc));
}
rv = 0;
bad:
free(md, M_DEVBUF, SR_META_SIZE * DEV_BSIZE);
return (rv);
}
int
sr_meta_native_read(struct sr_discipline *sd, dev_t dev,
struct sr_metadata *md, void *fm)
{
#ifdef SR_DEBUG
struct sr_softc *sc = sd->sd_sc;
#endif
DNPRINTF(SR_D_META, "%s: sr_meta_native_read(0x%x, %p)\n",
DEVNAME(sc), dev, md);
return (sr_meta_rw(sd, dev, md, B_READ));
}
int
sr_meta_native_write(struct sr_discipline *sd, dev_t dev,
struct sr_metadata *md, void *fm)
{
#ifdef SR_DEBUG
struct sr_softc *sc = sd->sd_sc;
#endif
DNPRINTF(SR_D_META, "%s: sr_meta_native_write(0x%x, %p)\n",
DEVNAME(sc), dev, md);
return (sr_meta_rw(sd, dev, md, B_WRITE));
}
void
sr_hotplug_register(struct sr_discipline *sd, void *func)
{
struct sr_hotplug_list *mhe;
DNPRINTF(SR_D_MISC, "%s: sr_hotplug_register: %p\n",
DEVNAME(sd->sd_sc), func);
/* make sure we aren't on the list yet */
SLIST_FOREACH(mhe, &sr_hotplug_callbacks, shl_link)
if (mhe->sh_hotplug == func)
return;
mhe = malloc(sizeof(struct sr_hotplug_list), M_DEVBUF,
M_WAITOK | M_ZERO);
mhe->sh_hotplug = func;
mhe->sh_sd = sd;
SLIST_INSERT_HEAD(&sr_hotplug_callbacks, mhe, shl_link);
}
void
sr_hotplug_unregister(struct sr_discipline *sd, void *func)
{
struct sr_hotplug_list *mhe;
DNPRINTF(SR_D_MISC, "%s: sr_hotplug_unregister: %s %p\n",
DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname, func);
/* make sure we are on the list yet */
SLIST_FOREACH(mhe, &sr_hotplug_callbacks, shl_link) {
if (mhe->sh_hotplug == func)
break;
}
if (mhe != NULL) {
SLIST_REMOVE(&sr_hotplug_callbacks, mhe,
sr_hotplug_list, shl_link);
free(mhe, M_DEVBUF, sizeof(*mhe));
}
}
void
sr_disk_attach(struct disk *diskp, int action)
{
struct sr_hotplug_list *mhe;
SLIST_FOREACH(mhe, &sr_hotplug_callbacks, shl_link)
if (mhe->sh_sd->sd_ready)
mhe->sh_hotplug(mhe->sh_sd, diskp, action);
}
int
sr_match(struct device *parent, void *match, void *aux)
{
return (1);
}
void
sr_attach(struct device *parent, struct device *self, void *aux)
{
struct sr_softc *sc = (void *)self;
struct scsibus_attach_args saa;
DNPRINTF(SR_D_MISC, "\n%s: sr_attach", DEVNAME(sc));
if (softraid0 == NULL)
softraid0 = sc;
rw_init(&sc->sc_lock, "sr_lock");
rw_init(&sc->sc_hs_lock, "sr_hs_lock");
SLIST_INIT(&sr_hotplug_callbacks);
TAILQ_INIT(&sc->sc_dis_list);
SLIST_INIT(&sc->sc_hotspare_list);
#if NBIO > 0
if (bio_register(&sc->sc_dev, sr_bio_ioctl) != 0)
printf("%s: controller registration failed", DEVNAME(sc));
#endif /* NBIO > 0 */
#ifndef SMALL_KERNEL
strlcpy(sc->sc_sensordev.xname, DEVNAME(sc),
sizeof(sc->sc_sensordev.xname));
sensordev_install(&sc->sc_sensordev);
#endif /* SMALL_KERNEL */
printf("\n");
saa.saa_adapter_softc = sc;
saa.saa_adapter = &sr_switch;
saa.saa_adapter_target = SDEV_NO_ADAPTER_TARGET;
saa.saa_adapter_buswidth = SR_MAX_LD;
saa.saa_luns = 1;
saa.saa_openings = 0;
saa.saa_pool = NULL;
saa.saa_quirks = saa.saa_flags = 0;
saa.saa_wwpn = saa.saa_wwnn = 0;
sc->sc_scsibus = (struct scsibus_softc *)config_found(&sc->sc_dev, &saa,
scsiprint);
softraid_disk_attach = sr_disk_attach;
sr_boot_assembly(sc);
explicit_bzero(sr_bootkey, sizeof(sr_bootkey));
}
int
sr_detach(struct device *self, int flags)
{
struct sr_softc *sc = (void *)self;
int rv;
DNPRINTF(SR_D_MISC, "%s: sr_detach\n", DEVNAME(sc));
softraid_disk_attach = NULL;
sr_shutdown(0);
#ifndef SMALL_KERNEL
if (sc->sc_sensor_task != NULL)
sensor_task_unregister(sc->sc_sensor_task);
sensordev_deinstall(&sc->sc_sensordev);
#endif /* SMALL_KERNEL */
if (sc->sc_scsibus != NULL) {
rv = config_detach((struct device *)sc->sc_scsibus, flags);
if (rv != 0)
return (rv);
sc->sc_scsibus = NULL;
}
return (0);
}
void
sr_info(struct sr_softc *sc, const char *fmt, ...)
{
va_list ap;
rw_assert_wrlock(&sc->sc_lock);
va_start(ap, fmt);
bio_status(&sc->sc_status, 0, BIO_MSG_INFO, fmt, &ap);
va_end(ap);
}
void
sr_warn(struct sr_softc *sc, const char *fmt, ...)
{
va_list ap;
rw_assert_wrlock(&sc->sc_lock);
va_start(ap, fmt);
bio_status(&sc->sc_status, 1, BIO_MSG_WARN, fmt, &ap);
va_end(ap);
}
void
sr_error(struct sr_softc *sc, const char *fmt, ...)
{
va_list ap;
rw_assert_wrlock(&sc->sc_lock);
va_start(ap, fmt);
bio_status(&sc->sc_status, 1, BIO_MSG_ERROR, fmt, &ap);
va_end(ap);
}
int
sr_ccb_alloc(struct sr_discipline *sd)
{
struct sr_ccb *ccb;
int i;
if (!sd)
return (1);
DNPRINTF(SR_D_CCB, "%s: sr_ccb_alloc\n", DEVNAME(sd->sd_sc));
if (sd->sd_ccb)
return (1);
sd->sd_ccb = mallocarray(sd->sd_max_wu,
sd->sd_max_ccb_per_wu * sizeof(struct sr_ccb),
M_DEVBUF, M_WAITOK | M_ZERO);
TAILQ_INIT(&sd->sd_ccb_freeq);
for (i = 0; i < sd->sd_max_wu * sd->sd_max_ccb_per_wu; i++) {
ccb = &sd->sd_ccb[i];
ccb->ccb_dis = sd;
sr_ccb_put(ccb);
}
DNPRINTF(SR_D_CCB, "%s: sr_ccb_alloc ccb: %d\n",
DEVNAME(sd->sd_sc), sd->sd_max_wu * sd->sd_max_ccb_per_wu);
return (0);
}
void
sr_ccb_free(struct sr_discipline *sd)
{
struct sr_ccb *ccb;
if (!sd)
return;
DNPRINTF(SR_D_CCB, "%s: sr_ccb_free %p\n", DEVNAME(sd->sd_sc), sd);
while ((ccb = TAILQ_FIRST(&sd->sd_ccb_freeq)) != NULL)
TAILQ_REMOVE(&sd->sd_ccb_freeq, ccb, ccb_link);
free(sd->sd_ccb, M_DEVBUF, sd->sd_max_wu * sd->sd_max_ccb_per_wu *
sizeof(struct sr_ccb));
}
struct sr_ccb *
sr_ccb_get(struct sr_discipline *sd)
{
struct sr_ccb *ccb;
int s;
s = splbio();
ccb = TAILQ_FIRST(&sd->sd_ccb_freeq);
if (ccb) {
TAILQ_REMOVE(&sd->sd_ccb_freeq, ccb, ccb_link);
ccb->ccb_state = SR_CCB_INPROGRESS;
}
splx(s);
DNPRINTF(SR_D_CCB, "%s: sr_ccb_get: %p\n", DEVNAME(sd->sd_sc),
ccb);
return (ccb);
}
void
sr_ccb_put(struct sr_ccb *ccb)
{
struct sr_discipline *sd = ccb->ccb_dis;
int s;
DNPRINTF(SR_D_CCB, "%s: sr_ccb_put: %p\n", DEVNAME(sd->sd_sc),
ccb);
s = splbio();
ccb->ccb_wu = NULL;
ccb->ccb_state = SR_CCB_FREE;
ccb->ccb_target = -1;
ccb->ccb_opaque = NULL;
TAILQ_INSERT_TAIL(&sd->sd_ccb_freeq, ccb, ccb_link);
splx(s);
}
struct sr_ccb *
sr_ccb_rw(struct sr_discipline *sd, int chunk, daddr_t blkno,
long len, u_int8_t *data, int xsflags, int ccbflags)
{
struct sr_chunk *sc = sd->sd_vol.sv_chunks[chunk];
struct sr_ccb *ccb = NULL;
int s;
ccb = sr_ccb_get(sd);
if (ccb == NULL)
goto out;
ccb->ccb_flags = ccbflags;
ccb->ccb_target = chunk;
ccb->ccb_buf.b_flags = B_PHYS | B_CALL;
if (ISSET(xsflags, SCSI_DATA_IN))
ccb->ccb_buf.b_flags |= B_READ;
else
ccb->ccb_buf.b_flags |= B_WRITE;
ccb->ccb_buf.b_blkno = blkno + sd->sd_meta->ssd_data_blkno;
ccb->ccb_buf.b_bcount = len;
ccb->ccb_buf.b_bufsize = len;
ccb->ccb_buf.b_resid = len;
ccb->ccb_buf.b_data = data;
ccb->ccb_buf.b_error = 0;
ccb->ccb_buf.b_iodone = sd->sd_scsi_intr;
ccb->ccb_buf.b_proc = curproc;
ccb->ccb_buf.b_dev = sc->src_dev_mm;
ccb->ccb_buf.b_vp = sc->src_vn;
ccb->ccb_buf.b_bq = NULL;
if (!ISSET(ccb->ccb_buf.b_flags, B_READ)) {
s = splbio();
ccb->ccb_buf.b_vp->v_numoutput++;
splx(s);
}
DNPRINTF(SR_D_DIS, "%s: %s %s ccb "
"b_bcount %ld b_blkno %lld b_flags 0x%0lx b_data %p\n",
DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname, sd->sd_name,
ccb->ccb_buf.b_bcount, (long long)ccb->ccb_buf.b_blkno,
ccb->ccb_buf.b_flags, ccb->ccb_buf.b_data);
out:
return ccb;
}
void
sr_ccb_done(struct sr_ccb *ccb)
{
struct sr_workunit *wu = ccb->ccb_wu;
struct sr_discipline *sd = wu->swu_dis;
struct sr_softc *sc = sd->sd_sc;
DNPRINTF(SR_D_INTR, "%s: %s %s ccb done b_bcount %ld b_resid %zu"
" b_flags 0x%0lx block %lld target %d\n",
DEVNAME(sc), sd->sd_meta->ssd_devname, sd->sd_name,
ccb->ccb_buf.b_bcount, ccb->ccb_buf.b_resid, ccb->ccb_buf.b_flags,
(long long)ccb->ccb_buf.b_blkno, ccb->ccb_target);
splassert(IPL_BIO);
if (ccb->ccb_target == -1)
panic("%s: invalid target on wu: %p", DEVNAME(sc), wu);
if (ccb->ccb_buf.b_flags & B_ERROR) {
DNPRINTF(SR_D_INTR, "%s: i/o error on block %lld target %d\n",
DEVNAME(sc), (long long)ccb->ccb_buf.b_blkno,
ccb->ccb_target);
if (ISSET(sd->sd_capabilities, SR_CAP_REDUNDANT))
sd->sd_set_chunk_state(sd, ccb->ccb_target,
BIOC_SDOFFLINE);
else
printf("%s: %s: i/o error %d @ %s block %lld\n",
DEVNAME(sc), sd->sd_meta->ssd_devname,
ccb->ccb_buf.b_error, sd->sd_name,
(long long)ccb->ccb_buf.b_blkno);
ccb->ccb_state = SR_CCB_FAILED;
wu->swu_ios_failed++;
} else {
ccb->ccb_state = SR_CCB_OK;
wu->swu_ios_succeeded++;
}
wu->swu_ios_complete++;
}
int
sr_wu_alloc(struct sr_discipline *sd)
{
struct sr_workunit *wu;
int i, no_wu;
DNPRINTF(SR_D_WU, "%s: sr_wu_alloc %p %d\n", DEVNAME(sd->sd_sc),
sd, sd->sd_max_wu);
no_wu = sd->sd_max_wu;
sd->sd_wu_pending = no_wu;
mtx_init(&sd->sd_wu_mtx, IPL_BIO);
TAILQ_INIT(&sd->sd_wu);
TAILQ_INIT(&sd->sd_wu_freeq);
TAILQ_INIT(&sd->sd_wu_pendq);
TAILQ_INIT(&sd->sd_wu_defq);
for (i = 0; i < no_wu; i++) {
wu = malloc(sd->sd_wu_size, M_DEVBUF, M_WAITOK | M_ZERO);
TAILQ_INSERT_TAIL(&sd->sd_wu, wu, swu_next);
TAILQ_INIT(&wu->swu_ccb);
wu->swu_dis = sd;
task_set(&wu->swu_task, sr_wu_done_callback, wu);
sr_wu_put(sd, wu);
}
return (0);
}
void
sr_wu_free(struct sr_discipline *sd)
{
struct sr_workunit *wu;
DNPRINTF(SR_D_WU, "%s: sr_wu_free %p\n", DEVNAME(sd->sd_sc), sd);
while ((wu = TAILQ_FIRST(&sd->sd_wu_freeq)) != NULL)
TAILQ_REMOVE(&sd->sd_wu_freeq, wu, swu_link);
while ((wu = TAILQ_FIRST(&sd->sd_wu_pendq)) != NULL)
TAILQ_REMOVE(&sd->sd_wu_pendq, wu, swu_link);
while ((wu = TAILQ_FIRST(&sd->sd_wu_defq)) != NULL)
TAILQ_REMOVE(&sd->sd_wu_defq, wu, swu_link);
while ((wu = TAILQ_FIRST(&sd->sd_wu)) != NULL) {
TAILQ_REMOVE(&sd->sd_wu, wu, swu_next);
free(wu, M_DEVBUF, sd->sd_wu_size);
}
}
void *
sr_wu_get(void *xsd)
{
struct sr_discipline *sd = (struct sr_discipline *)xsd;
struct sr_workunit *wu;
mtx_enter(&sd->sd_wu_mtx);
wu = TAILQ_FIRST(&sd->sd_wu_freeq);
if (wu) {
TAILQ_REMOVE(&sd->sd_wu_freeq, wu, swu_link);
sd->sd_wu_pending++;
}
mtx_leave(&sd->sd_wu_mtx);
DNPRINTF(SR_D_WU, "%s: sr_wu_get: %p\n", DEVNAME(sd->sd_sc), wu);
return (wu);
}
void
sr_wu_put(void *xsd, void *xwu)
{
struct sr_discipline *sd = (struct sr_discipline *)xsd;
struct sr_workunit *wu = (struct sr_workunit *)xwu;
DNPRINTF(SR_D_WU, "%s: sr_wu_put: %p\n", DEVNAME(sd->sd_sc), wu);
sr_wu_release_ccbs(wu);
sr_wu_init(sd, wu);
mtx_enter(&sd->sd_wu_mtx);
TAILQ_INSERT_TAIL(&sd->sd_wu_freeq, wu, swu_link);
sd->sd_wu_pending--;
mtx_leave(&sd->sd_wu_mtx);
}
void
sr_wu_init(struct sr_discipline *sd, struct sr_workunit *wu)
{
int s;
s = splbio();
if (wu->swu_cb_active == 1)
panic("%s: sr_wu_init got active wu", DEVNAME(sd->sd_sc));
splx(s);
wu->swu_xs = NULL;
wu->swu_state = SR_WU_FREE;
wu->swu_flags = 0;
wu->swu_blk_start = 0;
wu->swu_blk_end = 0;
wu->swu_collider = NULL;
}
void
sr_wu_enqueue_ccb(struct sr_workunit *wu, struct sr_ccb *ccb)
{
struct sr_discipline *sd = wu->swu_dis;
int s;
s = splbio();
if (wu->swu_cb_active == 1)
panic("%s: sr_wu_enqueue_ccb got active wu",
DEVNAME(sd->sd_sc));
ccb->ccb_wu = wu;
wu->swu_io_count++;
TAILQ_INSERT_TAIL(&wu->swu_ccb, ccb, ccb_link);
splx(s);
}
void
sr_wu_release_ccbs(struct sr_workunit *wu)
{
struct sr_ccb *ccb;
/* Return all ccbs that are associated with this workunit. */
while ((ccb = TAILQ_FIRST(&wu->swu_ccb)) != NULL) {
TAILQ_REMOVE(&wu->swu_ccb, ccb, ccb_link);
sr_ccb_put(ccb);
}
wu->swu_io_count = 0;
wu->swu_ios_complete = 0;
wu->swu_ios_failed = 0;
wu->swu_ios_succeeded = 0;
}
void
sr_wu_done(struct sr_workunit *wu)
{
struct sr_discipline *sd = wu->swu_dis;
DNPRINTF(SR_D_INTR, "%s: sr_wu_done count %d completed %d failed %d\n",
DEVNAME(sd->sd_sc), wu->swu_io_count, wu->swu_ios_complete,
wu->swu_ios_failed);
if (wu->swu_ios_complete < wu->swu_io_count)
return;
task_add(sd->sd_taskq, &wu->swu_task);
}
void
sr_wu_done_callback(void *xwu)
{
struct sr_workunit *wu = xwu;
struct sr_discipline *sd = wu->swu_dis;
struct scsi_xfer *xs = wu->swu_xs;
struct sr_workunit *wup;
int s;
/*
* The SR_WUF_DISCIPLINE or SR_WUF_REBUILD flag must be set if
* the work unit is not associated with a scsi_xfer.
*/
KASSERT(xs != NULL ||
(wu->swu_flags & (SR_WUF_DISCIPLINE|SR_WUF_REBUILD)));
s = splbio();
if (xs != NULL) {
if (wu->swu_ios_failed)
xs->error = XS_DRIVER_STUFFUP;
else
xs->error = XS_NOERROR;
}
if (sd->sd_scsi_wu_done) {
if (sd->sd_scsi_wu_done(wu) == SR_WU_RESTART)
goto done;
}
/* Remove work unit from pending queue. */
TAILQ_FOREACH(wup, &sd->sd_wu_pendq, swu_link)
if (wup == wu)
break;
if (wup == NULL)
panic("%s: wu %p not on pending queue",
DEVNAME(sd->sd_sc), wu);
TAILQ_REMOVE(&sd->sd_wu_pendq, wu, swu_link);
if (wu->swu_collider) {
if (wu->swu_ios_failed)
sr_raid_recreate_wu(wu->swu_collider);
/* XXX Should the collider be failed if this xs failed? */
sr_raid_startwu(wu->swu_collider);
}
/*
* If a discipline provides its own sd_scsi_done function, then it
* is responsible for calling sr_scsi_done() once I/O is complete.
*/
if (wu->swu_flags & SR_WUF_REBUILD)
wu->swu_flags |= SR_WUF_REBUILDIOCOMP;
if (wu->swu_flags & SR_WUF_WAKEUP)
wakeup(wu);
if (sd->sd_scsi_done)
sd->sd_scsi_done(wu);
else if (wu->swu_flags & SR_WUF_DISCIPLINE)
sr_scsi_wu_put(sd, wu);
else if (!(wu->swu_flags & SR_WUF_REBUILD))
sr_scsi_done(sd, xs);
done:
splx(s);
}
struct sr_workunit *
sr_scsi_wu_get(struct sr_discipline *sd, int flags)
{
return scsi_io_get(&sd->sd_iopool, flags);
}
void
sr_scsi_wu_put(struct sr_discipline *sd, struct sr_workunit *wu)
{
scsi_io_put(&sd->sd_iopool, wu);
if (sd->sd_sync && sd->sd_wu_pending == 0)
wakeup(sd);
}
void
sr_scsi_done(struct sr_discipline *sd, struct scsi_xfer *xs)
{
DNPRINTF(SR_D_DIS, "%s: sr_scsi_done: xs %p\n", DEVNAME(sd->sd_sc), xs);
if (xs->error == XS_NOERROR)
xs->resid = 0;
scsi_done(xs);
if (sd->sd_sync && sd->sd_wu_pending == 0)
wakeup(sd);
}
void
sr_scsi_cmd(struct scsi_xfer *xs)
{
struct scsi_link *link = xs->sc_link;
struct sr_softc *sc = link->bus->sb_adapter_softc;
struct sr_workunit *wu = xs->io;
struct sr_discipline *sd;
DNPRINTF(SR_D_CMD, "%s: sr_scsi_cmd target %d xs %p flags %#x\n",
DEVNAME(sc), link->target, xs, xs->flags);
sd = sc->sc_targets[link->target];
if (sd == NULL)
panic("%s: sr_scsi_cmd NULL discipline", DEVNAME(sc));
if (sd->sd_deleted) {
printf("%s: %s device is being deleted, failing io\n",
DEVNAME(sc), sd->sd_meta->ssd_devname);
goto stuffup;
}
/* scsi layer *can* re-send wu without calling sr_wu_put(). */
sr_wu_release_ccbs(wu);
sr_wu_init(sd, wu);
wu->swu_state = SR_WU_INPROGRESS;
wu->swu_xs = xs;
switch (xs->cmd.opcode) {
case READ_COMMAND:
case READ_10:
case READ_16:
case WRITE_COMMAND:
case WRITE_10:
case WRITE_16:
DNPRINTF(SR_D_CMD, "%s: sr_scsi_cmd: READ/WRITE %02x\n",
DEVNAME(sc), xs->cmd.opcode);
if (sd->sd_scsi_rw(wu))
goto stuffup;
break;
case SYNCHRONIZE_CACHE:
DNPRINTF(SR_D_CMD, "%s: sr_scsi_cmd: SYNCHRONIZE_CACHE\n",
DEVNAME(sc));
if (sd->sd_scsi_sync(wu))
goto stuffup;
goto complete;
case TEST_UNIT_READY:
DNPRINTF(SR_D_CMD, "%s: sr_scsi_cmd: TEST_UNIT_READY\n",
DEVNAME(sc));
if (sd->sd_scsi_tur(wu))
goto stuffup;
goto complete;
case START_STOP:
DNPRINTF(SR_D_CMD, "%s: sr_scsi_cmd: START_STOP\n",
DEVNAME(sc));
if (sd->sd_scsi_start_stop(wu))
goto stuffup;
goto complete;
case INQUIRY:
DNPRINTF(SR_D_CMD, "%s: sr_scsi_cmd: INQUIRY\n",
DEVNAME(sc));
if (sd->sd_scsi_inquiry(wu))
goto stuffup;
goto complete;
case READ_CAPACITY:
case READ_CAPACITY_16:
DNPRINTF(SR_D_CMD, "%s: sr_scsi_cmd READ CAPACITY 0x%02x\n",
DEVNAME(sc), xs->cmd.opcode);
if (sd->sd_scsi_read_cap(wu))
goto stuffup;
goto complete;
case REQUEST_SENSE:
DNPRINTF(SR_D_CMD, "%s: sr_scsi_cmd REQUEST SENSE\n",
DEVNAME(sc));
if (sd->sd_scsi_req_sense(wu))
goto stuffup;
goto complete;
default:
DNPRINTF(SR_D_CMD, "%s: unsupported scsi command %x\n",
DEVNAME(sc), xs->cmd.opcode);
/* XXX might need to add generic function to handle others */
goto stuffup;
}
return;
stuffup:
if (sd->sd_scsi_sense.error_code) {
xs->error = XS_SENSE;
memcpy(&xs->sense, &sd->sd_scsi_sense, sizeof(xs->sense));
bzero(&sd->sd_scsi_sense, sizeof(sd->sd_scsi_sense));
} else {
xs->error = XS_DRIVER_STUFFUP;
}
complete:
sr_scsi_done(sd, xs);
}
int
sr_scsi_probe(struct scsi_link *link)
{
struct sr_softc *sc = link->bus->sb_adapter_softc;
struct sr_discipline *sd;
KASSERT(link->target < SR_MAX_LD && link->lun == 0);
sd = sc->sc_targets[link->target];
if (sd == NULL)
return (ENODEV);
link->pool = &sd->sd_iopool;
if (sd->sd_openings)
link->openings = sd->sd_openings(sd);
else
link->openings = sd->sd_max_wu;
return (0);
}
int
sr_scsi_ioctl(struct scsi_link *link, u_long cmd, caddr_t addr, int flag)
{
struct sr_softc *sc = link->bus->sb_adapter_softc;
struct sr_discipline *sd;
sd = sc->sc_targets[link->target];
if (sd == NULL)
return (ENODEV);
DNPRINTF(SR_D_IOCTL, "%s: %s sr_scsi_ioctl cmd: %#lx\n",
DEVNAME(sc), sd->sd_meta->ssd_devname, cmd);
/* Pass bio ioctls through to the bio handler. */
if (IOCGROUP(cmd) == 'B')
return (sr_bio_handler(sc, sd, cmd, (struct bio *)addr));
switch (cmd) {
case DIOCGCACHE:
case DIOCSCACHE:
return (EOPNOTSUPP);
default:
return (ENOTTY);
}
}
int
sr_bio_ioctl(struct device *dev, u_long cmd, caddr_t addr)
{
struct sr_softc *sc = (struct sr_softc *) dev;
DNPRINTF(SR_D_IOCTL, "%s: sr_bio_ioctl\n", DEVNAME(sc));
return sr_bio_handler(sc, NULL, cmd, (struct bio *)addr);
}
int
sr_bio_handler(struct sr_softc *sc, struct sr_discipline *sd, u_long cmd,
struct bio *bio)
{
int rv = 0;
DNPRINTF(SR_D_IOCTL, "%s: sr_bio_handler ", DEVNAME(sc));
rw_enter_write(&sc->sc_lock);
bio_status_init(&sc->sc_status, &sc->sc_dev);
switch (cmd) {
case BIOCINQ:
DNPRINTF(SR_D_IOCTL, "inq\n");
rv = sr_ioctl_inq(sc, (struct bioc_inq *)bio);
break;
case BIOCVOL:
DNPRINTF(SR_D_IOCTL, "vol\n");
rv = sr_ioctl_vol(sc, (struct bioc_vol *)bio);
break;
case BIOCDISK:
DNPRINTF(SR_D_IOCTL, "disk\n");
rv = sr_ioctl_disk(sc, (struct bioc_disk *)bio);
break;
case BIOCALARM:
DNPRINTF(SR_D_IOCTL, "alarm\n");
/*rv = sr_ioctl_alarm(sc, (struct bioc_alarm *)bio); */
break;
case BIOCBLINK:
DNPRINTF(SR_D_IOCTL, "blink\n");
/*rv = sr_ioctl_blink(sc, (struct bioc_blink *)bio); */
break;
case BIOCSETSTATE:
DNPRINTF(SR_D_IOCTL, "setstate\n");
rv = sr_ioctl_setstate(sc, (struct bioc_setstate *)bio);
break;
case BIOCCREATERAID:
DNPRINTF(SR_D_IOCTL, "createraid\n");
rv = sr_ioctl_createraid(sc, (struct bioc_createraid *)bio,
1, NULL);
break;
case BIOCDELETERAID:
DNPRINTF(SR_D_IOCTL, "deleteraid\n");
rv = sr_ioctl_deleteraid(sc, sd, (struct bioc_deleteraid *)bio);
break;
case BIOCDISCIPLINE:
DNPRINTF(SR_D_IOCTL, "discipline\n");
rv = sr_ioctl_discipline(sc, sd, (struct bioc_discipline *)bio);
break;
case BIOCINSTALLBOOT:
DNPRINTF(SR_D_IOCTL, "installboot\n");
rv = sr_ioctl_installboot(sc, sd,
(struct bioc_installboot *)bio);
break;
default:
DNPRINTF(SR_D_IOCTL, "invalid ioctl\n");
rv = ENOTTY;
}
sc->sc_status.bs_status = (rv ? BIO_STATUS_ERROR : BIO_STATUS_SUCCESS);
if (sc->sc_status.bs_msg_count > 0)
rv = 0;
memcpy(&bio->bio_status, &sc->sc_status, sizeof(struct bio_status));
rw_exit_write(&sc->sc_lock);
return (rv);
}
int
sr_ioctl_inq(struct sr_softc *sc, struct bioc_inq *bi)
{
struct sr_discipline *sd;
int vol = 0, disk = 0;
TAILQ_FOREACH(sd, &sc->sc_dis_list, sd_link) {
vol++;
disk += sd->sd_meta->ssdi.ssd_chunk_no;
}
strlcpy(bi->bi_dev, sc->sc_dev.dv_xname, sizeof(bi->bi_dev));
bi->bi_novol = vol + sc->sc_hotspare_no;
bi->bi_nodisk = disk + sc->sc_hotspare_no;
return (0);
}
int
sr_ioctl_vol(struct sr_softc *sc, struct bioc_vol *bv)
{
int vol = -1, rv = EINVAL;
struct sr_discipline *sd;
struct sr_chunk *hotspare;
TAILQ_FOREACH(sd, &sc->sc_dis_list, sd_link) {
vol++;
if (vol != bv->bv_volid)
continue;
bv->bv_status = sd->sd_vol_status;
bv->bv_size = sd->sd_meta->ssdi.ssd_size << DEV_BSHIFT;
bv->bv_level = sd->sd_meta->ssdi.ssd_level;
bv->bv_nodisk = sd->sd_meta->ssdi.ssd_chunk_no;
#ifdef CRYPTO
if (sd->sd_meta->ssdi.ssd_level == 'C' &&
sd->mds.mdd_crypto.key_disk != NULL)
bv->bv_nodisk++;
else if (sd->sd_meta->ssdi.ssd_level == 0x1C &&
sd->mds.mdd_raid1c.sr1c_crypto.key_disk != NULL)
bv->bv_nodisk++;
#endif
if (bv->bv_status == BIOC_SVREBUILD)
bv->bv_percent = sr_rebuild_percent(sd);
strlcpy(bv->bv_dev, sd->sd_meta->ssd_devname,
sizeof(bv->bv_dev));
strlcpy(bv->bv_vendor, sd->sd_meta->ssdi.ssd_vendor,
sizeof(bv->bv_vendor));
rv = 0;
goto done;
}
/* Check hotspares list. */
SLIST_FOREACH(hotspare, &sc->sc_hotspare_list, src_link) {
vol++;
if (vol != bv->bv_volid)
continue;
bv->bv_status = BIOC_SVONLINE;
bv->bv_size = hotspare->src_meta.scmi.scm_size << DEV_BSHIFT;
bv->bv_level = -1; /* Hotspare. */
bv->bv_nodisk = 1;
strlcpy(bv->bv_dev, hotspare->src_meta.scmi.scm_devname,
sizeof(bv->bv_dev));
strlcpy(bv->bv_vendor, hotspare->src_meta.scmi.scm_devname,
sizeof(bv->bv_vendor));
rv = 0;
goto done;
}
done:
return (rv);
}
int
sr_ioctl_disk(struct sr_softc *sc, struct bioc_disk *bd)
{
struct sr_discipline *sd;
struct sr_chunk *src, *hotspare;
int vol = -1, rv = EINVAL;
if (bd->bd_diskid < 0)
goto done;
TAILQ_FOREACH(sd, &sc->sc_dis_list, sd_link) {
vol++;
if (vol != bd->bd_volid)
continue;
if (bd->bd_diskid < sd->sd_meta->ssdi.ssd_chunk_no)
src = sd->sd_vol.sv_chunks[bd->bd_diskid];
#ifdef CRYPTO
else if (bd->bd_diskid == sd->sd_meta->ssdi.ssd_chunk_no &&
sd->sd_meta->ssdi.ssd_level == 'C' &&
sd->mds.mdd_crypto.key_disk != NULL)
src = sd->mds.mdd_crypto.key_disk;
else if (bd->bd_diskid == sd->sd_meta->ssdi.ssd_chunk_no &&
sd->sd_meta->ssdi.ssd_level == 0x1C &&
sd->mds.mdd_raid1c.sr1c_crypto.key_disk != NULL)
src = sd->mds.mdd_crypto.key_disk;
#endif
else
break;
bd->bd_status = src->src_meta.scm_status;
bd->bd_size = src->src_meta.scmi.scm_size << DEV_BSHIFT;
bd->bd_channel = vol;
bd->bd_target = bd->bd_diskid;
strlcpy(bd->bd_vendor, src->src_meta.scmi.scm_devname,
sizeof(bd->bd_vendor));
rv = 0;
goto done;
}
/* Check hotspares list. */
SLIST_FOREACH(hotspare, &sc->sc_hotspare_list, src_link) {
vol++;
if (vol != bd->bd_volid)
continue;
if (bd->bd_diskid != 0)
break;
bd->bd_status = hotspare->src_meta.scm_status;
bd->bd_size = hotspare->src_meta.scmi.scm_size << DEV_BSHIFT;
bd->bd_channel = vol;
bd->bd_target = bd->bd_diskid;
strlcpy(bd->bd_vendor, hotspare->src_meta.scmi.scm_devname,
sizeof(bd->bd_vendor));
rv = 0;
goto done;
}
done:
return (rv);
}
int
sr_ioctl_setstate(struct sr_softc *sc, struct bioc_setstate *bs)
{
int rv = EINVAL;
int vol = -1, found, c;
struct sr_discipline *sd;
struct sr_chunk *ch_entry;
struct sr_chunk_head *cl;
if (bs->bs_other_id_type == BIOC_SSOTHER_UNUSED)
goto done;
if (bs->bs_status == BIOC_SSHOTSPARE) {
rv = sr_hotspare(sc, (dev_t)bs->bs_other_id);
goto done;
}
TAILQ_FOREACH(sd, &sc->sc_dis_list, sd_link) {
vol++;
if (vol == bs->bs_volid)
break;
}
if (sd == NULL)
goto done;
switch (bs->bs_status) {
case BIOC_SSOFFLINE:
/* Take chunk offline */
found = c = 0;
cl = &sd->sd_vol.sv_chunk_list;
SLIST_FOREACH(ch_entry, cl, src_link) {
if (ch_entry->src_dev_mm == bs->bs_other_id) {
found = 1;
break;
}
c++;
}
if (found == 0) {
sr_error(sc, "chunk not part of array");
goto done;
}
/* XXX: check current state first */
sd->sd_set_chunk_state(sd, c, BIOC_SDOFFLINE);
if (sr_meta_save(sd, SR_META_DIRTY)) {
sr_error(sc, "could not save metadata for %s",
sd->sd_meta->ssd_devname);
goto done;
}
rv = 0;
break;
case BIOC_SDSCRUB:
break;
case BIOC_SSREBUILD:
rv = sr_rebuild_init(sd, (dev_t)bs->bs_other_id, 0);
break;
default:
sr_error(sc, "unsupported state request %d", bs->bs_status);
}
done:
return (rv);
}
int
sr_chunk_in_use(struct sr_softc *sc, dev_t dev)
{
struct sr_discipline *sd;
struct sr_chunk *chunk;
int i;
DNPRINTF(SR_D_MISC, "%s: sr_chunk_in_use(%d)\n", DEVNAME(sc), dev);
if (dev == NODEV)
return BIOC_SDINVALID;
/* See if chunk is already in use. */
TAILQ_FOREACH(sd, &sc->sc_dis_list, sd_link) {
for (i = 0; i < sd->sd_meta->ssdi.ssd_chunk_no; i++) {
chunk = sd->sd_vol.sv_chunks[i];
if (chunk->src_dev_mm == dev)
return chunk->src_meta.scm_status;
}
}
/* Check hotspares list. */
SLIST_FOREACH(chunk, &sc->sc_hotspare_list, src_link)
if (chunk->src_dev_mm == dev)
return chunk->src_meta.scm_status;
return BIOC_SDINVALID;
}
int
sr_hotspare(struct sr_softc *sc, dev_t dev)
{
struct sr_discipline *sd = NULL;
struct sr_metadata *sm = NULL;
struct sr_meta_chunk *hm;
struct sr_chunk_head *cl;
struct sr_chunk *chunk, *last, *hotspare = NULL;
struct sr_uuid uuid;
struct disklabel label;
struct vnode *vn;
u_int64_t size;
char devname[32];
int rv = EINVAL;
int c, part, open = 0;
/*
* Add device to global hotspares list.
*/
sr_meta_getdevname(sc, dev, devname, sizeof(devname));
/* Make sure chunk is not already in use. */
c = sr_chunk_in_use(sc, dev);
if (c != BIOC_SDINVALID && c != BIOC_SDOFFLINE) {
if (c == BIOC_SDHOTSPARE)
sr_error(sc, "%s is already a hotspare", devname);
else
sr_error(sc, "%s is already in use", devname);
goto done;
}
/* XXX - See if there is an existing degraded volume... */
/* Open device. */
if (bdevvp(dev, &vn)) {
sr_error(sc, "sr_hotspare: cannot allocate vnode");
goto done;
}
if (VOP_OPEN(vn, FREAD | FWRITE, NOCRED, curproc)) {
DNPRINTF(SR_D_META,"%s: sr_hotspare cannot open %s\n",
DEVNAME(sc), devname);
vput(vn);
goto fail;
}
open = 1; /* close dev on error */
/* Get partition details. */
part = DISKPART(dev);
if (VOP_IOCTL(vn, DIOCGDINFO, (caddr_t)&label, FREAD,
NOCRED, curproc)) {
DNPRINTF(SR_D_META, "%s: sr_hotspare ioctl failed\n",
DEVNAME(sc));
goto fail;
}
if (label.d_partitions[part].p_fstype != FS_RAID) {
sr_error(sc, "%s partition not of type RAID (%d)",
devname, label.d_partitions[part].p_fstype);
goto fail;
}
/* Calculate partition size. */
size = DL_SECTOBLK(&label, DL_GETPSIZE(&label.d_partitions[part]));
if (size <= SR_DATA_OFFSET) {
DNPRINTF(SR_D_META, "%s: %s partition too small\n", DEVNAME(sc),
devname);
goto fail;
}
size -= SR_DATA_OFFSET;
if (size > INT64_MAX) {
DNPRINTF(SR_D_META, "%s: %s partition too large\n", DEVNAME(sc),
devname);
goto fail;
}
/*
* Create and populate chunk metadata.
*/
sr_uuid_generate(&uuid);
hotspare = malloc(sizeof(struct sr_chunk), M_DEVBUF, M_WAITOK | M_ZERO);
hotspare->src_dev_mm = dev;
hotspare->src_vn = vn;
strlcpy(hotspare->src_devname, devname, sizeof(hm->scmi.scm_devname));
hotspare->src_size = size;
hm = &hotspare->src_meta;
hm->scmi.scm_volid = SR_HOTSPARE_VOLID;
hm->scmi.scm_chunk_id = 0;
hm->scmi.scm_size = size;
hm->scmi.scm_coerced_size = size;
strlcpy(hm->scmi.scm_devname, devname, sizeof(hm->scmi.scm_devname));
memcpy(&hm->scmi.scm_uuid, &uuid, sizeof(struct sr_uuid));
sr_checksum(sc, hm, &hm->scm_checksum,
sizeof(struct sr_meta_chunk_invariant));
hm->scm_status = BIOC_SDHOTSPARE;
/*
* Create and populate our own discipline and metadata.
*/
sm = malloc(sizeof(struct sr_metadata), M_DEVBUF, M_WAITOK | M_ZERO);
sm->ssdi.ssd_magic = SR_MAGIC;
sm->ssdi.ssd_version = SR_META_VERSION;
sm->ssd_ondisk = 0;
sm->ssdi.ssd_vol_flags = 0;
memcpy(&sm->ssdi.ssd_uuid, &uuid, sizeof(struct sr_uuid));
sm->ssdi.ssd_chunk_no = 1;
sm->ssdi.ssd_volid = SR_HOTSPARE_VOLID;
sm->ssdi.ssd_level = SR_HOTSPARE_LEVEL;
sm->ssdi.ssd_size = size;
sm->ssdi.ssd_secsize = label.d_secsize;
strlcpy(sm->ssdi.ssd_vendor, "OPENBSD", sizeof(sm->ssdi.ssd_vendor));
snprintf(sm->ssdi.ssd_product, sizeof(sm->ssdi.ssd_product),
"SR %s", "HOTSPARE");
snprintf(sm->ssdi.ssd_revision, sizeof(sm->ssdi.ssd_revision),
"%03d", SR_META_VERSION);
sd = malloc(sizeof(struct sr_discipline), M_DEVBUF, M_WAITOK | M_ZERO);
sd->sd_sc = sc;
sd->sd_meta = sm;
sd->sd_meta_type = SR_META_F_NATIVE;
sd->sd_vol_status = BIOC_SVONLINE;
strlcpy(sd->sd_name, "HOTSPARE", sizeof(sd->sd_name));
SLIST_INIT(&sd->sd_meta_opt);
/* Add chunk to volume. */
sd->sd_vol.sv_chunks = malloc(sizeof(struct sr_chunk *), M_DEVBUF,
M_WAITOK | M_ZERO);
sd->sd_vol.sv_chunks[0] = hotspare;
SLIST_INIT(&sd->sd_vol.sv_chunk_list);
SLIST_INSERT_HEAD(&sd->sd_vol.sv_chunk_list, hotspare, src_link);
/* Save metadata. */
if (sr_meta_save(sd, SR_META_DIRTY)) {
sr_error(sc, "could not save metadata to %s", devname);
goto fail;
}
/*
* Add chunk to hotspare list.
*/
rw_enter_write(&sc->sc_hs_lock);
cl = &sc->sc_hotspare_list;
if (SLIST_EMPTY(cl))
SLIST_INSERT_HEAD(cl, hotspare, src_link);
else {
SLIST_FOREACH(chunk, cl, src_link)
last = chunk;
SLIST_INSERT_AFTER(last, hotspare, src_link);
}
sc->sc_hotspare_no++;
rw_exit_write(&sc->sc_hs_lock);
rv = 0;
goto done;
fail:
free(hotspare, M_DEVBUF, sizeof(*hotspare));
done:
if (sd)
free(sd->sd_vol.sv_chunks, M_DEVBUF,
sizeof(sd->sd_vol.sv_chunks));
free(sd, M_DEVBUF, sizeof(*sd));
free(sm, M_DEVBUF, sizeof(*sm));
if (open) {
VOP_CLOSE(vn, FREAD | FWRITE, NOCRED, curproc);
vput(vn);
}
return (rv);
}
void
sr_hotspare_rebuild_callback(void *xsd)
{
struct sr_discipline *sd = xsd;
sr_hotspare_rebuild(sd);
}
void
sr_hotspare_rebuild(struct sr_discipline *sd)
{
struct sr_softc *sc = sd->sd_sc;
struct sr_chunk_head *cl;
struct sr_chunk *hotspare, *chunk = NULL;
struct sr_workunit *wu;
struct sr_ccb *ccb;
int i, s, cid, busy;
/*
* Attempt to locate a hotspare and initiate rebuild.
*/
/* Find first offline chunk. */
for (cid = 0; cid < sd->sd_meta->ssdi.ssd_chunk_no; cid++) {
if (sd->sd_vol.sv_chunks[cid]->src_meta.scm_status ==
BIOC_SDOFFLINE) {
chunk = sd->sd_vol.sv_chunks[cid];
break;
}
}
if (chunk == NULL) {
printf("%s: no offline chunk found on %s!\n",
DEVNAME(sc), sd->sd_meta->ssd_devname);
return;
}
/* See if we have a suitable hotspare... */
rw_enter_write(&sc->sc_hs_lock);
cl = &sc->sc_hotspare_list;
SLIST_FOREACH(hotspare, cl, src_link)
if (hotspare->src_size >= chunk->src_size &&
hotspare->src_secsize <= sd->sd_meta->ssdi.ssd_secsize)
break;
if (hotspare != NULL) {
printf("%s: %s volume degraded, will attempt to "
"rebuild on hotspare %s\n", DEVNAME(sc),
sd->sd_meta->ssd_devname, hotspare->src_devname);
/*
* Ensure that all pending I/O completes on the failed chunk
* before trying to initiate a rebuild.
*/
i = 0;
do {
busy = 0;
s = splbio();
TAILQ_FOREACH(wu, &sd->sd_wu_pendq, swu_link) {
TAILQ_FOREACH(ccb, &wu->swu_ccb, ccb_link) {
if (ccb->ccb_target == cid)
busy = 1;
}
}
TAILQ_FOREACH(wu, &sd->sd_wu_defq, swu_link) {
TAILQ_FOREACH(ccb, &wu->swu_ccb, ccb_link) {
if (ccb->ccb_target == cid)
busy = 1;
}
}
splx(s);
if (busy) {
tsleep_nsec(sd, PRIBIO, "sr_hotspare",
SEC_TO_NSEC(1));
i++;
}
} while (busy && i < 120);
DNPRINTF(SR_D_META, "%s: waited %i seconds for I/O to "
"complete on failed chunk %s\n", DEVNAME(sc),
i, chunk->src_devname);
if (busy) {
printf("%s: pending I/O failed to complete on "
"failed chunk %s, hotspare rebuild aborted...\n",
DEVNAME(sc), chunk->src_devname);
goto done;
}
s = splbio();
rw_enter_write(&sc->sc_lock);
bio_status_init(&sc->sc_status, &sc->sc_dev);
if (sr_rebuild_init(sd, hotspare->src_dev_mm, 1) == 0) {
/* Remove hotspare from available list. */
sc->sc_hotspare_no--;
SLIST_REMOVE(cl, hotspare, sr_chunk, src_link);
free(hotspare, M_DEVBUF, sizeof(*hotspare));
}
rw_exit_write(&sc->sc_lock);
splx(s);
}
done:
rw_exit_write(&sc->sc_hs_lock);
}
int
sr_rebuild_init(struct sr_discipline *sd, dev_t dev, int hotspare)
{
struct sr_softc *sc = sd->sd_sc;
struct sr_chunk *chunk = NULL;
struct sr_meta_chunk *meta;
struct disklabel label;
struct vnode *vn;
u_int64_t size;
int64_t csize;
char devname[32];
int rv = EINVAL, open = 0;
int cid, i, part, status;
/*
* Attempt to initiate a rebuild onto the specified device.
*/
if (!(sd->sd_capabilities & SR_CAP_REBUILD)) {
sr_error(sc, "discipline does not support rebuild");
goto done;
}
/* make sure volume is in the right state */
if (sd->sd_vol_status == BIOC_SVREBUILD) {
sr_error(sc, "rebuild already in progress");
goto done;
}
if (sd->sd_vol_status != BIOC_SVDEGRADED) {
sr_error(sc, "volume not degraded");
goto done;
}
/* Find first offline chunk. */
for (cid = 0; cid < sd->sd_meta->ssdi.ssd_chunk_no; cid++) {
if (sd->sd_vol.sv_chunks[cid]->src_meta.scm_status ==
BIOC_SDOFFLINE) {
chunk = sd->sd_vol.sv_chunks[cid];
break;
}
}
if (chunk == NULL) {
sr_error(sc, "no offline chunks available to rebuild");
goto done;
}
/* Get coerced size from another online chunk. */
csize = 0;
for (i = 0; i < sd->sd_meta->ssdi.ssd_chunk_no; i++) {
if (sd->sd_vol.sv_chunks[i]->src_meta.scm_status ==
BIOC_SDONLINE) {
meta = &sd->sd_vol.sv_chunks[i]->src_meta;
csize = meta->scmi.scm_coerced_size;
break;
}
}
if (csize == 0) {
sr_error(sc, "no online chunks available for rebuild");
goto done;
}
sr_meta_getdevname(sc, dev, devname, sizeof(devname));
if (bdevvp(dev, &vn)) {
printf("%s: sr_rebuild_init: can't allocate vnode\n",
DEVNAME(sc));
goto done;
}
if (VOP_OPEN(vn, FREAD | FWRITE, NOCRED, curproc)) {
DNPRINTF(SR_D_META,"%s: sr_ioctl_setstate can't "
"open %s\n", DEVNAME(sc), devname);
vput(vn);
goto done;
}
open = 1; /* close dev on error */
/* Get disklabel and check partition. */
part = DISKPART(dev);
if (VOP_IOCTL(vn, DIOCGDINFO, (caddr_t)&label, FREAD,
NOCRED, curproc)) {
DNPRINTF(SR_D_META, "%s: sr_ioctl_setstate ioctl failed\n",
DEVNAME(sc));
goto done;
}
if (label.d_partitions[part].p_fstype != FS_RAID) {
sr_error(sc, "%s partition not of type RAID (%d)",
devname, label.d_partitions[part].p_fstype);
goto done;
}
/* Is the partition large enough? */
size = DL_SECTOBLK(&label, DL_GETPSIZE(&label.d_partitions[part]));
if (size <= sd->sd_meta->ssd_data_blkno) {
sr_error(sc, "%s: %s partition too small", DEVNAME(sc),
devname);
goto done;
}
size -= sd->sd_meta->ssd_data_blkno;
if (size > INT64_MAX) {
sr_error(sc, "%s: %s partition too large", DEVNAME(sc),
devname);
goto done;
}
if (size < csize) {
sr_error(sc, "%s partition too small, at least %lld bytes "
"required", devname, (long long)(csize << DEV_BSHIFT));
goto done;
} else if (size > csize)
sr_warn(sc, "%s partition too large, wasting %lld bytes",
devname, (long long)((size - csize) << DEV_BSHIFT));
if (label.d_secsize > sd->sd_meta->ssdi.ssd_secsize) {
sr_error(sc, "%s sector size too large, <= %u bytes "
"required", devname, sd->sd_meta->ssdi.ssd_secsize);
goto done;
}
/* Ensure that this chunk is not already in use. */
status = sr_chunk_in_use(sc, dev);
if (status != BIOC_SDINVALID && status != BIOC_SDOFFLINE &&
!(hotspare && status == BIOC_SDHOTSPARE)) {
sr_error(sc, "%s is already in use", devname);
goto done;
}
/* Reset rebuild counter since we rebuilding onto a new chunk. */
sd->sd_meta->ssd_rebuild = 0;
open = 0; /* leave dev open from here on out */
/* Fix up chunk. */
memcpy(chunk->src_duid, label.d_uid, sizeof(chunk->src_duid));
chunk->src_dev_mm = dev;
chunk->src_vn = vn;
/* Reconstruct metadata. */
meta = &chunk->src_meta;
meta->scmi.scm_volid = sd->sd_meta->ssdi.ssd_volid;
meta->scmi.scm_chunk_id = cid;
strlcpy(meta->scmi.scm_devname, devname,
sizeof(meta->scmi.scm_devname));
meta->scmi.scm_size = size;
meta->scmi.scm_coerced_size = csize;
memcpy(&meta->scmi.scm_uuid, &sd->sd_meta->ssdi.ssd_uuid,
sizeof(meta->scmi.scm_uuid));
sr_checksum(sc, meta, &meta->scm_checksum,
sizeof(struct sr_meta_chunk_invariant));
sd->sd_set_chunk_state(sd, cid, BIOC_SDREBUILD);
if (sr_meta_save(sd, SR_META_DIRTY)) {
sr_error(sc, "could not save metadata to %s", devname);
open = 1;
goto done;
}
sr_warn(sc, "rebuild of %s started on %s",
sd->sd_meta->ssd_devname, devname);
sd->sd_reb_abort = 0;
kthread_create_deferred(sr_rebuild_start, sd);
rv = 0;
done:
if (open) {
VOP_CLOSE(vn, FREAD | FWRITE, NOCRED, curproc);
vput(vn);
}
return (rv);
}
int
sr_rebuild_percent(struct sr_discipline *sd)
{
daddr_t rb, sz;
sz = sd->sd_meta->ssdi.ssd_size;
rb = sd->sd_meta->ssd_rebuild;
if (rb > 0)
return (100 - ((sz * 100 - rb * 100) / sz) - 1);
return (0);
}
void
sr_roam_chunks(struct sr_discipline *sd)
{
struct sr_softc *sc = sd->sd_sc;
struct sr_chunk *chunk;
struct sr_meta_chunk *meta;
int roamed = 0;
/* Have any chunks roamed? */
SLIST_FOREACH(chunk, &sd->sd_vol.sv_chunk_list, src_link) {
meta = &chunk->src_meta;
if (strncmp(meta->scmi.scm_devname, chunk->src_devname,
sizeof(meta->scmi.scm_devname))) {
printf("%s: roaming device %s -> %s\n", DEVNAME(sc),
meta->scmi.scm_devname, chunk->src_devname);
strlcpy(meta->scmi.scm_devname, chunk->src_devname,
sizeof(meta->scmi.scm_devname));
roamed++;
}
}
if (roamed)
sr_meta_save(sd, SR_META_DIRTY);
}
int
sr_ioctl_createraid(struct sr_softc *sc, struct bioc_createraid *bc,
int user, void *data)
{
struct sr_meta_opt_item *omi;
struct sr_chunk_head *cl;
struct sr_discipline *sd = NULL;
struct sr_chunk *ch_entry;
struct scsi_link *link;
struct device *dev;
char *uuid, devname[32];
dev_t *dt = NULL;
int i, no_chunk, rv = EINVAL, target, vol;
int no_meta;
DNPRINTF(SR_D_IOCTL, "%s: sr_ioctl_createraid(%d)\n",
DEVNAME(sc), user);
/* user input */
if (bc->bc_dev_list_len > BIOC_CRMAXLEN)
goto unwind;
dt = malloc(bc->bc_dev_list_len, M_DEVBUF, M_WAITOK | M_ZERO);
if (user) {
if (copyin(bc->bc_dev_list, dt, bc->bc_dev_list_len) != 0)
goto unwind;
} else
memcpy(dt, bc->bc_dev_list, bc->bc_dev_list_len);
/* Initialise discipline. */
sd = malloc(sizeof(struct sr_discipline), M_DEVBUF, M_WAITOK | M_ZERO);
sd->sd_sc = sc;
SLIST_INIT(&sd->sd_meta_opt);
sd->sd_taskq = taskq_create("srdis", 1, IPL_BIO, 0);
if (sd->sd_taskq == NULL) {
sr_error(sc, "could not create discipline taskq");
goto unwind;
}
if (sr_discipline_init(sd, bc->bc_level)) {
sr_error(sc, "could not initialize discipline");
goto unwind;
}
no_chunk = bc->bc_dev_list_len / sizeof(dev_t);
cl = &sd->sd_vol.sv_chunk_list;
SLIST_INIT(cl);
/* Ensure that chunks are not already in use. */
for (i = 0; i < no_chunk; i++) {
if (sr_chunk_in_use(sc, dt[i]) != BIOC_SDINVALID) {
sr_meta_getdevname(sc, dt[i], devname, sizeof(devname));
sr_error(sc, "chunk %s already in use", devname);
goto unwind;
}
}
sd->sd_meta_type = sr_meta_probe(sd, dt, no_chunk);
if (sd->sd_meta_type == SR_META_F_INVALID) {
sr_error(sc, "invalid metadata format");
goto unwind;
}
if (sr_meta_attach(sd, no_chunk, bc->bc_flags & BIOC_SCFORCE))
goto unwind;
/* force the raid volume by clearing metadata region */
if (bc->bc_flags & BIOC_SCFORCE) {
/* make sure disk isn't up and running */
if (sr_meta_read(sd))
if (sr_already_assembled(sd)) {
uuid = sr_uuid_format(
&sd->sd_meta->ssdi.ssd_uuid);
sr_error(sc, "disk %s is currently in use; "
"cannot force create", uuid);
free(uuid, M_DEVBUF, 37);
goto unwind;
}
if (sr_meta_clear(sd)) {
sr_error(sc, "failed to clear metadata");
goto unwind;
}
}
no_meta = sr_meta_read(sd);
if (no_meta == -1) {
/* Corrupt metadata on one or more chunks. */
sr_error(sc, "one of the chunks has corrupt metadata; "
"aborting assembly");
goto unwind;
} else if (no_meta == 0) {
/* Initialise volume and chunk metadata. */
sr_meta_init(sd, bc->bc_level, no_chunk);
sd->sd_vol_status = BIOC_SVONLINE;
sd->sd_meta_flags = bc->bc_flags & BIOC_SCNOAUTOASSEMBLE;
if (sd->sd_create) {
if ((i = sd->sd_create(sd, bc, no_chunk,
sd->sd_vol.sv_chunk_minsz))) {
rv = i;
goto unwind;
}
}
sr_meta_init_complete(sd);
DNPRINTF(SR_D_IOCTL,
"%s: sr_ioctl_createraid: vol_size: %lld\n",
DEVNAME(sc), sd->sd_meta->ssdi.ssd_size);
/* Warn if we've wasted chunk space due to coercing. */
if ((sd->sd_capabilities & SR_CAP_NON_COERCED) == 0 &&
sd->sd_vol.sv_chunk_minsz != sd->sd_vol.sv_chunk_maxsz)
sr_warn(sc, "chunk sizes are not equal; up to %llu "
"blocks wasted per chunk",
sd->sd_vol.sv_chunk_maxsz -
sd->sd_vol.sv_chunk_minsz);
} else {
/* Ensure we are assembling the correct # of chunks. */
if (bc->bc_level == 0x1C &&
sd->sd_meta->ssdi.ssd_chunk_no > no_chunk) {
sr_warn(sc, "trying to bring up %s degraded",
sd->sd_meta->ssd_devname);
} else if (sd->sd_meta->ssdi.ssd_chunk_no != no_chunk) {
sr_error(sc, "volume chunk count does not match metadata "
"chunk count");
goto unwind;
}
/* Ensure metadata level matches requested assembly level. */
if (sd->sd_meta->ssdi.ssd_level != bc->bc_level) {
sr_error(sc, "volume level does not match metadata "
"level");
goto unwind;
}
if (sr_already_assembled(sd)) {
uuid = sr_uuid_format(&sd->sd_meta->ssdi.ssd_uuid);
sr_error(sc, "disk %s already assembled", uuid);
free(uuid, M_DEVBUF, 37);
goto unwind;
}
if (user == 0 && sd->sd_meta_flags & BIOC_SCNOAUTOASSEMBLE) {
DNPRINTF(SR_D_META, "%s: disk not auto assembled from "
"metadata\n", DEVNAME(sc));
goto unwind;
}
if (no_meta != no_chunk)
sr_warn(sc, "trying to bring up %s degraded",
sd->sd_meta->ssd_devname);
if (sd->sd_meta->ssd_meta_flags & SR_META_DIRTY)
sr_warn(sc, "%s was not shutdown properly",
sd->sd_meta->ssd_devname);
SLIST_FOREACH(omi, &sd->sd_meta_opt, omi_link)
if (sd->sd_meta_opt_handler == NULL ||
sd->sd_meta_opt_handler(sd, omi->omi_som) != 0)
sr_meta_opt_handler(sd, omi->omi_som);
if (sd->sd_assemble) {
if ((i = sd->sd_assemble(sd, bc, no_chunk, data))) {
rv = i;
goto unwind;
}
}
DNPRINTF(SR_D_META, "%s: disk assembled from metadata\n",
DEVNAME(sc));
}
/* Metadata MUST be fully populated by this point. */
TAILQ_INSERT_TAIL(&sc->sc_dis_list, sd, sd_link);
/* Allocate all resources. */
if ((rv = sd->sd_alloc_resources(sd)))
goto unwind;
/* Adjust flags if necessary. */
if ((sd->sd_capabilities & SR_CAP_AUTO_ASSEMBLE) &&
(bc->bc_flags & BIOC_SCNOAUTOASSEMBLE) !=
(sd->sd_meta->ssdi.ssd_vol_flags & BIOC_SCNOAUTOASSEMBLE)) {
sd->sd_meta->ssdi.ssd_vol_flags &= ~BIOC_SCNOAUTOASSEMBLE;
sd->sd_meta->ssdi.ssd_vol_flags |=
bc->bc_flags & BIOC_SCNOAUTOASSEMBLE;
}
if (sd->sd_capabilities & SR_CAP_SYSTEM_DISK) {
/* Initialise volume state. */
sd->sd_set_vol_state(sd);
if (sd->sd_vol_status == BIOC_SVOFFLINE) {
sr_error(sc, "%s is offline, will not be brought "
"online", sd->sd_meta->ssd_devname);
goto unwind;
}
/* Setup SCSI iopool. */
scsi_iopool_init(&sd->sd_iopool, sd, sr_wu_get, sr_wu_put);
/*
* All checks passed - return ENXIO if volume cannot be created.
*/
rv = ENXIO;
/*
* Find a free target.
*
* XXX: We reserve sd_target == 0 to indicate the
* discipline is not linked into sc->sc_targets, so begin
* the search with target = 1.
*/
for (target = 1; target < SR_MAX_LD; target++)
if (sc->sc_targets[target] == NULL)
break;
if (target == SR_MAX_LD) {
sr_error(sc, "no free target for %s",
sd->sd_meta->ssd_devname);
goto unwind;
}
/* Clear sense data. */
bzero(&sd->sd_scsi_sense, sizeof(sd->sd_scsi_sense));
/* Attach discipline and get midlayer to probe it. */
sd->sd_target = target;
sc->sc_targets[target] = sd;
if (scsi_probe_lun(sc->sc_scsibus, target, 0) != 0) {
sr_error(sc, "scsi_probe_lun failed");
sc->sc_targets[target] = NULL;
sd->sd_target = 0;
goto unwind;
}
link = scsi_get_link(sc->sc_scsibus, target, 0);
if (link == NULL)
goto unwind;
dev = link->device_softc;
DNPRINTF(SR_D_IOCTL, "%s: sr device added: %s at target %d\n",
DEVNAME(sc), dev->dv_xname, sd->sd_target);
/* XXX - Count volumes, not targets. */
for (i = 0, vol = -1; i <= sd->sd_target; i++)
if (sc->sc_targets[i])
vol++;
rv = 0;
if (sd->sd_meta->ssd_devname[0] != '\0' &&
strncmp(sd->sd_meta->ssd_devname, dev->dv_xname,
sizeof(dev->dv_xname)))
sr_warn(sc, "volume %s is roaming, it used to be %s, "
"updating metadata", dev->dv_xname,
sd->sd_meta->ssd_devname);
/* Populate remaining volume metadata. */
sd->sd_meta->ssdi.ssd_volid = vol;
strlcpy(sd->sd_meta->ssd_devname, dev->dv_xname,
sizeof(sd->sd_meta->ssd_devname));
sr_info(sc, "%s volume attached as %s",
sd->sd_name, sd->sd_meta->ssd_devname);
/* Update device name on any roaming chunks. */
sr_roam_chunks(sd);
#ifndef SMALL_KERNEL
if (sr_sensors_create(sd))
sr_warn(sc, "unable to create sensor for %s",
dev->dv_xname);
#endif /* SMALL_KERNEL */
} else {
/* This volume does not attach as a system disk. */
ch_entry = SLIST_FIRST(cl); /* XXX */
strlcpy(sd->sd_meta->ssd_devname, ch_entry->src_devname,
sizeof(sd->sd_meta->ssd_devname));
if (sd->sd_start_discipline(sd))
goto unwind;
}
/* Save current metadata to disk. */
rv = sr_meta_save(sd, SR_META_DIRTY);
if (sd->sd_vol_status == BIOC_SVREBUILD)
kthread_create_deferred(sr_rebuild_start, sd);
sd->sd_ready = 1;
free(dt, M_DEVBUF, bc->bc_dev_list_len);
return (rv);
unwind:
free(dt, M_DEVBUF, bc->bc_dev_list_len);
sr_discipline_shutdown(sd, 0, 0);
if (rv == EAGAIN)
rv = 0;
return (rv);
}
int
sr_ioctl_deleteraid(struct sr_softc *sc, struct sr_discipline *sd,
struct bioc_deleteraid *bd)
{
int rv = 1;
DNPRINTF(SR_D_IOCTL, "%s: sr_ioctl_deleteraid %s\n",
DEVNAME(sc), bd->bd_dev);
if (sd == NULL && (sd = sr_find_discipline(sc, bd->bd_dev)) == NULL) {
sr_error(sc, "volume %s not found", bd->bd_dev);
goto bad;
}
/*
* XXX Better check for mounted file systems and refuse to detach any
* volume that is actively in use.
*/
if (bcmp(&sr_bootuuid, &sd->sd_meta->ssdi.ssd_uuid,
sizeof(sr_bootuuid)) == 0) {
sr_error(sc, "refusing to delete boot volume");
goto bad;
}
sd->sd_deleted = 1;
sd->sd_meta->ssdi.ssd_vol_flags = BIOC_SCNOAUTOASSEMBLE;
sr_discipline_shutdown(sd, 1, 0);
rv = 0;
bad:
return (rv);
}
int
sr_ioctl_discipline(struct sr_softc *sc, struct sr_discipline *sd,
struct bioc_discipline *bd)
{
int rv = 1;
/* Dispatch a discipline specific ioctl. */
DNPRINTF(SR_D_IOCTL, "%s: sr_ioctl_discipline %s\n", DEVNAME(sc),
bd->bd_dev);
if (sd == NULL && (sd = sr_find_discipline(sc, bd->bd_dev)) == NULL) {
sr_error(sc, "volume %s not found", bd->bd_dev);
goto bad;
}
if (sd->sd_ioctl_handler)
rv = sd->sd_ioctl_handler(sd, bd);
bad:
return (rv);
}
int
sr_ioctl_installboot(struct sr_softc *sc, struct sr_discipline *sd,
struct bioc_installboot *bb)
{
void *bootblk = NULL, *bootldr = NULL;
struct sr_chunk *chunk;
struct sr_meta_opt_item *omi;
struct sr_meta_boot *sbm;
struct disk *dk;
u_int32_t bbs = 0, bls = 0, secsize;
u_char duid[8];
int rv = EINVAL;
int i;
DNPRINTF(SR_D_IOCTL, "%s: sr_ioctl_installboot %s\n", DEVNAME(sc),
bb->bb_dev);
if (sd == NULL && (sd = sr_find_discipline(sc, bb->bb_dev)) == NULL) {
sr_error(sc, "volume %s not found", bb->bb_dev);
goto done;
}
TAILQ_FOREACH(dk, &disklist, dk_link)
if (!strncmp(dk->dk_name, bb->bb_dev, sizeof(bb->bb_dev)))
break;
if (dk == NULL || dk->dk_label == NULL ||
duid_iszero(dk->dk_label->d_uid)) {
sr_error(sc, "failed to get DUID for softraid volume");
goto done;
}
memcpy(duid, dk->dk_label->d_uid, sizeof(duid));
/* Ensure that boot storage area is large enough. */
if (sd->sd_meta->ssd_data_blkno < (SR_BOOT_OFFSET + SR_BOOT_SIZE)) {
sr_error(sc, "insufficient boot storage");
goto done;
}
if (bb->bb_bootblk_size > SR_BOOT_BLOCKS_SIZE * DEV_BSIZE) {
sr_error(sc, "boot block too large (%d > %d)",
bb->bb_bootblk_size, SR_BOOT_BLOCKS_SIZE * DEV_BSIZE);
goto done;
}
if (bb->bb_bootldr_size > SR_BOOT_LOADER_SIZE * DEV_BSIZE) {
sr_error(sc, "boot loader too large (%d > %d)",
bb->bb_bootldr_size, SR_BOOT_LOADER_SIZE * DEV_BSIZE);
goto done;
}
secsize = sd->sd_meta->ssdi.ssd_secsize;
/* Copy in boot block. */
bbs = howmany(bb->bb_bootblk_size, secsize) * secsize;
bootblk = malloc(bbs, M_DEVBUF, M_WAITOK | M_ZERO);
if (copyin(bb->bb_bootblk, bootblk, bb->bb_bootblk_size) != 0)
goto done;
/* Copy in boot loader. */
bls = howmany(bb->bb_bootldr_size, secsize) * secsize;
bootldr = malloc(bls, M_DEVBUF, M_WAITOK | M_ZERO);
if (copyin(bb->bb_bootldr, bootldr, bb->bb_bootldr_size) != 0)
goto done;
/* Create or update optional meta for bootable volumes. */
SLIST_FOREACH(omi, &sd->sd_meta_opt, omi_link)
if (omi->omi_som->som_type == SR_OPT_BOOT)
break;
if (omi == NULL) {
omi = malloc(sizeof(struct sr_meta_opt_item), M_DEVBUF,
M_WAITOK | M_ZERO);
omi->omi_som = malloc(sizeof(struct sr_meta_boot), M_DEVBUF,
M_WAITOK | M_ZERO);
omi->omi_som->som_type = SR_OPT_BOOT;
omi->omi_som->som_length = sizeof(struct sr_meta_boot);
SLIST_INSERT_HEAD(&sd->sd_meta_opt, omi, omi_link);
sd->sd_meta->ssdi.ssd_opt_no++;
}
sbm = (struct sr_meta_boot *)omi->omi_som;
memcpy(sbm->sbm_root_duid, duid, sizeof(sbm->sbm_root_duid));
bzero(&sbm->sbm_boot_duid, sizeof(sbm->sbm_boot_duid));
sbm->sbm_bootblk_size = bbs;
sbm->sbm_bootldr_size = bls;
DNPRINTF(SR_D_IOCTL, "sr_ioctl_installboot: root duid is %s\n",
duid_format(sbm->sbm_root_duid));
/* Save boot block and boot loader to each chunk. */
for (i = 0; i < sd->sd_meta->ssdi.ssd_chunk_no; i++) {
chunk = sd->sd_vol.sv_chunks[i];
if (chunk->src_meta.scm_status != BIOC_SDONLINE &&
chunk->src_meta.scm_status != BIOC_SDREBUILD)
continue;
if (i < SR_MAX_BOOT_DISKS)
memcpy(&sbm->sbm_boot_duid[i], chunk->src_duid,
sizeof(sbm->sbm_boot_duid[i]));
/* Save boot blocks. */
DNPRINTF(SR_D_IOCTL,
"sr_ioctl_installboot: saving boot block to %s "
"(%u bytes)\n", chunk->src_devname, bbs);
if (sr_rw(sc, chunk->src_dev_mm, bootblk, bbs,
SR_BOOT_BLOCKS_OFFSET, B_WRITE)) {
sr_error(sc, "failed to write boot block");
goto done;
}
/* Save boot loader.*/
DNPRINTF(SR_D_IOCTL,
"sr_ioctl_installboot: saving boot loader to %s "
"(%u bytes)\n", chunk->src_devname, bls);
if (sr_rw(sc, chunk->src_dev_mm, bootldr, bls,
SR_BOOT_LOADER_OFFSET, B_WRITE)) {
sr_error(sc, "failed to write boot loader");
goto done;
}
}
/* XXX - Install boot block on disk - MD code. */
/* Mark volume as bootable and save metadata. */
sd->sd_meta->ssdi.ssd_vol_flags |= BIOC_SCBOOTABLE;
if (sr_meta_save(sd, SR_META_DIRTY)) {
sr_error(sc, "could not save metadata to %s", DEVNAME(sc));
goto done;
}
rv = 0;
done:
free(bootblk, M_DEVBUF, bbs);
free(bootldr, M_DEVBUF, bls);
return (rv);
}
void
sr_chunks_unwind(struct sr_softc *sc, struct sr_chunk_head *cl)
{
struct sr_chunk *ch_entry, *ch_next;
DNPRINTF(SR_D_IOCTL, "%s: sr_chunks_unwind\n", DEVNAME(sc));
if (!cl)
return;
for (ch_entry = SLIST_FIRST(cl); ch_entry != NULL; ch_entry = ch_next) {
ch_next = SLIST_NEXT(ch_entry, src_link);
DNPRINTF(SR_D_IOCTL, "%s: sr_chunks_unwind closing: %s\n",
DEVNAME(sc), ch_entry->src_devname);
if (ch_entry->src_vn) {
/*
* XXX - explicitly lock the vnode until we can resolve
* the problem introduced by vnode aliasing... specfs
* has no locking, whereas ufs/ffs does!
*/
vn_lock(ch_entry->src_vn, LK_EXCLUSIVE | LK_RETRY);
VOP_CLOSE(ch_entry->src_vn, FREAD | FWRITE, NOCRED,
curproc);
vput(ch_entry->src_vn);
}
free(ch_entry, M_DEVBUF, sizeof(*ch_entry));
}
SLIST_INIT(cl);
}
void
sr_discipline_free(struct sr_discipline *sd)
{
struct sr_softc *sc;
struct sr_discipline *sdtmp1;
struct sr_meta_opt_head *som;
struct sr_meta_opt_item *omi, *omi_next;
if (!sd)
return;
sc = sd->sd_sc;
DNPRINTF(SR_D_DIS, "%s: sr_discipline_free %s\n",
DEVNAME(sc),
sd->sd_meta ? sd->sd_meta->ssd_devname : "nodev");
if (sd->sd_free_resources)
sd->sd_free_resources(sd);
free(sd->sd_vol.sv_chunks, M_DEVBUF, 0);
free(sd->sd_meta, M_DEVBUF, SR_META_SIZE * DEV_BSIZE);
free(sd->sd_meta_foreign, M_DEVBUF, smd[sd->sd_meta_type].smd_size);
som = &sd->sd_meta_opt;
for (omi = SLIST_FIRST(som); omi != NULL; omi = omi_next) {
omi_next = SLIST_NEXT(omi, omi_link);
free(omi->omi_som, M_DEVBUF, 0);
free(omi, M_DEVBUF, sizeof(*omi));
}
if (sd->sd_target != 0) {
KASSERT(sc->sc_targets[sd->sd_target] == sd);
sc->sc_targets[sd->sd_target] = NULL;
}
TAILQ_FOREACH(sdtmp1, &sc->sc_dis_list, sd_link) {
if (sdtmp1 == sd)
break;
}
if (sdtmp1 != NULL)
TAILQ_REMOVE(&sc->sc_dis_list, sd, sd_link);
explicit_bzero(sd, sizeof *sd);
free(sd, M_DEVBUF, sizeof(*sd));
}
void
sr_discipline_shutdown(struct sr_discipline *sd, int meta_save, int dying)
{
struct sr_softc *sc;
int ret, s;
if (!sd)
return;
sc = sd->sd_sc;
DNPRINTF(SR_D_DIS, "%s: sr_discipline_shutdown %s\n", DEVNAME(sc),
sd->sd_meta ? sd->sd_meta->ssd_devname : "nodev");
/* If rebuilding, abort rebuild and drain I/O. */
if (sd->sd_reb_active) {
sd->sd_reb_abort = 1;
while (sd->sd_reb_active)
tsleep_nsec(sd, PWAIT, "sr_shutdown", MSEC_TO_NSEC(1));
}
if (meta_save)
sr_meta_save(sd, 0);
s = splbio();
sd->sd_ready = 0;
/* make sure there isn't a sync pending and yield */
wakeup(sd);
while (sd->sd_sync || sd->sd_must_flush) {
ret = tsleep_nsec(&sd->sd_sync, MAXPRI, "sr_down",
SEC_TO_NSEC(60));
if (ret == EWOULDBLOCK)
break;
}
if (dying == -1) {
sd->sd_ready = 1;
splx(s);
return;
}
#ifndef SMALL_KERNEL
sr_sensors_delete(sd);
#endif /* SMALL_KERNEL */
if (sd->sd_target != 0)
scsi_detach_lun(sc->sc_scsibus, sd->sd_target, 0,
dying ? 0 : DETACH_FORCE);
sr_chunks_unwind(sc, &sd->sd_vol.sv_chunk_list);
if (sd->sd_taskq)
taskq_destroy(sd->sd_taskq);
sr_discipline_free(sd);
splx(s);
}
int
sr_discipline_init(struct sr_discipline *sd, int level)
{
int rv = 1;
/* Initialise discipline function pointers with defaults. */
sd->sd_alloc_resources = sr_alloc_resources;
sd->sd_assemble = NULL;
sd->sd_create = NULL;
sd->sd_free_resources = sr_free_resources;
sd->sd_ioctl_handler = NULL;
sd->sd_openings = NULL;
sd->sd_meta_opt_handler = NULL;
sd->sd_rebuild = sr_rebuild;
sd->sd_scsi_inquiry = sr_raid_inquiry;
sd->sd_scsi_read_cap = sr_raid_read_cap;
sd->sd_scsi_tur = sr_raid_tur;
sd->sd_scsi_req_sense = sr_raid_request_sense;
sd->sd_scsi_start_stop = sr_raid_start_stop;
sd->sd_scsi_sync = sr_raid_sync;
sd->sd_scsi_rw = NULL;
sd->sd_scsi_intr = sr_raid_intr;
sd->sd_scsi_wu_done = NULL;
sd->sd_scsi_done = NULL;
sd->sd_set_chunk_state = sr_set_chunk_state;
sd->sd_set_vol_state = sr_set_vol_state;
sd->sd_start_discipline = NULL;
task_set(&sd->sd_meta_save_task, sr_meta_save_callback, sd);
task_set(&sd->sd_hotspare_rebuild_task, sr_hotspare_rebuild_callback,
sd);
sd->sd_wu_size = sizeof(struct sr_workunit);
switch (level) {
case 0:
sr_raid0_discipline_init(sd);
break;
case 1:
sr_raid1_discipline_init(sd);
break;
case 5:
sr_raid5_discipline_init(sd);
break;
case 6:
sr_raid6_discipline_init(sd);
break;
#ifdef CRYPTO
case 'C':
sr_crypto_discipline_init(sd);
break;
case 0x1C:
sr_raid1c_discipline_init(sd);
break;
#endif
case 'c':
sr_concat_discipline_init(sd);
break;
default:
goto bad;
}
rv = 0;
bad:
return (rv);
}
int
sr_raid_inquiry(struct sr_workunit *wu)
{
struct sr_discipline *sd = wu->swu_dis;
struct scsi_xfer *xs = wu->swu_xs;
struct scsi_inquiry *cdb = (struct scsi_inquiry *)&xs->cmd;
struct scsi_inquiry_data inq;
DNPRINTF(SR_D_DIS, "%s: sr_raid_inquiry\n", DEVNAME(sd->sd_sc));
if (xs->cmdlen != sizeof(*cdb))
return (EINVAL);
if (ISSET(cdb->flags, SI_EVPD))
return (EOPNOTSUPP);
bzero(&inq, sizeof(inq));
inq.device = T_DIRECT;
inq.dev_qual2 = 0;
inq.version = SCSI_REV_2;
inq.response_format = SID_SCSI2_RESPONSE;
inq.additional_length = SID_SCSI2_ALEN;
inq.flags |= SID_CmdQue;
strlcpy(inq.vendor, sd->sd_meta->ssdi.ssd_vendor,
sizeof(inq.vendor));
strlcpy(inq.product, sd->sd_meta->ssdi.ssd_product,
sizeof(inq.product));
strlcpy(inq.revision, sd->sd_meta->ssdi.ssd_revision,
sizeof(inq.revision));
scsi_copy_internal_data(xs, &inq, sizeof(inq));
return (0);
}
int
sr_raid_read_cap(struct sr_workunit *wu)
{
struct sr_discipline *sd = wu->swu_dis;
struct scsi_xfer *xs = wu->swu_xs;
struct scsi_read_cap_data rcd;
struct scsi_read_cap_data_16 rcd16;
u_int64_t addr;
int rv = 1;
u_int32_t secsize;
DNPRINTF(SR_D_DIS, "%s: sr_raid_read_cap\n", DEVNAME(sd->sd_sc));
secsize = sd->sd_meta->ssdi.ssd_secsize;
addr = ((sd->sd_meta->ssdi.ssd_size * DEV_BSIZE) / secsize) - 1;
if (xs->cmd.opcode == READ_CAPACITY) {
bzero(&rcd, sizeof(rcd));
if (addr > 0xffffffffllu)
_lto4b(0xffffffff, rcd.addr);
else
_lto4b(addr, rcd.addr);
_lto4b(secsize, rcd.length);
scsi_copy_internal_data(xs, &rcd, sizeof(rcd));
rv = 0;
} else if (xs->cmd.opcode == READ_CAPACITY_16) {
bzero(&rcd16, sizeof(rcd16));
_lto8b(addr, rcd16.addr);
_lto4b(secsize, rcd16.length);
scsi_copy_internal_data(xs, &rcd16, sizeof(rcd16));
rv = 0;
}
return (rv);
}
int
sr_raid_tur(struct sr_workunit *wu)
{
struct sr_discipline *sd = wu->swu_dis;
DNPRINTF(SR_D_DIS, "%s: sr_raid_tur\n", DEVNAME(sd->sd_sc));
if (sd->sd_vol_status == BIOC_SVOFFLINE) {
sd->sd_scsi_sense.error_code = SSD_ERRCODE_CURRENT;
sd->sd_scsi_sense.flags = SKEY_NOT_READY;
sd->sd_scsi_sense.add_sense_code = 0x04;
sd->sd_scsi_sense.add_sense_code_qual = 0x11;
sd->sd_scsi_sense.extra_len = 4;
return (1);
} else if (sd->sd_vol_status == BIOC_SVINVALID) {
sd->sd_scsi_sense.error_code = SSD_ERRCODE_CURRENT;
sd->sd_scsi_sense.flags = SKEY_HARDWARE_ERROR;
sd->sd_scsi_sense.add_sense_code = 0x05;
sd->sd_scsi_sense.add_sense_code_qual = 0x00;
sd->sd_scsi_sense.extra_len = 4;
return (1);
}
return (0);
}
int
sr_raid_request_sense(struct sr_workunit *wu)
{
struct sr_discipline *sd = wu->swu_dis;
struct scsi_xfer *xs = wu->swu_xs;
DNPRINTF(SR_D_DIS, "%s: sr_raid_request_sense\n",
DEVNAME(sd->sd_sc));
/* use latest sense data */
memcpy(&xs->sense, &sd->sd_scsi_sense, sizeof(xs->sense));
/* clear sense data */
bzero(&sd->sd_scsi_sense, sizeof(sd->sd_scsi_sense));
return (0);
}
int
sr_raid_start_stop(struct sr_workunit *wu)
{
struct scsi_xfer *xs = wu->swu_xs;
struct scsi_start_stop *ss = (struct scsi_start_stop *)&xs->cmd;
DNPRINTF(SR_D_DIS, "%s: sr_raid_start_stop\n",
DEVNAME(wu->swu_dis->sd_sc));
if (!ss)
return (1);
/*
* do nothing!
* a softraid discipline should always reflect correct status
*/
return (0);
}
int
sr_raid_sync(struct sr_workunit *wu)
{
struct sr_discipline *sd = wu->swu_dis;
int s, ret, rv = 0, ios;
DNPRINTF(SR_D_DIS, "%s: sr_raid_sync\n", DEVNAME(sd->sd_sc));
/* when doing a fake sync don't count the wu */
ios = (wu->swu_flags & SR_WUF_FAKE) ? 0 : 1;
s = splbio();
sd->sd_sync = 1;
while (sd->sd_wu_pending > ios) {
ret = tsleep_nsec(sd, PRIBIO, "sr_sync", SEC_TO_NSEC(15));
if (ret == EWOULDBLOCK) {
DNPRINTF(SR_D_DIS, "%s: sr_raid_sync timeout\n",
DEVNAME(sd->sd_sc));
rv = 1;
break;
}
}
sd->sd_sync = 0;
splx(s);
wakeup(&sd->sd_sync);
return (rv);
}
void
sr_raid_intr(struct buf *bp)
{
struct sr_ccb *ccb = (struct sr_ccb *)bp;
struct sr_workunit *wu = ccb->ccb_wu;
#ifdef SR_DEBUG
struct sr_discipline *sd = wu->swu_dis;
struct scsi_xfer *xs = wu->swu_xs;
#endif
int s;
DNPRINTF(SR_D_INTR, "%s: %s %s intr bp %p xs %p\n",
DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname, sd->sd_name, bp, xs);
s = splbio();
sr_ccb_done(ccb);
sr_wu_done(wu);
splx(s);
}
void
sr_schedule_wu(struct sr_workunit *wu)
{
struct sr_discipline *sd = wu->swu_dis;
struct sr_workunit *wup;
int s;
DNPRINTF(SR_D_WU, "sr_schedule_wu: schedule wu %p state %i "
"flags 0x%x\n", wu, wu->swu_state, wu->swu_flags);
KASSERT(wu->swu_io_count > 0);
s = splbio();
/* Construct the work unit, do not schedule it. */
if (wu->swu_state == SR_WU_CONSTRUCT)
goto queued;
/* Deferred work unit being reconstructed, do not start. */
if (wu->swu_state == SR_WU_REQUEUE)
goto queued;
/* Current work unit failed, restart. */
if (wu->swu_state == SR_WU_RESTART)
goto start;
if (wu->swu_state != SR_WU_INPROGRESS)
panic("sr_schedule_wu: work unit not in progress (state %i)",
wu->swu_state);
/* Walk queue backwards and fill in collider if we have one. */
TAILQ_FOREACH_REVERSE(wup, &sd->sd_wu_pendq, sr_wu_list, swu_link) {
if (wu->swu_blk_end < wup->swu_blk_start ||
wup->swu_blk_end < wu->swu_blk_start)
continue;
/* Defer work unit due to LBA collision. */
DNPRINTF(SR_D_WU, "sr_schedule_wu: deferring work unit %p\n",
wu);
wu->swu_state = SR_WU_DEFERRED;
while (wup->swu_collider)
wup = wup->swu_collider;
wup->swu_collider = wu;
TAILQ_INSERT_TAIL(&sd->sd_wu_defq, wu, swu_link);
sd->sd_wu_collisions++;
goto queued;
}
start:
sr_raid_startwu(wu);
queued:
splx(s);
}
void
sr_raid_startwu(struct sr_workunit *wu)
{
struct sr_discipline *sd = wu->swu_dis;
struct sr_ccb *ccb;
DNPRINTF(SR_D_WU, "sr_raid_startwu: start wu %p\n", wu);
splassert(IPL_BIO);
if (wu->swu_state == SR_WU_DEFERRED) {
TAILQ_REMOVE(&sd->sd_wu_defq, wu, swu_link);
wu->swu_state = SR_WU_INPROGRESS;
}
if (wu->swu_state != SR_WU_RESTART)
TAILQ_INSERT_TAIL(&sd->sd_wu_pendq, wu, swu_link);
/* Start all of the individual I/Os. */
if (wu->swu_cb_active == 1)
panic("%s: sr_startwu_callback", DEVNAME(sd->sd_sc));
wu->swu_cb_active = 1;
TAILQ_FOREACH(ccb, &wu->swu_ccb, ccb_link)
VOP_STRATEGY(ccb->ccb_buf.b_vp, &ccb->ccb_buf);
wu->swu_cb_active = 0;
}
void
sr_raid_recreate_wu(struct sr_workunit *wu)
{
struct sr_discipline *sd = wu->swu_dis;
struct sr_workunit *wup = wu;
/*
* Recreate a work unit by releasing the associated CCBs and reissuing
* the SCSI I/O request. This process is then repeated for all of the
* colliding work units.
*/
do {
sr_wu_release_ccbs(wup);
wup->swu_state = SR_WU_REQUEUE;
if (sd->sd_scsi_rw(wup))
panic("could not requeue I/O");
wup = wup->swu_collider;
} while (wup);
}
int
sr_alloc_resources(struct sr_discipline *sd)
{
if (sr_wu_alloc(sd)) {
sr_error(sd->sd_sc, "unable to allocate work units");
return (ENOMEM);
}
if (sr_ccb_alloc(sd)) {
sr_error(sd->sd_sc, "unable to allocate ccbs");
return (ENOMEM);
}
return (0);
}
void
sr_free_resources(struct sr_discipline *sd)
{
sr_wu_free(sd);
sr_ccb_free(sd);
}
void
sr_set_chunk_state(struct sr_discipline *sd, int c, int new_state)
{
int old_state, s;
DNPRINTF(SR_D_STATE, "%s: %s: %s: sr_set_chunk_state %d -> %d\n",
DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname,
sd->sd_vol.sv_chunks[c]->src_meta.scmi.scm_devname, c, new_state);
/* ok to go to splbio since this only happens in error path */
s = splbio();
old_state = sd->sd_vol.sv_chunks[c]->src_meta.scm_status;
/* multiple IOs to the same chunk that fail will come through here */
if (old_state == new_state)
goto done;
switch (old_state) {
case BIOC_SDONLINE:
if (new_state == BIOC_SDOFFLINE)
break;
else
goto die;
break;
case BIOC_SDOFFLINE:
goto die;
default:
die:
splx(s); /* XXX */
panic("%s: %s: %s: invalid chunk state transition %d -> %d",
DEVNAME(sd->sd_sc),
sd->sd_meta->ssd_devname,
sd->sd_vol.sv_chunks[c]->src_meta.scmi.scm_devname,
old_state, new_state);
/* NOTREACHED */
}
sd->sd_vol.sv_chunks[c]->src_meta.scm_status = new_state;
sd->sd_set_vol_state(sd);
sd->sd_must_flush = 1;
task_add(systq, &sd->sd_meta_save_task);
done:
splx(s);
}
void
sr_set_vol_state(struct sr_discipline *sd)
{
int states[SR_MAX_STATES];
int new_state, i, nd;
int old_state = sd->sd_vol_status;
u_int32_t s;
DNPRINTF(SR_D_STATE, "%s: %s: sr_set_vol_state\n",
DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname);
nd = sd->sd_meta->ssdi.ssd_chunk_no;
for (i = 0; i < SR_MAX_STATES; i++)
states[i] = 0;
for (i = 0; i < nd; i++) {
s = sd->sd_vol.sv_chunks[i]->src_meta.scm_status;
if (s >= SR_MAX_STATES)
panic("%s: %s: %s: invalid chunk state",
DEVNAME(sd->sd_sc),
sd->sd_meta->ssd_devname,
sd->sd_vol.sv_chunks[i]->src_meta.scmi.scm_devname);
states[s]++;
}
if (states[BIOC_SDONLINE] == nd)
new_state = BIOC_SVONLINE;
else
new_state = BIOC_SVOFFLINE;
DNPRINTF(SR_D_STATE, "%s: %s: sr_set_vol_state %d -> %d\n",
DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname,
old_state, new_state);
switch (old_state) {
case BIOC_SVONLINE:
if (new_state == BIOC_SVOFFLINE || new_state == BIOC_SVONLINE)
break;
else
goto die;
break;
case BIOC_SVOFFLINE:
/* XXX this might be a little too much */
goto die;
default:
die:
panic("%s: %s: invalid volume state transition %d -> %d",
DEVNAME(sd->sd_sc),
sd->sd_meta->ssd_devname,
old_state, new_state);
/* NOTREACHED */
}
sd->sd_vol_status = new_state;
}
void *
sr_block_get(struct sr_discipline *sd, long length)
{
return dma_alloc(length, PR_NOWAIT | PR_ZERO);
}
void
sr_block_put(struct sr_discipline *sd, void *ptr, int length)
{
dma_free(ptr, length);
}
void
sr_checksum_print(u_int8_t *md5)
{
int i;
for (i = 0; i < MD5_DIGEST_LENGTH; i++)
printf("%02x", md5[i]);
}
void
sr_checksum(struct sr_softc *sc, void *src, void *md5, u_int32_t len)
{
MD5_CTX ctx;
DNPRINTF(SR_D_MISC, "%s: sr_checksum(%p %p %d)\n", DEVNAME(sc), src,
md5, len);
MD5Init(&ctx);
MD5Update(&ctx, src, len);
MD5Final(md5, &ctx);
}
void
sr_uuid_generate(struct sr_uuid *uuid)
{
arc4random_buf(uuid->sui_id, sizeof(uuid->sui_id));
/* UUID version 4: random */
uuid->sui_id[6] &= 0x0f;
uuid->sui_id[6] |= 0x40;
/* RFC4122 variant */
uuid->sui_id[8] &= 0x3f;
uuid->sui_id[8] |= 0x80;
}
char *
sr_uuid_format(struct sr_uuid *uuid)
{
char *uuidstr;
uuidstr = malloc(37, M_DEVBUF, M_WAITOK);
snprintf(uuidstr, 37,
"%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-"
"%02x%02x%02x%02x%02x%02x",
uuid->sui_id[0], uuid->sui_id[1],
uuid->sui_id[2], uuid->sui_id[3],
uuid->sui_id[4], uuid->sui_id[5],
uuid->sui_id[6], uuid->sui_id[7],
uuid->sui_id[8], uuid->sui_id[9],
uuid->sui_id[10], uuid->sui_id[11],
uuid->sui_id[12], uuid->sui_id[13],
uuid->sui_id[14], uuid->sui_id[15]);
return uuidstr;
}
void
sr_uuid_print(struct sr_uuid *uuid, int cr)
{
char *uuidstr;
uuidstr = sr_uuid_format(uuid);
printf("%s%s", uuidstr, (cr ? "\n" : ""));
free(uuidstr, M_DEVBUF, 37);
}
int
sr_already_assembled(struct sr_discipline *sd)
{
struct sr_softc *sc = sd->sd_sc;
struct sr_discipline *sdtmp;
TAILQ_FOREACH(sdtmp, &sc->sc_dis_list, sd_link) {
if (!bcmp(&sd->sd_meta->ssdi.ssd_uuid,
&sdtmp->sd_meta->ssdi.ssd_uuid,
sizeof(sd->sd_meta->ssdi.ssd_uuid)))
return (1);
}
return (0);
}
int32_t
sr_validate_stripsize(u_int32_t b)
{
int s = 0;
if (b % DEV_BSIZE)
return (-1);
while ((b & 1) == 0) {
b >>= 1;
s++;
}
/* only multiple of twos */
b >>= 1;
if (b)
return(-1);
return (s);
}
void
sr_quiesce(void)
{
struct sr_softc *sc = softraid0;
struct sr_discipline *sd, *nsd;
if (sc == NULL)
return;
/* Shutdown disciplines in reverse attach order. */
TAILQ_FOREACH_REVERSE_SAFE(sd, &sc->sc_dis_list,
sr_discipline_list, sd_link, nsd)
sr_discipline_shutdown(sd, 1, -1);
}
void
sr_shutdown(int dying)
{
struct sr_softc *sc = softraid0;
struct sr_discipline *sd;
if (sc == NULL)
return;
DNPRINTF(SR_D_MISC, "%s: sr_shutdown\n", DEVNAME(sc));
/*
* Since softraid is not under mainbus, we have to explicitly
* notify its children that the power is going down, so they
* can execute their shutdown hooks.
*/
config_suspend((struct device *)sc, DVACT_POWERDOWN);
/* Shutdown disciplines in reverse attach order. */
while ((sd = TAILQ_LAST(&sc->sc_dis_list, sr_discipline_list)) != NULL)
sr_discipline_shutdown(sd, 1, dying);
}
int
sr_validate_io(struct sr_workunit *wu, daddr_t *blkno, char *func)
{
struct sr_discipline *sd = wu->swu_dis;
struct scsi_xfer *xs = wu->swu_xs;
int rv = 1;
DNPRINTF(SR_D_DIS, "%s: %s 0x%02x\n", DEVNAME(sd->sd_sc), func,
xs->cmd.opcode);
if (sd->sd_meta->ssd_data_blkno == 0)
panic("invalid data blkno");
if (sd->sd_vol_status == BIOC_SVOFFLINE) {
DNPRINTF(SR_D_DIS, "%s: %s device offline\n",
DEVNAME(sd->sd_sc), func);
goto bad;
}
if (xs->datalen == 0) {
printf("%s: %s: illegal block count for %s\n",
DEVNAME(sd->sd_sc), func, sd->sd_meta->ssd_devname);
goto bad;
}
if (xs->cmdlen == 10)
*blkno = _4btol(((struct scsi_rw_10 *)&xs->cmd)->addr);
else if (xs->cmdlen == 16)
*blkno = _8btol(((struct scsi_rw_16 *)&xs->cmd)->addr);
else if (xs->cmdlen == 6)
*blkno = _3btol(((struct scsi_rw *)&xs->cmd)->addr);
else {
printf("%s: %s: illegal cmdlen for %s\n",
DEVNAME(sd->sd_sc), func, sd->sd_meta->ssd_devname);
goto bad;
}
*blkno *= (sd->sd_meta->ssdi.ssd_secsize / DEV_BSIZE);
wu->swu_blk_start = *blkno;
wu->swu_blk_end = *blkno + (xs->datalen >> DEV_BSHIFT) - 1;
if (wu->swu_blk_end > sd->sd_meta->ssdi.ssd_size) {
DNPRINTF(SR_D_DIS, "%s: %s out of bounds start: %lld "
"end: %lld length: %d\n",
DEVNAME(sd->sd_sc), func, (long long)wu->swu_blk_start,
(long long)wu->swu_blk_end, xs->datalen);
sd->sd_scsi_sense.error_code = SSD_ERRCODE_CURRENT |
SSD_ERRCODE_VALID;
sd->sd_scsi_sense.flags = SKEY_ILLEGAL_REQUEST;
sd->sd_scsi_sense.add_sense_code = 0x21;
sd->sd_scsi_sense.add_sense_code_qual = 0x00;
sd->sd_scsi_sense.extra_len = 4;
goto bad;
}
rv = 0;
bad:
return (rv);
}
void
sr_rebuild_start(void *arg)
{
struct sr_discipline *sd = arg;
struct sr_softc *sc = sd->sd_sc;
DNPRINTF(SR_D_REBUILD, "%s: %s starting rebuild thread\n",
DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname);
if (kthread_create(sr_rebuild_thread, sd, &sd->sd_background_proc,
DEVNAME(sc)) != 0)
printf("%s: unable to start background operation\n",
DEVNAME(sc));
}
void
sr_rebuild_thread(void *arg)
{
struct sr_discipline *sd = arg;
DNPRINTF(SR_D_REBUILD, "%s: %s rebuild thread started\n",
DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname);
sd->sd_reb_active = 1;
sd->sd_rebuild(sd);
sd->sd_reb_active = 0;
kthread_exit(0);
}
void
sr_rebuild(struct sr_discipline *sd)
{
struct sr_softc *sc = sd->sd_sc;
u_int64_t sz, whole_blk, partial_blk, blk, restart;
daddr_t lba;
struct sr_workunit *wu_r, *wu_w;
struct scsi_xfer xs_r, xs_w;
struct scsi_rw_16 *cr, *cw;
int c, s, slept, percent = 0, old_percent = -1;
u_int8_t *buf;
whole_blk = sd->sd_meta->ssdi.ssd_size / SR_REBUILD_IO_SIZE;
partial_blk = sd->sd_meta->ssdi.ssd_size % SR_REBUILD_IO_SIZE;
restart = sd->sd_meta->ssd_rebuild / SR_REBUILD_IO_SIZE;
if (restart > whole_blk) {
printf("%s: bogus rebuild restart offset, starting from 0\n",
DEVNAME(sc));
restart = 0;
}
if (restart) {
/*
* XXX there is a hole here; there is a possibility that we
* had a restart however the chunk that was supposed to
* be rebuilt is no longer valid; we can reach this situation
* when a rebuild is in progress and the box crashes and
* on reboot the rebuild chunk is different (like zero'd or
* replaced). We need to check the uuid of the chunk that is
* being rebuilt to assert this.
*/
percent = sr_rebuild_percent(sd);
printf("%s: resuming rebuild on %s at %d%%\n",
DEVNAME(sc), sd->sd_meta->ssd_devname, percent);
}
/* currently this is 64k therefore we can use dma_alloc */
buf = dma_alloc(SR_REBUILD_IO_SIZE << DEV_BSHIFT, PR_WAITOK);
for (blk = restart; blk <= whole_blk; blk++) {
lba = blk * SR_REBUILD_IO_SIZE;
sz = SR_REBUILD_IO_SIZE;
if (blk == whole_blk) {
if (partial_blk == 0)
break;
sz = partial_blk;
}
/* get some wu */
wu_r = sr_scsi_wu_get(sd, 0);
wu_w = sr_scsi_wu_get(sd, 0);
DNPRINTF(SR_D_REBUILD, "%s: %s rebuild wu_r %p, wu_w %p\n",
DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname, wu_r, wu_w);
/* setup read io */
bzero(&xs_r, sizeof xs_r);
xs_r.error = XS_NOERROR;
xs_r.flags = SCSI_DATA_IN;
xs_r.datalen = sz << DEV_BSHIFT;
xs_r.data = buf;
xs_r.cmdlen = sizeof(*cr);
cr = (struct scsi_rw_16 *)&xs_r.cmd;
cr->opcode = READ_16;
_lto4b(sz, cr->length);
_lto8b(lba, cr->addr);
wu_r->swu_state = SR_WU_CONSTRUCT;
wu_r->swu_flags |= SR_WUF_REBUILD;
wu_r->swu_xs = &xs_r;
if (sd->sd_scsi_rw(wu_r)) {
printf("%s: could not create read io\n",
DEVNAME(sc));
goto fail;
}
/* setup write io */
bzero(&xs_w, sizeof xs_w);
xs_w.error = XS_NOERROR;
xs_w.flags = SCSI_DATA_OUT;
xs_w.datalen = sz << DEV_BSHIFT;
xs_w.data = buf;
xs_w.cmdlen = sizeof(*cw);
cw = (struct scsi_rw_16 *)&xs_w.cmd;
cw->opcode = WRITE_16;
_lto4b(sz, cw->length);
_lto8b(lba, cw->addr);
wu_w->swu_state = SR_WU_CONSTRUCT;
wu_w->swu_flags |= SR_WUF_REBUILD | SR_WUF_WAKEUP;
wu_w->swu_xs = &xs_w;
if (sd->sd_scsi_rw(wu_w)) {
printf("%s: could not create write io\n",
DEVNAME(sc));
goto fail;
}
/*
* collide with the read io so that we get automatically
* started when the read is done
*/
wu_w->swu_state = SR_WU_DEFERRED;
wu_r->swu_collider = wu_w;
s = splbio();
TAILQ_INSERT_TAIL(&sd->sd_wu_defq, wu_w, swu_link);
splx(s);
DNPRINTF(SR_D_REBUILD, "%s: %s rebuild scheduling wu_r %p\n",
DEVNAME(sd->sd_sc), sd->sd_meta->ssd_devname, wu_r);
wu_r->swu_state = SR_WU_INPROGRESS;
sr_schedule_wu(wu_r);
/* wait for write completion */
slept = 0;
while ((wu_w->swu_flags & SR_WUF_REBUILDIOCOMP) == 0) {
tsleep_nsec(wu_w, PRIBIO, "sr_rebuild", INFSLP);
slept = 1;
}
/* yield if we didn't sleep */
if (slept == 0)
tsleep_nsec(sc, PWAIT, "sr_yield", MSEC_TO_NSEC(1));
sr_scsi_wu_put(sd, wu_r);
sr_scsi_wu_put(sd, wu_w);
sd->sd_meta->ssd_rebuild = lba;
/* XXX - this should be based on size, not percentage. */
/* save metadata every percent */
percent = sr_rebuild_percent(sd);
if (percent != old_percent && blk != whole_blk) {
if (sr_meta_save(sd, SR_META_DIRTY))
printf("%s: could not save metadata to %s\n",
DEVNAME(sc), sd->sd_meta->ssd_devname);
old_percent = percent;
}
if (sd->sd_reb_abort)
goto abort;
}
/* all done */
sd->sd_meta->ssd_rebuild = 0;
for (c = 0; c < sd->sd_meta->ssdi.ssd_chunk_no; c++) {
if (sd->sd_vol.sv_chunks[c]->src_meta.scm_status ==
BIOC_SDREBUILD) {
sd->sd_set_chunk_state(sd, c, BIOC_SDONLINE);
break;
}
}
abort:
if (sr_meta_save(sd, SR_META_DIRTY))
printf("%s: could not save metadata to %s\n",
DEVNAME(sc), sd->sd_meta->ssd_devname);
fail:
dma_free(buf, SR_REBUILD_IO_SIZE << DEV_BSHIFT);
}
struct sr_discipline *
sr_find_discipline(struct sr_softc *sc, const char *devname)
{
struct sr_discipline *sd;
TAILQ_FOREACH(sd, &sc->sc_dis_list, sd_link)
if (!strncmp(sd->sd_meta->ssd_devname, devname,
sizeof(sd->sd_meta->ssd_devname)))
break;
return sd;
}
#ifndef SMALL_KERNEL
int
sr_sensors_create(struct sr_discipline *sd)
{
struct sr_softc *sc = sd->sd_sc;
int rv = 1;
DNPRINTF(SR_D_STATE, "%s: %s: sr_sensors_create\n",
DEVNAME(sc), sd->sd_meta->ssd_devname);
sd->sd_vol.sv_sensor.type = SENSOR_DRIVE;
sd->sd_vol.sv_sensor.status = SENSOR_S_UNKNOWN;
strlcpy(sd->sd_vol.sv_sensor.desc, sd->sd_meta->ssd_devname,
sizeof(sd->sd_vol.sv_sensor.desc));
sensor_attach(&sc->sc_sensordev, &sd->sd_vol.sv_sensor);
sd->sd_vol.sv_sensor_attached = 1;
if (sc->sc_sensor_task == NULL) {
sc->sc_sensor_task = sensor_task_register(sc,
sr_sensors_refresh, 10);
if (sc->sc_sensor_task == NULL)
goto bad;
}
rv = 0;
bad:
return (rv);
}
void
sr_sensors_delete(struct sr_discipline *sd)
{
DNPRINTF(SR_D_STATE, "%s: sr_sensors_delete\n", DEVNAME(sd->sd_sc));
if (sd->sd_vol.sv_sensor_attached)
sensor_detach(&sd->sd_sc->sc_sensordev, &sd->sd_vol.sv_sensor);
}
void
sr_sensors_refresh(void *arg)
{
struct sr_softc *sc = arg;
struct sr_volume *sv;
struct sr_discipline *sd;
DNPRINTF(SR_D_STATE, "%s: sr_sensors_refresh\n", DEVNAME(sc));
TAILQ_FOREACH(sd, &sc->sc_dis_list, sd_link) {
sv = &sd->sd_vol;
switch(sd->sd_vol_status) {
case BIOC_SVOFFLINE:
sv->sv_sensor.value = SENSOR_DRIVE_FAIL;
sv->sv_sensor.status = SENSOR_S_CRIT;
break;
case BIOC_SVDEGRADED:
sv->sv_sensor.value = SENSOR_DRIVE_PFAIL;
sv->sv_sensor.status = SENSOR_S_WARN;
break;
case BIOC_SVREBUILD:
sv->sv_sensor.value = SENSOR_DRIVE_REBUILD;
sv->sv_sensor.status = SENSOR_S_WARN;
break;
case BIOC_SVSCRUB:
case BIOC_SVONLINE:
sv->sv_sensor.value = SENSOR_DRIVE_ONLINE;
sv->sv_sensor.status = SENSOR_S_OK;
break;
default:
sv->sv_sensor.value = 0; /* unknown */
sv->sv_sensor.status = SENSOR_S_UNKNOWN;
}
}
}
#endif /* SMALL_KERNEL */
#ifdef SR_FANCY_STATS
void sr_print_stats(void);
void
sr_print_stats(void)
{
struct sr_softc *sc = softraid0;
struct sr_discipline *sd;
if (sc == NULL) {
printf("no softraid softc found\n");
return;
}
TAILQ_FOREACH(sd, &sc->sc_dis_list, sd_link) {
printf("%s: ios pending %d, collisions %llu\n",
sd->sd_meta->ssd_devname,
sd->sd_wu_pending,
sd->sd_wu_collisions);
}
}
#endif /* SR_FANCY_STATS */
#ifdef SR_DEBUG
void
sr_meta_print(struct sr_metadata *m)
{
int i;
struct sr_meta_chunk *mc;
struct sr_meta_opt_hdr *omh;
if (!(sr_debug & SR_D_META))
return;
printf("\tssd_magic 0x%llx\n", m->ssdi.ssd_magic);
printf("\tssd_version %d\n", m->ssdi.ssd_version);
printf("\tssd_vol_flags 0x%x\n", m->ssdi.ssd_vol_flags);
printf("\tssd_uuid ");
sr_uuid_print(&m->ssdi.ssd_uuid, 1);
printf("\tssd_chunk_no %d\n", m->ssdi.ssd_chunk_no);
printf("\tssd_chunk_id %d\n", m->ssdi.ssd_chunk_id);
printf("\tssd_opt_no %d\n", m->ssdi.ssd_opt_no);
printf("\tssd_volid %d\n", m->ssdi.ssd_volid);
printf("\tssd_level %d\n", m->ssdi.ssd_level);
printf("\tssd_size %lld\n", m->ssdi.ssd_size);
printf("\tssd_devname %s\n", m->ssd_devname);
printf("\tssd_vendor %s\n", m->ssdi.ssd_vendor);
printf("\tssd_product %s\n", m->ssdi.ssd_product);
printf("\tssd_revision %s\n", m->ssdi.ssd_revision);
printf("\tssd_strip_size %d\n", m->ssdi.ssd_strip_size);
printf("\tssd_checksum ");
sr_checksum_print(m->ssd_checksum);
printf("\n");
printf("\tssd_meta_flags 0x%x\n", m->ssd_meta_flags);
printf("\tssd_ondisk %llu\n", m->ssd_ondisk);
mc = (struct sr_meta_chunk *)(m + 1);
for (i = 0; i < m->ssdi.ssd_chunk_no; i++, mc++) {
printf("\t\tscm_volid %d\n", mc->scmi.scm_volid);
printf("\t\tscm_chunk_id %d\n", mc->scmi.scm_chunk_id);
printf("\t\tscm_devname %s\n", mc->scmi.scm_devname);
printf("\t\tscm_size %lld\n", mc->scmi.scm_size);
printf("\t\tscm_coerced_size %lld\n",mc->scmi.scm_coerced_size);
printf("\t\tscm_uuid ");
sr_uuid_print(&mc->scmi.scm_uuid, 1);
printf("\t\tscm_checksum ");
sr_checksum_print(mc->scm_checksum);
printf("\n");
printf("\t\tscm_status %d\n", mc->scm_status);
}
omh = (struct sr_meta_opt_hdr *)((u_int8_t *)(m + 1) +
sizeof(struct sr_meta_chunk) * m->ssdi.ssd_chunk_no);
for (i = 0; i < m->ssdi.ssd_opt_no; i++) {
printf("\t\t\tsom_type %d\n", omh->som_type);
printf("\t\t\tsom_checksum ");
sr_checksum_print(omh->som_checksum);
printf("\n");
omh = (struct sr_meta_opt_hdr *)((void *)omh +
omh->som_length);
}
}
void
sr_dump_block(void *blk, int len)
{
uint8_t *b = blk;
int i, j, c;
for (i = 0; i < len; i += 16) {
for (j = 0; j < 16; j++)
printf("%.2x ", b[i + j]);
printf(" ");
for (j = 0; j < 16; j++) {
c = b[i + j];
if (c < ' ' || c > 'z' || i + j > len)
c = '.';
printf("%c", c);
}
printf("\n");
}
}
void
sr_dump_mem(u_int8_t *p, int len)
{
int i;
for (i = 0; i < len; i++)
printf("%02x ", *p++);
printf("\n");
}
#endif /* SR_DEBUG */
#ifdef HIBERNATE
/*
* Side-effect free (no malloc, printf, pool, splx) softraid crypto writer.
*
* This function must perform the following:
* 1. Determine the underlying device's own side-effect free I/O function
* (eg, ahci_hibernate_io, wd_hibernate_io, etc).
* 2. Store enough information in the provided page argument for subsequent
* I/O calls (such as the crypto discipline structure for the keys, the
* offset of the softraid partition on the underlying disk, as well as
* the offset of the swap partition within the crypto volume.
* 3. Encrypt the incoming data using the sr_discipline keys, then pass
* the request to the underlying device's own I/O function.
*/
int
sr_hibernate_io(dev_t dev, daddr_t blkno, vaddr_t addr, size_t size, int op, void *page)
{
/* Struct for stashing data obtained on HIB_INIT.
* XXX
* We share the page with the underlying device's own
* side-effect free I/O function, so we pad our data to
* the end of the page. Presently this does not overlap
* with either of the two other side-effect free i/o
* functions (ahci/wd).
*/
struct {
char pad[3072];
struct sr_discipline *srd;
hibio_fn subfn; /* underlying device i/o fn */
dev_t subdev; /* underlying device dev_t */
daddr_t sr_swapoff; /* ofs of swap part in sr volume */
char buf[DEV_BSIZE]; /* encryption performed into this buf */
} *my = page;
extern struct cfdriver sd_cd;
char errstr[128], *dl_ret;
struct sr_chunk *schunk;
struct sd_softc *sd;
struct aes_xts_ctx ctx;
struct sr_softc *sc;
struct device *dv;
daddr_t key_blkno;
uint32_t sub_raidoff; /* ofs of sr part in underlying dev */
struct disklabel dl;
struct partition *pp;
size_t i, j;
u_char iv[8];
/*
* In HIB_INIT, we are passed the swap partition size and offset
* in 'size' and 'blkno' respectively. These are relative to the
* start of the softraid partition, and we need to save these
* for later translation to the underlying device's layout.
*/
if (op == HIB_INIT) {
dv = disk_lookup(&sd_cd, DISKUNIT(dev));
sd = (struct sd_softc *)dv;
sc = (struct sr_softc *)dv->dv_parent->dv_parent;
/*
* Look up the sr discipline. This is used to determine
* if we are SR crypto and what the underlying device is.
*/
my->srd = sc->sc_targets[sd->sc_link->target];
DNPRINTF(SR_D_MISC, "sr_hibernate_io: discipline is %s\n",
my->srd->sd_name);
if (strncmp(my->srd->sd_name, "CRYPTO",
sizeof(my->srd->sd_name)))
return (ENOTSUP);
/* Find the underlying device */
schunk = my->srd->sd_vol.sv_chunks[0];
my->subdev = schunk->src_dev_mm;
/*
* Find the appropriate underlying device side effect free
* I/O function, based on the type of device it is.
*/
my->subfn = get_hibernate_io_function(my->subdev);
if (!my->subfn)
return (ENODEV);
/*
* Find blkno where this raid partition starts on
* the underlying disk.
*/
dl_ret = disk_readlabel(&dl, my->subdev, errstr,
sizeof(errstr));
if (dl_ret) {
printf("Hibernate error reading disklabel: %s\n", dl_ret);
return (ENOTSUP);
}
pp = &dl.d_partitions[DISKPART(my->subdev)];
if (pp->p_fstype != FS_RAID || DL_GETPSIZE(pp) == 0)
return (ENOTSUP);
/* Find the blkno of the SR part in the underlying device */
sub_raidoff = my->srd->sd_meta->ssd_data_blkno +
DL_SECTOBLK(&dl, DL_GETPOFFSET(pp));
DNPRINTF(SR_D_MISC,"sr_hibernate_io: blk trans ofs: %d blks\n",
sub_raidoff);
/* Save the blkno of the swap partition in the SR disk */
my->sr_swapoff = blkno;
/* Initialize the sub-device */
return my->subfn(my->subdev, sub_raidoff + blkno,
addr, size, op, page);
}
/* Hibernate only uses (and we only support) writes */
if (op != HIB_W)
return (ENOTSUP);
/*
* Blocks act as the IV for the encryption. These block numbers
* are relative to the start of the sr partition, but the 'blkno'
* passed above is relative to the start of the swap partition
* inside the sr partition, so bias appropriately.
*/
key_blkno = my->sr_swapoff + blkno;
/* Process each disk block one at a time. */
for (i = 0; i < size; i += DEV_BSIZE) {
int res;
bzero(&ctx, sizeof(ctx));
/*
* Set encryption key (from the sr discipline stashed
* during HIB_INIT. This code is based on the softraid
* bootblock code.
*/
aes_xts_setkey(&ctx, my->srd->mds.mdd_crypto.scr_key[0], 64);
/* We encrypt DEV_BSIZE bytes at a time in my->buf */
memcpy(my->buf, ((char *)addr) + i, DEV_BSIZE);
/* Block number is the IV */
memcpy(&iv, &key_blkno, sizeof(key_blkno));
aes_xts_reinit(&ctx, iv);
/* Encrypt DEV_BSIZE bytes, AES_XTS_BLOCKSIZE bytes at a time */
for (j = 0; j < DEV_BSIZE; j += AES_XTS_BLOCKSIZE)
aes_xts_encrypt(&ctx, my->buf + j);
/*
* Write one block out from my->buf to the underlying device
* using its own side-effect free I/O function.
*/
res = my->subfn(my->subdev, blkno + (i / DEV_BSIZE),
(vaddr_t)(my->buf), DEV_BSIZE, op, page);
if (res != 0)
return (res);
key_blkno++;
}
return (0);
}
#endif /* HIBERNATE */