src/sys/dev/softraid_raid1c.c

364 lines
10 KiB
C

/* $OpenBSD: softraid_raid1c.c,v 1.6 2021/10/24 14:50:42 tobhe Exp $ */
/*
* Copyright (c) 2007 Marco Peereboom <marco@peereboom.us>
* Copyright (c) 2008 Hans-Joerg Hoexer <hshoexer@openbsd.org>
* Copyright (c) 2008 Damien Miller <djm@mindrot.org>
* Copyright (c) 2009 Joel Sing <jsing@openbsd.org>
* Copyright (c) 2020 Stefan Sperling <stsp@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "bio.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/device.h>
#include <sys/ioctl.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/disk.h>
#include <sys/rwlock.h>
#include <sys/queue.h>
#include <sys/fcntl.h>
#include <sys/mount.h>
#include <sys/sensors.h>
#include <sys/stat.h>
#include <sys/task.h>
#include <sys/conf.h>
#include <sys/uio.h>
#include <crypto/cryptodev.h>
#include <scsi/scsi_all.h>
#include <scsi/scsiconf.h>
#include <scsi/scsi_disk.h>
#include <dev/softraidvar.h>
/* RAID 1C functions. */
int sr_raid1c_create(struct sr_discipline *, struct bioc_createraid *,
int, int64_t);
int sr_raid1c_add_offline_chunks(struct sr_discipline *, int);
int sr_raid1c_assemble(struct sr_discipline *, struct bioc_createraid *,
int, void *);
int sr_raid1c_alloc_resources(struct sr_discipline *);
void sr_raid1c_free_resources(struct sr_discipline *sd);
int sr_raid1c_ioctl(struct sr_discipline *sd, struct bioc_discipline *bd);
int sr_raid1c_meta_opt_handler(struct sr_discipline *,
struct sr_meta_opt_hdr *);
int sr_raid1c_rw(struct sr_workunit *);
int sr_raid1c_dev_rw(struct sr_workunit *, struct sr_crypto_wu *);
void sr_raid1c_done(struct sr_workunit *wu);
/* RAID1 functions */
extern int sr_raid1_init(struct sr_discipline *sd);
extern int sr_raid1_assemble(struct sr_discipline *,
struct bioc_createraid *, int, void *);
extern int sr_raid1_wu_done(struct sr_workunit *);
extern void sr_raid1_set_chunk_state(struct sr_discipline *, int, int);
extern void sr_raid1_set_vol_state(struct sr_discipline *);
/* CRYPTO raid functions */
extern struct sr_crypto_wu *sr_crypto_prepare(struct sr_workunit *,
struct sr_crypto *, int);
extern int sr_crypto_meta_create(struct sr_discipline *,
struct sr_crypto *, struct bioc_createraid *);
extern int sr_crypto_set_key(struct sr_discipline *,
struct sr_crypto *, struct bioc_createraid *, int, void *);
extern int sr_crypto_alloc_resources_internal(struct sr_discipline *,
struct sr_crypto *);
extern void sr_crypto_free_resources_internal(struct sr_discipline *,
struct sr_crypto *);
extern int sr_crypto_ioctl_internal(struct sr_discipline *,
struct sr_crypto *, struct bioc_discipline *);
int sr_crypto_meta_opt_handler_internal(struct sr_discipline *,
struct sr_crypto *, struct sr_meta_opt_hdr *);
void sr_crypto_done_internal(struct sr_workunit *,
struct sr_crypto *);
/* Discipline initialisation. */
void
sr_raid1c_discipline_init(struct sr_discipline *sd)
{
int i;
/* Fill out discipline members. */
sd->sd_wu_size = sizeof(struct sr_crypto_wu);
sd->sd_type = SR_MD_RAID1C;
strlcpy(sd->sd_name, "RAID 1C", sizeof(sd->sd_name));
sd->sd_capabilities = SR_CAP_SYSTEM_DISK | SR_CAP_AUTO_ASSEMBLE |
SR_CAP_REBUILD | SR_CAP_REDUNDANT;
sd->sd_max_wu = SR_RAID1C_NOWU;
for (i = 0; i < SR_CRYPTO_MAXKEYS; i++)
sd->mds.mdd_raid1c.sr1c_crypto.scr_sid[i] = (u_int64_t)-1;
/* Setup discipline specific function pointers. */
sd->sd_alloc_resources = sr_raid1c_alloc_resources;
sd->sd_assemble = sr_raid1c_assemble;
sd->sd_create = sr_raid1c_create;
sd->sd_free_resources = sr_raid1c_free_resources;
sd->sd_ioctl_handler = sr_raid1c_ioctl;
sd->sd_meta_opt_handler = sr_raid1c_meta_opt_handler;
sd->sd_scsi_rw = sr_raid1c_rw;
sd->sd_scsi_done = sr_raid1c_done;
sd->sd_scsi_wu_done = sr_raid1_wu_done;
sd->sd_set_chunk_state = sr_raid1_set_chunk_state;
sd->sd_set_vol_state = sr_raid1_set_vol_state;
}
int
sr_raid1c_create(struct sr_discipline *sd, struct bioc_createraid *bc,
int no_chunk, int64_t coerced_size)
{
int rv;
if (no_chunk < 2) {
sr_error(sd->sd_sc, "%s requires two or more chunks",
sd->sd_name);
return EINVAL;
}
sd->sd_meta->ssdi.ssd_size = coerced_size;
rv = sr_raid1_init(sd);
if (rv)
return rv;
return sr_crypto_meta_create(sd, &sd->mds.mdd_raid1c.sr1c_crypto, bc);
}
int
sr_raid1c_add_offline_chunks(struct sr_discipline *sd, int no_chunk)
{
struct sr_chunk *ch_entry, *ch_prev;
struct sr_chunk **chunks;
int c;
chunks = mallocarray(sd->sd_meta->ssdi.ssd_chunk_no,
sizeof(struct sr_chunk *), M_DEVBUF, M_WAITOK | M_ZERO);
for (c = 0; c < no_chunk; c++)
chunks[c] = sd->sd_vol.sv_chunks[c];
for (c = no_chunk; c < sd->sd_meta->ssdi.ssd_chunk_no; c++) {
ch_prev = chunks[c - 1];
ch_entry = malloc(sizeof(struct sr_chunk), M_DEVBUF,
M_WAITOK | M_ZERO);
ch_entry->src_meta.scm_status = BIOC_SDOFFLINE;
ch_entry->src_dev_mm = NODEV;
SLIST_INSERT_AFTER(ch_prev, ch_entry, src_link);
chunks[c] = ch_entry;
}
free(sd->sd_vol.sv_chunks, M_DEVBUF,
sizeof(struct sr_chunk *) * no_chunk);
sd->sd_vol.sv_chunks = chunks;
return (0);
}
int
sr_raid1c_assemble(struct sr_discipline *sd, struct bioc_createraid *bc,
int no_chunk, void *data)
{
struct sr_raid1c *mdd_raid1c = &sd->mds.mdd_raid1c;
int rv;
/* Create NODEV place-holders for missing chunks. */
if (no_chunk < sd->sd_meta->ssdi.ssd_chunk_no) {
rv = sr_raid1c_add_offline_chunks(sd, no_chunk);
if (rv)
return (rv);
}
rv = sr_raid1_assemble(sd, bc, no_chunk, NULL);
if (rv)
return (rv);
return sr_crypto_set_key(sd, &mdd_raid1c->sr1c_crypto, bc,
no_chunk, data);
}
int
sr_raid1c_ioctl(struct sr_discipline *sd, struct bioc_discipline *bd)
{
struct sr_raid1c *mdd_raid1c = &sd->mds.mdd_raid1c;
return sr_crypto_ioctl_internal(sd, &mdd_raid1c->sr1c_crypto, bd);
}
int
sr_raid1c_alloc_resources(struct sr_discipline *sd)
{
struct sr_raid1c *mdd_raid1c = &sd->mds.mdd_raid1c;
return sr_crypto_alloc_resources_internal(sd, &mdd_raid1c->sr1c_crypto);
}
void
sr_raid1c_free_resources(struct sr_discipline *sd)
{
struct sr_raid1c *mdd_raid1c = &sd->mds.mdd_raid1c;
sr_crypto_free_resources_internal(sd, &mdd_raid1c->sr1c_crypto);
}
int
sr_raid1c_dev_rw(struct sr_workunit *wu, struct sr_crypto_wu *crwu)
{
struct sr_discipline *sd = wu->swu_dis;
struct scsi_xfer *xs = wu->swu_xs;
struct sr_raid1c *mdd_raid1c = &sd->mds.mdd_raid1c;
struct sr_ccb *ccb;
struct uio *uio;
struct sr_chunk *scp;
int ios, chunk, i, rt;
daddr_t blkno;
blkno = wu->swu_blk_start;
if (xs->flags & SCSI_DATA_IN)
ios = 1;
else
ios = sd->sd_meta->ssdi.ssd_chunk_no;
for (i = 0; i < ios; i++) {
if (xs->flags & SCSI_DATA_IN) {
rt = 0;
ragain:
/* interleave reads */
chunk = mdd_raid1c->sr1c_raid1.sr1_counter++ %
sd->sd_meta->ssdi.ssd_chunk_no;
scp = sd->sd_vol.sv_chunks[chunk];
switch (scp->src_meta.scm_status) {
case BIOC_SDONLINE:
case BIOC_SDSCRUB:
break;
case BIOC_SDOFFLINE:
case BIOC_SDREBUILD:
case BIOC_SDHOTSPARE:
if (rt++ < sd->sd_meta->ssdi.ssd_chunk_no)
goto ragain;
/* FALLTHROUGH */
default:
/* volume offline */
printf("%s: is offline, cannot read\n",
DEVNAME(sd->sd_sc));
goto bad;
}
} else {
/* writes go on all working disks */
chunk = i;
scp = sd->sd_vol.sv_chunks[chunk];
switch (scp->src_meta.scm_status) {
case BIOC_SDONLINE:
if (ISSET(wu->swu_flags, SR_WUF_REBUILD))
continue;
break;
case BIOC_SDSCRUB:
case BIOC_SDREBUILD:
break;
case BIOC_SDHOTSPARE: /* should never happen */
case BIOC_SDOFFLINE:
continue;
default:
goto bad;
}
}
ccb = sr_ccb_rw(sd, chunk, blkno, xs->datalen, xs->data,
xs->flags, 0);
if (!ccb) {
/* should never happen but handle more gracefully */
printf("%s: %s: too many ccbs queued\n",
DEVNAME(sd->sd_sc),
sd->sd_meta->ssd_devname);
goto bad;
}
if (!ISSET(xs->flags, SCSI_DATA_IN) &&
!ISSET(wu->swu_flags, SR_WUF_REBUILD)) {
uio = crwu->cr_crp->crp_buf;
ccb->ccb_buf.b_data = uio->uio_iov->iov_base;
ccb->ccb_opaque = crwu;
}
sr_wu_enqueue_ccb(wu, ccb);
}
sr_schedule_wu(wu);
return (0);
bad:
return (EINVAL);
}
int
sr_raid1c_meta_opt_handler(struct sr_discipline *sd, struct sr_meta_opt_hdr *om)
{
struct sr_raid1c *mdd_raid1c = &sd->mds.mdd_raid1c;
return sr_crypto_meta_opt_handler_internal(sd,
&mdd_raid1c->sr1c_crypto, om);
}
int
sr_raid1c_rw(struct sr_workunit *wu)
{
struct sr_crypto_wu *crwu;
struct sr_raid1c *mdd_raid1c;
daddr_t blkno;
int rv, err;
int s;
DNPRINTF(SR_D_DIS, "%s: sr_raid1c_rw wu %p\n",
DEVNAME(wu->swu_dis->sd_sc), wu);
if (sr_validate_io(wu, &blkno, "sr_raid1c_rw"))
return (1);
if (ISSET(wu->swu_xs->flags, SCSI_DATA_OUT) &&
!ISSET(wu->swu_flags, SR_WUF_REBUILD)) {
mdd_raid1c = &wu->swu_dis->mds.mdd_raid1c;
crwu = sr_crypto_prepare(wu, &mdd_raid1c->sr1c_crypto, 1);
rv = crypto_invoke(crwu->cr_crp);
DNPRINTF(SR_D_INTR, "%s: sr_raid1c_rw: wu %p xs: %p\n",
DEVNAME(wu->swu_dis->sd_sc), wu, wu->swu_xs);
if (rv) {
/* fail io */
wu->swu_xs->error = XS_DRIVER_STUFFUP;
s = splbio();
sr_scsi_done(wu->swu_dis, wu->swu_xs);
splx(s);
}
if ((err = sr_raid1c_dev_rw(wu, crwu)) != 0)
return (err);
} else
rv = sr_raid1c_dev_rw(wu, NULL);
return (rv);
}
void
sr_raid1c_done(struct sr_workunit *wu)
{
struct sr_raid1c *mdd_raid1c = &wu->swu_dis->mds.mdd_raid1c;
sr_crypto_done_internal(wu, &mdd_raid1c->sr1c_crypto);
}