src/sys/dev/spdmem.c

987 lines
27 KiB
C

/* $OpenBSD: spdmem.c,v 1.7 2019/12/21 12:33:03 kettenis Exp $ */
/* $NetBSD: spdmem.c,v 1.3 2007/09/20 23:09:59 xtraeme Exp $ */
/*
* Copyright (c) 2007 Jonathan Gray <jsg@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Copyright (c) 2007 Nicolas Joly
* Copyright (c) 2007 Paul Goyette
* Copyright (c) 2007 Tobias Nygren
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Serial Presence Detect (SPD) memory identification
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <dev/spdmemvar.h>
/* Encodings of the size used/total byte for certain memory types */
#define SPDMEM_SPDSIZE_MASK 0x0F /* SPD EEPROM Size */
#define SPDMEM_SPDLEN_128 0x00 /* SPD EEPROM Sizes */
#define SPDMEM_SPDLEN_176 0x10
#define SPDMEM_SPDLEN_256 0x20
#define SPDMEM_SPDLEN_MASK 0x70 /* Bits 4 - 6 */
#define SPDMEM_DDR4_SPDLEN_128 0x01 /* SPD EEPROM Sizes */
#define SPDMEM_DDR4_SPDLEN_256 0x02
#define SPDMEM_DDR4_SPDLEN_384 0x03
#define SPDMEM_DDR4_SPDLEN_512 0x04
#define SPDMEM_DDR4_SPDLEN_MASK 0x0f /* Bits 4 - 6 */
#define SPDMEM_SPDCRC_116 0x80 /* CRC Bytes covered */
#define SPDMEM_SPDCRC_125 0x00
#define SPDMEM_SPDCRC_MASK 0x80 /* Bit 7 */
/* possible values for the memory type */
#define SPDMEM_MEMTYPE_FPM 0x01
#define SPDMEM_MEMTYPE_EDO 0x02
#define SPDMEM_MEMTYPE_PIPE_NIBBLE 0x03
#define SPDMEM_MEMTYPE_SDRAM 0x04
#define SPDMEM_MEMTYPE_ROM 0x05
#define SPDMEM_MEMTYPE_DDRSGRAM 0x06
#define SPDMEM_MEMTYPE_DDRSDRAM 0x07
#define SPDMEM_MEMTYPE_DDR2SDRAM 0x08
#define SPDMEM_MEMTYPE_FBDIMM 0x09
#define SPDMEM_MEMTYPE_FBDIMM_PROBE 0x0a
#define SPDMEM_MEMTYPE_DDR3SDRAM 0x0b
#define SPDMEM_MEMTYPE_DDR4SDRAM 0x0c
/* 0xd reserved */
#define SPDMEM_MEMTYPE_DDR4ESDRAM 0x0e
#define SPDMEM_MEMTYPE_LPDDR3SDRAM 0x0f
#define SPDMEM_MEMTYPE_LPDDR4SDRAM 0x10
#define SPDMEM_MEMTYPE_LPDDR4XSDRAM 0x11
#define SPDMEM_MEMTYPE_DDR5SDRAM 0x12
#define SPDMEM_MEMTYPE_LPDDR5SDRAM 0x13
#define SPDMEM_MEMTYPE_NONE 0xff
#define SPDMEM_MEMTYPE_DIRECT_RAMBUS 0x01
#define SPDMEM_MEMTYPE_RAMBUS 0x11
/* possible values for the supply voltage */
#define SPDMEM_VOLTAGE_TTL_5V 0x00
#define SPDMEM_VOLTAGE_TTL_LV 0x01
#define SPDMEM_VOLTAGE_HSTTL_1_5V 0x02
#define SPDMEM_VOLTAGE_SSTL_3_3V 0x03
#define SPDMEM_VOLTAGE_SSTL_2_5V 0x04
#define SPDMEM_VOLTAGE_SSTL_1_8V 0x05
/* possible values for module configuration */
#define SPDMEM_MODCONFIG_PARITY 0x01
#define SPDMEM_MODCONFIG_ECC 0x02
/* for DDR2, module configuration is a bit-mask field */
#define SPDMEM_MODCONFIG_HAS_DATA_PARITY 0x01
#define SPDMEM_MODCONFIG_HAS_DATA_ECC 0x02
#define SPDMEM_MODCONFIG_HAS_ADDR_CMD_PARITY 0x04
/* possible values for the refresh field */
#define SPDMEM_REFRESH_STD 0x00
#define SPDMEM_REFRESH_QUARTER 0x01
#define SPDMEM_REFRESH_HALF 0x02
#define SPDMEM_REFRESH_TWOX 0x03
#define SPDMEM_REFRESH_FOURX 0x04
#define SPDMEM_REFRESH_EIGHTX 0x05
#define SPDMEM_REFRESH_SELFREFRESH 0x80
/* superset types */
#define SPDMEM_SUPERSET_ESDRAM 0x01
#define SPDMEM_SUPERSET_DDR_ESDRAM 0x02
#define SPDMEM_SUPERSET_EDO_PEM 0x03
#define SPDMEM_SUPERSET_SDR_PEM 0x04
/* FPM and EDO DIMMS */
#define SPDMEM_FPM_ROWS 0x00
#define SPDMEM_FPM_COLS 0x01
#define SPDMEM_FPM_BANKS 0x02
#define SPDMEM_FPM_CONFIG 0x08
#define SPDMEM_FPM_REFRESH 0x09
#define SPDMEM_FPM_SUPERSET 0x0c
/* PC66/PC100/PC133 SDRAM */
#define SPDMEM_SDR_ROWS 0x00
#define SPDMEM_SDR_COLS 0x01
#define SPDMEM_SDR_BANKS 0x02
#define SPDMEM_SDR_CYCLE 0x06
#define SPDMEM_SDR_BANKS_PER_CHIP 0x0e
#define SPDMEM_SDR_MOD_ATTRIB 0x12
#define SPDMEM_SDR_SUPERSET 0x1d
#define SPDMEM_SDR_FREQUENCY 126
#define SPDMEM_SDR_CAS 127
#define SPDMEM_SDR_FREQ_66 0x66
#define SPDMEM_SDR_FREQ_100 0x64
#define SPDMEM_SDR_FREQ_133 0x85
#define SPDMEM_SDR_CAS2 (1 << 1)
#define SPDMEM_SDR_CAS3 (1 << 2)
/* Rambus Direct DRAM */
#define SPDMEM_RDR_MODULE_TYPE 0x00
#define SPDMEM_RDR_ROWS_COLS 0x01
#define SPDMEM_RDR_BANK 0x02
#define SPDMEM_RDR_TYPE_RIMM 1
#define SPDMEM_RDR_TYPE_SORIMM 2
#define SPDMEM_RDR_TYPE_EMBED 3
#define SPDMEM_RDR_TYPE_RIMM32 4
/* Dual Data Rate SDRAM */
#define SPDMEM_DDR_ROWS 0x00
#define SPDMEM_DDR_COLS 0x01
#define SPDMEM_DDR_RANKS 0x02
#define SPDMEM_DDR_DATAWIDTH 0x03
#define SPDMEM_DDR_VOLTAGE 0x05
#define SPDMEM_DDR_CYCLE 0x06
#define SPDMEM_DDR_REFRESH 0x09
#define SPDMEM_DDR_BANKS_PER_CHIP 0x0e
#define SPDMEM_DDR_CAS 0x0f
#define SPDMEM_DDR_MOD_ATTRIB 0x12
#define SPDMEM_DDR_SUPERSET 0x1d
#define SPDMEM_DDR_ATTRIB_REG (1 << 1)
/* Dual Data Rate 2 SDRAM */
#define SPDMEM_DDR2_ROWS 0x00
#define SPDMEM_DDR2_COLS 0x01
#define SPDMEM_DDR2_RANKS 0x02
#define SPDMEM_DDR2_DATAWIDTH 0x03
#define SPDMEM_DDR2_VOLTAGE 0x05
#define SPDMEM_DDR2_CYCLE 0x06
#define SPDMEM_DDR2_DIMMTYPE 0x11
#define SPDMEM_DDR2_RANK_DENSITY 0x1c
#define SPDMEM_DDR2_TYPE_REGMASK ((1 << 4) | (1 << 0))
#define SPDMEM_DDR2_SODIMM (1 << 2)
#define SPDMEM_DDR2_MICRO_DIMM (1 << 3)
#define SPDMEM_DDR2_MINI_RDIMM (1 << 4)
#define SPDMEM_DDR2_MINI_UDIMM (1 << 5)
/* DDR2 FB-DIMM SDRAM */
#define SPDMEM_FBDIMM_ADDR 0x01
#define SPDMEM_FBDIMM_RANKS 0x04
#define SPDMEM_FBDIMM_MTB_DIVIDEND 0x06
#define SPDMEM_FBDIMM_MTB_DIVISOR 0x07
#define SPDMEM_FBDIMM_PROTO 0x4e
#define SPDMEM_FBDIMM_RANKS_WIDTH 0x07
#define SPDMEM_FBDIMM_ADDR_BANKS 0x02
#define SPDMEM_FBDIMM_ADDR_COL 0x0c
#define SPDMEM_FBDIMM_ADDR_COL_SHIFT 2
#define SPDMEM_FBDIMM_ADDR_ROW 0xe0
#define SPDMEM_FBDIMM_ADDR_ROW_SHIFT 5
#define SPDMEM_FBDIMM_PROTO_ECC (1 << 1)
/* Dual Data Rate 3 SDRAM */
#define SPDMEM_DDR3_MODTYPE 0x00
#define SPDMEM_DDR3_DENSITY 0x01
#define SPDMEM_DDR3_MOD_ORG 0x04
#define SPDMEM_DDR3_DATAWIDTH 0x05
#define SPDMEM_DDR3_MTB_DIVIDEND 0x07
#define SPDMEM_DDR3_MTB_DIVISOR 0x08
#define SPDMEM_DDR3_TCKMIN 0x09
#define SPDMEM_DDR3_THERMAL 0x1d
#define SPDMEM_DDR3_DENSITY_CAPMASK 0x0f
#define SPDMEM_DDR3_MOD_ORG_CHIPWIDTH_MASK 0x07
#define SPDMEM_DDR3_MOD_ORG_BANKS_SHIFT 3
#define SPDMEM_DDR3_MOD_ORG_BANKS_MASK 0x07
#define SPDMEM_DDR3_DATAWIDTH_ECCMASK (1 << 3)
#define SPDMEM_DDR3_DATAWIDTH_PRIMASK 0x07
#define SPDMEM_DDR3_THERMAL_PRESENT (1 << 7)
#define SPDMEM_DDR3_RDIMM 0x01
#define SPDMEM_DDR3_UDIMM 0x02
#define SPDMEM_DDR3_SODIMM 0x03
#define SPDMEM_DDR3_MICRO_DIMM 0x04
#define SPDMEM_DDR3_MINI_RDIMM 0x05
#define SPDMEM_DDR3_MINI_UDIMM 0x06
/* Dual Data Rate 4 SDRAM */
#define SPDMEM_DDR4_MODTYPE 0x00
#define SPDMEM_DDR4_DENSITY 0x01
#define SPDMEM_DDR4_PACK_TYPE 0x03
#define SPDMEM_DDR4_MOD_ORG 0x09
#define SPDMEM_DDR4_DATAWIDTH 0x0a
#define SPDMEM_DDR4_THERMAL 0x0b
#define SPDMEM_DDR4_TCKMIN_MTB 0x0f
#define SPDMEM_DDR4_TCKMIN_FTB 0x7d /* not offset by 3 */
#define SPDMEM_DDR4_DENSITY_CAPMASK 0x0f
#define SPDMEM_DDR4_PACK_TYPE_SIG_LOAD_MASK 0x03
#define SPDMEM_DDR4_PACK_TYPE_SIG_SINGLE_LOAD 0x02
#define SPDMEM_DDR4_PACK_TYPE_DIE_COUNT_SHIFT 4
#define SPDMEM_DDR4_PACK_TYPE_DIE_COUNT_MASK 0x07
#define SPDMEM_DDR4_MOD_ORG_CHIPWIDTH_MASK 0x07
#define SPDMEM_DDR4_MOD_ORG_BANKS_SHIFT 3
#define SPDMEM_DDR4_MOD_ORG_BANKS_MASK 0x07
#define SPDMEM_DDR4_DATAWIDTH_ECCMASK (1 << 3)
#define SPDMEM_DDR4_DATAWIDTH_PRIMASK 0x07
#define SPDMEM_DDR4_THERMAL_PRESENT (1 << 7)
#define SPDMEM_DDR4_RDIMM 0x01
#define SPDMEM_DDR4_UDIMM 0x02
#define SPDMEM_DDR4_SODIMM 0x03
#define SPDMEM_DDR4_LRDIMM 0x04
#define SPDMEM_DDR4_MINI_RDIMM 0x05
#define SPDMEM_DDR4_MINI_UDIMM 0x06
#define SPDMEM_DDR4_LP_DIMM 0x07
#define SPDMEM_DDR4_72B_SO_RDIMM 0x08
#define SPDMEM_DDR4_72B_SO_UDIMM 0x09
#define SPDMEM_DDR4_16B_SO_DIMM 0x0c
#define SPDMEM_DDR4_32B_SO_DIMM 0x0d
#define SPDMEM_DDR4_NON_DIMM 0x0e
#define SPDMEM_DDR4_MODTYPE_MASK 0x0f
#define SPDMEM_DDR4_MODTYPE_HYBRID 0x80
static const uint8_t ddr2_cycle_tenths[] = {
0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 25, 33, 66, 75, 0, 0
};
#define SPDMEM_TYPE_MAXLEN 16
uint16_t spdmem_crc16(struct spdmem_softc *, int);
static inline
uint8_t spdmem_read(struct spdmem_softc *, uint8_t);
void spdmem_sdram_decode(struct spdmem_softc *, struct spdmem *);
void spdmem_rdr_decode(struct spdmem_softc *, struct spdmem *);
void spdmem_ddr_decode(struct spdmem_softc *, struct spdmem *);
void spdmem_ddr2_decode(struct spdmem_softc *, struct spdmem *);
void spdmem_fbdimm_decode(struct spdmem_softc *, struct spdmem *);
void spdmem_ddr3_decode(struct spdmem_softc *, struct spdmem *);
struct cfdriver spdmem_cd = {
NULL, "spdmem", DV_DULL
};
#define IS_RAMBUS_TYPE (s->sm_len < 4)
static const char *spdmem_basic_types[] = {
"unknown",
"FPM",
"EDO",
"Pipelined Nibble",
"SDRAM",
"ROM",
"DDR SGRAM",
"DDR SDRAM",
"DDR2 SDRAM",
"DDR2 SDRAM FB-DIMM",
"DDR2 SDRAM FB-DIMM Probe",
"DDR3 SDRAM",
"DDR4 SDRAM",
"unknown",
"DDR4E SDRAM",
"LPDDR3 SDRAM",
"LPDDR4 SDRAM",
"LPDDR4X SDRAM",
"DDR5 SDRAM",
"LPDDR5 SDRAM"
};
static const char *spdmem_superset_types[] = {
"unknown",
"ESDRAM",
"DDR ESDRAM",
"PEM EDO",
"PEM SDRAM"
};
static const char *spdmem_parity_types[] = {
"non-parity",
"data parity",
"ECC",
"data parity and ECC",
"cmd/addr parity",
"cmd/addr/data parity",
"cmd/addr parity, data ECC",
"cmd/addr/data parity, data ECC"
};
static inline uint8_t
spdmem_read(struct spdmem_softc *sc, uint8_t reg)
{
return (*sc->sc_read)(sc, reg);
}
/* CRC functions used for certain memory types */
uint16_t
spdmem_crc16(struct spdmem_softc *sc, int count)
{
uint16_t crc;
int i, j;
uint8_t val;
crc = 0;
for (j = 0; j <= count; j++) {
val = spdmem_read(sc, j);
crc = crc ^ val << 8;
for (i = 0; i < 8; ++i)
if (crc & 0x8000)
crc = crc << 1 ^ 0x1021;
else
crc = crc << 1;
}
return (crc & 0xFFFF);
}
void
spdmem_sdram_decode(struct spdmem_softc *sc, struct spdmem *s)
{
const char *type;
int dimm_size, p_clk;
int num_banks, per_chip;
uint8_t rows, cols;
type = spdmem_basic_types[s->sm_type];
if (s->sm_data[SPDMEM_SDR_SUPERSET] == SPDMEM_SUPERSET_SDR_PEM)
type = spdmem_superset_types[SPDMEM_SUPERSET_SDR_PEM];
if (s->sm_data[SPDMEM_SDR_SUPERSET] == SPDMEM_SUPERSET_ESDRAM)
type = spdmem_superset_types[SPDMEM_SUPERSET_ESDRAM];
num_banks = s->sm_data[SPDMEM_SDR_BANKS];
per_chip = s->sm_data[SPDMEM_SDR_BANKS_PER_CHIP];
rows = s->sm_data[SPDMEM_SDR_ROWS] & 0x0f;
cols = s->sm_data[SPDMEM_SDR_COLS] & 0x0f;
dimm_size = (1 << (rows + cols - 17)) * num_banks * per_chip;
if (dimm_size > 0) {
if (dimm_size < 1024)
printf(" %dMB", dimm_size);
else
printf(" %dGB", dimm_size / 1024);
}
printf(" %s", type);
if (s->sm_data[SPDMEM_DDR_MOD_ATTRIB] & SPDMEM_DDR_ATTRIB_REG)
printf(" registered");
if (s->sm_data[SPDMEM_FPM_CONFIG] < 8)
printf(" %s",
spdmem_parity_types[s->sm_data[SPDMEM_FPM_CONFIG]]);
p_clk = 66;
if (s->sm_len >= 128) {
switch (spdmem_read(sc, SPDMEM_SDR_FREQUENCY)) {
case SPDMEM_SDR_FREQ_100:
case SPDMEM_SDR_FREQ_133:
/* We need to check ns to decide here */
if (s->sm_data[SPDMEM_SDR_CYCLE] < 0x80)
p_clk = 133;
else
p_clk = 100;
break;
case SPDMEM_SDR_FREQ_66:
default:
p_clk = 66;
break;
}
}
printf(" PC%d", p_clk);
/* Print CAS latency */
if (s->sm_len < 128)
return;
if (spdmem_read(sc, SPDMEM_SDR_CAS) & SPDMEM_SDR_CAS2)
printf("CL2");
else if (spdmem_read(sc, SPDMEM_SDR_CAS) & SPDMEM_SDR_CAS3)
printf("CL3");
}
void
spdmem_rdr_decode(struct spdmem_softc *sc, struct spdmem *s)
{
int rimm_size;
uint8_t row_bits, col_bits, bank_bits;
row_bits = s->sm_data[SPDMEM_RDR_ROWS_COLS] >> 4;
col_bits = s->sm_data[SPDMEM_RDR_ROWS_COLS] & 0x0f;
bank_bits = s->sm_data[SPDMEM_RDR_BANK] & 0x07;
/* subtracting 13 here is a cheaper way of dividing by 8k later */
rimm_size = 1 << (row_bits + col_bits + bank_bits - 13);
if (rimm_size < 1024)
printf(" %dMB ", rimm_size);
else
printf(" %dGB ", rimm_size / 1024);
switch(s->sm_data[SPDMEM_RDR_MODULE_TYPE]) {
case SPDMEM_RDR_TYPE_RIMM:
printf("RIMM");
break;
case SPDMEM_RDR_TYPE_SORIMM:
printf("SO-RIMM");
break;
case SPDMEM_RDR_TYPE_EMBED:
printf("Embedded Rambus");
break;
case SPDMEM_RDR_TYPE_RIMM32:
printf("RIMM32");
break;
}
}
void
spdmem_ddr_decode(struct spdmem_softc *sc, struct spdmem *s)
{
const char *type;
int dimm_size, cycle_time, d_clk, p_clk, bits;
int i, num_banks, per_chip;
uint8_t config, rows, cols, cl;
type = spdmem_basic_types[s->sm_type];
if (s->sm_data[SPDMEM_DDR_SUPERSET] == SPDMEM_SUPERSET_DDR_ESDRAM)
type = spdmem_superset_types[SPDMEM_SUPERSET_DDR_ESDRAM];
num_banks = s->sm_data[SPDMEM_SDR_BANKS];
per_chip = s->sm_data[SPDMEM_SDR_BANKS_PER_CHIP];
rows = s->sm_data[SPDMEM_SDR_ROWS] & 0x0f;
cols = s->sm_data[SPDMEM_SDR_COLS] & 0x0f;
dimm_size = (1 << (rows + cols - 17)) * num_banks * per_chip;
if (dimm_size > 0) {
if (dimm_size < 1024)
printf(" %dMB", dimm_size);
else
printf(" %dGB", dimm_size / 1024);
}
printf(" %s", type);
if (s->sm_data[SPDMEM_DDR_MOD_ATTRIB] & SPDMEM_DDR_ATTRIB_REG)
printf(" registered");
if (s->sm_data[SPDMEM_FPM_CONFIG] < 8)
printf(" %s",
spdmem_parity_types[s->sm_data[SPDMEM_FPM_CONFIG]]);
/* cycle_time is expressed in units of 0.01 ns */
cycle_time = (s->sm_data[SPDMEM_DDR_CYCLE] >> 4) * 100 +
(s->sm_data[SPDMEM_DDR_CYCLE] & 0x0f) * 10;
if (cycle_time != 0) {
/*
* cycle time is scaled by a factor of 100 to avoid using
* floating point. Calculate memory speed as the number
* of cycles per microsecond.
* DDR uses dual-pumped clock
*/
d_clk = 100 * 1000 * 2;
config = s->sm_data[SPDMEM_FPM_CONFIG];
bits = s->sm_data[SPDMEM_DDR_DATAWIDTH] |
(s->sm_data[SPDMEM_DDR_DATAWIDTH + 1] << 8);
if (config == 1 || config == 2)
bits -= 8;
d_clk /= cycle_time;
p_clk = d_clk * bits / 8;
if ((p_clk % 100) >= 50)
p_clk += 50;
p_clk -= p_clk % 100;
printf(" PC%d", p_clk);
}
/* Print CAS latency */
for (i = 6; i >= 0; i--) {
if (s->sm_data[SPDMEM_DDR_CAS] & (1 << i)) {
cl = ((i * 10) / 2) + 10;
printf("CL%d.%d", cl / 10, cl % 10);
break;
}
}
}
void
spdmem_ddr2_decode(struct spdmem_softc *sc, struct spdmem *s)
{
const char *type;
int dimm_size, cycle_time, d_clk, p_clk, bits;
int i, num_ranks, density;
uint8_t config;
type = spdmem_basic_types[s->sm_type];
num_ranks = (s->sm_data[SPDMEM_DDR2_RANKS] & 0x7) + 1;
density = (s->sm_data[SPDMEM_DDR2_RANK_DENSITY] & 0xf0) |
((s->sm_data[SPDMEM_DDR2_RANK_DENSITY] & 0x0f) << 8);
dimm_size = num_ranks * density * 4;
if (dimm_size > 0) {
if (dimm_size < 1024)
printf(" %dMB", dimm_size);
else
printf(" %dGB", dimm_size / 1024);
}
printf(" %s", type);
if (s->sm_data[SPDMEM_DDR2_DIMMTYPE] & SPDMEM_DDR2_TYPE_REGMASK)
printf(" registered");
if (s->sm_data[SPDMEM_FPM_CONFIG] < 8)
printf(" %s",
spdmem_parity_types[s->sm_data[SPDMEM_FPM_CONFIG]]);
/* cycle_time is expressed in units of 0.01 ns */
cycle_time = (s->sm_data[SPDMEM_DDR2_CYCLE] >> 4) * 100 +
ddr2_cycle_tenths[(s->sm_data[SPDMEM_DDR2_CYCLE] & 0x0f)];
if (cycle_time != 0) {
/*
* cycle time is scaled by a factor of 100 to avoid using
* floating point. Calculate memory speed as the number
* of cycles per microsecond.
* DDR2 uses quad-pumped clock
*/
d_clk = 100 * 1000 * 4;
config = s->sm_data[SPDMEM_FPM_CONFIG];
bits = s->sm_data[SPDMEM_DDR2_DATAWIDTH];
if ((config & 0x03) != 0)
bits -= 8;
d_clk /= cycle_time;
d_clk = (d_clk + 1) / 2;
p_clk = d_clk * bits / 8;
p_clk -= p_clk % 100;
printf(" PC2-%d", p_clk);
}
/* Print CAS latency */
for (i = 7; i >= 2; i--) {
if (s->sm_data[SPDMEM_DDR_CAS] & (1 << i)) {
printf("CL%d", i);
break;
}
}
switch (s->sm_data[SPDMEM_DDR2_DIMMTYPE]) {
case SPDMEM_DDR2_SODIMM:
printf(" SO-DIMM");
break;
case SPDMEM_DDR2_MICRO_DIMM:
printf(" Micro-DIMM");
break;
case SPDMEM_DDR2_MINI_RDIMM:
case SPDMEM_DDR2_MINI_UDIMM:
printf(" Mini-DIMM");
break;
}
}
void
spdmem_fbdimm_decode(struct spdmem_softc *sc, struct spdmem *s)
{
int dimm_size, cycle_time, d_clk, p_clk, bits;
uint8_t rows, cols, dividend, divisor;
/*
* FB-DIMM is very much like DDR3
*/
cols = (s->sm_data[SPDMEM_FBDIMM_ADDR] & SPDMEM_FBDIMM_ADDR_COL) >>
SPDMEM_FBDIMM_ADDR_COL_SHIFT;
rows = (s->sm_data[SPDMEM_FBDIMM_ADDR] & SPDMEM_FBDIMM_ADDR_ROW) >>
SPDMEM_FBDIMM_ADDR_ROW_SHIFT;
dimm_size = rows + 12 + cols + 9 - 20 - 3;
if (dimm_size < 1024)
printf(" %dMB", dimm_size);
else
printf(" %dGB", dimm_size / 1024);
dividend = s->sm_data[SPDMEM_FBDIMM_MTB_DIVIDEND];
divisor = s->sm_data[SPDMEM_FBDIMM_MTB_DIVISOR];
cycle_time = (1000 * dividend + (divisor / 2)) / divisor;
if (cycle_time != 0) {
/*
* cycle time is scaled by a factor of 1000 to avoid using
* floating point. Calculate memory speed as the number
* of cycles per microsecond.
*/
d_clk = 1000 * 1000;
/* DDR2 FB-DIMM uses a dual-pumped clock */
d_clk *= 2;
bits = 1 << ((s->sm_data[SPDMEM_FBDIMM_RANKS] &
SPDMEM_FBDIMM_RANKS_WIDTH) + 2);
p_clk = (d_clk * bits) / 8 / cycle_time;
p_clk -= p_clk % 100;
printf(" PC2-%d", p_clk);
}
}
void
spdmem_ddr3_decode(struct spdmem_softc *sc, struct spdmem *s)
{
const char *type;
int dimm_size, cycle_time, d_clk, p_clk, bits;
uint8_t mtype, chipsize, dividend, divisor;
uint8_t datawidth, chipwidth, physbanks;
type = spdmem_basic_types[s->sm_type];
chipsize = s->sm_data[SPDMEM_DDR3_DENSITY] &
SPDMEM_DDR3_DENSITY_CAPMASK;
datawidth = s->sm_data[SPDMEM_DDR3_DATAWIDTH] &
SPDMEM_DDR3_DATAWIDTH_PRIMASK;
chipwidth = s->sm_data[SPDMEM_DDR3_MOD_ORG] &
SPDMEM_DDR3_MOD_ORG_CHIPWIDTH_MASK;
physbanks = (s->sm_data[SPDMEM_DDR3_MOD_ORG] >>
SPDMEM_DDR3_MOD_ORG_BANKS_SHIFT) & SPDMEM_DDR3_MOD_ORG_BANKS_MASK;
dimm_size = (chipsize + 28 - 20) - 3 + (datawidth + 3) -
(chipwidth + 2);
dimm_size = (1 << dimm_size) * (physbanks + 1);
if (dimm_size < 1024)
printf(" %dMB", dimm_size);
else
printf(" %dGB", dimm_size / 1024);
printf(" %s", type);
mtype = s->sm_data[SPDMEM_DDR3_MODTYPE];
if (mtype == SPDMEM_DDR3_RDIMM || mtype == SPDMEM_DDR3_MINI_RDIMM)
printf(" registered");
if (s->sm_data[SPDMEM_DDR3_DATAWIDTH] & SPDMEM_DDR3_DATAWIDTH_ECCMASK)
printf(" ECC");
dividend = s->sm_data[SPDMEM_DDR3_MTB_DIVIDEND];
divisor = s->sm_data[SPDMEM_DDR3_MTB_DIVISOR];
cycle_time = (1000 * dividend + (divisor / 2)) / divisor;
cycle_time *= s->sm_data[SPDMEM_DDR3_TCKMIN];
if (cycle_time != 0) {
/*
* cycle time is scaled by a factor of 1000 to avoid using
* floating point. Calculate memory speed as the number
* of cycles per microsecond.
* DDR3 uses a dual-pumped clock
*/
d_clk = 1000 * 1000;
d_clk *= 2;
bits = 1 << ((s->sm_data[SPDMEM_DDR3_DATAWIDTH] &
SPDMEM_DDR3_DATAWIDTH_PRIMASK) + 3);
/*
* Calculate p_clk first, since for DDR3 we need maximum
* significance. DDR3 rating is not rounded to a multiple
* of 100. This results in cycle_time of 1.5ns displayed
* as p_clk PC3-10666 (d_clk DDR3-1333)
*/
p_clk = (d_clk * bits) / 8 / cycle_time;
p_clk -= (p_clk % 100);
d_clk = ((d_clk + cycle_time / 2) ) / cycle_time;
printf(" PC3-%d", p_clk);
}
switch (s->sm_data[SPDMEM_DDR3_MODTYPE]) {
case SPDMEM_DDR3_SODIMM:
printf(" SO-DIMM");
break;
case SPDMEM_DDR3_MICRO_DIMM:
printf(" Micro-DIMM");
break;
case SPDMEM_DDR3_MINI_RDIMM:
case SPDMEM_DDR3_MINI_UDIMM:
printf(" Mini-DIMM");
break;
}
if (s->sm_data[SPDMEM_DDR3_THERMAL] & SPDMEM_DDR3_THERMAL_PRESENT)
printf(" with thermal sensor");
}
void
spdmem_ddr4_decode(struct spdmem_softc *sc, struct spdmem *s)
{
static const int ddr4_chipsize[16] = { 256, 512, 1024, 2048, 4096,
8 * 1024, 16 * 1024, 32 * 1024, 12 * 1024, 24 * 1024,
3 * 1024, 6 * 1024, 18 * 1024 };
const char *type;
int dimm_size, cycle_time, d_clk, p_clk, bits;
uint8_t mtype, chipsize, mtb;
int8_t ftb;
uint8_t datawidth, chipwidth, physbanks, diecount = 0;
type = spdmem_basic_types[s->sm_type];
chipsize = s->sm_data[SPDMEM_DDR4_DENSITY] &
SPDMEM_DDR4_DENSITY_CAPMASK;
datawidth = s->sm_data[SPDMEM_DDR4_DATAWIDTH] &
SPDMEM_DDR4_DATAWIDTH_PRIMASK;
chipwidth = s->sm_data[SPDMEM_DDR4_MOD_ORG] &
SPDMEM_DDR4_MOD_ORG_CHIPWIDTH_MASK;
physbanks = (s->sm_data[SPDMEM_DDR4_MOD_ORG] >>
SPDMEM_DDR4_MOD_ORG_BANKS_SHIFT) & SPDMEM_DDR4_MOD_ORG_BANKS_MASK;
if ((s->sm_data[SPDMEM_DDR4_PACK_TYPE] &
SPDMEM_DDR4_PACK_TYPE_SIG_LOAD_MASK) ==
SPDMEM_DDR4_PACK_TYPE_SIG_SINGLE_LOAD) {
diecount = (s->sm_data[SPDMEM_DDR4_PACK_TYPE] >>
SPDMEM_DDR4_PACK_TYPE_DIE_COUNT_SHIFT) &
SPDMEM_DDR4_PACK_TYPE_DIE_COUNT_MASK;
}
dimm_size = (datawidth + 3) - (chipwidth + 2);
dimm_size = (ddr4_chipsize[chipsize] / 8) * (1 << dimm_size) *
(physbanks + 1) * (diecount + 1);
if (dimm_size < 1024)
printf(" %dMB", dimm_size);
else
printf(" %dGB", dimm_size / 1024);
printf(" %s", type);
mtype = s->sm_data[SPDMEM_DDR4_MODTYPE];
if (mtype & SPDMEM_DDR4_MODTYPE_HYBRID)
printf(" hybrid");
mtype &= SPDMEM_DDR4_MODTYPE_MASK;
if (mtype == SPDMEM_DDR4_RDIMM || mtype == SPDMEM_DDR4_MINI_RDIMM ||
mtype == SPDMEM_DDR4_72B_SO_RDIMM)
printf(" registered");
if (mtype == SPDMEM_DDR4_72B_SO_UDIMM ||
mtype == SPDMEM_DDR4_72B_SO_RDIMM)
printf(" 72-bit");
if (mtype == SPDMEM_DDR4_32B_SO_DIMM)
printf(" 32-bit");
if (mtype == SPDMEM_DDR4_16B_SO_DIMM)
printf(" 16-bit");
if (s->sm_data[SPDMEM_DDR4_DATAWIDTH] & SPDMEM_DDR4_DATAWIDTH_ECCMASK)
printf(" ECC");
mtb = s->sm_data[SPDMEM_DDR4_TCKMIN_MTB];
/* SPDMEM_DDR4_TCKMIN_FTB (addr 125) is outside of s->sm_data */
ftb = spdmem_read(sc, SPDMEM_DDR4_TCKMIN_FTB);
cycle_time = mtb * 125 + ftb; /* in ps */
if (cycle_time != 0) {
/*
* cycle time is scaled by a factor of 1000 to avoid using
* floating point. Calculate memory speed as the number
* of cycles per microsecond.
* DDR4 uses a dual-pumped clock
*/
d_clk = 1000 * 1000;
d_clk *= 2;
bits = 1 << ((s->sm_data[SPDMEM_DDR4_DATAWIDTH] &
SPDMEM_DDR4_DATAWIDTH_PRIMASK) + 3);
p_clk = (d_clk * bits) / 8 / cycle_time;
p_clk -= (p_clk % 100);
printf(" PC4-%d", p_clk);
}
switch (s->sm_data[SPDMEM_DDR4_MODTYPE] & SPDMEM_DDR4_MODTYPE_MASK) {
case SPDMEM_DDR4_SODIMM:
case SPDMEM_DDR4_72B_SO_RDIMM:
case SPDMEM_DDR4_72B_SO_UDIMM:
case SPDMEM_DDR4_16B_SO_DIMM:
case SPDMEM_DDR4_32B_SO_DIMM:
printf(" SO-DIMM");
break;
case SPDMEM_DDR4_LRDIMM:
printf(" LR-DIMM");
break;
case SPDMEM_DDR4_MINI_RDIMM:
case SPDMEM_DDR4_MINI_UDIMM:
printf(" Mini-DIMM");
break;
case SPDMEM_DDR4_LP_DIMM:
printf(" LP-DIMM");
break;
case SPDMEM_DDR4_NON_DIMM:
printf(" non-DIMM solution");
break;
}
if (s->sm_data[SPDMEM_DDR4_THERMAL] & SPDMEM_DDR4_THERMAL_PRESENT)
printf(" with thermal sensor");
}
int
spdmem_probe(struct spdmem_softc *sc)
{
uint8_t i, val, type;
int cksum = 0;
int spd_len, spd_crc_cover;
uint16_t crc_calc, crc_spd;
type = spdmem_read(sc, 2);
/* For older memory types, validate the checksum over 1st 63 bytes */
if (type <= SPDMEM_MEMTYPE_DDR2SDRAM) {
for (i = 0; i < 63; i++)
cksum += spdmem_read(sc, i);
val = spdmem_read(sc, 63);
if (cksum == 0 || (cksum & 0xff) != val) {
return 0;
} else
return 1;
}
/* For DDR3 and FBDIMM, verify the CRC */
else if (type <= SPDMEM_MEMTYPE_DDR3SDRAM) {
spd_len = spdmem_read(sc, 0);
if (spd_len & SPDMEM_SPDCRC_116)
spd_crc_cover = 116;
else
spd_crc_cover = 125;
switch (spd_len & SPDMEM_SPDLEN_MASK) {
case SPDMEM_SPDLEN_128:
spd_len = 128;
break;
case SPDMEM_SPDLEN_176:
spd_len = 176;
break;
case SPDMEM_SPDLEN_256:
spd_len = 256;
break;
default:
return 0;
}
calc_crc:
if (spd_crc_cover > spd_len)
return 0;
crc_calc = spdmem_crc16(sc, spd_crc_cover);
crc_spd = spdmem_read(sc, 127) << 8;
crc_spd |= spdmem_read(sc, 126);
if (crc_calc != crc_spd) {
return 0;
}
return 1;
} else if (type <= SPDMEM_MEMTYPE_LPDDR4SDRAM) {
spd_len = spdmem_read(sc, 0);
spd_crc_cover = 125;
switch (spd_len & SPDMEM_DDR4_SPDLEN_MASK) {
case SPDMEM_DDR4_SPDLEN_128:
spd_len = 128;
break;
case SPDMEM_DDR4_SPDLEN_256:
spd_len = 256;
break;
case SPDMEM_DDR4_SPDLEN_384:
spd_len = 384;
break;
case SPDMEM_DDR4_SPDLEN_512:
spd_len = 512;
break;
default:
return 0;
}
goto calc_crc;
}
return 0;
}
void
spdmem_attach_common(struct spdmem_softc *sc)
{
struct spdmem *s = &(sc->sc_spd_data);
int i;
/* All SPD have at least 64 bytes of data including checksum */
for (i = 0; i < 64; i++) {
((uint8_t *)s)[i] = spdmem_read(sc, i);
}
/*
* Decode and print SPD contents
*/
if (s->sm_len < 4) {
if (s->sm_type == SPDMEM_MEMTYPE_DIRECT_RAMBUS)
spdmem_rdr_decode(sc, s);
else
printf(" no decode method for Rambus memory");
} else {
switch(s->sm_type) {
case SPDMEM_MEMTYPE_EDO:
case SPDMEM_MEMTYPE_SDRAM:
spdmem_sdram_decode(sc, s);
break;
case SPDMEM_MEMTYPE_DDRSDRAM:
spdmem_ddr_decode(sc, s);
break;
case SPDMEM_MEMTYPE_DDR2SDRAM:
spdmem_ddr2_decode(sc, s);
break;
case SPDMEM_MEMTYPE_FBDIMM:
case SPDMEM_MEMTYPE_FBDIMM_PROBE:
spdmem_fbdimm_decode(sc, s);
break;
case SPDMEM_MEMTYPE_DDR3SDRAM:
spdmem_ddr3_decode(sc, s);
break;
case SPDMEM_MEMTYPE_DDR4SDRAM:
case SPDMEM_MEMTYPE_DDR4ESDRAM:
case SPDMEM_MEMTYPE_LPDDR3SDRAM:
case SPDMEM_MEMTYPE_LPDDR4SDRAM:
spdmem_ddr4_decode(sc, s);
break;
case SPDMEM_MEMTYPE_NONE:
printf(" no EEPROM found");
break;
default:
if (s->sm_type <= SPDMEM_MEMTYPE_LPDDR5SDRAM)
printf(" no decode method for %s memory",
spdmem_basic_types[s->sm_type]);
else
printf(" unknown memory type %d", s->sm_type);
break;
}
}
printf("\n");
}