src/sys/dev/usb/if_rsu.c

2345 lines
62 KiB
C

/* $OpenBSD: if_rsu.c,v 1.53 2024/05/23 03:21:08 jsg Exp $ */
/*-
* Copyright (c) 2010 Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Driver for Realtek RTL8188SU/RTL8191SU/RTL8192SU.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/systm.h>
#include <sys/timeout.h>
#include <sys/device.h>
#include <sys/endian.h>
#include <machine/intr.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdevs.h>
#include <dev/usb/if_rsureg.h>
#ifdef RSU_DEBUG
#define DPRINTF(x) do { if (rsu_debug) printf x; } while (0)
#define DPRINTFN(n, x) do { if (rsu_debug >= (n)) printf x; } while (0)
int rsu_debug = 4;
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
/*
* NB: When updating this list of devices, beware to also update the list
* of devices that have HT support disabled below, if applicable.
*/
static const struct usb_devno rsu_devs[] = {
{ USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_RTL8192SU },
{ USB_VENDOR_ASUS, USB_PRODUCT_ASUS_USBN10 },
{ USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RTL8192SU_1 },
{ USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8192SU_1 },
{ USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8192SU_2 },
{ USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8192SU_3 },
{ USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8192SU_4 },
{ USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8192SU_5 },
{ USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_RTL8192SU_1 },
{ USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_RTL8192SU_2 },
{ USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_RTL8192SU_3 },
{ USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_RTL8192SU_1 },
{ USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_RTL8192SU_2 },
{ USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_RTL8192SU_3 },
{ USB_VENDOR_COREGA, USB_PRODUCT_COREGA_RTL8192SU },
{ USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA131A1 },
{ USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_RTL8192SU_1 },
{ USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_RTL8192SU_2 },
{ USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_RTL8192SU_1 },
{ USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_RTL8192SU_2 },
{ USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_RTL8192SU_3 },
{ USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUN54 },
{ USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWNUM300 },
{ USB_VENDOR_HAWKING, USB_PRODUCT_HAWKING_RTL8192SU_1 },
{ USB_VENDOR_HAWKING, USB_PRODUCT_HAWKING_RTL8192SU_2 },
{ USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSNANO },
{ USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8171 },
{ USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8172 },
{ USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8173 },
{ USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8174 },
{ USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8192SU },
{ USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8712 },
{ USB_VENDOR_REALTEK, USB_PRODUCT_REALTEK_RTL8713 },
{ USB_VENDOR_SENAO, USB_PRODUCT_SENAO_RTL8192SU_1 },
{ USB_VENDOR_SENAO, USB_PRODUCT_SENAO_RTL8192SU_2 },
{ USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL349V1 },
{ USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL353 },
{ USB_VENDOR_SWEEX2, USB_PRODUCT_SWEEX2_LW154 }
};
/* List of devices that have HT support disabled. */
static const struct usb_devno rsu_devs_noht[] = {
{ USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RTL8192SU_1 },
{ USB_VENDOR_AZUREWAVE, USB_PRODUCT_AZUREWAVE_RTL8192SU_4 }
};
int rsu_match(struct device *, void *, void *);
void rsu_attach(struct device *, struct device *, void *);
int rsu_detach(struct device *, int);
int rsu_open_pipes(struct rsu_softc *);
void rsu_close_pipes(struct rsu_softc *);
int rsu_alloc_rx_list(struct rsu_softc *);
void rsu_free_rx_list(struct rsu_softc *);
int rsu_alloc_tx_list(struct rsu_softc *);
void rsu_free_tx_list(struct rsu_softc *);
void rsu_task(void *);
void rsu_do_async(struct rsu_softc *,
void (*)(struct rsu_softc *, void *), void *, int);
void rsu_wait_async(struct rsu_softc *);
int rsu_write_region_1(struct rsu_softc *, uint16_t, uint8_t *,
int);
void rsu_write_1(struct rsu_softc *, uint16_t, uint8_t);
void rsu_write_2(struct rsu_softc *, uint16_t, uint16_t);
void rsu_write_4(struct rsu_softc *, uint16_t, uint32_t);
int rsu_read_region_1(struct rsu_softc *, uint16_t, uint8_t *,
int);
uint8_t rsu_read_1(struct rsu_softc *, uint16_t);
uint16_t rsu_read_2(struct rsu_softc *, uint16_t);
uint32_t rsu_read_4(struct rsu_softc *, uint16_t);
int rsu_fw_iocmd(struct rsu_softc *, uint32_t);
uint8_t rsu_efuse_read_1(struct rsu_softc *, uint16_t);
int rsu_read_rom(struct rsu_softc *);
int rsu_fw_cmd(struct rsu_softc *, uint8_t, void *, int);
int rsu_media_change(struct ifnet *);
void rsu_calib_to(void *);
void rsu_calib_cb(struct rsu_softc *, void *);
int rsu_newstate(struct ieee80211com *, enum ieee80211_state, int);
void rsu_newstate_cb(struct rsu_softc *, void *);
int rsu_set_key(struct ieee80211com *, struct ieee80211_node *,
struct ieee80211_key *);
void rsu_set_key_cb(struct rsu_softc *, void *);
void rsu_delete_key(struct ieee80211com *, struct ieee80211_node *,
struct ieee80211_key *);
void rsu_delete_key_cb(struct rsu_softc *, void *);
int rsu_site_survey(struct rsu_softc *);
int rsu_join_bss(struct rsu_softc *, struct ieee80211_node *);
int rsu_disconnect(struct rsu_softc *);
void rsu_event_survey(struct rsu_softc *, uint8_t *, int);
void rsu_event_join_bss(struct rsu_softc *, uint8_t *, int);
void rsu_rx_event(struct rsu_softc *, uint8_t, uint8_t *, int);
void rsu_rx_multi_event(struct rsu_softc *, uint8_t *, int);
int8_t rsu_get_rssi(struct rsu_softc *, int, void *);
void rsu_rx_frame(struct rsu_softc *, uint8_t *, int,
struct mbuf_list *);
void rsu_rx_multi_frame(struct rsu_softc *, uint8_t *, int);
void rsu_rxeof(struct usbd_xfer *, void *, usbd_status);
void rsu_txeof(struct usbd_xfer *, void *, usbd_status);
int rsu_tx(struct rsu_softc *, struct mbuf *,
struct ieee80211_node *);
int rsu_send_mgmt(struct ieee80211com *, struct ieee80211_node *,
int, int, int);
void rsu_start(struct ifnet *);
void rsu_watchdog(struct ifnet *);
int rsu_ioctl(struct ifnet *, u_long, caddr_t);
void rsu_power_on_acut(struct rsu_softc *);
void rsu_power_on_bcut(struct rsu_softc *);
void rsu_power_off(struct rsu_softc *);
int rsu_fw_loadsection(struct rsu_softc *, uint8_t *, int);
int rsu_load_firmware(struct rsu_softc *);
int rsu_init(struct ifnet *);
void rsu_stop(struct ifnet *);
struct cfdriver rsu_cd = {
NULL, "rsu", DV_IFNET
};
const struct cfattach rsu_ca = {
sizeof(struct rsu_softc), rsu_match, rsu_attach, rsu_detach,
};
int
rsu_match(struct device *parent, void *match, void *aux)
{
struct usb_attach_arg *uaa = aux;
if (uaa->iface == NULL || uaa->configno != 1)
return (UMATCH_NONE);
return ((usb_lookup(rsu_devs, uaa->vendor, uaa->product) != NULL) ?
UMATCH_VENDOR_PRODUCT_CONF_IFACE : UMATCH_NONE);
}
void
rsu_attach(struct device *parent, struct device *self, void *aux)
{
struct rsu_softc *sc = (struct rsu_softc *)self;
struct usb_attach_arg *uaa = aux;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
int i, error;
sc->sc_udev = uaa->device;
sc->sc_iface = uaa->iface;
usb_init_task(&sc->sc_task, rsu_task, sc, USB_TASK_TYPE_GENERIC);
timeout_set(&sc->calib_to, rsu_calib_to, sc);
/* Read chip revision. */
sc->cut = MS(rsu_read_4(sc, R92S_PMC_FSM), R92S_PMC_FSM_CUT);
if (sc->cut != 3)
sc->cut = (sc->cut >> 1) + 1;
error = rsu_read_rom(sc);
if (error != 0) {
printf("%s: could not read ROM\n", sc->sc_dev.dv_xname);
return;
}
IEEE80211_ADDR_COPY(ic->ic_myaddr, &sc->rom[0x12]);
printf("%s: MAC/BB RTL8712 cut %d, address %s\n",
sc->sc_dev.dv_xname, sc->cut, ether_sprintf(ic->ic_myaddr));
if (rsu_open_pipes(sc) != 0)
return;
ic->ic_phytype = IEEE80211_T_OFDM; /* Not only, but not used. */
ic->ic_opmode = IEEE80211_M_STA; /* Default to BSS mode. */
ic->ic_state = IEEE80211_S_INIT;
/* Set device capabilities. */
ic->ic_caps =
IEEE80211_C_SCANALL | /* Hardware scan. */
IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */
IEEE80211_C_SHSLOT | /* Short slot time supported. */
IEEE80211_C_WEP | /* WEP. */
IEEE80211_C_RSN; /* WPA/RSN. */
/* Check if HT support is present. */
if (usb_lookup(rsu_devs_noht, uaa->vendor, uaa->product) == NULL) {
#ifdef notyet
/* Set HT capabilities. */
ic->ic_htcaps =
IEEE80211_HTCAP_CBW20_40 |
IEEE80211_HTCAP_DSSSCCK40;
/* Set supported HT rates. */
for (i = 0; i < 2; i++)
ic->ic_sup_mcs[i] = 0xff;
#endif
}
/* Set supported .11b and .11g rates. */
ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
/* Set supported .11b and .11g channels (1 through 14). */
for (i = 1; i <= 14; i++) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_channels[i].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = rsu_ioctl;
ifp->if_start = rsu_start;
ifp->if_watchdog = rsu_watchdog;
memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
if_attach(ifp);
ieee80211_ifattach(ifp);
#ifdef notyet
ic->ic_set_key = rsu_set_key;
ic->ic_delete_key = rsu_delete_key;
#endif
/* Override state transition machine. */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = rsu_newstate;
ic->ic_send_mgmt = rsu_send_mgmt;
ieee80211_media_init(ifp, rsu_media_change, ieee80211_media_status);
#if NBPFILTER > 0
bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(RSU_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof(sc->sc_txtapu);
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(RSU_TX_RADIOTAP_PRESENT);
#endif
}
int
rsu_detach(struct device *self, int flags)
{
struct rsu_softc *sc = (struct rsu_softc *)self;
struct ifnet *ifp = &sc->sc_ic.ic_if;
int s;
s = splusb();
if (timeout_initialized(&sc->calib_to))
timeout_del(&sc->calib_to);
/* Wait for all async commands to complete. */
usb_rem_wait_task(sc->sc_udev, &sc->sc_task);
usbd_ref_wait(sc->sc_udev);
if (ifp->if_softc != NULL) {
ieee80211_ifdetach(ifp);
if_detach(ifp);
}
/* Abort and close Tx/Rx pipes. */
rsu_close_pipes(sc);
/* Free Tx/Rx buffers. */
rsu_free_tx_list(sc);
rsu_free_rx_list(sc);
splx(s);
return (0);
}
int
rsu_open_pipes(struct rsu_softc *sc)
{
usb_interface_descriptor_t *id;
int i, error;
/*
* Determine the number of Tx/Rx endpoints (there are chips with
* 4, 6 or 11 endpoints).
*/
id = usbd_get_interface_descriptor(sc->sc_iface);
sc->npipes = id->bNumEndpoints;
if (sc->npipes == 4)
sc->qid2idx = rsu_qid2idx_4ep;
else if (sc->npipes == 6)
sc->qid2idx = rsu_qid2idx_6ep;
else /* Assume npipes==11; will fail below otherwise. */
sc->qid2idx = rsu_qid2idx_11ep;
DPRINTF(("%d endpoints configuration\n", sc->npipes));
/* Open all pipes. */
for (i = 0; i < MIN(sc->npipes, nitems(r92s_epaddr)); i++) {
error = usbd_open_pipe(sc->sc_iface, r92s_epaddr[i], 0,
&sc->pipe[i]);
if (error != 0) {
printf("%s: could not open bulk pipe 0x%02x\n",
sc->sc_dev.dv_xname, r92s_epaddr[i]);
break;
}
}
if (error != 0)
rsu_close_pipes(sc);
return (error);
}
void
rsu_close_pipes(struct rsu_softc *sc)
{
int i;
/* Close all pipes. */
for (i = 0; i < sc->npipes; i++) {
if (sc->pipe[i] == NULL)
continue;
usbd_close_pipe(sc->pipe[i]);
}
}
int
rsu_alloc_rx_list(struct rsu_softc *sc)
{
struct rsu_rx_data *data;
int i, error = 0;
for (i = 0; i < RSU_RX_LIST_COUNT; i++) {
data = &sc->rx_data[i];
data->sc = sc; /* Backpointer for callbacks. */
data->xfer = usbd_alloc_xfer(sc->sc_udev);
if (data->xfer == NULL) {
printf("%s: could not allocate xfer\n",
sc->sc_dev.dv_xname);
error = ENOMEM;
break;
}
data->buf = usbd_alloc_buffer(data->xfer, RSU_RXBUFSZ);
if (data->buf == NULL) {
printf("%s: could not allocate xfer buffer\n",
sc->sc_dev.dv_xname);
error = ENOMEM;
break;
}
}
if (error != 0)
rsu_free_rx_list(sc);
return (error);
}
void
rsu_free_rx_list(struct rsu_softc *sc)
{
int i;
/* NB: Caller must abort pipe first. */
for (i = 0; i < RSU_RX_LIST_COUNT; i++) {
if (sc->rx_data[i].xfer != NULL)
usbd_free_xfer(sc->rx_data[i].xfer);
sc->rx_data[i].xfer = NULL;
}
}
int
rsu_alloc_tx_list(struct rsu_softc *sc)
{
struct rsu_tx_data *data;
int i, error = 0;
TAILQ_INIT(&sc->tx_free_list);
for (i = 0; i < RSU_TX_LIST_COUNT; i++) {
data = &sc->tx_data[i];
data->sc = sc; /* Backpointer for callbacks. */
data->xfer = usbd_alloc_xfer(sc->sc_udev);
if (data->xfer == NULL) {
printf("%s: could not allocate xfer\n",
sc->sc_dev.dv_xname);
error = ENOMEM;
break;
}
data->buf = usbd_alloc_buffer(data->xfer, RSU_TXBUFSZ);
if (data->buf == NULL) {
printf("%s: could not allocate xfer buffer\n",
sc->sc_dev.dv_xname);
error = ENOMEM;
break;
}
/* Append this Tx buffer to our free list. */
TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next);
}
if (error != 0)
rsu_free_tx_list(sc);
return (error);
}
void
rsu_free_tx_list(struct rsu_softc *sc)
{
int i;
/* NB: Caller must abort pipe first. */
for (i = 0; i < RSU_TX_LIST_COUNT; i++) {
if (sc->tx_data[i].xfer != NULL)
usbd_free_xfer(sc->tx_data[i].xfer);
sc->tx_data[i].xfer = NULL;
}
}
void
rsu_task(void *arg)
{
struct rsu_softc *sc = arg;
struct rsu_host_cmd_ring *ring = &sc->cmdq;
struct rsu_host_cmd *cmd;
int s;
/* Process host commands. */
s = splusb();
while (ring->next != ring->cur) {
cmd = &ring->cmd[ring->next];
splx(s);
/* Invoke callback. */
cmd->cb(sc, cmd->data);
s = splusb();
ring->queued--;
ring->next = (ring->next + 1) % RSU_HOST_CMD_RING_COUNT;
}
splx(s);
}
void
rsu_do_async(struct rsu_softc *sc,
void (*cb)(struct rsu_softc *, void *), void *arg, int len)
{
struct rsu_host_cmd_ring *ring = &sc->cmdq;
struct rsu_host_cmd *cmd;
int s;
s = splusb();
cmd = &ring->cmd[ring->cur];
cmd->cb = cb;
KASSERT(len <= sizeof(cmd->data));
memcpy(cmd->data, arg, len);
ring->cur = (ring->cur + 1) % RSU_HOST_CMD_RING_COUNT;
/* If there is no pending command already, schedule a task. */
if (++ring->queued == 1)
usb_add_task(sc->sc_udev, &sc->sc_task);
splx(s);
}
void
rsu_wait_async(struct rsu_softc *sc)
{
/* Wait for all queued asynchronous commands to complete. */
usb_wait_task(sc->sc_udev, &sc->sc_task);
}
int
rsu_write_region_1(struct rsu_softc *sc, uint16_t addr, uint8_t *buf,
int len)
{
usb_device_request_t req;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = R92S_REQ_REGS;
USETW(req.wValue, addr);
USETW(req.wIndex, 0);
USETW(req.wLength, len);
return (usbd_do_request(sc->sc_udev, &req, buf));
}
void
rsu_write_1(struct rsu_softc *sc, uint16_t addr, uint8_t val)
{
rsu_write_region_1(sc, addr, &val, 1);
}
void
rsu_write_2(struct rsu_softc *sc, uint16_t addr, uint16_t val)
{
val = htole16(val);
rsu_write_region_1(sc, addr, (uint8_t *)&val, 2);
}
void
rsu_write_4(struct rsu_softc *sc, uint16_t addr, uint32_t val)
{
val = htole32(val);
rsu_write_region_1(sc, addr, (uint8_t *)&val, 4);
}
int
rsu_read_region_1(struct rsu_softc *sc, uint16_t addr, uint8_t *buf,
int len)
{
usb_device_request_t req;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = R92S_REQ_REGS;
USETW(req.wValue, addr);
USETW(req.wIndex, 0);
USETW(req.wLength, len);
return (usbd_do_request(sc->sc_udev, &req, buf));
}
uint8_t
rsu_read_1(struct rsu_softc *sc, uint16_t addr)
{
uint8_t val;
if (rsu_read_region_1(sc, addr, &val, 1) != 0)
return (0xff);
return (val);
}
uint16_t
rsu_read_2(struct rsu_softc *sc, uint16_t addr)
{
uint16_t val;
if (rsu_read_region_1(sc, addr, (uint8_t *)&val, 2) != 0)
return (0xffff);
return (letoh16(val));
}
uint32_t
rsu_read_4(struct rsu_softc *sc, uint16_t addr)
{
uint32_t val;
if (rsu_read_region_1(sc, addr, (uint8_t *)&val, 4) != 0)
return (0xffffffff);
return (letoh32(val));
}
int
rsu_fw_iocmd(struct rsu_softc *sc, uint32_t iocmd)
{
int ntries;
rsu_write_4(sc, R92S_IOCMD_CTRL, iocmd);
DELAY(100);
for (ntries = 0; ntries < 50; ntries++) {
if (rsu_read_4(sc, R92S_IOCMD_CTRL) == 0)
return (0);
DELAY(10);
}
return (ETIMEDOUT);
}
uint8_t
rsu_efuse_read_1(struct rsu_softc *sc, uint16_t addr)
{
uint32_t reg;
int ntries;
reg = rsu_read_4(sc, R92S_EFUSE_CTRL);
reg = RW(reg, R92S_EFUSE_CTRL_ADDR, addr);
reg &= ~R92S_EFUSE_CTRL_VALID;
rsu_write_4(sc, R92S_EFUSE_CTRL, reg);
/* Wait for read operation to complete. */
for (ntries = 0; ntries < 100; ntries++) {
reg = rsu_read_4(sc, R92S_EFUSE_CTRL);
if (reg & R92S_EFUSE_CTRL_VALID)
return (MS(reg, R92S_EFUSE_CTRL_DATA));
DELAY(5);
}
printf("%s: could not read efuse byte at address 0x%x\n",
sc->sc_dev.dv_xname, addr);
return (0xff);
}
int
rsu_read_rom(struct rsu_softc *sc)
{
uint8_t *rom = sc->rom;
uint16_t addr = 0;
uint32_t reg;
uint8_t off, msk;
int i;
/* Make sure that ROM type is eFuse and that autoload succeeded. */
reg = rsu_read_1(sc, R92S_EE_9346CR);
if ((reg & (R92S_9356SEL | R92S_EEPROM_EN)) != R92S_EEPROM_EN)
return (EIO);
/* Turn on 2.5V to prevent eFuse leakage. */
reg = rsu_read_1(sc, R92S_EFUSE_TEST + 3);
rsu_write_1(sc, R92S_EFUSE_TEST + 3, reg | 0x80);
DELAY(1000);
rsu_write_1(sc, R92S_EFUSE_TEST + 3, reg & ~0x80);
/* Read full ROM image. */
memset(&sc->rom, 0xff, sizeof(sc->rom));
while (addr < 512) {
reg = rsu_efuse_read_1(sc, addr);
if (reg == 0xff)
break;
addr++;
off = reg >> 4;
msk = reg & 0xf;
for (i = 0; i < 4; i++) {
if (msk & (1 << i))
continue;
rom[off * 8 + i * 2 + 0] =
rsu_efuse_read_1(sc, addr);
addr++;
rom[off * 8 + i * 2 + 1] =
rsu_efuse_read_1(sc, addr);
addr++;
}
}
#ifdef RSU_DEBUG
if (rsu_debug >= 5) {
/* Dump ROM content. */
printf("\n");
for (i = 0; i < sizeof(sc->rom); i++)
printf("%02x:", rom[i]);
printf("\n");
}
#endif
return (0);
}
int
rsu_fw_cmd(struct rsu_softc *sc, uint8_t code, void *buf, int len)
{
struct rsu_tx_data *data;
struct r92s_tx_desc *txd;
struct r92s_fw_cmd_hdr *cmd;
struct usbd_pipe *pipe;
int cmdsz, xferlen;
data = sc->fwcmd_data;
/* Round-up command length to a multiple of 8 bytes. */
cmdsz = (len + 7) & ~7;
xferlen = sizeof(*txd) + sizeof(*cmd) + cmdsz;
KASSERT(xferlen <= RSU_TXBUFSZ);
memset(data->buf, 0, xferlen);
/* Setup Tx descriptor. */
txd = (struct r92s_tx_desc *)data->buf;
txd->txdw0 = htole32(
SM(R92S_TXDW0_OFFSET, sizeof(*txd)) |
SM(R92S_TXDW0_PKTLEN, sizeof(*cmd) + cmdsz) |
R92S_TXDW0_OWN | R92S_TXDW0_FSG | R92S_TXDW0_LSG);
txd->txdw1 = htole32(SM(R92S_TXDW1_QSEL, R92S_TXDW1_QSEL_H2C));
/* Setup command header. */
cmd = (struct r92s_fw_cmd_hdr *)&txd[1];
cmd->len = htole16(cmdsz);
cmd->code = code;
cmd->seq = sc->cmd_seq;
sc->cmd_seq = (sc->cmd_seq + 1) & 0x7f;
/* Copy command payload. */
memcpy(&cmd[1], buf, len);
DPRINTFN(2, ("Tx cmd code=%d len=%d\n", code, cmdsz));
pipe = sc->pipe[sc->qid2idx[RSU_QID_H2C]];
usbd_setup_xfer(data->xfer, pipe, NULL, data->buf, xferlen,
USBD_SHORT_XFER_OK | USBD_NO_COPY | USBD_SYNCHRONOUS,
RSU_CMD_TIMEOUT, NULL);
return (usbd_transfer(data->xfer));
}
int
rsu_media_change(struct ifnet *ifp)
{
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return (error);
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING)) {
rsu_stop(ifp);
error = rsu_init(ifp);
}
return (error);
}
void
rsu_calib_to(void *arg)
{
struct rsu_softc *sc = arg;
if (usbd_is_dying(sc->sc_udev))
return;
usbd_ref_incr(sc->sc_udev);
/* Do it in a process context. */
rsu_do_async(sc, rsu_calib_cb, NULL, 0);
usbd_ref_decr(sc->sc_udev);
}
void
rsu_calib_cb(struct rsu_softc *sc, void *arg)
{
uint32_t reg;
#ifdef notyet
/* Read WPS PBC status. */
rsu_write_1(sc, R92S_MAC_PINMUX_CTRL,
R92S_GPIOMUX_EN | SM(R92S_GPIOSEL_GPIO, R92S_GPIOSEL_GPIO_JTAG));
rsu_write_1(sc, R92S_GPIO_IO_SEL,
rsu_read_1(sc, R92S_GPIO_IO_SEL) & ~R92S_GPIO_WPS);
reg = rsu_read_1(sc, R92S_GPIO_CTRL);
if (reg != 0xff && (reg & R92S_GPIO_WPS))
DPRINTF(("WPS PBC is pushed\n"));
#endif
/* Read current signal level. */
if (rsu_fw_iocmd(sc, 0xf4000001) == 0) {
reg = rsu_read_4(sc, R92S_IOCMD_DATA);
DPRINTFN(8, ("RSSI=%d%%\n", reg >> 4));
}
if (!usbd_is_dying(sc->sc_udev))
timeout_add_sec(&sc->calib_to, 2);
}
int
rsu_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct rsu_softc *sc = ic->ic_softc;
struct rsu_cmd_newstate cmd;
/* Do it in a process context. */
cmd.state = nstate;
cmd.arg = arg;
rsu_do_async(sc, rsu_newstate_cb, &cmd, sizeof(cmd));
return (0);
}
void
rsu_newstate_cb(struct rsu_softc *sc, void *arg)
{
struct rsu_cmd_newstate *cmd = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
enum ieee80211_state ostate;
int error, s;
s = splnet();
ostate = ic->ic_state;
if (ostate == IEEE80211_S_RUN) {
/* Stop calibration. */
timeout_del(&sc->calib_to);
/* Disassociate from our current BSS. */
(void)rsu_disconnect(sc);
}
switch (cmd->state) {
case IEEE80211_S_INIT:
break;
case IEEE80211_S_SCAN:
error = rsu_site_survey(sc);
if (error != 0) {
printf("%s: could not send site survey command\n",
sc->sc_dev.dv_xname);
}
if (ifp->if_flags & IFF_DEBUG)
printf("%s: %s -> %s\n", ifp->if_xname,
ieee80211_state_name[ic->ic_state],
ieee80211_state_name[cmd->state]);
ic->ic_state = cmd->state;
splx(s);
return;
case IEEE80211_S_AUTH:
ic->ic_bss->ni_rsn_supp_state = RSNA_SUPP_INITIALIZE;
error = rsu_join_bss(sc, ic->ic_bss);
if (error != 0) {
printf("%s: could not send join command\n",
sc->sc_dev.dv_xname);
ieee80211_begin_scan(&ic->ic_if);
splx(s);
return;
}
if (ifp->if_flags & IFF_DEBUG)
printf("%s: %s -> %s\n", ifp->if_xname,
ieee80211_state_name[ic->ic_state],
ieee80211_state_name[cmd->state]);
ic->ic_state = cmd->state;
if (ic->ic_flags & IEEE80211_F_RSNON)
ic->ic_bss->ni_rsn_supp_state = RSNA_SUPP_PTKSTART;
splx(s);
return;
case IEEE80211_S_ASSOC:
/* No-op for this driver. See rsu_event_join_bss(). */
if (ifp->if_flags & IFF_DEBUG)
printf("%s: %s -> %s\n", ifp->if_xname,
ieee80211_state_name[ic->ic_state],
ieee80211_state_name[cmd->state]);
ic->ic_state = cmd->state;
splx(s);
return;
case IEEE80211_S_RUN:
/* Indicate highest supported rate. */
ic->ic_bss->ni_txrate = ic->ic_bss->ni_rates.rs_nrates - 1;
/* Start periodic calibration. */
if (!usbd_is_dying(sc->sc_udev))
timeout_add_sec(&sc->calib_to, 2);
break;
}
(void)sc->sc_newstate(ic, cmd->state, cmd->arg);
splx(s);
}
int
rsu_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
struct rsu_softc *sc = ic->ic_softc;
struct rsu_cmd_key cmd;
/* Defer setting of WEP keys until interface is brought up. */
if ((ic->ic_if.if_flags & (IFF_UP | IFF_RUNNING)) !=
(IFF_UP | IFF_RUNNING))
return (0);
/* Do it in a process context. */
cmd.key = *k;
cmd.ni = ni;
rsu_do_async(sc, rsu_set_key_cb, &cmd, sizeof(cmd));
sc->sc_key_tasks++;
return EBUSY;
}
void
rsu_set_key_cb(struct rsu_softc *sc, void *arg)
{
struct rsu_cmd_key *cmd = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_key *k = &cmd->key;
struct r92s_fw_cmd_set_key key;
sc->sc_key_tasks--;
memset(&key, 0, sizeof(key));
/* Map net80211 cipher to HW crypto algorithm. */
switch (k->k_cipher) {
case IEEE80211_CIPHER_WEP40:
key.algo = R92S_KEY_ALGO_WEP40;
break;
case IEEE80211_CIPHER_WEP104:
key.algo = R92S_KEY_ALGO_WEP104;
break;
case IEEE80211_CIPHER_TKIP:
key.algo = R92S_KEY_ALGO_TKIP;
break;
case IEEE80211_CIPHER_CCMP:
key.algo = R92S_KEY_ALGO_AES;
break;
default:
IEEE80211_SEND_MGMT(ic, cmd->ni, IEEE80211_FC0_SUBTYPE_DEAUTH,
IEEE80211_REASON_AUTH_LEAVE);
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
return;
}
key.id = k->k_id;
key.grpkey = (k->k_flags & IEEE80211_KEY_GROUP) != 0;
memcpy(key.key, k->k_key, MIN(k->k_len, sizeof(key.key)));
(void)rsu_fw_cmd(sc, R92S_CMD_SET_KEY, &key, sizeof(key));
if (sc->sc_key_tasks == 0) {
DPRINTF(("marking port %s valid\n",
ether_sprintf(cmd->ni->ni_macaddr)));
cmd->ni->ni_port_valid = 1;
ieee80211_set_link_state(ic, LINK_STATE_UP);
}
}
void
rsu_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
struct rsu_softc *sc = ic->ic_softc;
struct rsu_cmd_key cmd;
if (!(ic->ic_if.if_flags & IFF_RUNNING) ||
ic->ic_state != IEEE80211_S_RUN)
return; /* Nothing to do. */
/* Do it in a process context. */
cmd.key = *k;
rsu_do_async(sc, rsu_delete_key_cb, &cmd, sizeof(cmd));
}
void
rsu_delete_key_cb(struct rsu_softc *sc, void *arg)
{
struct rsu_cmd_key *cmd = arg;
struct ieee80211_key *k = &cmd->key;
struct r92s_fw_cmd_set_key key;
memset(&key, 0, sizeof(key));
key.id = k->k_id;
(void)rsu_fw_cmd(sc, R92S_CMD_SET_KEY, &key, sizeof(key));
}
int
rsu_site_survey(struct rsu_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct r92s_fw_cmd_sitesurvey cmd;
memset(&cmd, 0, sizeof(cmd));
if ((ic->ic_flags & IEEE80211_F_ASCAN) || sc->scan_pass == 1)
cmd.active = htole32(1);
cmd.limit = htole32(48);
if (sc->scan_pass == 1) {
/* Do a directed scan for second pass. */
cmd.ssidlen = htole32(ic->ic_des_esslen);
memcpy(cmd.ssid, ic->ic_des_essid, ic->ic_des_esslen);
}
DPRINTF(("sending site survey command, pass=%d\n", sc->scan_pass));
return (rsu_fw_cmd(sc, R92S_CMD_SITE_SURVEY, &cmd, sizeof(cmd)));
}
int
rsu_join_bss(struct rsu_softc *sc, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ndis_wlan_bssid_ex *bss;
struct ndis_802_11_fixed_ies *fixed;
struct r92s_fw_cmd_auth auth;
uint8_t buf[sizeof(*bss) + 128], *frm;
uint8_t opmode;
int error;
/* Let the FW decide the opmode based on the capinfo field. */
opmode = NDIS802_11AUTOUNKNOWN;
DPRINTF(("setting operating mode to %d\n", opmode));
error = rsu_fw_cmd(sc, R92S_CMD_SET_OPMODE, &opmode, sizeof(opmode));
if (error != 0)
return (error);
memset(&auth, 0, sizeof(auth));
if (ic->ic_flags & IEEE80211_F_RSNON) {
auth.mode = R92S_AUTHMODE_WPA;
auth.dot1x = ieee80211_is_8021x_akm(ni->ni_rsnakms);
} else
auth.mode = R92S_AUTHMODE_OPEN;
DPRINTF(("setting auth mode to %d\n", auth.mode));
error = rsu_fw_cmd(sc, R92S_CMD_SET_AUTH, &auth, sizeof(auth));
if (error != 0)
return (error);
memset(buf, 0, sizeof(buf));
bss = (struct ndis_wlan_bssid_ex *)buf;
IEEE80211_ADDR_COPY(bss->macaddr, ni->ni_bssid);
bss->ssid.ssidlen = htole32(ni->ni_esslen);
memcpy(bss->ssid.ssid, ni->ni_essid, ni->ni_esslen);
if (ic->ic_flags & (IEEE80211_F_WEPON | IEEE80211_F_RSNON))
bss->privacy = htole32(1);
bss->rssi = htole32(ni->ni_rssi);
if (ic->ic_curmode == IEEE80211_MODE_11B)
bss->networktype = htole32(NDIS802_11DS);
else
bss->networktype = htole32(NDIS802_11OFDM24);
bss->config.len = htole32(sizeof(bss->config));
bss->config.bintval = htole32(ni->ni_intval);
bss->config.dsconfig = htole32(ieee80211_chan2ieee(ic, ni->ni_chan));
bss->inframode = htole32(NDIS802_11INFRASTRUCTURE);
memcpy(bss->supprates, ni->ni_rates.rs_rates,
ni->ni_rates.rs_nrates);
/* Write the fixed fields of the beacon frame. */
fixed = (struct ndis_802_11_fixed_ies *)&bss[1];
memcpy(&fixed->tstamp, ni->ni_tstamp, 8);
fixed->bintval = htole16(ni->ni_intval);
fixed->capabilities = htole16(ni->ni_capinfo);
/* Write IEs to be included in the association request. */
frm = (uint8_t *)&fixed[1];
if ((ic->ic_flags & IEEE80211_F_RSNON) &&
(ni->ni_rsnprotos & IEEE80211_PROTO_RSN))
frm = ieee80211_add_rsn(frm, ic, ni);
if (ni->ni_flags & IEEE80211_NODE_QOS)
frm = ieee80211_add_qos_capability(frm, ic);
if (ni->ni_flags & IEEE80211_NODE_HT)
frm = ieee80211_add_htcaps(frm, ic);
if ((ic->ic_flags & IEEE80211_F_RSNON) &&
(ni->ni_rsnprotos & IEEE80211_PROTO_WPA))
frm = ieee80211_add_wpa(frm, ic, ni);
bss->ieslen = htole32(frm - (uint8_t *)fixed);
bss->len = htole32(((frm - buf) + 3) & ~3);
DPRINTF(("sending join bss command to %s chan %d\n",
ether_sprintf(bss->macaddr), letoh32(bss->config.dsconfig)));
return (rsu_fw_cmd(sc, R92S_CMD_JOIN_BSS, buf, sizeof(buf)));
}
int
rsu_disconnect(struct rsu_softc *sc)
{
uint32_t zero = 0; /* :-) */
/* Disassociate from our current BSS. */
DPRINTF(("sending disconnect command\n"));
return (rsu_fw_cmd(sc, R92S_CMD_DISCONNECT, &zero, sizeof(zero)));
}
void
rsu_event_survey(struct rsu_softc *sc, uint8_t *buf, int len)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct ieee80211_rxinfo rxi;
struct ieee80211_node *ni;
struct ieee80211_frame *wh;
struct ndis_wlan_bssid_ex *bss;
struct mbuf *m;
uint32_t pktlen, ieslen;
if (__predict_false(len < sizeof(*bss)))
return;
bss = (struct ndis_wlan_bssid_ex *)buf;
ieslen = letoh32(bss->ieslen);
if (ieslen > len - sizeof(*bss))
return;
DPRINTFN(2, ("found BSS %s: len=%d chan=%d inframode=%d "
"networktype=%d privacy=%d\n",
ether_sprintf(bss->macaddr), letoh32(bss->len),
letoh32(bss->config.dsconfig), letoh32(bss->inframode),
letoh32(bss->networktype), letoh32(bss->privacy)));
/* Build a fake beacon frame to let net80211 do all the parsing. */
pktlen = sizeof(*wh) + ieslen;
if (__predict_false(pktlen > MCLBYTES))
return;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (__predict_false(m == NULL))
return;
if (pktlen > MHLEN) {
MCLGET(m, M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
m_free(m);
return;
}
}
wh = mtod(m, struct ieee80211_frame *);
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
IEEE80211_FC0_SUBTYPE_BEACON;
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
*(uint16_t *)wh->i_dur = 0;
IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
IEEE80211_ADDR_COPY(wh->i_addr2, bss->macaddr);
IEEE80211_ADDR_COPY(wh->i_addr3, bss->macaddr);
*(uint16_t *)wh->i_seq = 0;
memcpy(&wh[1], (uint8_t *)&bss[1], ieslen);
/* Finalize mbuf. */
m->m_pkthdr.len = m->m_len = pktlen;
ni = ieee80211_find_rxnode(ic, wh);
memset(&rxi, 0, sizeof(rxi));
rxi.rxi_rssi = letoh32(bss->rssi);
ieee80211_input(ifp, m, ni, &rxi);
/* Node is no longer needed. */
ieee80211_release_node(ic, ni);
}
void
rsu_event_join_bss(struct rsu_softc *sc, uint8_t *buf, int len)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
struct r92s_event_join_bss *rsp;
int res;
if (__predict_false(len < sizeof(*rsp)))
return;
rsp = (struct r92s_event_join_bss *)buf;
res = (int)letoh32(rsp->join_res);
DPRINTF(("Rx join BSS event len=%d res=%d\n", len, res));
if (res <= 0) {
ic->ic_stats.is_rx_auth_fail++;
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
return;
}
DPRINTF(("associated with %s associd=%d\n",
ether_sprintf(rsp->bss.macaddr), letoh32(rsp->associd)));
ni->ni_associd = letoh32(rsp->associd) | 0xc000;
if (ic->ic_flags & IEEE80211_F_WEPON)
ni->ni_flags |= IEEE80211_NODE_TXRXPROT;
/* Force an ASSOC->RUN transition. AUTH->RUN is invalid. */
ic->ic_state = IEEE80211_S_ASSOC;
ieee80211_new_state(ic, IEEE80211_S_RUN,
IEEE80211_FC0_SUBTYPE_ASSOC_RESP);
}
void
rsu_rx_event(struct rsu_softc *sc, uint8_t code, uint8_t *buf, int len)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
DPRINTFN(4, ("Rx event code=%d len=%d\n", code, len));
switch (code) {
case R92S_EVT_SURVEY:
if (ic->ic_state == IEEE80211_S_SCAN)
rsu_event_survey(sc, buf, len);
break;
case R92S_EVT_SURVEY_DONE:
DPRINTF(("site survey pass %d done, found %d BSS\n",
sc->scan_pass, letoh32(*(uint32_t *)buf)));
if (ic->ic_state != IEEE80211_S_SCAN)
break; /* Ignore if not scanning. */
if (sc->scan_pass == 0 && ic->ic_des_esslen != 0) {
/* Schedule a directed scan for hidden APs. */
sc->scan_pass = 1;
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
break;
}
ieee80211_end_scan(ifp);
sc->scan_pass = 0;
break;
case R92S_EVT_JOIN_BSS:
if (ic->ic_state == IEEE80211_S_AUTH)
rsu_event_join_bss(sc, buf, len);
break;
case R92S_EVT_DEL_STA:
DPRINTF(("disassociated from %s\n", ether_sprintf(buf)));
if (ic->ic_state == IEEE80211_S_RUN &&
IEEE80211_ADDR_EQ(ic->ic_bss->ni_bssid, buf))
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
break;
case R92S_EVT_WPS_PBC:
DPRINTF(("WPS PBC pushed.\n"));
break;
case R92S_EVT_FWDBG:
if (ifp->if_flags & IFF_DEBUG) {
buf[60] = '\0';
printf("FWDBG: %s\n", (char *)buf);
}
break;
}
}
void
rsu_rx_multi_event(struct rsu_softc *sc, uint8_t *buf, int len)
{
struct r92s_fw_cmd_hdr *cmd;
int cmdsz;
DPRINTFN(6, ("Rx events len=%d\n", len));
/* Skip Rx status. */
buf += sizeof(struct r92s_rx_stat);
len -= sizeof(struct r92s_rx_stat);
/* Process all events. */
for (;;) {
/* Check that command header fits. */
if (__predict_false(len < sizeof(*cmd)))
break;
cmd = (struct r92s_fw_cmd_hdr *)buf;
/* Check that command payload fits. */
cmdsz = letoh16(cmd->len);
if (__predict_false(len < sizeof(*cmd) + cmdsz))
break;
if (cmdsz > len)
break;
/* Process firmware event. */
rsu_rx_event(sc, cmd->code, (uint8_t *)&cmd[1], cmdsz);
if (!(cmd->seq & R92S_FW_CMD_MORE))
break;
buf += sizeof(*cmd) + cmdsz;
len -= sizeof(*cmd) + cmdsz;
}
}
int8_t
rsu_get_rssi(struct rsu_softc *sc, int rate, void *physt)
{
static const int8_t cckoff[] = { 14, -2, -20, -40 };
struct r92s_rx_phystat *phy;
struct r92s_rx_cck *cck;
uint8_t rpt;
int8_t rssi;
if (rate <= 3) {
cck = (struct r92s_rx_cck *)physt;
rpt = (cck->agc_rpt >> 6) & 0x3;
rssi = cck->agc_rpt & 0x3e;
rssi = cckoff[rpt] - rssi;
} else { /* OFDM/HT. */
phy = (struct r92s_rx_phystat *)physt;
rssi = ((letoh32(phy->phydw1) >> 1) & 0x7f) - 106;
}
return (rssi);
}
void
rsu_rx_frame(struct rsu_softc *sc, uint8_t *buf, int pktlen,
struct mbuf_list *ml)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct ieee80211_rxinfo rxi;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct r92s_rx_stat *stat;
uint32_t rxdw0, rxdw3;
struct mbuf *m;
uint8_t rate;
int8_t rssi = 0;
int s, infosz;
stat = (struct r92s_rx_stat *)buf;
rxdw0 = letoh32(stat->rxdw0);
rxdw3 = letoh32(stat->rxdw3);
if (__predict_false(rxdw0 & R92S_RXDW0_CRCERR)) {
ifp->if_ierrors++;
return;
}
if (__predict_false(pktlen < sizeof(*wh) || pktlen > MCLBYTES)) {
ifp->if_ierrors++;
return;
}
rate = MS(rxdw3, R92S_RXDW3_RATE);
infosz = MS(rxdw0, R92S_RXDW0_INFOSZ) * 8;
/* Get RSSI from PHY status descriptor if present. */
if (infosz != 0)
rssi = rsu_get_rssi(sc, rate, &stat[1]);
DPRINTFN(5, ("Rx frame len=%d rate=%d infosz=%d rssi=%d\n",
pktlen, rate, infosz, rssi));
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (__predict_false(m == NULL)) {
ifp->if_ierrors++;
return;
}
if (pktlen > MHLEN) {
MCLGET(m, M_DONTWAIT);
if (__predict_false(!(m->m_flags & M_EXT))) {
ifp->if_ierrors++;
m_freem(m);
return;
}
}
/* Finalize mbuf. */
/* Hardware does Rx TCP checksum offload. */
if (rxdw3 & R92S_RXDW3_TCPCHKVALID) {
if (__predict_true(rxdw3 & R92S_RXDW3_TCPCHKRPT))
m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK;
else
m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_BAD;
}
wh = (struct ieee80211_frame *)((uint8_t *)&stat[1] + infosz);
memcpy(mtod(m, uint8_t *), wh, pktlen);
m->m_pkthdr.len = m->m_len = pktlen;
s = splnet();
#if NBPFILTER > 0
if (__predict_false(sc->sc_drvbpf != NULL)) {
struct rsu_rx_radiotap_header *tap = &sc->sc_rxtap;
struct mbuf mb;
tap->wr_flags = 0;
/* Map HW rate index to 802.11 rate. */
tap->wr_flags = 2;
if (!(rxdw3 & R92S_RXDW3_HTC)) {
switch (rate) {
/* CCK. */
case 0: tap->wr_rate = 2; break;
case 1: tap->wr_rate = 4; break;
case 2: tap->wr_rate = 11; break;
case 3: tap->wr_rate = 22; break;
/* OFDM. */
case 4: tap->wr_rate = 12; break;
case 5: tap->wr_rate = 18; break;
case 6: tap->wr_rate = 24; break;
case 7: tap->wr_rate = 36; break;
case 8: tap->wr_rate = 48; break;
case 9: tap->wr_rate = 72; break;
case 10: tap->wr_rate = 96; break;
case 11: tap->wr_rate = 108; break;
}
} else if (rate >= 12) { /* MCS0~15. */
/* Bit 7 set means HT MCS instead of rate. */
tap->wr_rate = 0x80 | (rate - 12);
}
tap->wr_dbm_antsignal = rssi;
tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
mb.m_data = (caddr_t)tap;
mb.m_len = sc->sc_rxtap_len;
mb.m_next = m;
mb.m_nextpkt = NULL;
mb.m_type = 0;
mb.m_flags = 0;
bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
}
#endif
ni = ieee80211_find_rxnode(ic, wh);
memset(&rxi, 0, sizeof(rxi));
rxi.rxi_rssi = rssi;
ieee80211_inputm(ifp, m, ni, &rxi, ml);
/* Node is no longer needed. */
ieee80211_release_node(ic, ni);
splx(s);
}
void
rsu_rx_multi_frame(struct rsu_softc *sc, uint8_t *buf, int len)
{
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
struct r92s_rx_stat *stat;
uint32_t rxdw0;
int totlen, pktlen, infosz, npkts;
/* Get the number of encapsulated frames. */
stat = (struct r92s_rx_stat *)buf;
npkts = MS(letoh32(stat->rxdw2), R92S_RXDW2_PKTCNT);
DPRINTFN(6, ("Rx %d frames in one chunk\n", npkts));
/* Process all of them. */
while (npkts-- > 0) {
if (__predict_false(len < sizeof(*stat)))
break;
stat = (struct r92s_rx_stat *)buf;
rxdw0 = letoh32(stat->rxdw0);
pktlen = MS(rxdw0, R92S_RXDW0_PKTLEN);
if (__predict_false(pktlen == 0))
break;
infosz = MS(rxdw0, R92S_RXDW0_INFOSZ) * 8;
/* Make sure everything fits in xfer. */
totlen = sizeof(*stat) + infosz + pktlen;
if (__predict_false(totlen > len))
break;
/* Process 802.11 frame. */
rsu_rx_frame(sc, buf, pktlen, &ml);
/* Next chunk is 128-byte aligned. */
totlen = (totlen + 127) & ~127;
buf += totlen;
len -= totlen;
}
if_input(&sc->sc_ic.ic_if, &ml);
}
void
rsu_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
{
struct rsu_rx_data *data = priv;
struct rsu_softc *sc = data->sc;
struct r92s_rx_stat *stat;
struct ifnet *ifp = &sc->sc_ic.ic_if;
int len;
if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
DPRINTF(("RX status=%d\n", status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(data->pipe);
if (status != USBD_CANCELLED)
goto resubmit;
return;
}
usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
if (__predict_false(len < sizeof(*stat))) {
DPRINTF(("xfer too short %d\n", len));
ifp->if_ierrors++;
goto resubmit;
}
if (len > RSU_RXBUFSZ) {
DPRINTF(("xfer too large %d\n", len));
ifp->if_ierrors++;
goto resubmit;
}
/* Determine if it is a firmware C2H event or an 802.11 frame. */
stat = (struct r92s_rx_stat *)data->buf;
if ((letoh32(stat->rxdw1) & 0x1ff) == 0x1ff)
rsu_rx_multi_event(sc, data->buf, len);
else
rsu_rx_multi_frame(sc, data->buf, len);
resubmit:
/* Setup a new transfer. */
usbd_setup_xfer(xfer, data->pipe, data, data->buf, RSU_RXBUFSZ,
USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, rsu_rxeof);
(void)usbd_transfer(xfer);
}
void
rsu_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
{
struct rsu_tx_data *data = priv;
struct rsu_softc *sc = data->sc;
struct ifnet *ifp = &sc->sc_ic.ic_if;
int s;
s = splnet();
/* Put this Tx buffer back to our free list. */
TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next);
if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
DPRINTF(("TX status=%d\n", status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(data->pipe);
ifp->if_oerrors++;
splx(s);
return;
}
sc->sc_tx_timer = 0;
/* We just released a Tx buffer, notify Tx. */
if (ifq_is_oactive(&ifp->if_snd)) {
ifq_clr_oactive(&ifp->if_snd);
rsu_start(ifp);
}
splx(s);
}
int
rsu_tx(struct rsu_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_frame *wh;
struct ieee80211_key *k = NULL;
struct rsu_tx_data *data;
struct r92s_tx_desc *txd;
struct usbd_pipe *pipe;
uint16_t qos;
uint8_t type, qid, tid = 0;
int hasqos, xferlen, error;
wh = mtod(m, struct ieee80211_frame *);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
k = ieee80211_get_txkey(ic, wh, ni);
if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
return (ENOBUFS);
wh = mtod(m, struct ieee80211_frame *);
}
if ((hasqos = ieee80211_has_qos(wh))) {
qos = ieee80211_get_qos(wh);
tid = qos & IEEE80211_QOS_TID;
qid = rsu_ac2qid[ieee80211_up_to_ac(ic, tid)];
} else
qid = RSU_QID_BE;
/* Get the USB pipe to use for this queue id. */
pipe = sc->pipe[sc->qid2idx[qid]];
/* Grab a Tx buffer from our free list. */
data = TAILQ_FIRST(&sc->tx_free_list);
TAILQ_REMOVE(&sc->tx_free_list, data, next);
/* Fill Tx descriptor. */
txd = (struct r92s_tx_desc *)data->buf;
memset(txd, 0, sizeof(*txd));
txd->txdw0 |= htole32(
SM(R92S_TXDW0_PKTLEN, m->m_pkthdr.len) |
SM(R92S_TXDW0_OFFSET, sizeof(*txd)) |
R92S_TXDW0_OWN | R92S_TXDW0_FSG | R92S_TXDW0_LSG);
txd->txdw1 |= htole32(
SM(R92S_TXDW1_MACID, R92S_MACID_BSS) |
SM(R92S_TXDW1_QSEL, R92S_TXDW1_QSEL_BE));
if (!hasqos)
txd->txdw1 |= htole32(R92S_TXDW1_NONQOS);
#ifdef notyet
if (k != NULL) {
switch (k->k_cipher) {
case IEEE80211_CIPHER_WEP40:
case IEEE80211_CIPHER_WEP104:
cipher = R92S_TXDW1_CIPHER_WEP;
break;
case IEEE80211_CIPHER_TKIP:
cipher = R92S_TXDW1_CIPHER_TKIP;
break;
case IEEE80211_CIPHER_CCMP:
cipher = R92S_TXDW1_CIPHER_AES;
break;
default:
cipher = R92S_TXDW1_CIPHER_NONE;
}
txd->txdw1 |= htole32(
SM(R92S_TXDW1_CIPHER, cipher) |
SM(R92S_TXDW1_KEYIDX, k->k_id));
}
#endif
txd->txdw2 |= htole32(R92S_TXDW2_BK);
if (IEEE80211_IS_MULTICAST(wh->i_addr1))
txd->txdw2 |= htole32(R92S_TXDW2_BMCAST);
/*
* Firmware will use and increment the sequence number for the
* specified TID.
*/
txd->txdw3 |= htole32(SM(R92S_TXDW3_SEQ, tid));
#if NBPFILTER > 0
if (__predict_false(sc->sc_drvbpf != NULL)) {
struct rsu_tx_radiotap_header *tap = &sc->sc_txtap;
struct mbuf mb;
tap->wt_flags = 0;
tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
mb.m_data = (caddr_t)tap;
mb.m_len = sc->sc_txtap_len;
mb.m_next = m;
mb.m_nextpkt = NULL;
mb.m_type = 0;
mb.m_flags = 0;
bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
}
#endif
xferlen = sizeof(*txd) + m->m_pkthdr.len;
m_copydata(m, 0, m->m_pkthdr.len, &txd[1]);
m_freem(m);
data->pipe = pipe;
usbd_setup_xfer(data->xfer, pipe, data, data->buf, xferlen,
USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RSU_TX_TIMEOUT,
rsu_txeof);
error = usbd_transfer(data->xfer);
if (__predict_false(error != USBD_IN_PROGRESS && error != 0)) {
/* Put this Tx buffer back to our free list. */
TAILQ_INSERT_TAIL(&sc->tx_free_list, data, next);
return (error);
}
ieee80211_release_node(ic, ni);
return (0);
}
int
rsu_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni, int type,
int arg1, int arg2)
{
return (EOPNOTSUPP);
}
void
rsu_start(struct ifnet *ifp)
{
struct rsu_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
struct mbuf *m;
if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
return;
for (;;) {
if (TAILQ_EMPTY(&sc->tx_free_list)) {
ifq_set_oactive(&ifp->if_snd);
break;
}
if (ic->ic_state != IEEE80211_S_RUN)
break;
/* Encapsulate and send data frames. */
m = ifq_dequeue(&ifp->if_snd);
if (m == NULL)
break;
#if NBPFILTER > 0
if (ifp->if_bpf != NULL)
bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
#endif
if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
continue;
#if NBPFILTER > 0
if (ic->ic_rawbpf != NULL)
bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
#endif
if (rsu_tx(sc, m, ni) != 0) {
ieee80211_release_node(ic, ni);
ifp->if_oerrors++;
continue;
}
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
}
void
rsu_watchdog(struct ifnet *ifp)
{
struct rsu_softc *sc = ifp->if_softc;
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
printf("%s: device timeout\n", sc->sc_dev.dv_xname);
/* rsu_init(ifp); XXX needs a process context! */
ifp->if_oerrors++;
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(ifp);
}
int
rsu_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct rsu_softc *sc = ifp->if_softc;
int s, error = 0;
if (usbd_is_dying(sc->sc_udev))
return ENXIO;
usbd_ref_incr(sc->sc_udev);
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
/* FALLTHROUGH */
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_flags & IFF_RUNNING))
rsu_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
rsu_stop(ifp);
}
break;
default:
error = ieee80211_ioctl(ifp, cmd, data);
}
if (error == ENETRESET) {
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING)) {
rsu_stop(ifp);
rsu_init(ifp);
}
error = 0;
}
splx(s);
usbd_ref_decr(sc->sc_udev);
return (error);
}
/*
* Power on sequence for A-cut adapters.
*/
void
rsu_power_on_acut(struct rsu_softc *sc)
{
uint32_t reg;
rsu_write_1(sc, R92S_SPS0_CTRL + 1, 0x53);
rsu_write_1(sc, R92S_SPS0_CTRL + 0, 0x57);
/* Enable AFE macro block's bandgap and Mbias. */
rsu_write_1(sc, R92S_AFE_MISC,
rsu_read_1(sc, R92S_AFE_MISC) |
R92S_AFE_MISC_BGEN | R92S_AFE_MISC_MBEN);
/* Enable LDOA15 block. */
rsu_write_1(sc, R92S_LDOA15_CTRL,
rsu_read_1(sc, R92S_LDOA15_CTRL) | R92S_LDA15_EN);
rsu_write_1(sc, R92S_SPS1_CTRL,
rsu_read_1(sc, R92S_SPS1_CTRL) | R92S_SPS1_LDEN);
usbd_delay_ms(sc->sc_udev, 2);
/* Enable switch regulator block. */
rsu_write_1(sc, R92S_SPS1_CTRL,
rsu_read_1(sc, R92S_SPS1_CTRL) | R92S_SPS1_SWEN);
rsu_write_4(sc, R92S_SPS1_CTRL, 0x00a7b267);
rsu_write_1(sc, R92S_SYS_ISO_CTRL + 1,
rsu_read_1(sc, R92S_SYS_ISO_CTRL + 1) | 0x08);
rsu_write_1(sc, R92S_SYS_FUNC_EN + 1,
rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x20);
rsu_write_1(sc, R92S_SYS_ISO_CTRL + 1,
rsu_read_1(sc, R92S_SYS_ISO_CTRL + 1) & ~0x90);
/* Enable AFE clock. */
rsu_write_1(sc, R92S_AFE_XTAL_CTRL + 1,
rsu_read_1(sc, R92S_AFE_XTAL_CTRL + 1) & ~0x04);
/* Enable AFE PLL macro block. */
rsu_write_1(sc, R92S_AFE_PLL_CTRL,
rsu_read_1(sc, R92S_AFE_PLL_CTRL) | 0x11);
/* Attach AFE PLL to MACTOP/BB. */
rsu_write_1(sc, R92S_SYS_ISO_CTRL,
rsu_read_1(sc, R92S_SYS_ISO_CTRL) & ~0x11);
/* Switch to 40MHz clock instead of 80MHz. */
rsu_write_2(sc, R92S_SYS_CLKR,
rsu_read_2(sc, R92S_SYS_CLKR) & ~R92S_SYS_CLKSEL);
/* Enable MAC clock. */
rsu_write_2(sc, R92S_SYS_CLKR,
rsu_read_2(sc, R92S_SYS_CLKR) |
R92S_MAC_CLK_EN | R92S_SYS_CLK_EN);
rsu_write_1(sc, R92S_PMC_FSM, 0x02);
/* Enable digital core and IOREG R/W. */
rsu_write_1(sc, R92S_SYS_FUNC_EN + 1,
rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x08);
rsu_write_1(sc, R92S_SYS_FUNC_EN + 1,
rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x80);
/* Switch the control path to firmware. */
reg = rsu_read_2(sc, R92S_SYS_CLKR);
reg = (reg & ~R92S_SWHW_SEL) | R92S_FWHW_SEL;
rsu_write_2(sc, R92S_SYS_CLKR, reg);
rsu_write_2(sc, R92S_CR, 0x37fc);
/* Fix USB RX FIFO issue. */
rsu_write_1(sc, 0xfe5c,
rsu_read_1(sc, 0xfe5c) | 0x80);
rsu_write_1(sc, 0x00ab,
rsu_read_1(sc, 0x00ab) | 0xc0);
rsu_write_1(sc, R92S_SYS_CLKR,
rsu_read_1(sc, R92S_SYS_CLKR) & ~R92S_SYS_CPU_CLKSEL);
}
/*
* Power on sequence for B-cut and C-cut adapters.
*/
void
rsu_power_on_bcut(struct rsu_softc *sc)
{
uint32_t reg;
int ntries;
/* Prevent eFuse leakage. */
rsu_write_1(sc, 0x37, 0xb0);
usbd_delay_ms(sc->sc_udev, 10);
rsu_write_1(sc, 0x37, 0x30);
/* Switch the control path to hardware. */
reg = rsu_read_2(sc, R92S_SYS_CLKR);
if (reg & R92S_FWHW_SEL) {
rsu_write_2(sc, R92S_SYS_CLKR,
reg & ~(R92S_SWHW_SEL | R92S_FWHW_SEL));
}
rsu_write_1(sc, R92S_SYS_FUNC_EN + 1,
rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) & ~0x8c);
DELAY(1000);
rsu_write_1(sc, R92S_SPS0_CTRL + 1, 0x53);
rsu_write_1(sc, R92S_SPS0_CTRL + 0, 0x57);
reg = rsu_read_1(sc, R92S_AFE_MISC);
rsu_write_1(sc, R92S_AFE_MISC, reg | R92S_AFE_MISC_BGEN);
rsu_write_1(sc, R92S_AFE_MISC, reg | R92S_AFE_MISC_BGEN |
R92S_AFE_MISC_MBEN | R92S_AFE_MISC_I32_EN);
/* Enable PLL. */
rsu_write_1(sc, R92S_LDOA15_CTRL,
rsu_read_1(sc, R92S_LDOA15_CTRL) | R92S_LDA15_EN);
rsu_write_1(sc, R92S_LDOV12D_CTRL,
rsu_read_1(sc, R92S_LDOV12D_CTRL) | R92S_LDV12_EN);
rsu_write_1(sc, R92S_SYS_ISO_CTRL + 1,
rsu_read_1(sc, R92S_SYS_ISO_CTRL + 1) | 0x08);
rsu_write_1(sc, R92S_SYS_FUNC_EN + 1,
rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x20);
/* Support 64KB IMEM. */
rsu_write_1(sc, R92S_SYS_ISO_CTRL + 1,
rsu_read_1(sc, R92S_SYS_ISO_CTRL + 1) & ~0x97);
/* Enable AFE clock. */
rsu_write_1(sc, R92S_AFE_XTAL_CTRL + 1,
rsu_read_1(sc, R92S_AFE_XTAL_CTRL + 1) & ~0x04);
/* Enable AFE PLL macro block. */
reg = rsu_read_1(sc, R92S_AFE_PLL_CTRL);
rsu_write_1(sc, R92S_AFE_PLL_CTRL, reg | 0x11);
DELAY(500);
rsu_write_1(sc, R92S_AFE_PLL_CTRL, reg | 0x51);
DELAY(500);
rsu_write_1(sc, R92S_AFE_PLL_CTRL, reg | 0x11);
DELAY(500);
/* Attach AFE PLL to MACTOP/BB. */
rsu_write_1(sc, R92S_SYS_ISO_CTRL,
rsu_read_1(sc, R92S_SYS_ISO_CTRL) & ~0x11);
/* Switch to 40MHz clock. */
rsu_write_1(sc, R92S_SYS_CLKR, 0x00);
/* Disable CPU clock and 80MHz SSC. */
rsu_write_1(sc, R92S_SYS_CLKR,
rsu_read_1(sc, R92S_SYS_CLKR) | 0xa0);
/* Enable MAC clock. */
rsu_write_2(sc, R92S_SYS_CLKR,
rsu_read_2(sc, R92S_SYS_CLKR) |
R92S_MAC_CLK_EN | R92S_SYS_CLK_EN);
rsu_write_1(sc, R92S_PMC_FSM, 0x02);
/* Enable digital core and IOREG R/W. */
rsu_write_1(sc, R92S_SYS_FUNC_EN + 1,
rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x08);
rsu_write_1(sc, R92S_SYS_FUNC_EN + 1,
rsu_read_1(sc, R92S_SYS_FUNC_EN + 1) | 0x80);
/* Switch the control path to firmware. */
reg = rsu_read_2(sc, R92S_SYS_CLKR);
reg = (reg & ~R92S_SWHW_SEL) | R92S_FWHW_SEL;
rsu_write_2(sc, R92S_SYS_CLKR, reg);
rsu_write_2(sc, R92S_CR, 0x37fc);
/* Fix USB RX FIFO issue. */
rsu_write_1(sc, 0xfe5c,
rsu_read_1(sc, 0xfe5c) | 0x80);
rsu_write_1(sc, R92S_SYS_CLKR,
rsu_read_1(sc, R92S_SYS_CLKR) & ~R92S_SYS_CPU_CLKSEL);
rsu_write_1(sc, 0xfe1c, 0x80);
/* Make sure TxDMA is ready to download firmware. */
for (ntries = 0; ntries < 20; ntries++) {
reg = rsu_read_1(sc, R92S_TCR);
if ((reg & (R92S_TCR_IMEM_CHK_RPT | R92S_TCR_EMEM_CHK_RPT)) ==
(R92S_TCR_IMEM_CHK_RPT | R92S_TCR_EMEM_CHK_RPT))
break;
DELAY(5);
}
if (ntries == 20) {
/* Reset TxDMA. */
reg = rsu_read_1(sc, R92S_CR);
rsu_write_1(sc, R92S_CR, reg & ~R92S_CR_TXDMA_EN);
DELAY(2);
rsu_write_1(sc, R92S_CR, reg | R92S_CR_TXDMA_EN);
}
}
void
rsu_power_off(struct rsu_softc *sc)
{
/* Turn RF off. */
rsu_write_1(sc, R92S_RF_CTRL, 0x00);
usbd_delay_ms(sc->sc_udev, 5);
/* Turn MAC off. */
/* Switch control path. */
rsu_write_1(sc, R92S_SYS_CLKR + 1, 0x38);
/* Reset MACTOP. */
rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, 0x70);
rsu_write_1(sc, R92S_PMC_FSM, 0x06);
rsu_write_1(sc, R92S_SYS_ISO_CTRL + 0, 0xf9);
rsu_write_1(sc, R92S_SYS_ISO_CTRL + 1, 0xe8);
/* Disable AFE PLL. */
rsu_write_1(sc, R92S_AFE_PLL_CTRL, 0x00);
/* Disable A15V. */
rsu_write_1(sc, R92S_LDOA15_CTRL, 0x54);
/* Disable eFuse 1.2V. */
rsu_write_1(sc, R92S_SYS_FUNC_EN + 1, 0x50);
rsu_write_1(sc, R92S_LDOV12D_CTRL, 0x24);
/* Enable AFE macro block's bandgap and Mbias. */
rsu_write_1(sc, R92S_AFE_MISC, 0x30);
/* Disable 1.6V LDO. */
rsu_write_1(sc, R92S_SPS0_CTRL + 0, 0x56);
rsu_write_1(sc, R92S_SPS0_CTRL + 1, 0x43);
}
int
rsu_fw_loadsection(struct rsu_softc *sc, uint8_t *buf, int len)
{
struct rsu_tx_data *data;
struct r92s_tx_desc *txd;
struct usbd_pipe *pipe;
int mlen, error;
data = sc->fwcmd_data;
pipe = sc->pipe[sc->qid2idx[RSU_QID_VO]];
txd = (struct r92s_tx_desc *)data->buf;
while (len > 0) {
memset(txd, 0, sizeof(*txd));
if (len <= RSU_TXBUFSZ - sizeof(*txd)) {
/* Last chunk. */
txd->txdw0 |= htole32(R92S_TXDW0_LINIP);
mlen = len;
} else
mlen = RSU_TXBUFSZ - sizeof(*txd);
txd->txdw0 |= htole32(SM(R92S_TXDW0_PKTLEN, mlen));
memcpy(&txd[1], buf, mlen);
usbd_setup_xfer(data->xfer, pipe, NULL, data->buf,
sizeof(*txd) + mlen,
USBD_SHORT_XFER_OK | USBD_NO_COPY | USBD_SYNCHRONOUS,
RSU_TX_TIMEOUT, NULL);
error = usbd_transfer(data->xfer);
if (error != 0)
return (error);
buf += mlen;
len -= mlen;
}
return (0);
}
int
rsu_load_firmware(struct rsu_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct r92s_fw_hdr *hdr;
struct r92s_fw_priv *dmem;
uint8_t *imem, *emem;
int imemsz, ememsz;
u_char *fw;
size_t size;
uint32_t reg;
int ntries, error;
/* Read firmware image from the filesystem. */
if ((error = loadfirmware("rsu-rtl8712", &fw, &size)) != 0) {
printf("%s: failed loadfirmware of file %s (error %d)\n",
sc->sc_dev.dv_xname, "rsu-rtl8712", error);
return (error);
}
if (size < sizeof(*hdr)) {
printf("%s: firmware too short\n", sc->sc_dev.dv_xname);
error = EINVAL;
goto fail;
}
hdr = (struct r92s_fw_hdr *)fw;
if (hdr->signature != htole16(0x8712) &&
hdr->signature != htole16(0x8192)) {
printf("%s: invalid firmware signature 0x%x\n",
sc->sc_dev.dv_xname, letoh16(hdr->signature));
error = EINVAL;
goto fail;
}
DPRINTF(("FW V%d %02x-%02x %02x:%02x\n", letoh16(hdr->version),
hdr->month, hdr->day, hdr->hour, hdr->minute));
/* Make sure that driver and firmware are in sync. */
if (hdr->privsz != htole32(sizeof(*dmem))) {
printf("%s: unsupported firmware image\n",
sc->sc_dev.dv_xname);
error = EINVAL;
goto fail;
}
/* Get FW sections sizes. */
imemsz = letoh32(hdr->imemsz);
ememsz = letoh32(hdr->sramsz);
/* Check that all FW sections fit in image. */
if (size < sizeof(*hdr) + imemsz + ememsz) {
printf("%s: firmware too short\n", sc->sc_dev.dv_xname);
error = EINVAL;
goto fail;
}
imem = (uint8_t *)&hdr[1];
emem = imem + imemsz;
/* Load IMEM section. */
error = rsu_fw_loadsection(sc, imem, imemsz);
if (error != 0) {
printf("%s: could not load firmware section %s\n",
sc->sc_dev.dv_xname, "IMEM");
goto fail;
}
/* Wait for load to complete. */
for (ntries = 0; ntries < 10; ntries++) {
reg = rsu_read_2(sc, R92S_TCR);
if (reg & R92S_TCR_IMEM_CODE_DONE)
break;
DELAY(10);
}
if (ntries == 10 || !(reg & R92S_TCR_IMEM_CHK_RPT)) {
printf("%s: timeout waiting for %s transfer\n",
sc->sc_dev.dv_xname, "IMEM");
error = ETIMEDOUT;
goto fail;
}
/* Load EMEM section. */
error = rsu_fw_loadsection(sc, emem, ememsz);
if (error != 0) {
printf("%s: could not load firmware section %s\n",
sc->sc_dev.dv_xname, "EMEM");
goto fail;
}
/* Wait for load to complete. */
for (ntries = 0; ntries < 10; ntries++) {
reg = rsu_read_2(sc, R92S_TCR);
if (reg & R92S_TCR_EMEM_CODE_DONE)
break;
DELAY(10);
}
if (ntries == 10 || !(reg & R92S_TCR_EMEM_CHK_RPT)) {
printf("%s: timeout waiting for %s transfer\n",
sc->sc_dev.dv_xname, "EMEM");
error = ETIMEDOUT;
goto fail;
}
/* Enable CPU. */
rsu_write_1(sc, R92S_SYS_CLKR,
rsu_read_1(sc, R92S_SYS_CLKR) | R92S_SYS_CPU_CLKSEL);
if (!(rsu_read_1(sc, R92S_SYS_CLKR) & R92S_SYS_CPU_CLKSEL)) {
printf("%s: could not enable system clock\n",
sc->sc_dev.dv_xname);
error = EIO;
goto fail;
}
rsu_write_2(sc, R92S_SYS_FUNC_EN,
rsu_read_2(sc, R92S_SYS_FUNC_EN) | R92S_FEN_CPUEN);
if (!(rsu_read_2(sc, R92S_SYS_FUNC_EN) & R92S_FEN_CPUEN)) {
printf("%s: could not enable microcontroller\n",
sc->sc_dev.dv_xname);
error = EIO;
goto fail;
}
/* Wait for CPU to initialize. */
for (ntries = 0; ntries < 100; ntries++) {
if (rsu_read_2(sc, R92S_TCR) & R92S_TCR_IMEM_RDY)
break;
DELAY(1000);
}
if (ntries == 100) {
printf("%s: timeout waiting for microcontroller\n",
sc->sc_dev.dv_xname);
error = ETIMEDOUT;
goto fail;
}
/* Update DMEM section before loading. */
dmem = &hdr->priv;
memset(dmem, 0, sizeof(*dmem));
dmem->hci_sel = R92S_HCI_SEL_USB | R92S_HCI_SEL_8172;
dmem->nendpoints = sc->npipes;
dmem->rf_config = 0x12; /* 1T2R */
dmem->vcs_type = R92S_VCS_TYPE_AUTO;
dmem->vcs_mode = R92S_VCS_MODE_RTS_CTS;
dmem->bw40_en = (ic->ic_htcaps & IEEE80211_HTCAP_CBW20_40) != 0;
dmem->turbo_mode = 1;
/* Load DMEM section. */
error = rsu_fw_loadsection(sc, (uint8_t *)dmem, sizeof(*dmem));
if (error != 0) {
printf("%s: could not load firmware section %s\n",
sc->sc_dev.dv_xname, "DMEM");
goto fail;
}
/* Wait for load to complete. */
for (ntries = 0; ntries < 100; ntries++) {
if (rsu_read_2(sc, R92S_TCR) & R92S_TCR_DMEM_CODE_DONE)
break;
DELAY(1000);
}
if (ntries == 100) {
printf("%s: timeout waiting for %s transfer\n",
sc->sc_dev.dv_xname, "DMEM");
error = ETIMEDOUT;
goto fail;
}
/* Wait for firmware readiness. */
for (ntries = 0; ntries < 60; ntries++) {
if (!(rsu_read_2(sc, R92S_TCR) & R92S_TCR_FWRDY))
break;
DELAY(1000);
}
if (ntries == 60) {
printf("%s: timeout waiting for firmware readiness\n",
sc->sc_dev.dv_xname);
error = ETIMEDOUT;
goto fail;
}
fail:
free(fw, M_DEVBUF, size);
return (error);
}
int
rsu_init(struct ifnet *ifp)
{
struct rsu_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct r92s_set_pwr_mode cmd;
struct rsu_rx_data *data;
int i, error;
/* Init host async commands ring. */
sc->cmdq.cur = sc->cmdq.next = sc->cmdq.queued = 0;
/* Allocate Tx/Rx buffers. */
error = rsu_alloc_rx_list(sc);
if (error != 0) {
printf("%s: could not allocate Rx buffers\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = rsu_alloc_tx_list(sc);
if (error != 0) {
printf("%s: could not allocate Tx buffers\n",
sc->sc_dev.dv_xname);
goto fail;
}
/* Reserve one Tx buffer for firmware commands. */
sc->fwcmd_data = TAILQ_FIRST(&sc->tx_free_list);
TAILQ_REMOVE(&sc->tx_free_list, sc->fwcmd_data, next);
/* Power on adapter. */
if (sc->cut == 1)
rsu_power_on_acut(sc);
else
rsu_power_on_bcut(sc);
/* Load firmware. */
error = rsu_load_firmware(sc);
if (error != 0)
goto fail;
/* Enable Rx TCP checksum offload. */
rsu_write_4(sc, R92S_RCR,
rsu_read_4(sc, R92S_RCR) | 0x04000000);
/* Append PHY status. */
rsu_write_4(sc, R92S_RCR,
rsu_read_4(sc, R92S_RCR) | 0x02000000);
rsu_write_4(sc, R92S_CR,
rsu_read_4(sc, R92S_CR) & ~0xff000000);
/* Use 128 bytes pages. */
rsu_write_1(sc, 0x00b5,
rsu_read_1(sc, 0x00b5) | 0x01);
/* Enable USB Rx aggregation. */
rsu_write_1(sc, 0x00bd,
rsu_read_1(sc, 0x00bd) | 0x80);
/* Set USB Rx aggregation threshold. */
rsu_write_1(sc, 0x00d9, 0x01);
/* Set USB Rx aggregation timeout (1.7ms/4). */
rsu_write_1(sc, 0xfe5b, 0x04);
/* Fix USB Rx FIFO issue. */
rsu_write_1(sc, 0xfe5c,
rsu_read_1(sc, 0xfe5c) | 0x80);
/* Set MAC address. */
IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
rsu_write_region_1(sc, R92S_MACID, ic->ic_myaddr, IEEE80211_ADDR_LEN);
/* Queue Rx xfers (XXX C2H pipe for 11-pipe configurations?) */
for (i = 0; i < RSU_RX_LIST_COUNT; i++) {
data = &sc->rx_data[i];
data->pipe = sc->pipe[sc->qid2idx[RSU_QID_RXOFF]];
usbd_setup_xfer(data->xfer, data->pipe, data, data->buf,
RSU_RXBUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY,
USBD_NO_TIMEOUT, rsu_rxeof);
error = usbd_transfer(data->xfer);
if (error != 0 && error != USBD_IN_PROGRESS)
goto fail;
}
/* NB: it really takes that long for firmware to boot. */
usbd_delay_ms(sc->sc_udev, 1500);
DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
error = rsu_fw_cmd(sc, R92S_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
IEEE80211_ADDR_LEN);
if (error != 0) {
printf("%s: could not set MAC address\n", sc->sc_dev.dv_xname);
goto fail;
}
rsu_write_1(sc, R92S_USB_HRPWM,
R92S_USB_HRPWM_PS_ST_ACTIVE | R92S_USB_HRPWM_PS_ALL_ON);
memset(&cmd, 0, sizeof(cmd));
cmd.mode = R92S_PS_MODE_ACTIVE;
DPRINTF(("setting ps mode to %d\n", cmd.mode));
error = rsu_fw_cmd(sc, R92S_CMD_SET_PWR_MODE, &cmd, sizeof(cmd));
if (error != 0) {
printf("%s: could not set PS mode\n", sc->sc_dev.dv_xname);
goto fail;
}
if (ic->ic_htcaps & IEEE80211_HTCAP_CBW20_40) {
/* Enable 40MHz mode. */
error = rsu_fw_iocmd(sc,
SM(R92S_IOCMD_CLASS, 0xf4) |
SM(R92S_IOCMD_INDEX, 0x00) |
SM(R92S_IOCMD_VALUE, 0x0007));
if (error != 0) {
printf("%s: could not enable 40MHz mode\n",
sc->sc_dev.dv_xname);
goto fail;
}
}
/* Set default channel. */
ic->ic_bss->ni_chan = ic->ic_ibss_chan;
/* We're ready to go. */
ifp->if_flags |= IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
#ifdef notyet
if (ic->ic_flags & IEEE80211_F_WEPON) {
/* Install WEP keys. */
for (i = 0; i < IEEE80211_WEP_NKID; i++)
rsu_set_key(ic, NULL, &ic->ic_nw_keys[i]);
rsu_wait_async(sc);
}
#endif
sc->scan_pass = 0;
ieee80211_begin_scan(ifp);
return (0);
fail:
rsu_stop(ifp);
return (error);
}
void
rsu_stop(struct ifnet *ifp)
{
struct rsu_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int i, s;
sc->sc_tx_timer = 0;
ifp->if_timer = 0;
ifp->if_flags &= ~IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
s = splusb();
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
/* Wait for all async commands to complete. */
rsu_wait_async(sc);
splx(s);
timeout_del(&sc->calib_to);
/* Power off adapter. */
rsu_power_off(sc);
/* Abort Tx/Rx. */
for (i = 0; i < sc->npipes; i++)
usbd_abort_pipe(sc->pipe[i]);
/* Free Tx/Rx buffers. */
rsu_free_tx_list(sc);
rsu_free_rx_list(sc);
}