src/sys/dev/usb/if_rum.c

2239 lines
56 KiB
C

/* $OpenBSD: if_rum.c,v 1.129 2024/05/23 03:21:08 jsg Exp $ */
/*-
* Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*-
* Ralink Technology RT2501USB/RT2601USB chipset driver
* http://www.ralinktech.com.tw/
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/systm.h>
#include <sys/timeout.h>
#include <sys/device.h>
#include <sys/endian.h>
#include <machine/intr.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_amrr.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdevs.h>
#include <dev/usb/if_rumreg.h>
#include <dev/usb/if_rumvar.h>
#ifdef RUM_DEBUG
#define DPRINTF(x) do { if (rum_debug) printf x; } while (0)
#define DPRINTFN(n, x) do { if (rum_debug >= (n)) printf x; } while (0)
int rum_debug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
/* various supported device vendors/products */
static const struct usb_devno rum_devs[] = {
{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_HWU54DM },
{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_2 },
{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_3 },
{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_RT2573_4 },
{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_WUG2700 },
{ USB_VENDOR_AMIT, USB_PRODUCT_AMIT_CGWLUSB2GO },
{ USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2573_1 },
{ USB_VENDOR_ASUS, USB_PRODUCT_ASUS_RT2573_2 },
{ USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D7050A },
{ USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050V3 },
{ USB_VENDOR_BELKIN, USB_PRODUCT_BELKIN_F5D9050C },
{ USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB200 },
{ USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GC },
{ USB_VENDOR_CISCOLINKSYS, USB_PRODUCT_CISCOLINKSYS_WUSB54GR },
{ USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_C54RU2 },
{ USB_VENDOR_CONCEPTRONIC2, USB_PRODUCT_CONCEPTRONIC2_RT2573 },
{ USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GL },
{ USB_VENDOR_COREGA, USB_PRODUCT_COREGA_CGWLUSB2GPX },
{ USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_CWD854F },
{ USB_VENDOR_DICKSMITH, USB_PRODUCT_DICKSMITH_RT2573 },
{ USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA111 },
{ USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA110 },
{ USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWLG122C1 },
{ USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_WUA1340 },
{ USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7318 },
{ USB_VENDOR_EDIMAX, USB_PRODUCT_EDIMAX_EW7618 },
{ USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWB01GS },
{ USB_VENDOR_GIGABYTE, USB_PRODUCT_GIGABYTE_GNWI05GS },
{ USB_VENDOR_GIGASET, USB_PRODUCT_GIGASET_RT2573 },
{ USB_VENDOR_GOODWAY, USB_PRODUCT_GOODWAY_RT2573 },
{ USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254LB },
{ USB_VENDOR_GUILLEMOT, USB_PRODUCT_GUILLEMOT_HWGUSB254V2AP },
{ USB_VENDOR_HUAWEI3COM, USB_PRODUCT_HUAWEI3COM_WUB320G },
{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_G54HP },
{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HP },
{ USB_VENDOR_MELCO, USB_PRODUCT_MELCO_SG54HG },
{ USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_1 },
{ USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_2 },
{ USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_3 },
{ USB_VENDOR_MSI, USB_PRODUCT_MSI_RT2573_4 },
{ USB_VENDOR_NOVATECH, USB_PRODUCT_NOVATECH_RT2573 },
{ USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54HP },
{ USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUS54MINI2 },
{ USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GWUSMM },
{ USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573 },
{ USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_2 },
{ USB_VENDOR_QCOM, USB_PRODUCT_QCOM_RT2573_3 },
{ USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573 },
{ USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2573_2 },
{ USB_VENDOR_RALINK, USB_PRODUCT_RALINK_RT2671 },
{ USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL113R2 },
{ USB_VENDOR_SITECOMEU, USB_PRODUCT_SITECOMEU_WL172 },
{ USB_VENDOR_SURECOM, USB_PRODUCT_SURECOM_RT2573 },
{ USB_VENDOR_SPARKLAN, USB_PRODUCT_SPARKLAN_RT2573 },
{ USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_RT2573 }
};
void rum_attachhook(struct device *);
int rum_alloc_tx_list(struct rum_softc *);
void rum_free_tx_list(struct rum_softc *);
int rum_alloc_rx_list(struct rum_softc *);
void rum_free_rx_list(struct rum_softc *);
int rum_media_change(struct ifnet *);
void rum_next_scan(void *);
void rum_task(void *);
int rum_newstate(struct ieee80211com *, enum ieee80211_state, int);
void rum_txeof(struct usbd_xfer *, void *, usbd_status);
void rum_rxeof(struct usbd_xfer *, void *, usbd_status);
#if NBPFILTER > 0
uint8_t rum_rxrate(const struct rum_rx_desc *);
#endif
int rum_ack_rate(struct ieee80211com *, int);
uint16_t rum_txtime(int, int, uint32_t);
uint8_t rum_plcp_signal(int);
void rum_setup_tx_desc(struct rum_softc *, struct rum_tx_desc *,
uint32_t, uint16_t, int, int);
int rum_tx_data(struct rum_softc *, struct mbuf *,
struct ieee80211_node *);
void rum_start(struct ifnet *);
void rum_watchdog(struct ifnet *);
int rum_ioctl(struct ifnet *, u_long, caddr_t);
void rum_eeprom_read(struct rum_softc *, uint16_t, void *, int);
uint32_t rum_read(struct rum_softc *, uint16_t);
void rum_read_multi(struct rum_softc *, uint16_t, void *, int);
void rum_write(struct rum_softc *, uint16_t, uint32_t);
void rum_write_multi(struct rum_softc *, uint16_t, void *, size_t);
void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
void rum_select_antenna(struct rum_softc *);
void rum_enable_mrr(struct rum_softc *);
void rum_set_txpreamble(struct rum_softc *);
void rum_set_basicrates(struct rum_softc *);
void rum_select_band(struct rum_softc *,
struct ieee80211_channel *);
void rum_set_chan(struct rum_softc *, struct ieee80211_channel *);
void rum_enable_tsf_sync(struct rum_softc *);
void rum_update_slot(struct rum_softc *);
void rum_set_bssid(struct rum_softc *, const uint8_t *);
void rum_set_macaddr(struct rum_softc *, const uint8_t *);
void rum_update_promisc(struct rum_softc *);
const char *rum_get_rf(int);
void rum_read_eeprom(struct rum_softc *);
int rum_bbp_init(struct rum_softc *);
int rum_init(struct ifnet *);
void rum_stop(struct ifnet *, int);
int rum_load_microcode(struct rum_softc *, const u_char *, size_t);
#ifndef IEEE80211_STA_ONLY
int rum_prepare_beacon(struct rum_softc *);
#endif
void rum_newassoc(struct ieee80211com *, struct ieee80211_node *,
int);
void rum_amrr_start(struct rum_softc *, struct ieee80211_node *);
void rum_amrr_timeout(void *);
void rum_amrr_update(struct usbd_xfer *, void *,
usbd_status status);
static const struct {
uint32_t reg;
uint32_t val;
} rum_def_mac[] = {
RT2573_DEF_MAC
};
static const struct {
uint8_t reg;
uint8_t val;
} rum_def_bbp[] = {
RT2573_DEF_BBP
};
static const struct rfprog {
uint8_t chan;
uint32_t r1, r2, r3, r4;
} rum_rf5226[] = {
RT2573_RF5226
}, rum_rf5225[] = {
RT2573_RF5225
};
int rum_match(struct device *, void *, void *);
void rum_attach(struct device *, struct device *, void *);
int rum_detach(struct device *, int);
struct cfdriver rum_cd = {
NULL, "rum", DV_IFNET
};
const struct cfattach rum_ca = {
sizeof(struct rum_softc), rum_match, rum_attach, rum_detach
};
int
rum_match(struct device *parent, void *match, void *aux)
{
struct usb_attach_arg *uaa = aux;
if (uaa->iface == NULL || uaa->configno != 1)
return UMATCH_NONE;
return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
UMATCH_VENDOR_PRODUCT_CONF_IFACE : UMATCH_NONE;
}
void
rum_attachhook(struct device *self)
{
struct rum_softc *sc = (struct rum_softc *)self;
const char *name = "rum-rt2573";
u_char *ucode;
size_t size;
int error;
if ((error = loadfirmware(name, &ucode, &size)) != 0) {
printf("%s: failed loadfirmware of file %s (error %d)\n",
sc->sc_dev.dv_xname, name, error);
return;
}
if (rum_load_microcode(sc, ucode, size) != 0) {
printf("%s: could not load 8051 microcode\n",
sc->sc_dev.dv_xname);
}
free(ucode, M_DEVBUF, size);
}
void
rum_attach(struct device *parent, struct device *self, void *aux)
{
struct rum_softc *sc = (struct rum_softc *)self;
struct usb_attach_arg *uaa = aux;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
usb_interface_descriptor_t *id;
usb_endpoint_descriptor_t *ed;
int i, ntries;
uint32_t tmp;
sc->sc_udev = uaa->device;
sc->sc_iface = uaa->iface;
/*
* Find endpoints.
*/
id = usbd_get_interface_descriptor(sc->sc_iface);
sc->sc_rx_no = sc->sc_tx_no = -1;
for (i = 0; i < id->bNumEndpoints; i++) {
ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
if (ed == NULL) {
printf("%s: no endpoint descriptor for iface %d\n",
sc->sc_dev.dv_xname, i);
return;
}
if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
sc->sc_rx_no = ed->bEndpointAddress;
else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
sc->sc_tx_no = ed->bEndpointAddress;
}
if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
printf("%s: missing endpoint\n", sc->sc_dev.dv_xname);
return;
}
usb_init_task(&sc->sc_task, rum_task, sc, USB_TASK_TYPE_GENERIC);
timeout_set(&sc->scan_to, rum_next_scan, sc);
sc->amrr.amrr_min_success_threshold = 1;
sc->amrr.amrr_max_success_threshold = 10;
timeout_set(&sc->amrr_to, rum_amrr_timeout, sc);
/* retrieve RT2573 rev. no */
for (ntries = 0; ntries < 1000; ntries++) {
if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
break;
DELAY(1000);
}
if (ntries == 1000) {
printf("%s: timeout waiting for chip to settle\n",
sc->sc_dev.dv_xname);
return;
}
/* retrieve MAC address and various other things from EEPROM */
rum_read_eeprom(sc);
printf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %s\n",
sc->sc_dev.dv_xname, sc->macbbp_rev, tmp,
rum_get_rf(sc->rf_rev), ether_sprintf(ic->ic_myaddr));
config_mountroot(self, rum_attachhook);
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_MONITOR | /* monitor mode supported */
#ifndef IEEE80211_STA_ONLY
IEEE80211_C_IBSS | /* IBSS mode supported */
IEEE80211_C_HOSTAP | /* HostAp mode supported */
#endif
IEEE80211_C_TXPMGT | /* tx power management */
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_SHSLOT | /* short slot time supported */
IEEE80211_C_WEP | /* s/w WEP */
IEEE80211_C_RSN; /* WPA/RSN */
if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
/* set supported .11a rates */
ic->ic_sup_rates[IEEE80211_MODE_11A] =
ieee80211_std_rateset_11a;
/* set supported .11a channels */
for (i = 34; i <= 46; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
for (i = 36; i <= 64; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
for (i = 100; i <= 140; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
for (i = 149; i <= 165; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
}
/* set supported .11b and .11g rates */
ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
/* set supported .11b and .11g channels (1 through 14) */
for (i = 1; i <= 14; i++) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_channels[i].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = rum_ioctl;
ifp->if_start = rum_start;
ifp->if_watchdog = rum_watchdog;
memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
if_attach(ifp);
ieee80211_ifattach(ifp);
ic->ic_newassoc = rum_newassoc;
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = rum_newstate;
ieee80211_media_init(ifp, rum_media_change, ieee80211_media_status);
#if NBPFILTER > 0
bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof sc->sc_txtapu;
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
#endif
}
int
rum_detach(struct device *self, int flags)
{
struct rum_softc *sc = (struct rum_softc *)self;
struct ifnet *ifp = &sc->sc_ic.ic_if;
int s;
s = splusb();
if (timeout_initialized(&sc->scan_to))
timeout_del(&sc->scan_to);
if (timeout_initialized(&sc->amrr_to))
timeout_del(&sc->amrr_to);
usb_rem_wait_task(sc->sc_udev, &sc->sc_task);
usbd_ref_wait(sc->sc_udev);
if (ifp->if_softc != NULL) {
ieee80211_ifdetach(ifp); /* free all nodes */
if_detach(ifp);
}
if (sc->amrr_xfer != NULL) {
usbd_free_xfer(sc->amrr_xfer);
sc->amrr_xfer = NULL;
}
if (sc->sc_rx_pipeh != NULL)
usbd_close_pipe(sc->sc_rx_pipeh);
if (sc->sc_tx_pipeh != NULL)
usbd_close_pipe(sc->sc_tx_pipeh);
rum_free_rx_list(sc);
rum_free_tx_list(sc);
splx(s);
return 0;
}
int
rum_alloc_tx_list(struct rum_softc *sc)
{
int i, error;
sc->tx_cur = sc->tx_queued = 0;
for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
struct rum_tx_data *data = &sc->tx_data[i];
data->sc = sc;
data->xfer = usbd_alloc_xfer(sc->sc_udev);
if (data->xfer == NULL) {
printf("%s: could not allocate tx xfer\n",
sc->sc_dev.dv_xname);
error = ENOMEM;
goto fail;
}
data->buf = usbd_alloc_buffer(data->xfer,
RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN);
if (data->buf == NULL) {
printf("%s: could not allocate tx buffer\n",
sc->sc_dev.dv_xname);
error = ENOMEM;
goto fail;
}
/* clean Tx descriptor */
bzero(data->buf, RT2573_TX_DESC_SIZE);
}
return 0;
fail: rum_free_tx_list(sc);
return error;
}
void
rum_free_tx_list(struct rum_softc *sc)
{
int i;
for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
struct rum_tx_data *data = &sc->tx_data[i];
if (data->xfer != NULL) {
usbd_free_xfer(data->xfer);
data->xfer = NULL;
}
/*
* The node has already been freed at that point so don't call
* ieee80211_release_node() here.
*/
data->ni = NULL;
}
}
int
rum_alloc_rx_list(struct rum_softc *sc)
{
int i, error;
for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
struct rum_rx_data *data = &sc->rx_data[i];
data->sc = sc;
data->xfer = usbd_alloc_xfer(sc->sc_udev);
if (data->xfer == NULL) {
printf("%s: could not allocate rx xfer\n",
sc->sc_dev.dv_xname);
error = ENOMEM;
goto fail;
}
if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
printf("%s: could not allocate rx buffer\n",
sc->sc_dev.dv_xname);
error = ENOMEM;
goto fail;
}
MGETHDR(data->m, M_DONTWAIT, MT_DATA);
if (data->m == NULL) {
printf("%s: could not allocate rx mbuf\n",
sc->sc_dev.dv_xname);
error = ENOMEM;
goto fail;
}
MCLGET(data->m, M_DONTWAIT);
if (!(data->m->m_flags & M_EXT)) {
printf("%s: could not allocate rx mbuf cluster\n",
sc->sc_dev.dv_xname);
error = ENOMEM;
goto fail;
}
data->buf = mtod(data->m, uint8_t *);
}
return 0;
fail: rum_free_rx_list(sc);
return error;
}
void
rum_free_rx_list(struct rum_softc *sc)
{
int i;
for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
struct rum_rx_data *data = &sc->rx_data[i];
if (data->xfer != NULL) {
usbd_free_xfer(data->xfer);
data->xfer = NULL;
}
if (data->m != NULL) {
m_freem(data->m);
data->m = NULL;
}
}
}
int
rum_media_change(struct ifnet *ifp)
{
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return error;
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
error = rum_init(ifp);
return error;
}
/*
* This function is called periodically (every 200ms) during scanning to
* switch from one channel to another.
*/
void
rum_next_scan(void *arg)
{
struct rum_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
if (usbd_is_dying(sc->sc_udev))
return;
usbd_ref_incr(sc->sc_udev);
if (ic->ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(ifp);
usbd_ref_decr(sc->sc_udev);
}
void
rum_task(void *arg)
{
struct rum_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
enum ieee80211_state ostate;
struct ieee80211_node *ni;
uint32_t tmp;
if (usbd_is_dying(sc->sc_udev))
return;
ostate = ic->ic_state;
switch (sc->sc_state) {
case IEEE80211_S_INIT:
if (ostate == IEEE80211_S_RUN) {
/* abort TSF synchronization */
tmp = rum_read(sc, RT2573_TXRX_CSR9);
rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
}
break;
case IEEE80211_S_SCAN:
rum_set_chan(sc, ic->ic_bss->ni_chan);
if (!usbd_is_dying(sc->sc_udev))
timeout_add_msec(&sc->scan_to, 200);
break;
case IEEE80211_S_AUTH:
rum_set_chan(sc, ic->ic_bss->ni_chan);
break;
case IEEE80211_S_ASSOC:
rum_set_chan(sc, ic->ic_bss->ni_chan);
break;
case IEEE80211_S_RUN:
rum_set_chan(sc, ic->ic_bss->ni_chan);
ni = ic->ic_bss;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
rum_update_slot(sc);
rum_enable_mrr(sc);
rum_set_txpreamble(sc);
rum_set_basicrates(sc);
rum_set_bssid(sc, ni->ni_bssid);
}
#ifndef IEEE80211_STA_ONLY
if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
ic->ic_opmode == IEEE80211_M_IBSS)
rum_prepare_beacon(sc);
#endif
if (ic->ic_opmode != IEEE80211_M_MONITOR)
rum_enable_tsf_sync(sc);
if (ic->ic_opmode == IEEE80211_M_STA) {
/* fake a join to init the tx rate */
rum_newassoc(ic, ic->ic_bss, 1);
/* enable automatic rate control in STA mode */
if (ic->ic_fixed_rate == -1)
rum_amrr_start(sc, ni);
}
break;
}
sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
}
int
rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct rum_softc *sc = ic->ic_if.if_softc;
usb_rem_task(sc->sc_udev, &sc->sc_task);
timeout_del(&sc->scan_to);
timeout_del(&sc->amrr_to);
/* do it in a process context */
sc->sc_state = nstate;
sc->sc_arg = arg;
usb_add_task(sc->sc_udev, &sc->sc_task);
return 0;
}
/* quickly determine if a given rate is CCK or OFDM */
#define RUM_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
#define RUM_ACK_SIZE 14 /* 10 + 4(FCS) */
#define RUM_CTS_SIZE 14 /* 10 + 4(FCS) */
void
rum_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
{
struct rum_tx_data *data = priv;
struct rum_softc *sc = data->sc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
int s;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
printf("%s: could not transmit buffer: %s\n",
sc->sc_dev.dv_xname, usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
ifp->if_oerrors++;
return;
}
s = splnet();
ieee80211_release_node(ic, data->ni);
data->ni = NULL;
sc->tx_queued--;
DPRINTFN(10, ("tx done\n"));
sc->sc_tx_timer = 0;
ifq_clr_oactive(&ifp->if_snd);
rum_start(ifp);
splx(s);
}
void
rum_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
{
struct rum_rx_data *data = priv;
struct rum_softc *sc = data->sc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
const struct rum_rx_desc *desc;
struct ieee80211_frame *wh;
struct ieee80211_rxinfo rxi;
struct ieee80211_node *ni;
struct mbuf *mnew, *m;
int s, len;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
goto skip;
}
usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
DPRINTF(("%s: xfer too short %d\n", sc->sc_dev.dv_xname,
len));
ifp->if_ierrors++;
goto skip;
}
desc = (const struct rum_rx_desc *)data->buf;
if (letoh32(desc->flags) & RT2573_RX_CRC_ERROR) {
/*
* This should not happen since we did not request to receive
* those frames when we filled RT2573_TXRX_CSR0.
*/
DPRINTFN(5, ("CRC error\n"));
ifp->if_ierrors++;
goto skip;
}
MGETHDR(mnew, M_DONTWAIT, MT_DATA);
if (mnew == NULL) {
printf("%s: could not allocate rx mbuf\n",
sc->sc_dev.dv_xname);
ifp->if_ierrors++;
goto skip;
}
MCLGET(mnew, M_DONTWAIT);
if (!(mnew->m_flags & M_EXT)) {
printf("%s: could not allocate rx mbuf cluster\n",
sc->sc_dev.dv_xname);
m_freem(mnew);
ifp->if_ierrors++;
goto skip;
}
m = data->m;
data->m = mnew;
data->buf = mtod(data->m, uint8_t *);
/* finalize mbuf */
m->m_data = (caddr_t)(desc + 1);
m->m_pkthdr.len = m->m_len = (letoh32(desc->flags) >> 16) & 0xfff;
s = splnet();
#if NBPFILTER > 0
if (sc->sc_drvbpf != NULL) {
struct mbuf mb;
struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
tap->wr_rate = rum_rxrate(desc);
tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
tap->wr_antenna = sc->rx_ant;
tap->wr_antsignal = desc->rssi;
mb.m_data = (caddr_t)tap;
mb.m_len = sc->sc_rxtap_len;
mb.m_next = m;
mb.m_nextpkt = NULL;
mb.m_type = 0;
mb.m_flags = 0;
bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
}
#endif
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic, wh);
/* send the frame to the 802.11 layer */
memset(&rxi, 0, sizeof(rxi));
rxi.rxi_rssi = desc->rssi;
ieee80211_input(ifp, m, ni, &rxi);
/* node is no longer needed */
ieee80211_release_node(ic, ni);
splx(s);
DPRINTFN(15, ("rx done\n"));
skip: /* setup a new transfer */
usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
(void)usbd_transfer(xfer);
}
/*
* This function is only used by the Rx radiotap code. It returns the rate at
* which a given frame was received.
*/
#if NBPFILTER > 0
uint8_t
rum_rxrate(const struct rum_rx_desc *desc)
{
if (letoh32(desc->flags) & RT2573_RX_OFDM) {
/* reverse function of rum_plcp_signal */
switch (desc->rate) {
case 0xb: return 12;
case 0xf: return 18;
case 0xa: return 24;
case 0xe: return 36;
case 0x9: return 48;
case 0xd: return 72;
case 0x8: return 96;
case 0xc: return 108;
}
} else {
if (desc->rate == 10)
return 2;
if (desc->rate == 20)
return 4;
if (desc->rate == 55)
return 11;
if (desc->rate == 110)
return 22;
}
return 2; /* should not get there */
}
#endif
/*
* Return the expected ack rate for a frame transmitted at rate `rate'.
*/
int
rum_ack_rate(struct ieee80211com *ic, int rate)
{
switch (rate) {
/* CCK rates */
case 2:
return 2;
case 4:
case 11:
case 22:
return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
/* OFDM rates */
case 12:
case 18:
return 12;
case 24:
case 36:
return 24;
case 48:
case 72:
case 96:
case 108:
return 48;
}
/* default to 1Mbps */
return 2;
}
/*
* Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
* The function automatically determines the operating mode depending on the
* given rate. `flags' indicates whether short preamble is in use or not.
*/
uint16_t
rum_txtime(int len, int rate, uint32_t flags)
{
uint16_t txtime;
if (RUM_RATE_IS_OFDM(rate)) {
/* IEEE Std 802.11a-1999, pp. 37 */
txtime = (8 + 4 * len + 3 + rate - 1) / rate;
txtime = 16 + 4 + 4 * txtime + 6;
} else {
/* IEEE Std 802.11b-1999, pp. 28 */
txtime = (16 * len + rate - 1) / rate;
if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
txtime += 72 + 24;
else
txtime += 144 + 48;
}
return txtime;
}
uint8_t
rum_plcp_signal(int rate)
{
switch (rate) {
/* CCK rates (returned values are device-dependent) */
case 2: return 0x0;
case 4: return 0x1;
case 11: return 0x2;
case 22: return 0x3;
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
case 12: return 0xb;
case 18: return 0xf;
case 24: return 0xa;
case 36: return 0xe;
case 48: return 0x9;
case 72: return 0xd;
case 96: return 0x8;
case 108: return 0xc;
/* unsupported rates (should not get there) */
default: return 0xff;
}
}
void
rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
uint32_t flags, uint16_t xflags, int len, int rate)
{
struct ieee80211com *ic = &sc->sc_ic;
uint16_t plcp_length;
int remainder;
desc->flags = htole32(flags);
desc->flags |= htole32(RT2573_TX_VALID);
desc->flags |= htole32(len << 16);
desc->xflags = htole16(xflags);
desc->wme = htole16(
RT2573_QID(0) |
RT2573_AIFSN(2) |
RT2573_LOGCWMIN(4) |
RT2573_LOGCWMAX(10));
/* setup PLCP fields */
desc->plcp_signal = rum_plcp_signal(rate);
desc->plcp_service = 4;
len += IEEE80211_CRC_LEN;
if (RUM_RATE_IS_OFDM(rate)) {
desc->flags |= htole32(RT2573_TX_OFDM);
plcp_length = len & 0xfff;
desc->plcp_length_hi = plcp_length >> 6;
desc->plcp_length_lo = plcp_length & 0x3f;
} else {
plcp_length = (16 * len + rate - 1) / rate;
if (rate == 22) {
remainder = (16 * len) % 22;
if (remainder != 0 && remainder < 7)
desc->plcp_service |= RT2573_PLCP_LENGEXT;
}
desc->plcp_length_hi = plcp_length >> 8;
desc->plcp_length_lo = plcp_length & 0xff;
if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
desc->plcp_signal |= 0x08;
}
}
#define RUM_TX_TIMEOUT 5000
int
rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct rum_tx_desc *desc;
struct rum_tx_data *data;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
uint32_t flags = 0;
uint16_t dur;
usbd_status error;
int rate, xferlen, pktlen, needrts = 0, needcts = 0;
wh = mtod(m0, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
k = ieee80211_get_txkey(ic, wh, ni);
if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL)
return ENOBUFS;
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
/* compute actual packet length (including CRC and crypto overhead) */
pktlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
/* pickup a rate */
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_MGT)) {
/* mgmt/multicast frames are sent at the lowest avail. rate */
rate = ni->ni_rates.rs_rates[0];
} else if (ic->ic_fixed_rate != -1) {
rate = ic->ic_sup_rates[ic->ic_curmode].
rs_rates[ic->ic_fixed_rate];
} else
rate = ni->ni_rates.rs_rates[ni->ni_txrate];
if (rate == 0)
rate = 2; /* XXX should not happen */
rate &= IEEE80211_RATE_VAL;
/* check if RTS/CTS or CTS-to-self protection must be used */
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
/* multicast frames are not sent at OFDM rates in 802.11b/g */
if (pktlen > ic->ic_rtsthreshold) {
needrts = 1; /* RTS/CTS based on frame length */
} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
RUM_RATE_IS_OFDM(rate)) {
if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
needcts = 1; /* CTS-to-self */
else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
needrts = 1; /* RTS/CTS */
}
}
if (needrts || needcts) {
struct mbuf *mprot;
int protrate, ackrate;
uint16_t dur;
protrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
ackrate = rum_ack_rate(ic, rate);
dur = rum_txtime(pktlen, rate, ic->ic_flags) +
rum_txtime(RUM_ACK_SIZE, ackrate, ic->ic_flags) +
2 * sc->sifs;
if (needrts) {
dur += rum_txtime(RUM_CTS_SIZE, rum_ack_rate(ic,
protrate), ic->ic_flags) + sc->sifs;
mprot = ieee80211_get_rts(ic, wh, dur);
} else {
mprot = ieee80211_get_cts_to_self(ic, dur);
}
if (mprot == NULL) {
printf("%s: could not allocate protection frame\n",
sc->sc_dev.dv_xname);
m_freem(m0);
return ENOBUFS;
}
data = &sc->tx_data[sc->tx_cur];
desc = (struct rum_tx_desc *)data->buf;
/* avoid multiple free() of the same node for each fragment */
data->ni = ieee80211_ref_node(ni);
m_copydata(mprot, 0, mprot->m_pkthdr.len,
data->buf + RT2573_TX_DESC_SIZE);
rum_setup_tx_desc(sc, desc,
(needrts ? RT2573_TX_NEED_ACK : 0) | RT2573_TX_MORE_FRAG,
0, mprot->m_pkthdr.len, protrate);
/* no roundup necessary here */
xferlen = RT2573_TX_DESC_SIZE + mprot->m_pkthdr.len;
/* XXX may want to pass the protection frame to BPF */
/* mbuf is no longer needed */
m_freem(mprot);
usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf,
xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
RUM_TX_TIMEOUT, rum_txeof);
error = usbd_transfer(data->xfer);
if (error != 0 && error != USBD_IN_PROGRESS) {
m_freem(m0);
return error;
}
sc->tx_queued++;
sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
}
data = &sc->tx_data[sc->tx_cur];
desc = (struct rum_tx_desc *)data->buf;
data->ni = ni;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= RT2573_TX_NEED_ACK;
dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
ic->ic_flags) + sc->sifs;
*(uint16_t *)wh->i_dur = htole16(dur);
#ifndef IEEE80211_STA_ONLY
/* tell hardware to set timestamp in probe responses */
if ((wh->i_fc[0] &
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
(IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
flags |= RT2573_TX_TIMESTAMP;
#endif
}
#if NBPFILTER > 0
if (sc->sc_drvbpf != NULL) {
struct mbuf mb;
struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
tap->wt_antenna = sc->tx_ant;
mb.m_data = (caddr_t)tap;
mb.m_len = sc->sc_txtap_len;
mb.m_next = m0;
mb.m_nextpkt = NULL;
mb.m_type = 0;
mb.m_flags = 0;
bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
}
#endif
m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
/* align end on a 4-bytes boundary */
xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
/*
* No space left in the last URB to store the extra 4 bytes, force
* sending of another URB.
*/
if ((xferlen % 64) == 0)
xferlen += 4;
DPRINTFN(10, ("sending frame len=%u rate=%u xfer len=%u\n",
m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen));
/* mbuf is no longer needed */
m_freem(m0);
usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
error = usbd_transfer(data->xfer);
if (error != 0 && error != USBD_IN_PROGRESS)
return error;
sc->tx_queued++;
sc->tx_cur = (sc->tx_cur + 1) % RUM_TX_LIST_COUNT;
return 0;
}
void
rum_start(struct ifnet *ifp)
{
struct rum_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
struct mbuf *m0;
/*
* net80211 may still try to send management frames even if the
* IFF_RUNNING flag is not set...
*/
if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
return;
for (;;) {
if (sc->tx_queued >= RUM_TX_LIST_COUNT - 1) {
ifq_set_oactive(&ifp->if_snd);
break;
}
m0 = mq_dequeue(&ic->ic_mgtq);
if (m0 != NULL) {
ni = m0->m_pkthdr.ph_cookie;
#if NBPFILTER > 0
if (ic->ic_rawbpf != NULL)
bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
#endif
if (rum_tx_data(sc, m0, ni) != 0)
break;
} else {
if (ic->ic_state != IEEE80211_S_RUN)
break;
m0 = ifq_dequeue(&ifp->if_snd);
if (m0 == NULL)
break;
#if NBPFILTER > 0
if (ifp->if_bpf != NULL)
bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
#endif
m0 = ieee80211_encap(ifp, m0, &ni);
if (m0 == NULL)
continue;
#if NBPFILTER > 0
if (ic->ic_rawbpf != NULL)
bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
#endif
if (rum_tx_data(sc, m0, ni) != 0) {
if (ni != NULL)
ieee80211_release_node(ic, ni);
ifp->if_oerrors++;
break;
}
}
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
}
void
rum_watchdog(struct ifnet *ifp)
{
struct rum_softc *sc = ifp->if_softc;
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
printf("%s: device timeout\n", sc->sc_dev.dv_xname);
/*rum_init(ifp); XXX needs a process context! */
ifp->if_oerrors++;
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(ifp);
}
int
rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct rum_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int s, error = 0;
if (usbd_is_dying(sc->sc_udev))
return ENXIO;
usbd_ref_incr(sc->sc_udev);
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
/* FALLTHROUGH */
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING)
rum_update_promisc(sc);
else
rum_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
rum_stop(ifp, 1);
}
break;
case SIOCS80211CHANNEL:
/*
* This allows for fast channel switching in monitor mode
* (used by kismet). In IBSS mode, we must explicitly reset
* the interface to generate a new beacon frame.
*/
error = ieee80211_ioctl(ifp, cmd, data);
if (error == ENETRESET &&
ic->ic_opmode == IEEE80211_M_MONITOR) {
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING))
rum_set_chan(sc, ic->ic_ibss_chan);
error = 0;
}
break;
default:
error = ieee80211_ioctl(ifp, cmd, data);
}
if (error == ENETRESET) {
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING))
rum_init(ifp);
error = 0;
}
splx(s);
usbd_ref_decr(sc->sc_udev);
return error;
}
void
rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
{
usb_device_request_t req;
usbd_status error;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = RT2573_READ_EEPROM;
USETW(req.wValue, 0);
USETW(req.wIndex, addr);
USETW(req.wLength, len);
error = usbd_do_request(sc->sc_udev, &req, buf);
if (error != 0) {
printf("%s: could not read EEPROM: %s\n",
sc->sc_dev.dv_xname, usbd_errstr(error));
}
}
uint32_t
rum_read(struct rum_softc *sc, uint16_t reg)
{
uint32_t val;
rum_read_multi(sc, reg, &val, sizeof val);
return letoh32(val);
}
void
rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
{
usb_device_request_t req;
usbd_status error;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = RT2573_READ_MULTI_MAC;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, len);
error = usbd_do_request(sc->sc_udev, &req, buf);
if (error != 0) {
printf("%s: could not multi read MAC register: %s\n",
sc->sc_dev.dv_xname, usbd_errstr(error));
}
}
void
rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
{
uint32_t tmp = htole32(val);
rum_write_multi(sc, reg, &tmp, sizeof tmp);
}
void
rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
{
usb_device_request_t req;
usbd_status error;
int offset;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RT2573_WRITE_MULTI_MAC;
USETW(req.wValue, 0);
/* write at most 64 bytes at a time */
for (offset = 0; offset < len; offset += 64) {
USETW(req.wIndex, reg + offset);
USETW(req.wLength, MIN(len - offset, 64));
error = usbd_do_request(sc->sc_udev, &req, buf + offset);
if (error != 0) {
printf("%s: could not multi write MAC register: %s\n",
sc->sc_dev.dv_xname, usbd_errstr(error));
}
}
}
void
rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
{
uint32_t tmp;
int ntries;
for (ntries = 0; ntries < 5; ntries++) {
if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
break;
}
if (ntries == 5) {
printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname);
return;
}
tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
rum_write(sc, RT2573_PHY_CSR3, tmp);
}
uint8_t
rum_bbp_read(struct rum_softc *sc, uint8_t reg)
{
uint32_t val;
int ntries;
for (ntries = 0; ntries < 5; ntries++) {
if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
break;
}
if (ntries == 5) {
printf("%s: could not read BBP\n", sc->sc_dev.dv_xname);
return 0;
}
val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
rum_write(sc, RT2573_PHY_CSR3, val);
for (ntries = 0; ntries < 100; ntries++) {
val = rum_read(sc, RT2573_PHY_CSR3);
if (!(val & RT2573_BBP_BUSY))
return val & 0xff;
DELAY(1);
}
printf("%s: could not read BBP\n", sc->sc_dev.dv_xname);
return 0;
}
void
rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
{
uint32_t tmp;
int ntries;
for (ntries = 0; ntries < 5; ntries++) {
if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
break;
}
if (ntries == 5) {
printf("%s: could not write to RF\n", sc->sc_dev.dv_xname);
return;
}
tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
(reg & 3);
rum_write(sc, RT2573_PHY_CSR4, tmp);
/* remember last written value in sc */
sc->rf_regs[reg] = val;
DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
}
void
rum_select_antenna(struct rum_softc *sc)
{
uint8_t bbp4, bbp77;
uint32_t tmp;
bbp4 = rum_bbp_read(sc, 4);
bbp77 = rum_bbp_read(sc, 77);
/* TBD */
/* make sure Rx is disabled before switching antenna */
tmp = rum_read(sc, RT2573_TXRX_CSR0);
rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
rum_bbp_write(sc, 4, bbp4);
rum_bbp_write(sc, 77, bbp77);
rum_write(sc, RT2573_TXRX_CSR0, tmp);
}
/*
* Enable multi-rate retries for frames sent at OFDM rates.
* In 802.11b/g mode, allow fallback to CCK rates.
*/
void
rum_enable_mrr(struct rum_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
tmp = rum_read(sc, RT2573_TXRX_CSR4);
tmp &= ~RT2573_MRR_CCK_FALLBACK;
if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
tmp |= RT2573_MRR_CCK_FALLBACK;
tmp |= RT2573_MRR_ENABLED;
rum_write(sc, RT2573_TXRX_CSR4, tmp);
}
void
rum_set_txpreamble(struct rum_softc *sc)
{
uint32_t tmp;
tmp = rum_read(sc, RT2573_TXRX_CSR4);
tmp &= ~RT2573_SHORT_PREAMBLE;
if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
tmp |= RT2573_SHORT_PREAMBLE;
rum_write(sc, RT2573_TXRX_CSR4, tmp);
}
void
rum_set_basicrates(struct rum_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
/* update basic rate set */
if (ic->ic_curmode == IEEE80211_MODE_11B) {
/* 11b basic rates: 1, 2Mbps */
rum_write(sc, RT2573_TXRX_CSR5, 0x3);
} else if (ic->ic_curmode == IEEE80211_MODE_11A) {
/* 11a basic rates: 6, 12, 24Mbps */
rum_write(sc, RT2573_TXRX_CSR5, 0x150);
} else {
/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
rum_write(sc, RT2573_TXRX_CSR5, 0xf);
}
}
/*
* Reprogram MAC/BBP to switch to a new band. Values taken from the reference
* driver.
*/
void
rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
{
uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
uint32_t tmp;
/* update all BBP registers that depend on the band */
bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
if (IEEE80211_IS_CHAN_5GHZ(c)) {
bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
}
if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
(IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
}
sc->bbp17 = bbp17;
rum_bbp_write(sc, 17, bbp17);
rum_bbp_write(sc, 96, bbp96);
rum_bbp_write(sc, 104, bbp104);
if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
(IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
rum_bbp_write(sc, 75, 0x80);
rum_bbp_write(sc, 86, 0x80);
rum_bbp_write(sc, 88, 0x80);
}
rum_bbp_write(sc, 35, bbp35);
rum_bbp_write(sc, 97, bbp97);
rum_bbp_write(sc, 98, bbp98);
tmp = rum_read(sc, RT2573_PHY_CSR0);
tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
if (IEEE80211_IS_CHAN_2GHZ(c))
tmp |= RT2573_PA_PE_2GHZ;
else
tmp |= RT2573_PA_PE_5GHZ;
rum_write(sc, RT2573_PHY_CSR0, tmp);
/* 802.11a uses a 16 microseconds short interframe space */
sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
}
void
rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
{
struct ieee80211com *ic = &sc->sc_ic;
const struct rfprog *rfprog;
uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
int8_t power;
u_int i, chan;
chan = ieee80211_chan2ieee(ic, c);
if (chan == 0 || chan == IEEE80211_CHAN_ANY)
return;
/* select the appropriate RF settings based on what EEPROM says */
rfprog = (sc->rf_rev == RT2573_RF_5225 ||
sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
/* find the settings for this channel (we know it exists) */
for (i = 0; rfprog[i].chan != chan; i++)
;
power = sc->txpow[i];
if (power < 0) {
bbp94 += power;
power = 0;
} else if (power > 31) {
bbp94 += power - 31;
power = 31;
}
/*
* If we are switching from the 2GHz band to the 5GHz band or
* vice-versa, BBP registers need to be reprogrammed.
*/
if (c->ic_flags != sc->sc_curchan->ic_flags) {
rum_select_band(sc, c);
rum_select_antenna(sc);
}
sc->sc_curchan = c;
rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
DELAY(10);
/* enable smart mode for MIMO-capable RFs */
bbp3 = rum_bbp_read(sc, 3);
bbp3 &= ~RT2573_SMART_MODE;
if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
bbp3 |= RT2573_SMART_MODE;
rum_bbp_write(sc, 3, bbp3);
if (bbp94 != RT2573_BBPR94_DEFAULT)
rum_bbp_write(sc, 94, bbp94);
}
/*
* Enable TSF synchronization and tell h/w to start sending beacons for IBSS
* and HostAP operating modes.
*/
void
rum_enable_tsf_sync(struct rum_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
#ifndef IEEE80211_STA_ONLY
if (ic->ic_opmode != IEEE80211_M_STA) {
/*
* Change default 16ms TBTT adjustment to 8ms.
* Must be done before enabling beacon generation.
*/
rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
}
#endif
tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
/* set beacon interval (in 1/16ms unit) */
tmp |= ic->ic_bss->ni_intval * 16;
tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
if (ic->ic_opmode == IEEE80211_M_STA)
tmp |= RT2573_TSF_MODE(1);
#ifndef IEEE80211_STA_ONLY
else
tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
#endif
rum_write(sc, RT2573_TXRX_CSR9, tmp);
}
void
rum_update_slot(struct rum_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint8_t slottime;
uint32_t tmp;
slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ?
IEEE80211_DUR_DS_SHSLOT : IEEE80211_DUR_DS_SLOT;
tmp = rum_read(sc, RT2573_MAC_CSR9);
tmp = (tmp & ~0xff) | slottime;
rum_write(sc, RT2573_MAC_CSR9, tmp);
DPRINTF(("setting slot time to %uus\n", slottime));
}
void
rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
{
uint32_t tmp;
tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
rum_write(sc, RT2573_MAC_CSR4, tmp);
tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
rum_write(sc, RT2573_MAC_CSR5, tmp);
}
void
rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
{
uint32_t tmp;
tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
rum_write(sc, RT2573_MAC_CSR2, tmp);
tmp = addr[4] | addr[5] << 8 | 0xff << 16;
rum_write(sc, RT2573_MAC_CSR3, tmp);
}
void
rum_update_promisc(struct rum_softc *sc)
{
struct ifnet *ifp = &sc->sc_ic.ic_if;
uint32_t tmp;
tmp = rum_read(sc, RT2573_TXRX_CSR0);
tmp &= ~RT2573_DROP_NOT_TO_ME;
if (!(ifp->if_flags & IFF_PROMISC))
tmp |= RT2573_DROP_NOT_TO_ME;
rum_write(sc, RT2573_TXRX_CSR0, tmp);
DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
"entering" : "leaving"));
}
const char *
rum_get_rf(int rev)
{
switch (rev) {
case RT2573_RF_2527: return "RT2527 (MIMO XR)";
case RT2573_RF_2528: return "RT2528";
case RT2573_RF_5225: return "RT5225 (MIMO XR)";
case RT2573_RF_5226: return "RT5226";
default: return "unknown";
}
}
void
rum_read_eeprom(struct rum_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint16_t val;
#ifdef RUM_DEBUG
int i;
#endif
/* read MAC/BBP type */
rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
sc->macbbp_rev = letoh16(val);
/* read MAC address */
rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
val = letoh16(val);
sc->rf_rev = (val >> 11) & 0x1f;
sc->hw_radio = (val >> 10) & 0x1;
sc->rx_ant = (val >> 4) & 0x3;
sc->tx_ant = (val >> 2) & 0x3;
sc->nb_ant = val & 0x3;
DPRINTF(("RF revision=%d\n", sc->rf_rev));
rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
val = letoh16(val);
sc->ext_5ghz_lna = (val >> 6) & 0x1;
sc->ext_2ghz_lna = (val >> 4) & 0x1;
DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
sc->ext_2ghz_lna, sc->ext_5ghz_lna));
rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
val = letoh16(val);
if ((val & 0xff) != 0xff)
sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
val = letoh16(val);
if ((val & 0xff) != 0xff)
sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
val = letoh16(val);
if ((val & 0xff) != 0xff)
sc->rffreq = val & 0xff;
DPRINTF(("RF freq=%d\n", sc->rffreq));
/* read Tx power for all a/b/g channels */
rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
/* XXX default Tx power for 802.11a channels */
memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
#ifdef RUM_DEBUG
for (i = 0; i < 14; i++)
DPRINTF(("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]));
#endif
/* read default values for BBP registers */
rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
#ifdef RUM_DEBUG
for (i = 0; i < 14; i++) {
if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
continue;
DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
sc->bbp_prom[i].val));
}
#endif
}
int
rum_bbp_init(struct rum_softc *sc)
{
int i, ntries;
/* wait for BBP to be ready */
for (ntries = 0; ntries < 100; ntries++) {
const uint8_t val = rum_bbp_read(sc, 0);
if (val != 0 && val != 0xff)
break;
DELAY(1000);
}
if (ntries == 100) {
printf("%s: timeout waiting for BBP\n",
sc->sc_dev.dv_xname);
return EIO;
}
/* initialize BBP registers to default values */
for (i = 0; i < nitems(rum_def_bbp); i++)
rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
/* write vendor-specific BBP values (from EEPROM) */
for (i = 0; i < 16; i++) {
if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
continue;
rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
}
return 0;
}
int
rum_init(struct ifnet *ifp)
{
struct rum_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
usbd_status error;
int i, ntries;
rum_stop(ifp, 0);
/* initialize MAC registers to default values */
for (i = 0; i < nitems(rum_def_mac); i++)
rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
/* set host ready */
rum_write(sc, RT2573_MAC_CSR1, 3);
rum_write(sc, RT2573_MAC_CSR1, 0);
/* wait for BBP/RF to wakeup */
for (ntries = 0; ntries < 1000; ntries++) {
if (rum_read(sc, RT2573_MAC_CSR12) & 8)
break;
rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
DELAY(1000);
}
if (ntries == 1000) {
printf("%s: timeout waiting for BBP/RF to wakeup\n",
sc->sc_dev.dv_xname);
error = ENODEV;
goto fail;
}
if ((error = rum_bbp_init(sc)) != 0)
goto fail;
/* select default channel */
sc->sc_curchan = ic->ic_bss->ni_chan = ic->ic_ibss_chan;
rum_select_band(sc, sc->sc_curchan);
rum_select_antenna(sc);
rum_set_chan(sc, sc->sc_curchan);
/* clear STA registers */
rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
rum_set_macaddr(sc, ic->ic_myaddr);
/* initialize ASIC */
rum_write(sc, RT2573_MAC_CSR1, 4);
/*
* Allocate xfer for AMRR statistics requests.
*/
sc->amrr_xfer = usbd_alloc_xfer(sc->sc_udev);
if (sc->amrr_xfer == NULL) {
printf("%s: could not allocate AMRR xfer\n",
sc->sc_dev.dv_xname);
goto fail;
}
/*
* Open Tx and Rx USB bulk pipes.
*/
error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
&sc->sc_tx_pipeh);
if (error != 0) {
printf("%s: could not open Tx pipe: %s\n",
sc->sc_dev.dv_xname, usbd_errstr(error));
goto fail;
}
error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
&sc->sc_rx_pipeh);
if (error != 0) {
printf("%s: could not open Rx pipe: %s\n",
sc->sc_dev.dv_xname, usbd_errstr(error));
goto fail;
}
/*
* Allocate Tx and Rx xfer queues.
*/
error = rum_alloc_tx_list(sc);
if (error != 0) {
printf("%s: could not allocate Tx list\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = rum_alloc_rx_list(sc);
if (error != 0) {
printf("%s: could not allocate Rx list\n",
sc->sc_dev.dv_xname);
goto fail;
}
/*
* Start up the receive pipe.
*/
for (i = 0; i < RUM_RX_LIST_COUNT; i++) {
struct rum_rx_data *data = &sc->rx_data[i];
usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
error = usbd_transfer(data->xfer);
if (error != 0 && error != USBD_IN_PROGRESS) {
printf("%s: could not queue Rx transfer\n",
sc->sc_dev.dv_xname);
goto fail;
}
}
/* update Rx filter */
tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
RT2573_DROP_ACKCTS;
#ifndef IEEE80211_STA_ONLY
if (ic->ic_opmode != IEEE80211_M_HOSTAP)
#endif
tmp |= RT2573_DROP_TODS;
if (!(ifp->if_flags & IFF_PROMISC))
tmp |= RT2573_DROP_NOT_TO_ME;
}
rum_write(sc, RT2573_TXRX_CSR0, tmp);
ifq_clr_oactive(&ifp->if_snd);
ifp->if_flags |= IFF_RUNNING;
if (ic->ic_opmode == IEEE80211_M_MONITOR)
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
else
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
return 0;
fail: rum_stop(ifp, 1);
return error;
}
void
rum_stop(struct ifnet *ifp, int disable)
{
struct rum_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
sc->sc_tx_timer = 0;
ifp->if_timer = 0;
ifp->if_flags &= ~IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
/* disable Rx */
tmp = rum_read(sc, RT2573_TXRX_CSR0);
rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
/* reset ASIC */
rum_write(sc, RT2573_MAC_CSR1, 3);
rum_write(sc, RT2573_MAC_CSR1, 0);
if (sc->amrr_xfer != NULL) {
usbd_free_xfer(sc->amrr_xfer);
sc->amrr_xfer = NULL;
}
if (sc->sc_rx_pipeh != NULL) {
usbd_close_pipe(sc->sc_rx_pipeh);
sc->sc_rx_pipeh = NULL;
}
if (sc->sc_tx_pipeh != NULL) {
usbd_close_pipe(sc->sc_tx_pipeh);
sc->sc_tx_pipeh = NULL;
}
rum_free_rx_list(sc);
rum_free_tx_list(sc);
}
int
rum_load_microcode(struct rum_softc *sc, const u_char *ucode, size_t size)
{
usb_device_request_t req;
uint16_t reg = RT2573_MCU_CODE_BASE;
usbd_status error;
/* copy firmware image into NIC */
for (; size >= 4; reg += 4, ucode += 4, size -= 4)
rum_write(sc, reg, UGETDW(ucode));
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RT2573_MCU_CNTL;
USETW(req.wValue, RT2573_MCU_RUN);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
error = usbd_do_request(sc->sc_udev, &req, NULL);
if (error != 0) {
printf("%s: could not run firmware: %s\n",
sc->sc_dev.dv_xname, usbd_errstr(error));
}
return error;
}
#ifndef IEEE80211_STA_ONLY
int
rum_prepare_beacon(struct rum_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct rum_tx_desc desc;
struct mbuf *m0;
int rate;
m0 = ieee80211_beacon_alloc(ic, ic->ic_bss);
if (m0 == NULL) {
printf("%s: could not allocate beacon frame\n",
sc->sc_dev.dv_xname);
return ENOBUFS;
}
/* send beacons at the lowest available rate */
rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2;
rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
m0->m_pkthdr.len, rate);
/* copy the first 24 bytes of Tx descriptor into NIC memory */
rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
/* copy beacon header and payload into NIC memory */
rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
m0->m_pkthdr.len);
m_freem(m0);
return 0;
}
#endif
void
rum_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
{
/* start with lowest Tx rate */
ni->ni_txrate = 0;
}
void
rum_amrr_start(struct rum_softc *sc, struct ieee80211_node *ni)
{
int i;
/* clear statistic registers (STA_CSR0 to STA_CSR5) */
rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
/* set rate to some reasonable initial value */
for (i = ni->ni_rates.rs_nrates - 1;
i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
i--);
ni->ni_txrate = i;
if (!usbd_is_dying(sc->sc_udev))
timeout_add_sec(&sc->amrr_to, 1);
}
void
rum_amrr_timeout(void *arg)
{
struct rum_softc *sc = arg;
usb_device_request_t req;
if (usbd_is_dying(sc->sc_udev))
return;
/*
* Asynchronously read statistic registers (cleared by read).
*/
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = RT2573_READ_MULTI_MAC;
USETW(req.wValue, 0);
USETW(req.wIndex, RT2573_STA_CSR0);
USETW(req.wLength, sizeof sc->sta);
usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof sc->sta, 0,
rum_amrr_update);
(void)usbd_transfer(sc->amrr_xfer);
}
void
rum_amrr_update(struct usbd_xfer *xfer, void *priv,
usbd_status status)
{
struct rum_softc *sc = (struct rum_softc *)priv;
struct ifnet *ifp = &sc->sc_ic.ic_if;
if (status != USBD_NORMAL_COMPLETION) {
printf("%s: could not retrieve Tx statistics - cancelling "
"automatic rate control\n", sc->sc_dev.dv_xname);
return;
}
/* count TX retry-fail as Tx errors */
ifp->if_oerrors += letoh32(sc->sta[5]) >> 16;
sc->amn.amn_retrycnt =
(letoh32(sc->sta[4]) >> 16) + /* TX one-retry ok count */
(letoh32(sc->sta[5]) & 0xffff) + /* TX more-retry ok count */
(letoh32(sc->sta[5]) >> 16); /* TX retry-fail count */
sc->amn.amn_txcnt =
sc->amn.amn_retrycnt +
(letoh32(sc->sta[4]) & 0xffff); /* TX no-retry ok count */
ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
if (!usbd_is_dying(sc->sc_udev))
timeout_add_sec(&sc->amrr_to, 1);
}