src/sys/kern/kern_malloc.c

740 lines
20 KiB
C

/* $OpenBSD: kern_malloc.c,v 1.151 2023/12/14 14:04:57 claudio Exp $ */
/* $NetBSD: kern_malloc.c,v 1.15.4.2 1996/06/13 17:10:56 cgd Exp $ */
/*
* Copyright (c) 1987, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94
*/
#include <sys/param.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/stdint.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#include <sys/mutex.h>
#include <sys/rwlock.h>
#include <sys/tracepoint.h>
#include <uvm/uvm_extern.h>
#if defined(DDB)
#include <machine/db_machdep.h>
#include <ddb/db_output.h>
#endif
static
#ifndef SMALL_KERNEL
__inline__
#endif
long BUCKETINDX(size_t sz)
{
long b, d;
/* note that this relies upon MINALLOCSIZE being 1 << MINBUCKET */
b = 7 + MINBUCKET; d = 4;
while (d != 0) {
if (sz <= (1 << b))
b -= d;
else
b += d;
d >>= 1;
}
if (sz <= (1 << b))
b += 0;
else
b += 1;
return b;
}
static struct vm_map kmem_map_store;
struct vm_map *kmem_map = NULL;
/*
* Default number of pages in kmem_map. We attempt to calculate this
* at run-time, but allow it to be either patched or set in the kernel
* config file.
*/
#ifndef NKMEMPAGES
#define NKMEMPAGES -1
#endif
u_int nkmempages = NKMEMPAGES;
struct mutex malloc_mtx = MUTEX_INITIALIZER(IPL_VM);
struct kmembuckets bucket[MINBUCKET + 16];
#ifdef KMEMSTATS
struct kmemstats kmemstats[M_LAST];
#endif
struct kmemusage *kmemusage;
char *kmembase, *kmemlimit;
char buckstring[16 * sizeof("123456,")];
int buckstring_init = 0;
#if defined(KMEMSTATS) || defined(DIAGNOSTIC)
char *memname[] = INITKMEMNAMES;
char *memall = NULL;
struct rwlock sysctl_kmemlock = RWLOCK_INITIALIZER("sysctlklk");
#endif
/*
* Normally the freelist structure is used only to hold the list pointer
* for free objects. However, when running with diagnostics, the first
* 8 bytes of the structure is unused except for diagnostic information,
* and the free list pointer is at offset 8 in the structure. Since the
* first 8 bytes is the portion of the structure most often modified, this
* helps to detect memory reuse problems and avoid free list corruption.
*/
struct kmem_freelist {
int32_t kf_spare0;
int16_t kf_type;
int16_t kf_spare1;
XSIMPLEQ_ENTRY(kmem_freelist) kf_flist;
};
#ifdef DIAGNOSTIC
/*
* This structure provides a set of masks to catch unaligned frees.
*/
const long addrmask[] = { 0,
0x00000001, 0x00000003, 0x00000007, 0x0000000f,
0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
};
#endif /* DIAGNOSTIC */
#ifndef SMALL_KERNEL
struct timeval malloc_errintvl = { 5, 0 };
struct timeval malloc_lasterr;
#endif
/*
* Allocate a block of memory
*/
void *
malloc(size_t size, int type, int flags)
{
struct kmembuckets *kbp;
struct kmemusage *kup;
struct kmem_freelist *freep;
long indx, npg, allocsize;
caddr_t va, cp;
int s;
#ifdef DIAGNOSTIC
int freshalloc;
char *savedtype;
#endif
#ifdef KMEMSTATS
struct kmemstats *ksp = &kmemstats[type];
int wake;
if (((unsigned long)type) <= 1 || ((unsigned long)type) >= M_LAST)
panic("malloc: bogus type %d", type);
#endif
KASSERT(flags & (M_WAITOK | M_NOWAIT));
#ifdef DIAGNOSTIC
if ((flags & M_NOWAIT) == 0) {
extern int pool_debug;
assertwaitok();
if (pool_debug == 2)
yield();
}
#endif
if (size > 65535 * PAGE_SIZE) {
if (flags & M_CANFAIL) {
#ifndef SMALL_KERNEL
if (ratecheck(&malloc_lasterr, &malloc_errintvl))
printf("malloc(): allocation too large, "
"type = %d, size = %lu\n", type, size);
#endif
return (NULL);
} else
panic("malloc: allocation too large, "
"type = %d, size = %lu", type, size);
}
indx = BUCKETINDX(size);
if (size > MAXALLOCSAVE)
allocsize = round_page(size);
else
allocsize = 1 << indx;
kbp = &bucket[indx];
mtx_enter(&malloc_mtx);
#ifdef KMEMSTATS
while (ksp->ks_memuse >= ksp->ks_limit) {
if (flags & M_NOWAIT) {
mtx_leave(&malloc_mtx);
return (NULL);
}
#ifdef DIAGNOSTIC
if (ISSET(flags, M_WAITOK) && curproc == &proc0)
panic("%s: cannot sleep for memory during boot",
__func__);
#endif
if (ksp->ks_limblocks < 65535)
ksp->ks_limblocks++;
msleep_nsec(ksp, &malloc_mtx, PSWP+2, memname[type], INFSLP);
}
ksp->ks_memuse += allocsize; /* account for this early */
ksp->ks_size |= 1 << indx;
#endif
if (XSIMPLEQ_FIRST(&kbp->kb_freelist) == NULL) {
mtx_leave(&malloc_mtx);
npg = atop(round_page(allocsize));
s = splvm();
va = (caddr_t)uvm_km_kmemalloc_pla(kmem_map, NULL,
(vsize_t)ptoa(npg), 0,
((flags & M_NOWAIT) ? UVM_KMF_NOWAIT : 0) |
((flags & M_CANFAIL) ? UVM_KMF_CANFAIL : 0),
no_constraint.ucr_low, no_constraint.ucr_high,
0, 0, 0);
splx(s);
if (va == NULL) {
/*
* Kmem_malloc() can return NULL, even if it can
* wait, if there is no map space available, because
* it can't fix that problem. Neither can we,
* right now. (We should release pages which
* are completely free and which are in buckets
* with too many free elements.)
*/
if ((flags & (M_NOWAIT|M_CANFAIL)) == 0)
panic("malloc: out of space in kmem_map");
#ifdef KMEMSTATS
mtx_enter(&malloc_mtx);
ksp->ks_memuse -= allocsize;
wake = ksp->ks_memuse + allocsize >= ksp->ks_limit &&
ksp->ks_memuse < ksp->ks_limit;
mtx_leave(&malloc_mtx);
if (wake)
wakeup(ksp);
#endif
return (NULL);
}
mtx_enter(&malloc_mtx);
#ifdef KMEMSTATS
kbp->kb_total += kbp->kb_elmpercl;
#endif
kup = btokup(va);
kup->ku_indx = indx;
#ifdef DIAGNOSTIC
freshalloc = 1;
#endif
if (allocsize > MAXALLOCSAVE) {
kup->ku_pagecnt = npg;
goto out;
}
#ifdef KMEMSTATS
kup->ku_freecnt = kbp->kb_elmpercl;
kbp->kb_totalfree += kbp->kb_elmpercl;
#endif
cp = va + (npg * PAGE_SIZE) - allocsize;
for (;;) {
freep = (struct kmem_freelist *)cp;
#ifdef DIAGNOSTIC
/*
* Copy in known text to detect modification
* after freeing.
*/
poison_mem(cp, allocsize);
freep->kf_type = M_FREE;
#endif /* DIAGNOSTIC */
XSIMPLEQ_INSERT_HEAD(&kbp->kb_freelist, freep,
kf_flist);
if (cp <= va)
break;
cp -= allocsize;
}
} else {
#ifdef DIAGNOSTIC
freshalloc = 0;
#endif
}
freep = XSIMPLEQ_FIRST(&kbp->kb_freelist);
XSIMPLEQ_REMOVE_HEAD(&kbp->kb_freelist, kf_flist);
va = (caddr_t)freep;
#ifdef DIAGNOSTIC
savedtype = (unsigned)freep->kf_type < M_LAST ?
memname[freep->kf_type] : "???";
if (freshalloc == 0 && XSIMPLEQ_FIRST(&kbp->kb_freelist)) {
int rv;
vaddr_t addr = (vaddr_t)XSIMPLEQ_FIRST(&kbp->kb_freelist);
vm_map_lock(kmem_map);
rv = uvm_map_checkprot(kmem_map, addr,
addr + sizeof(struct kmem_freelist), PROT_WRITE);
vm_map_unlock(kmem_map);
if (!rv) {
printf("%s %zd of object %p size 0x%lx %s %s"
" (invalid addr %p)\n",
"Data modified on freelist: word",
(int32_t *)&addr - (int32_t *)kbp, va, size,
"previous type", savedtype, (void *)addr);
}
}
/* Fill the fields that we've used with poison */
poison_mem(freep, sizeof(*freep));
/* and check that the data hasn't been modified. */
if (freshalloc == 0) {
size_t pidx;
uint32_t pval;
if (poison_check(va, allocsize, &pidx, &pval)) {
panic("%s %zd of object %p size 0x%lx %s %s"
" (0x%x != 0x%x)\n",
"Data modified on freelist: word",
pidx, va, size, "previous type",
savedtype, ((int32_t*)va)[pidx], pval);
}
}
freep->kf_spare0 = 0;
#endif /* DIAGNOSTIC */
#ifdef KMEMSTATS
kup = btokup(va);
if (kup->ku_indx != indx)
panic("malloc: wrong bucket");
if (kup->ku_freecnt == 0)
panic("malloc: lost data");
kup->ku_freecnt--;
kbp->kb_totalfree--;
out:
kbp->kb_calls++;
ksp->ks_inuse++;
ksp->ks_calls++;
if (ksp->ks_memuse > ksp->ks_maxused)
ksp->ks_maxused = ksp->ks_memuse;
#else
out:
#endif
mtx_leave(&malloc_mtx);
if ((flags & M_ZERO) && va != NULL)
memset(va, 0, size);
TRACEPOINT(uvm, malloc, type, va, size, flags);
return (va);
}
/*
* Free a block of memory allocated by malloc.
*/
void
free(void *addr, int type, size_t freedsize)
{
struct kmembuckets *kbp;
struct kmemusage *kup;
struct kmem_freelist *freep;
long size;
int s;
#ifdef DIAGNOSTIC
long alloc;
#endif
#ifdef KMEMSTATS
struct kmemstats *ksp = &kmemstats[type];
int wake;
#endif
if (addr == NULL)
return;
#ifdef DIAGNOSTIC
if (addr < (void *)kmembase || addr >= (void *)kmemlimit)
panic("free: non-malloced addr %p type %s", addr,
memname[type]);
#endif
TRACEPOINT(uvm, free, type, addr, freedsize);
mtx_enter(&malloc_mtx);
kup = btokup(addr);
size = 1 << kup->ku_indx;
kbp = &bucket[kup->ku_indx];
if (size > MAXALLOCSAVE)
size = kup->ku_pagecnt << PAGE_SHIFT;
#ifdef DIAGNOSTIC
#if 0
if (freedsize == 0) {
static int zerowarnings;
if (zerowarnings < 5) {
zerowarnings++;
printf("free with zero size: (%d)\n", type);
#ifdef DDB
db_stack_dump();
#endif
}
#endif
if (freedsize != 0 && freedsize > size)
panic("free: size too large %zu > %ld (%p) type %s",
freedsize, size, addr, memname[type]);
if (freedsize != 0 && size > MINALLOCSIZE && freedsize <= size / 2)
panic("free: size too small %zu <= %ld / 2 (%p) type %s",
freedsize, size, addr, memname[type]);
/*
* Check for returns of data that do not point to the
* beginning of the allocation.
*/
if (size > PAGE_SIZE)
alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
else
alloc = addrmask[kup->ku_indx];
if (((u_long)addr & alloc) != 0)
panic("free: unaligned addr %p, size %ld, type %s, mask %ld",
addr, size, memname[type], alloc);
#endif /* DIAGNOSTIC */
if (size > MAXALLOCSAVE) {
u_short pagecnt = kup->ku_pagecnt;
kup->ku_indx = 0;
kup->ku_pagecnt = 0;
mtx_leave(&malloc_mtx);
s = splvm();
uvm_km_free(kmem_map, (vaddr_t)addr, ptoa(pagecnt));
splx(s);
#ifdef KMEMSTATS
mtx_enter(&malloc_mtx);
ksp->ks_memuse -= size;
wake = ksp->ks_memuse + size >= ksp->ks_limit &&
ksp->ks_memuse < ksp->ks_limit;
ksp->ks_inuse--;
kbp->kb_total -= 1;
mtx_leave(&malloc_mtx);
if (wake)
wakeup(ksp);
#endif
return;
}
freep = (struct kmem_freelist *)addr;
#ifdef DIAGNOSTIC
/*
* Check for multiple frees. Use a quick check to see if
* it looks free before laboriously searching the freelist.
*/
if (freep->kf_spare0 == poison_value(freep)) {
struct kmem_freelist *fp;
XSIMPLEQ_FOREACH(fp, &kbp->kb_freelist, kf_flist) {
if (addr != fp)
continue;
printf("multiply freed item %p\n", addr);
panic("free: duplicated free");
}
}
/*
* Copy in known text to detect modification after freeing
* and to make it look free. Also, save the type being freed
* so we can list likely culprit if modification is detected
* when the object is reallocated.
*/
poison_mem(addr, size);
freep->kf_spare0 = poison_value(freep);
freep->kf_type = type;
#endif /* DIAGNOSTIC */
#ifdef KMEMSTATS
kup->ku_freecnt++;
if (kup->ku_freecnt >= kbp->kb_elmpercl) {
if (kup->ku_freecnt > kbp->kb_elmpercl)
panic("free: multiple frees");
else if (kbp->kb_totalfree > kbp->kb_highwat)
kbp->kb_couldfree++;
}
kbp->kb_totalfree++;
ksp->ks_memuse -= size;
wake = ksp->ks_memuse + size >= ksp->ks_limit &&
ksp->ks_memuse < ksp->ks_limit;
ksp->ks_inuse--;
#endif
XSIMPLEQ_INSERT_TAIL(&kbp->kb_freelist, freep, kf_flist);
mtx_leave(&malloc_mtx);
#ifdef KMEMSTATS
if (wake)
wakeup(ksp);
#endif
}
/*
* Compute the number of pages that kmem_map will map, that is,
* the size of the kernel malloc arena.
*/
void
kmeminit_nkmempages(void)
{
u_int npages;
if (nkmempages != -1) {
/*
* It's already been set (by us being here before, or
* by patching or kernel config options), bail out now.
*/
return;
}
/*
* We use the following (simple) formula:
*
* Up to 1G physmem use physical memory / 4,
* above 1G add an extra 16MB per 1G of memory.
*
* Clamp it down depending on VM_KERNEL_SPACE_SIZE
* - up and including 512M -> 64MB
* - between 512M and 1024M -> 128MB
* - over 1024M clamping to VM_KERNEL_SPACE_SIZE / 4
*/
npages = MIN(physmem, atop(1024 * 1024 * 1024)) / 4;
if (physmem > atop(1024 * 1024 * 1024))
npages += (physmem - atop(1024 * 1024 * 1024)) / 64;
if (VM_KERNEL_SPACE_SIZE <= 512 * 1024 * 1024) {
if (npages > atop(64 * 1024 * 1024))
npages = atop(64 * 1024 * 1024);
} else if (VM_KERNEL_SPACE_SIZE <= 1024 * 1024 * 1024) {
if (npages > atop(128 * 1024 * 1024))
npages = atop(128 * 1024 * 1024);
} else if (npages > atop(VM_KERNEL_SPACE_SIZE) / 4)
npages = atop(VM_KERNEL_SPACE_SIZE) / 4;
nkmempages = npages;
}
/*
* Initialize the kernel memory allocator
*/
void
kmeminit(void)
{
vaddr_t base, limit;
long indx;
#ifdef DIAGNOSTIC
if (sizeof(struct kmem_freelist) > (1 << MINBUCKET))
panic("kmeminit: minbucket too small/struct freelist too big");
#endif
/*
* Compute the number of kmem_map pages, if we have not
* done so already.
*/
kmeminit_nkmempages();
base = vm_map_min(kernel_map);
kmem_map = uvm_km_suballoc(kernel_map, &base, &limit,
(vsize_t)nkmempages << PAGE_SHIFT,
#ifdef KVA_GUARDPAGES
VM_MAP_INTRSAFE | VM_MAP_GUARDPAGES,
#else
VM_MAP_INTRSAFE,
#endif
FALSE, &kmem_map_store);
kmembase = (char *)base;
kmemlimit = (char *)limit;
kmemusage = km_alloc(round_page(nkmempages * sizeof(struct kmemusage)),
&kv_any, &kp_zero, &kd_waitok);
for (indx = 0; indx < MINBUCKET + 16; indx++) {
XSIMPLEQ_INIT(&bucket[indx].kb_freelist);
}
#ifdef KMEMSTATS
for (indx = 0; indx < MINBUCKET + 16; indx++) {
if (1 << indx >= PAGE_SIZE)
bucket[indx].kb_elmpercl = 1;
else
bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl;
}
for (indx = 0; indx < M_LAST; indx++)
kmemstats[indx].ks_limit =
(long)nkmempages * PAGE_SIZE * 6 / 10;
#endif
}
/*
* Return kernel malloc statistics information.
*/
int
sysctl_malloc(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp,
size_t newlen, struct proc *p)
{
struct kmembuckets kb;
#ifdef KMEMSTATS
struct kmemstats km;
#endif
#if defined(KMEMSTATS) || defined(DIAGNOSTIC)
int error;
#endif
int i, siz;
if (namelen != 2 && name[0] != KERN_MALLOC_BUCKETS &&
name[0] != KERN_MALLOC_KMEMNAMES)
return (ENOTDIR); /* overloaded */
switch (name[0]) {
case KERN_MALLOC_BUCKETS:
/* Initialize the first time */
if (buckstring_init == 0) {
buckstring_init = 1;
memset(buckstring, 0, sizeof(buckstring));
for (siz = 0, i = MINBUCKET; i < MINBUCKET + 16; i++) {
snprintf(buckstring + siz,
sizeof buckstring - siz,
"%d,", (u_int)(1<<i));
siz += strlen(buckstring + siz);
}
/* Remove trailing comma */
if (siz)
buckstring[siz - 1] = '\0';
}
return (sysctl_rdstring(oldp, oldlenp, newp, buckstring));
case KERN_MALLOC_BUCKET:
mtx_enter(&malloc_mtx);
memcpy(&kb, &bucket[BUCKETINDX(name[1])], sizeof(kb));
mtx_leave(&malloc_mtx);
memset(&kb.kb_freelist, 0, sizeof(kb.kb_freelist));
return (sysctl_rdstruct(oldp, oldlenp, newp, &kb, sizeof(kb)));
case KERN_MALLOC_KMEMSTATS:
#ifdef KMEMSTATS
if ((name[1] < 0) || (name[1] >= M_LAST))
return (EINVAL);
mtx_enter(&malloc_mtx);
memcpy(&km, &kmemstats[name[1]], sizeof(km));
mtx_leave(&malloc_mtx);
return (sysctl_rdstruct(oldp, oldlenp, newp, &km, sizeof(km)));
#else
return (EOPNOTSUPP);
#endif
case KERN_MALLOC_KMEMNAMES:
#if defined(KMEMSTATS) || defined(DIAGNOSTIC)
error = rw_enter(&sysctl_kmemlock, RW_WRITE|RW_INTR);
if (error)
return (error);
if (memall == NULL) {
int totlen;
/* Figure out how large a buffer we need */
for (totlen = 0, i = 0; i < M_LAST; i++) {
if (memname[i])
totlen += strlen(memname[i]);
totlen++;
}
memall = malloc(totlen + M_LAST, M_SYSCTL,
M_WAITOK|M_ZERO);
for (siz = 0, i = 0; i < M_LAST; i++) {
snprintf(memall + siz,
totlen + M_LAST - siz,
"%s,", memname[i] ? memname[i] : "");
siz += strlen(memall + siz);
}
/* Remove trailing comma */
if (siz)
memall[siz - 1] = '\0';
/* Now, convert all spaces to underscores */
for (i = 0; i < totlen; i++)
if (memall[i] == ' ')
memall[i] = '_';
}
rw_exit_write(&sysctl_kmemlock);
return (sysctl_rdstring(oldp, oldlenp, newp, memall));
#else
return (EOPNOTSUPP);
#endif
default:
return (EOPNOTSUPP);
}
/* NOTREACHED */
}
#if defined(DDB)
void
malloc_printit(
int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))))
{
#ifdef KMEMSTATS
struct kmemstats *km;
int i;
(*pr)("%15s %5s %6s %7s %6s %9s %8s\n",
"Type", "InUse", "MemUse", "HighUse", "Limit", "Requests",
"Type Lim");
for (i = 0, km = kmemstats; i < M_LAST; i++, km++) {
if (!km->ks_calls || !memname[i])
continue;
(*pr)("%15s %5ld %6ldK %7ldK %6ldK %9ld %8d\n",
memname[i], km->ks_inuse, km->ks_memuse / 1024,
km->ks_maxused / 1024, km->ks_limit / 1024,
km->ks_calls, km->ks_limblocks);
}
#else
(*pr)("No KMEMSTATS compiled in\n");
#endif
}
#endif /* DDB */
/*
* Copyright (c) 2008 Otto Moerbeek <otto@drijf.net>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* This is sqrt(SIZE_MAX+1), as s1*s2 <= SIZE_MAX
* if both s1 < MUL_NO_OVERFLOW and s2 < MUL_NO_OVERFLOW
*/
#define MUL_NO_OVERFLOW (1UL << (sizeof(size_t) * 4))
void *
mallocarray(size_t nmemb, size_t size, int type, int flags)
{
if ((nmemb >= MUL_NO_OVERFLOW || size >= MUL_NO_OVERFLOW) &&
nmemb > 0 && SIZE_MAX / nmemb < size) {
if (flags & M_CANFAIL)
return (NULL);
panic("mallocarray: overflow %zu * %zu", nmemb, size);
}
return (malloc(size * nmemb, type, flags));
}