src/sys/kern/kern_synch.c

904 lines
21 KiB
C

/* $OpenBSD: kern_synch.c,v 1.202 2024/04/18 08:59:38 claudio Exp $ */
/* $NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $ */
/*
* Copyright (c) 1982, 1986, 1990, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_synch.c 8.6 (Berkeley) 1/21/94
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/signalvar.h>
#include <sys/sched.h>
#include <sys/timeout.h>
#include <sys/mount.h>
#include <sys/syscallargs.h>
#include <sys/refcnt.h>
#include <sys/atomic.h>
#include <sys/tracepoint.h>
#include <ddb/db_output.h>
#include <machine/spinlock.h>
#ifdef DIAGNOSTIC
#include <sys/syslog.h>
#endif
#ifdef KTRACE
#include <sys/ktrace.h>
#endif
int sleep_signal_check(void);
int thrsleep(struct proc *, struct sys___thrsleep_args *);
int thrsleep_unlock(void *);
/*
* We're only looking at 7 bits of the address; everything is
* aligned to 4, lots of things are aligned to greater powers
* of 2. Shift right by 8, i.e. drop the bottom 256 worth.
*/
#define TABLESIZE 128
#define LOOKUP(x) (((long)(x) >> 8) & (TABLESIZE - 1))
TAILQ_HEAD(slpque,proc) slpque[TABLESIZE];
void
sleep_queue_init(void)
{
int i;
for (i = 0; i < TABLESIZE; i++)
TAILQ_INIT(&slpque[i]);
}
/*
* Global sleep channel for threads that do not want to
* receive wakeup(9) broadcasts.
*/
int nowake;
/*
* During autoconfiguration or after a panic, a sleep will simply
* lower the priority briefly to allow interrupts, then return.
* The priority to be used (safepri) is machine-dependent, thus this
* value is initialized and maintained in the machine-dependent layers.
* This priority will typically be 0, or the lowest priority
* that is safe for use on the interrupt stack; it can be made
* higher to block network software interrupts after panics.
*/
extern int safepri;
/*
* General sleep call. Suspends the current process until a wakeup is
* performed on the specified identifier. The process will then be made
* runnable with the specified priority. Sleeps at most timo/hz seconds
* (0 means no timeout). If pri includes PCATCH flag, signals are checked
* before and after sleeping, else signals are not checked. Returns 0 if
* awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
* signal needs to be delivered, ERESTART is returned if the current system
* call should be restarted if possible, and EINTR is returned if the system
* call should be interrupted by the signal (return EINTR).
*/
int
tsleep(const volatile void *ident, int priority, const char *wmesg, int timo)
{
#ifdef MULTIPROCESSOR
int hold_count;
#endif
KASSERT((priority & ~(PRIMASK | PCATCH)) == 0);
KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0);
#ifdef MULTIPROCESSOR
KASSERT(ident == &nowake || timo || _kernel_lock_held());
#endif
#ifdef DDB
if (cold == 2)
db_stack_dump();
#endif
if (cold || panicstr) {
int s;
/*
* After a panic, or during autoconfiguration,
* just give interrupts a chance, then just return;
* don't run any other procs or panic below,
* in case this is the idle process and already asleep.
*/
s = splhigh();
splx(safepri);
#ifdef MULTIPROCESSOR
if (_kernel_lock_held()) {
hold_count = __mp_release_all(&kernel_lock);
__mp_acquire_count(&kernel_lock, hold_count);
}
#endif
splx(s);
return (0);
}
sleep_setup(ident, priority, wmesg);
return sleep_finish(timo, 1);
}
int
tsleep_nsec(const volatile void *ident, int priority, const char *wmesg,
uint64_t nsecs)
{
uint64_t to_ticks;
if (nsecs == INFSLP)
return tsleep(ident, priority, wmesg, 0);
#ifdef DIAGNOSTIC
if (nsecs == 0) {
log(LOG_WARNING,
"%s: %s[%d]: %s: trying to sleep zero nanoseconds\n",
__func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid,
wmesg);
}
#endif
/*
* We want to sleep at least nsecs nanoseconds worth of ticks.
*
* - Clamp nsecs to prevent arithmetic overflow.
*
* - Round nsecs up to account for any nanoseconds that do not
* divide evenly into tick_nsec, otherwise we'll lose them to
* integer division in the next step. We add (tick_nsec - 1)
* to keep from introducing a spurious tick if there are no
* such nanoseconds, i.e. nsecs % tick_nsec == 0.
*
* - Divide the rounded value to a count of ticks. We divide
* by (tick_nsec + 1) to discard the extra tick introduced if,
* before rounding, nsecs % tick_nsec == 1.
*
* - Finally, add a tick to the result. We need to wait out
* the current tick before we can begin counting our interval,
* as we do not know how much time has elapsed since the
* current tick began.
*/
nsecs = MIN(nsecs, UINT64_MAX - tick_nsec);
to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1;
if (to_ticks > INT_MAX)
to_ticks = INT_MAX;
return tsleep(ident, priority, wmesg, (int)to_ticks);
}
/*
* Same as tsleep, but if we have a mutex provided, then once we've
* entered the sleep queue we drop the mutex. After sleeping we re-lock.
*/
int
msleep(const volatile void *ident, struct mutex *mtx, int priority,
const char *wmesg, int timo)
{
int error, spl;
#ifdef MULTIPROCESSOR
int hold_count;
#endif
KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0);
KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0);
KASSERT(mtx != NULL);
#ifdef DDB
if (cold == 2)
db_stack_dump();
#endif
if (cold || panicstr) {
/*
* After a panic, or during autoconfiguration,
* just give interrupts a chance, then just return;
* don't run any other procs or panic below,
* in case this is the idle process and already asleep.
*/
spl = MUTEX_OLDIPL(mtx);
MUTEX_OLDIPL(mtx) = safepri;
mtx_leave(mtx);
#ifdef MULTIPROCESSOR
if (_kernel_lock_held()) {
hold_count = __mp_release_all(&kernel_lock);
__mp_acquire_count(&kernel_lock, hold_count);
}
#endif
if ((priority & PNORELOCK) == 0) {
mtx_enter(mtx);
MUTEX_OLDIPL(mtx) = spl;
} else
splx(spl);
return (0);
}
sleep_setup(ident, priority, wmesg);
mtx_leave(mtx);
/* signal may stop the process, release mutex before that */
error = sleep_finish(timo, 1);
if ((priority & PNORELOCK) == 0)
mtx_enter(mtx);
return error;
}
int
msleep_nsec(const volatile void *ident, struct mutex *mtx, int priority,
const char *wmesg, uint64_t nsecs)
{
uint64_t to_ticks;
if (nsecs == INFSLP)
return msleep(ident, mtx, priority, wmesg, 0);
#ifdef DIAGNOSTIC
if (nsecs == 0) {
log(LOG_WARNING,
"%s: %s[%d]: %s: trying to sleep zero nanoseconds\n",
__func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid,
wmesg);
}
#endif
nsecs = MIN(nsecs, UINT64_MAX - tick_nsec);
to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1;
if (to_ticks > INT_MAX)
to_ticks = INT_MAX;
return msleep(ident, mtx, priority, wmesg, (int)to_ticks);
}
/*
* Same as tsleep, but if we have a rwlock provided, then once we've
* entered the sleep queue we drop the it. After sleeping we re-lock.
*/
int
rwsleep(const volatile void *ident, struct rwlock *rwl, int priority,
const char *wmesg, int timo)
{
int error, status;
KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0);
KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0);
KASSERT(ident != rwl);
rw_assert_anylock(rwl);
status = rw_status(rwl);
sleep_setup(ident, priority, wmesg);
rw_exit(rwl);
/* signal may stop the process, release rwlock before that */
error = sleep_finish(timo, 1);
if ((priority & PNORELOCK) == 0)
rw_enter(rwl, status);
return error;
}
int
rwsleep_nsec(const volatile void *ident, struct rwlock *rwl, int priority,
const char *wmesg, uint64_t nsecs)
{
uint64_t to_ticks;
if (nsecs == INFSLP)
return rwsleep(ident, rwl, priority, wmesg, 0);
#ifdef DIAGNOSTIC
if (nsecs == 0) {
log(LOG_WARNING,
"%s: %s[%d]: %s: trying to sleep zero nanoseconds\n",
__func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid,
wmesg);
}
#endif
nsecs = MIN(nsecs, UINT64_MAX - tick_nsec);
to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1;
if (to_ticks > INT_MAX)
to_ticks = INT_MAX;
return rwsleep(ident, rwl, priority, wmesg, (int)to_ticks);
}
void
sleep_setup(const volatile void *ident, int prio, const char *wmesg)
{
struct proc *p = curproc;
int s;
#ifdef DIAGNOSTIC
if (p->p_flag & P_CANTSLEEP)
panic("sleep: %s failed insomnia", p->p_p->ps_comm);
if (ident == NULL)
panic("tsleep: no ident");
if (p->p_stat != SONPROC)
panic("tsleep: not SONPROC");
#endif
/* exiting processes are not allowed to catch signals */
if (p->p_flag & P_WEXIT)
CLR(prio, PCATCH);
SCHED_LOCK(s);
TRACEPOINT(sched, sleep, NULL);
p->p_wchan = ident;
p->p_wmesg = wmesg;
p->p_slptime = 0;
p->p_slppri = prio & PRIMASK;
atomic_setbits_int(&p->p_flag, P_WSLEEP);
TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_runq);
if (prio & PCATCH)
atomic_setbits_int(&p->p_flag, P_SINTR);
p->p_stat = SSLEEP;
SCHED_UNLOCK(s);
}
int
sleep_finish(int timo, int do_sleep)
{
struct proc *p = curproc;
int s, catch, error = 0, error1 = 0;
catch = p->p_flag & P_SINTR;
if (timo != 0) {
KASSERT((p->p_flag & P_TIMEOUT) == 0);
timeout_add(&p->p_sleep_to, timo);
}
if (catch != 0) {
/*
* We put ourselves on the sleep queue and start our
* timeout before calling sleep_signal_check(), as we could
* stop there, and a wakeup or a SIGCONT (or both) could
* occur while we were stopped. A SIGCONT would cause
* us to be marked as SSLEEP without resuming us, thus
* we must be ready for sleep when sleep_signal_check() is
* called.
*/
if ((error = sleep_signal_check()) != 0) {
catch = 0;
do_sleep = 0;
}
}
SCHED_LOCK(s);
/*
* If the wakeup happens while going to sleep, p->p_wchan
* will be NULL. In that case unwind immediately but still
* check for possible signals and timeouts.
*/
if (p->p_wchan == NULL)
do_sleep = 0;
atomic_clearbits_int(&p->p_flag, P_WSLEEP);
if (do_sleep) {
KASSERT(p->p_stat == SSLEEP || p->p_stat == SSTOP);
p->p_ru.ru_nvcsw++;
mi_switch();
} else {
KASSERT(p->p_stat == SONPROC || p->p_stat == SSLEEP ||
p->p_stat == SSTOP);
unsleep(p);
p->p_stat = SONPROC;
}
#ifdef DIAGNOSTIC
if (p->p_stat != SONPROC)
panic("sleep_finish !SONPROC");
#endif
p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
SCHED_UNLOCK(s);
/*
* Even though this belongs to the signal handling part of sleep,
* we need to clear it before the ktrace.
*/
atomic_clearbits_int(&p->p_flag, P_SINTR);
if (timo != 0) {
if (p->p_flag & P_TIMEOUT) {
error1 = EWOULDBLOCK;
} else {
/* This can sleep. It must not use timeouts. */
timeout_del_barrier(&p->p_sleep_to);
}
atomic_clearbits_int(&p->p_flag, P_TIMEOUT);
}
/* Check if thread was woken up because of a unwind or signal */
if (catch != 0)
error = sleep_signal_check();
/* Signal errors are higher priority than timeouts. */
if (error == 0 && error1 != 0)
error = error1;
return error;
}
/*
* Check and handle signals and suspensions around a sleep cycle.
*/
int
sleep_signal_check(void)
{
struct proc *p = curproc;
struct sigctx ctx;
int err, sig;
if ((err = single_thread_check(p, 1)) != 0)
return err;
if ((sig = cursig(p, &ctx)) != 0) {
if (ctx.sig_intr)
return EINTR;
else
return ERESTART;
}
return 0;
}
int
wakeup_proc(struct proc *p, int flags)
{
int awakened = 0;
SCHED_ASSERT_LOCKED();
if (p->p_wchan != NULL) {
awakened = 1;
if (flags)
atomic_setbits_int(&p->p_flag, flags);
#ifdef DIAGNOSTIC
if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
panic("thread %d p_stat is %d", p->p_tid, p->p_stat);
#endif
unsleep(p);
if (p->p_stat == SSLEEP)
setrunnable(p);
}
return awakened;
}
/*
* Implement timeout for tsleep.
* If process hasn't been awakened (wchan non-zero),
* set timeout flag and undo the sleep. If proc
* is stopped, just unsleep so it will remain stopped.
*/
void
endtsleep(void *arg)
{
struct proc *p = arg;
int s;
SCHED_LOCK(s);
wakeup_proc(p, P_TIMEOUT);
SCHED_UNLOCK(s);
}
/*
* Remove a process from its wait queue
*/
void
unsleep(struct proc *p)
{
SCHED_ASSERT_LOCKED();
if (p->p_wchan != NULL) {
TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_runq);
p->p_wchan = NULL;
TRACEPOINT(sched, unsleep, p->p_tid + THREAD_PID_OFFSET,
p->p_p->ps_pid);
}
}
/*
* Make a number of processes sleeping on the specified identifier runnable.
*/
void
wakeup_n(const volatile void *ident, int n)
{
struct slpque *qp, wakeq;
struct proc *p;
struct proc *pnext;
int s;
TAILQ_INIT(&wakeq);
SCHED_LOCK(s);
qp = &slpque[LOOKUP(ident)];
for (p = TAILQ_FIRST(qp); p != NULL && n != 0; p = pnext) {
pnext = TAILQ_NEXT(p, p_runq);
#ifdef DIAGNOSTIC
if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
panic("thread %d p_stat is %d", p->p_tid, p->p_stat);
#endif
KASSERT(p->p_wchan != NULL);
if (p->p_wchan == ident) {
TAILQ_REMOVE(qp, p, p_runq);
p->p_wchan = NULL;
TAILQ_INSERT_TAIL(&wakeq, p, p_runq);
--n;
}
}
while ((p = TAILQ_FIRST(&wakeq))) {
TAILQ_REMOVE(&wakeq, p, p_runq);
TRACEPOINT(sched, unsleep, p->p_tid + THREAD_PID_OFFSET,
p->p_p->ps_pid);
if (p->p_stat == SSLEEP)
setrunnable(p);
}
SCHED_UNLOCK(s);
}
/*
* Make all processes sleeping on the specified identifier runnable.
*/
void
wakeup(const volatile void *chan)
{
wakeup_n(chan, -1);
}
int
sys_sched_yield(struct proc *p, void *v, register_t *retval)
{
struct proc *q;
uint8_t newprio;
int s;
SCHED_LOCK(s);
/*
* If one of the threads of a multi-threaded process called
* sched_yield(2), drop its priority to ensure its siblings
* can make some progress.
*/
newprio = p->p_usrpri;
TAILQ_FOREACH(q, &p->p_p->ps_threads, p_thr_link)
newprio = max(newprio, q->p_runpri);
setrunqueue(p->p_cpu, p, newprio);
p->p_ru.ru_nvcsw++;
mi_switch();
SCHED_UNLOCK(s);
return (0);
}
int
thrsleep_unlock(void *lock)
{
static _atomic_lock_t unlocked = _ATOMIC_LOCK_UNLOCKED;
_atomic_lock_t *atomiclock = lock;
if (!lock)
return 0;
return copyout(&unlocked, atomiclock, sizeof(unlocked));
}
struct tslpentry {
TAILQ_ENTRY(tslpentry) tslp_link;
long tslp_ident;
};
/* thrsleep queue shared between processes */
static struct tslpqueue thrsleep_queue = TAILQ_HEAD_INITIALIZER(thrsleep_queue);
static struct rwlock thrsleep_lock = RWLOCK_INITIALIZER("thrsleeplk");
int
thrsleep(struct proc *p, struct sys___thrsleep_args *v)
{
struct sys___thrsleep_args /* {
syscallarg(const volatile void *) ident;
syscallarg(clockid_t) clock_id;
syscallarg(const struct timespec *) tp;
syscallarg(void *) lock;
syscallarg(const int *) abort;
} */ *uap = v;
long ident = (long)SCARG(uap, ident);
struct tslpentry entry;
struct tslpqueue *queue;
struct rwlock *qlock;
struct timespec *tsp = (struct timespec *)SCARG(uap, tp);
void *lock = SCARG(uap, lock);
uint64_t nsecs = INFSLP;
int abort = 0, error;
clockid_t clock_id = SCARG(uap, clock_id);
if (ident == 0)
return (EINVAL);
if (tsp != NULL) {
struct timespec now;
if ((error = clock_gettime(p, clock_id, &now)))
return (error);
#ifdef KTRACE
if (KTRPOINT(p, KTR_STRUCT))
ktrabstimespec(p, tsp);
#endif
if (timespeccmp(tsp, &now, <=)) {
/* already passed: still do the unlock */
if ((error = thrsleep_unlock(lock)))
return (error);
return (EWOULDBLOCK);
}
timespecsub(tsp, &now, tsp);
nsecs = MIN(TIMESPEC_TO_NSEC(tsp), MAXTSLP);
}
if (ident == -1) {
queue = &thrsleep_queue;
qlock = &thrsleep_lock;
} else {
queue = &p->p_p->ps_tslpqueue;
qlock = &p->p_p->ps_lock;
}
/* Interlock with wakeup. */
entry.tslp_ident = ident;
rw_enter_write(qlock);
TAILQ_INSERT_TAIL(queue, &entry, tslp_link);
rw_exit_write(qlock);
error = thrsleep_unlock(lock);
if (error == 0 && SCARG(uap, abort) != NULL)
error = copyin(SCARG(uap, abort), &abort, sizeof(abort));
rw_enter_write(qlock);
if (error != 0)
goto out;
if (abort != 0) {
error = EINTR;
goto out;
}
if (entry.tslp_ident != 0) {
error = rwsleep_nsec(&entry, qlock, PWAIT|PCATCH, "thrsleep",
nsecs);
}
out:
if (entry.tslp_ident != 0)
TAILQ_REMOVE(queue, &entry, tslp_link);
rw_exit_write(qlock);
if (error == ERESTART)
error = ECANCELED;
return (error);
}
int
sys___thrsleep(struct proc *p, void *v, register_t *retval)
{
struct sys___thrsleep_args /* {
syscallarg(const volatile void *) ident;
syscallarg(clockid_t) clock_id;
syscallarg(struct timespec *) tp;
syscallarg(void *) lock;
syscallarg(const int *) abort;
} */ *uap = v;
struct timespec ts;
int error;
if (SCARG(uap, tp) != NULL) {
if ((error = copyin(SCARG(uap, tp), &ts, sizeof(ts)))) {
*retval = error;
return 0;
}
if (!timespecisvalid(&ts)) {
*retval = EINVAL;
return 0;
}
SCARG(uap, tp) = &ts;
}
*retval = thrsleep(p, uap);
return 0;
}
int
sys___thrwakeup(struct proc *p, void *v, register_t *retval)
{
struct sys___thrwakeup_args /* {
syscallarg(const volatile void *) ident;
syscallarg(int) n;
} */ *uap = v;
struct tslpentry *entry, *tmp;
struct tslpqueue *queue;
struct rwlock *qlock;
long ident = (long)SCARG(uap, ident);
int n = SCARG(uap, n);
int found = 0;
if (ident == 0)
*retval = EINVAL;
else {
if (ident == -1) {
queue = &thrsleep_queue;
qlock = &thrsleep_lock;
/*
* Wake up all waiters with ident -1. This is needed
* because ident -1 can be shared by multiple userspace
* lock state machines concurrently. The implementation
* has no way to direct the wakeup to a particular
* state machine.
*/
n = 0;
} else {
queue = &p->p_p->ps_tslpqueue;
qlock = &p->p_p->ps_lock;
}
rw_enter_write(qlock);
TAILQ_FOREACH_SAFE(entry, queue, tslp_link, tmp) {
if (entry->tslp_ident == ident) {
TAILQ_REMOVE(queue, entry, tslp_link);
entry->tslp_ident = 0;
wakeup_one(entry);
if (++found == n)
break;
}
}
rw_exit_write(qlock);
if (ident == -1)
*retval = 0;
else
*retval = found ? 0 : ESRCH;
}
return (0);
}
void
refcnt_init(struct refcnt *r)
{
refcnt_init_trace(r, 0);
}
void
refcnt_init_trace(struct refcnt *r, int idx)
{
r->r_traceidx = idx;
atomic_store_int(&r->r_refs, 1);
TRACEINDEX(refcnt, r->r_traceidx, r, 0, +1);
}
void
refcnt_take(struct refcnt *r)
{
u_int refs;
refs = atomic_inc_int_nv(&r->r_refs);
KASSERT(refs != 0);
TRACEINDEX(refcnt, r->r_traceidx, r, refs - 1, +1);
(void)refs;
}
int
refcnt_rele(struct refcnt *r)
{
u_int refs;
membar_exit_before_atomic();
refs = atomic_dec_int_nv(&r->r_refs);
KASSERT(refs != ~0);
TRACEINDEX(refcnt, r->r_traceidx, r, refs + 1, -1);
if (refs == 0) {
membar_enter_after_atomic();
return (1);
}
return (0);
}
void
refcnt_rele_wake(struct refcnt *r)
{
if (refcnt_rele(r))
wakeup_one(r);
}
void
refcnt_finalize(struct refcnt *r, const char *wmesg)
{
u_int refs;
membar_exit_before_atomic();
refs = atomic_dec_int_nv(&r->r_refs);
KASSERT(refs != ~0);
TRACEINDEX(refcnt, r->r_traceidx, r, refs + 1, -1);
while (refs) {
sleep_setup(r, PWAIT, wmesg);
refs = atomic_load_int(&r->r_refs);
sleep_finish(0, refs);
}
TRACEINDEX(refcnt, r->r_traceidx, r, refs, 0);
/* Order subsequent loads and stores after refs == 0 load. */
membar_sync();
}
int
refcnt_shared(struct refcnt *r)
{
u_int refs;
refs = atomic_load_int(&r->r_refs);
TRACEINDEX(refcnt, r->r_traceidx, r, refs, 0);
return (refs > 1);
}
unsigned int
refcnt_read(struct refcnt *r)
{
u_int refs;
refs = atomic_load_int(&r->r_refs);
TRACEINDEX(refcnt, r->r_traceidx, r, refs, 0);
return (refs);
}
void
cond_init(struct cond *c)
{
atomic_store_int(&c->c_wait, 1);
}
void
cond_signal(struct cond *c)
{
atomic_store_int(&c->c_wait, 0);
wakeup_one(c);
}
void
cond_wait(struct cond *c, const char *wmesg)
{
unsigned int wait;
wait = atomic_load_int(&c->c_wait);
while (wait) {
sleep_setup(c, PWAIT, wmesg);
wait = atomic_load_int(&c->c_wait);
sleep_finish(0, wait);
}
}