src/sys/kern/kern_timeout.c

1018 lines
25 KiB
C

/* $OpenBSD: kern_timeout.c,v 1.97 2024/02/23 16:51:39 cheloha Exp $ */
/*
* Copyright (c) 2001 Thomas Nordin <nordin@openbsd.org>
* Copyright (c) 2000-2001 Artur Grabowski <art@openbsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kthread.h>
#include <sys/proc.h>
#include <sys/timeout.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/queue.h> /* _Q_INVALIDATE */
#include <sys/sysctl.h>
#include <sys/witness.h>
#ifdef DDB
#include <machine/db_machdep.h>
#include <ddb/db_interface.h>
#include <ddb/db_sym.h>
#include <ddb/db_output.h>
#endif
#include "kcov.h"
#if NKCOV > 0
#include <sys/kcov.h>
#endif
/*
* Locks used to protect global variables in this file:
*
* I immutable after initialization
* T timeout_mutex
*/
struct mutex timeout_mutex = MUTEX_INITIALIZER(IPL_HIGH);
void *softclock_si; /* [I] softclock() interrupt handle */
struct timeoutstat tostat; /* [T] statistics and totals */
/*
* Timeouts are kept in a hierarchical timing wheel. The to_time is the value
* of the global variable "ticks" when the timeout should be called. There are
* four levels with 256 buckets each.
*/
#define WHEELCOUNT 4
#define WHEELSIZE 256
#define WHEELMASK 255
#define WHEELBITS 8
#define BUCKETS (WHEELCOUNT * WHEELSIZE)
struct circq timeout_wheel[BUCKETS]; /* [T] Tick-based timeouts */
struct circq timeout_wheel_kc[BUCKETS]; /* [T] Clock-based timeouts */
struct circq timeout_new; /* [T] New, unscheduled timeouts */
struct circq timeout_todo; /* [T] Due or needs rescheduling */
struct circq timeout_proc; /* [T] Due + needs process context */
#ifdef MULTIPROCESSOR
struct circq timeout_proc_mp; /* [T] Process ctx + no kernel lock */
#endif
time_t timeout_level_width[WHEELCOUNT]; /* [I] Wheel level width (seconds) */
struct timespec tick_ts; /* [I] Length of a tick (1/hz secs) */
struct kclock {
struct timespec kc_lastscan; /* [T] Clock time at last wheel scan */
struct timespec kc_late; /* [T] Late if due prior */
struct timespec kc_offset; /* [T] Offset from primary kclock */
} timeout_kclock[KCLOCK_MAX];
#define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
#define BUCKET(rel, abs) \
(timeout_wheel[ \
((rel) <= (1 << (2*WHEELBITS))) \
? ((rel) <= (1 << WHEELBITS)) \
? MASKWHEEL(0, (abs)) \
: MASKWHEEL(1, (abs)) + WHEELSIZE \
: ((rel) <= (1 << (3*WHEELBITS))) \
? MASKWHEEL(2, (abs)) + 2*WHEELSIZE \
: MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
#define MOVEBUCKET(wheel, time) \
CIRCQ_CONCAT(&timeout_todo, \
&timeout_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
/*
* Circular queue definitions.
*/
#define CIRCQ_INIT(elem) do { \
(elem)->next = (elem); \
(elem)->prev = (elem); \
} while (0)
#define CIRCQ_INSERT_TAIL(list, elem) do { \
(elem)->prev = (list)->prev; \
(elem)->next = (list); \
(list)->prev->next = (elem); \
(list)->prev = (elem); \
tostat.tos_pending++; \
} while (0)
#define CIRCQ_CONCAT(fst, snd) do { \
if (!CIRCQ_EMPTY(snd)) { \
(fst)->prev->next = (snd)->next;\
(snd)->next->prev = (fst)->prev;\
(snd)->prev->next = (fst); \
(fst)->prev = (snd)->prev; \
CIRCQ_INIT(snd); \
} \
} while (0)
#define CIRCQ_REMOVE(elem) do { \
(elem)->next->prev = (elem)->prev; \
(elem)->prev->next = (elem)->next; \
_Q_INVALIDATE((elem)->prev); \
_Q_INVALIDATE((elem)->next); \
tostat.tos_pending--; \
} while (0)
#define CIRCQ_FIRST(elem) ((elem)->next)
#define CIRCQ_EMPTY(elem) (CIRCQ_FIRST(elem) == (elem))
#define CIRCQ_FOREACH(elem, list) \
for ((elem) = CIRCQ_FIRST(list); \
(elem) != (list); \
(elem) = CIRCQ_FIRST(elem))
#ifdef WITNESS
struct lock_object timeout_sleeplock_obj = {
.lo_name = "timeout",
.lo_flags = LO_WITNESS | LO_INITIALIZED | LO_SLEEPABLE |
(LO_CLASS_RWLOCK << LO_CLASSSHIFT)
};
struct lock_object timeout_spinlock_obj = {
.lo_name = "timeout",
.lo_flags = LO_WITNESS | LO_INITIALIZED |
(LO_CLASS_MUTEX << LO_CLASSSHIFT)
};
struct lock_type timeout_sleeplock_type = {
.lt_name = "timeout"
};
struct lock_type timeout_spinlock_type = {
.lt_name = "timeout"
};
#define TIMEOUT_LOCK_OBJ(needsproc) \
((needsproc) ? &timeout_sleeplock_obj : &timeout_spinlock_obj)
#endif
void softclock(void *);
void softclock_create_thread(void *);
void softclock_process_kclock_timeout(struct timeout *, int);
void softclock_process_tick_timeout(struct timeout *, int);
void softclock_thread(void *);
#ifdef MULTIPROCESSOR
void softclock_thread_mp(void *);
#endif
void timeout_barrier_timeout(void *);
uint32_t timeout_bucket(const struct timeout *);
uint32_t timeout_maskwheel(uint32_t, const struct timespec *);
void timeout_run(struct timeout *);
/*
* The first thing in a struct timeout is its struct circq, so we
* can get back from a pointer to the latter to a pointer to the
* whole timeout with just a cast.
*/
static inline struct timeout *
timeout_from_circq(struct circq *p)
{
return ((struct timeout *)(p));
}
static inline void
timeout_sync_order(int needsproc)
{
WITNESS_CHECKORDER(TIMEOUT_LOCK_OBJ(needsproc), LOP_NEWORDER, NULL);
}
static inline void
timeout_sync_enter(int needsproc)
{
timeout_sync_order(needsproc);
WITNESS_LOCK(TIMEOUT_LOCK_OBJ(needsproc), 0);
}
static inline void
timeout_sync_leave(int needsproc)
{
WITNESS_UNLOCK(TIMEOUT_LOCK_OBJ(needsproc), 0);
}
/*
* Some of the "math" in here is a bit tricky.
*
* We have to beware of wrapping ints.
* We use the fact that any element added to the queue must be added with a
* positive time. That means that any element `to' on the queue cannot be
* scheduled to timeout further in time than INT_MAX, but to->to_time can
* be positive or negative so comparing it with anything is dangerous.
* The only way we can use the to->to_time value in any predictable way
* is when we calculate how far in the future `to' will timeout -
* "to->to_time - ticks". The result will always be positive for future
* timeouts and 0 or negative for due timeouts.
*/
void
timeout_startup(void)
{
int b, level;
CIRCQ_INIT(&timeout_new);
CIRCQ_INIT(&timeout_todo);
CIRCQ_INIT(&timeout_proc);
#ifdef MULTIPROCESSOR
CIRCQ_INIT(&timeout_proc_mp);
#endif
for (b = 0; b < nitems(timeout_wheel); b++)
CIRCQ_INIT(&timeout_wheel[b]);
for (b = 0; b < nitems(timeout_wheel_kc); b++)
CIRCQ_INIT(&timeout_wheel_kc[b]);
for (level = 0; level < nitems(timeout_level_width); level++)
timeout_level_width[level] = 2 << (level * WHEELBITS);
NSEC_TO_TIMESPEC(tick_nsec, &tick_ts);
}
void
timeout_proc_init(void)
{
softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
if (softclock_si == NULL)
panic("%s: unable to register softclock interrupt", __func__);
WITNESS_INIT(&timeout_sleeplock_obj, &timeout_sleeplock_type);
WITNESS_INIT(&timeout_spinlock_obj, &timeout_spinlock_type);
kthread_create_deferred(softclock_create_thread, NULL);
}
void
timeout_set(struct timeout *new, void (*fn)(void *), void *arg)
{
timeout_set_flags(new, fn, arg, KCLOCK_NONE, 0);
}
void
timeout_set_flags(struct timeout *to, void (*fn)(void *), void *arg, int kclock,
int flags)
{
KASSERT(!ISSET(flags, ~(TIMEOUT_PROC | TIMEOUT_MPSAFE)));
KASSERT(kclock >= KCLOCK_NONE && kclock < KCLOCK_MAX);
to->to_func = fn;
to->to_arg = arg;
to->to_kclock = kclock;
to->to_flags = flags | TIMEOUT_INITIALIZED;
/* For now, only process context timeouts may be marked MP-safe. */
if (ISSET(to->to_flags, TIMEOUT_MPSAFE))
KASSERT(ISSET(to->to_flags, TIMEOUT_PROC));
}
void
timeout_set_proc(struct timeout *new, void (*fn)(void *), void *arg)
{
timeout_set_flags(new, fn, arg, KCLOCK_NONE, TIMEOUT_PROC);
}
int
timeout_add(struct timeout *new, int to_ticks)
{
int old_time;
int ret = 1;
KASSERT(ISSET(new->to_flags, TIMEOUT_INITIALIZED));
KASSERT(new->to_kclock == KCLOCK_NONE);
KASSERT(to_ticks >= 0);
mtx_enter(&timeout_mutex);
/* Initialize the time here, it won't change. */
old_time = new->to_time;
new->to_time = to_ticks + ticks;
CLR(new->to_flags, TIMEOUT_TRIGGERED);
/*
* If this timeout already is scheduled and now is moved
* earlier, reschedule it now. Otherwise leave it in place
* and let it be rescheduled later.
*/
if (ISSET(new->to_flags, TIMEOUT_ONQUEUE)) {
if (new->to_time - ticks < old_time - ticks) {
CIRCQ_REMOVE(&new->to_list);
CIRCQ_INSERT_TAIL(&timeout_new, &new->to_list);
}
tostat.tos_readded++;
ret = 0;
} else {
SET(new->to_flags, TIMEOUT_ONQUEUE);
CIRCQ_INSERT_TAIL(&timeout_new, &new->to_list);
}
#if NKCOV > 0
if (!kcov_cold)
new->to_process = curproc->p_p;
#endif
tostat.tos_added++;
mtx_leave(&timeout_mutex);
return ret;
}
int
timeout_add_tv(struct timeout *to, const struct timeval *tv)
{
uint64_t to_ticks;
to_ticks = (uint64_t)hz * tv->tv_sec + tv->tv_usec / tick;
if (to_ticks > INT_MAX)
to_ticks = INT_MAX;
if (to_ticks == 0 && tv->tv_usec > 0)
to_ticks = 1;
return timeout_add(to, (int)to_ticks);
}
int
timeout_add_sec(struct timeout *to, int secs)
{
uint64_t to_ticks;
to_ticks = (uint64_t)hz * secs;
if (to_ticks > INT_MAX)
to_ticks = INT_MAX;
if (to_ticks == 0)
to_ticks = 1;
return timeout_add(to, (int)to_ticks);
}
int
timeout_add_msec(struct timeout *to, int msecs)
{
uint64_t to_ticks;
to_ticks = (uint64_t)msecs * 1000 / tick;
if (to_ticks > INT_MAX)
to_ticks = INT_MAX;
if (to_ticks == 0 && msecs > 0)
to_ticks = 1;
return timeout_add(to, (int)to_ticks);
}
int
timeout_add_usec(struct timeout *to, int usecs)
{
int to_ticks = usecs / tick;
if (to_ticks == 0 && usecs > 0)
to_ticks = 1;
return timeout_add(to, to_ticks);
}
int
timeout_add_nsec(struct timeout *to, int nsecs)
{
int to_ticks = nsecs / (tick * 1000);
if (to_ticks == 0 && nsecs > 0)
to_ticks = 1;
return timeout_add(to, to_ticks);
}
int
timeout_abs_ts(struct timeout *to, const struct timespec *abstime)
{
struct timespec old_abstime;
int ret = 1;
mtx_enter(&timeout_mutex);
KASSERT(ISSET(to->to_flags, TIMEOUT_INITIALIZED));
KASSERT(to->to_kclock == KCLOCK_UPTIME);
old_abstime = to->to_abstime;
to->to_abstime = *abstime;
CLR(to->to_flags, TIMEOUT_TRIGGERED);
if (ISSET(to->to_flags, TIMEOUT_ONQUEUE)) {
if (timespeccmp(abstime, &old_abstime, <)) {
CIRCQ_REMOVE(&to->to_list);
CIRCQ_INSERT_TAIL(&timeout_new, &to->to_list);
}
tostat.tos_readded++;
ret = 0;
} else {
SET(to->to_flags, TIMEOUT_ONQUEUE);
CIRCQ_INSERT_TAIL(&timeout_new, &to->to_list);
}
#if NKCOV > 0
if (!kcov_cold)
to->to_process = curproc->p_p;
#endif
tostat.tos_added++;
mtx_leave(&timeout_mutex);
return ret;
}
int
timeout_del(struct timeout *to)
{
int ret = 0;
mtx_enter(&timeout_mutex);
if (ISSET(to->to_flags, TIMEOUT_ONQUEUE)) {
CIRCQ_REMOVE(&to->to_list);
CLR(to->to_flags, TIMEOUT_ONQUEUE);
tostat.tos_cancelled++;
ret = 1;
}
CLR(to->to_flags, TIMEOUT_TRIGGERED);
tostat.tos_deleted++;
mtx_leave(&timeout_mutex);
return ret;
}
int
timeout_del_barrier(struct timeout *to)
{
int removed;
timeout_sync_order(ISSET(to->to_flags, TIMEOUT_PROC));
removed = timeout_del(to);
if (!removed)
timeout_barrier(to);
return removed;
}
void
timeout_barrier(struct timeout *to)
{
struct timeout barrier;
struct cond c;
int flags;
flags = to->to_flags & (TIMEOUT_PROC | TIMEOUT_MPSAFE);
timeout_sync_order(ISSET(flags, TIMEOUT_PROC));
timeout_set_flags(&barrier, timeout_barrier_timeout, &c, KCLOCK_NONE,
flags);
barrier.to_process = curproc->p_p;
cond_init(&c);
mtx_enter(&timeout_mutex);
barrier.to_time = ticks;
SET(barrier.to_flags, TIMEOUT_ONQUEUE);
if (ISSET(flags, TIMEOUT_PROC)) {
#ifdef MULTIPROCESSOR
if (ISSET(flags, TIMEOUT_MPSAFE))
CIRCQ_INSERT_TAIL(&timeout_proc_mp, &barrier.to_list);
else
#endif
CIRCQ_INSERT_TAIL(&timeout_proc, &barrier.to_list);
} else
CIRCQ_INSERT_TAIL(&timeout_todo, &barrier.to_list);
mtx_leave(&timeout_mutex);
if (ISSET(flags, TIMEOUT_PROC)) {
#ifdef MULTIPROCESSOR
if (ISSET(flags, TIMEOUT_MPSAFE))
wakeup_one(&timeout_proc_mp);
else
#endif
wakeup_one(&timeout_proc);
} else
softintr_schedule(softclock_si);
cond_wait(&c, "tmobar");
}
void
timeout_barrier_timeout(void *arg)
{
struct cond *c = arg;
cond_signal(c);
}
uint32_t
timeout_bucket(const struct timeout *to)
{
struct timespec diff, shifted_abstime;
struct kclock *kc;
uint32_t level;
KASSERT(to->to_kclock == KCLOCK_UPTIME);
kc = &timeout_kclock[to->to_kclock];
KASSERT(timespeccmp(&kc->kc_lastscan, &to->to_abstime, <));
timespecsub(&to->to_abstime, &kc->kc_lastscan, &diff);
for (level = 0; level < nitems(timeout_level_width) - 1; level++) {
if (diff.tv_sec < timeout_level_width[level])
break;
}
timespecadd(&to->to_abstime, &kc->kc_offset, &shifted_abstime);
return level * WHEELSIZE + timeout_maskwheel(level, &shifted_abstime);
}
/*
* Hash the absolute time into a bucket on a given level of the wheel.
*
* The complete hash is 32 bits. The upper 25 bits are seconds, the
* lower 7 bits are nanoseconds. tv_nsec is a positive value less
* than one billion so we need to divide it to isolate the desired
* bits. We can't just shift it.
*
* The level is used to isolate an 8-bit portion of the hash. The
* resulting number indicates which bucket the absolute time belongs
* in on the given level of the wheel.
*/
uint32_t
timeout_maskwheel(uint32_t level, const struct timespec *abstime)
{
uint32_t hi, lo;
hi = abstime->tv_sec << 7;
lo = abstime->tv_nsec / 7812500;
return ((hi | lo) >> (level * WHEELBITS)) & WHEELMASK;
}
/*
* This is called from hardclock() on the primary CPU at the start of
* every tick.
*/
void
timeout_hardclock_update(void)
{
struct timespec elapsed, now;
struct kclock *kc;
struct timespec *lastscan = &timeout_kclock[KCLOCK_UPTIME].kc_lastscan;
int b, done, first, i, last, level, need_softclock = 1, off;
mtx_enter(&timeout_mutex);
MOVEBUCKET(0, ticks);
if (MASKWHEEL(0, ticks) == 0) {
MOVEBUCKET(1, ticks);
if (MASKWHEEL(1, ticks) == 0) {
MOVEBUCKET(2, ticks);
if (MASKWHEEL(2, ticks) == 0)
MOVEBUCKET(3, ticks);
}
}
/*
* Dump the buckets that expired while we were away.
*
* If the elapsed time has exceeded a level's limit then we need
* to dump every bucket in the level. We have necessarily completed
* a lap of that level, too, so we need to process buckets in the
* next level.
*
* Otherwise we need to compare indices: if the index of the first
* expired bucket is greater than that of the last then we have
* completed a lap of the level and need to process buckets in the
* next level.
*/
nanouptime(&now);
timespecsub(&now, lastscan, &elapsed);
for (level = 0; level < nitems(timeout_level_width); level++) {
first = timeout_maskwheel(level, lastscan);
if (elapsed.tv_sec >= timeout_level_width[level]) {
last = (first == 0) ? WHEELSIZE - 1 : first - 1;
done = 0;
} else {
last = timeout_maskwheel(level, &now);
done = first <= last;
}
off = level * WHEELSIZE;
for (b = first;; b = (b + 1) % WHEELSIZE) {
CIRCQ_CONCAT(&timeout_todo, &timeout_wheel_kc[off + b]);
if (b == last)
break;
}
if (done)
break;
}
/*
* Update the cached state for each kclock.
*/
for (i = 0; i < nitems(timeout_kclock); i++) {
kc = &timeout_kclock[i];
timespecadd(&now, &kc->kc_offset, &kc->kc_lastscan);
timespecsub(&kc->kc_lastscan, &tick_ts, &kc->kc_late);
}
if (CIRCQ_EMPTY(&timeout_new) && CIRCQ_EMPTY(&timeout_todo))
need_softclock = 0;
mtx_leave(&timeout_mutex);
if (need_softclock)
softintr_schedule(softclock_si);
}
void
timeout_run(struct timeout *to)
{
void (*fn)(void *);
void *arg;
int needsproc;
MUTEX_ASSERT_LOCKED(&timeout_mutex);
CLR(to->to_flags, TIMEOUT_ONQUEUE);
SET(to->to_flags, TIMEOUT_TRIGGERED);
fn = to->to_func;
arg = to->to_arg;
needsproc = ISSET(to->to_flags, TIMEOUT_PROC);
#if NKCOV > 0
struct process *kcov_process = to->to_process;
#endif
mtx_leave(&timeout_mutex);
timeout_sync_enter(needsproc);
#if NKCOV > 0
kcov_remote_enter(KCOV_REMOTE_COMMON, kcov_process);
#endif
fn(arg);
#if NKCOV > 0
kcov_remote_leave(KCOV_REMOTE_COMMON, kcov_process);
#endif
timeout_sync_leave(needsproc);
mtx_enter(&timeout_mutex);
}
void
softclock_process_kclock_timeout(struct timeout *to, int new)
{
struct kclock *kc = &timeout_kclock[to->to_kclock];
if (timespeccmp(&to->to_abstime, &kc->kc_lastscan, >)) {
tostat.tos_scheduled++;
if (!new)
tostat.tos_rescheduled++;
CIRCQ_INSERT_TAIL(&timeout_wheel_kc[timeout_bucket(to)],
&to->to_list);
return;
}
if (!new && timespeccmp(&to->to_abstime, &kc->kc_late, <=))
tostat.tos_late++;
if (ISSET(to->to_flags, TIMEOUT_PROC)) {
#ifdef MULTIPROCESSOR
if (ISSET(to->to_flags, TIMEOUT_MPSAFE))
CIRCQ_INSERT_TAIL(&timeout_proc_mp, &to->to_list);
else
#endif
CIRCQ_INSERT_TAIL(&timeout_proc, &to->to_list);
return;
}
timeout_run(to);
tostat.tos_run_softclock++;
}
void
softclock_process_tick_timeout(struct timeout *to, int new)
{
int delta = to->to_time - ticks;
if (delta > 0) {
tostat.tos_scheduled++;
if (!new)
tostat.tos_rescheduled++;
CIRCQ_INSERT_TAIL(&BUCKET(delta, to->to_time), &to->to_list);
return;
}
if (!new && delta < 0)
tostat.tos_late++;
if (ISSET(to->to_flags, TIMEOUT_PROC)) {
#ifdef MULTIPROCESSOR
if (ISSET(to->to_flags, TIMEOUT_MPSAFE))
CIRCQ_INSERT_TAIL(&timeout_proc_mp, &to->to_list);
else
#endif
CIRCQ_INSERT_TAIL(&timeout_proc, &to->to_list);
return;
}
timeout_run(to);
tostat.tos_run_softclock++;
}
/*
* Timeouts are processed here instead of timeout_hardclock_update()
* to avoid doing any more work at IPL_CLOCK than absolutely necessary.
* Down here at IPL_SOFTCLOCK other interrupts can be serviced promptly
* so the system remains responsive even if there is a surge of timeouts.
*/
void
softclock(void *arg)
{
struct timeout *first_new, *to;
int needsproc, new;
#ifdef MULTIPROCESSOR
int need_proc_mp;
#endif
first_new = NULL;
new = 0;
mtx_enter(&timeout_mutex);
if (!CIRCQ_EMPTY(&timeout_new))
first_new = timeout_from_circq(CIRCQ_FIRST(&timeout_new));
CIRCQ_CONCAT(&timeout_todo, &timeout_new);
while (!CIRCQ_EMPTY(&timeout_todo)) {
to = timeout_from_circq(CIRCQ_FIRST(&timeout_todo));
CIRCQ_REMOVE(&to->to_list);
if (to == first_new)
new = 1;
if (to->to_kclock == KCLOCK_NONE)
softclock_process_tick_timeout(to, new);
else if (to->to_kclock == KCLOCK_UPTIME)
softclock_process_kclock_timeout(to, new);
else {
panic("%s: invalid to_clock: %d",
__func__, to->to_kclock);
}
}
tostat.tos_softclocks++;
needsproc = !CIRCQ_EMPTY(&timeout_proc);
#ifdef MULTIPROCESSOR
need_proc_mp = !CIRCQ_EMPTY(&timeout_proc_mp);
#endif
mtx_leave(&timeout_mutex);
if (needsproc)
wakeup(&timeout_proc);
#ifdef MULTIPROCESSOR
if (need_proc_mp)
wakeup(&timeout_proc_mp);
#endif
}
void
softclock_create_thread(void *arg)
{
if (kthread_create(softclock_thread, NULL, NULL, "softclock"))
panic("fork softclock");
#ifdef MULTIPROCESSOR
if (kthread_create(softclock_thread_mp, NULL, NULL, "softclockmp"))
panic("kthread_create softclock_thread_mp");
#endif
}
void
softclock_thread(void *arg)
{
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
struct timeout *to;
int s;
KERNEL_ASSERT_LOCKED();
/* Be conservative for the moment */
CPU_INFO_FOREACH(cii, ci) {
if (CPU_IS_PRIMARY(ci))
break;
}
KASSERT(ci != NULL);
sched_peg_curproc(ci);
s = splsoftclock();
mtx_enter(&timeout_mutex);
for (;;) {
while (!CIRCQ_EMPTY(&timeout_proc)) {
to = timeout_from_circq(CIRCQ_FIRST(&timeout_proc));
CIRCQ_REMOVE(&to->to_list);
timeout_run(to);
tostat.tos_run_thread++;
}
tostat.tos_thread_wakeups++;
msleep_nsec(&timeout_proc, &timeout_mutex, PSWP, "tmoslp",
INFSLP);
}
splx(s);
}
#ifdef MULTIPROCESSOR
void
softclock_thread_mp(void *arg)
{
struct timeout *to;
KERNEL_ASSERT_LOCKED();
KERNEL_UNLOCK();
mtx_enter(&timeout_mutex);
for (;;) {
while (!CIRCQ_EMPTY(&timeout_proc_mp)) {
to = timeout_from_circq(CIRCQ_FIRST(&timeout_proc_mp));
CIRCQ_REMOVE(&to->to_list);
timeout_run(to);
tostat.tos_run_thread++;
}
tostat.tos_thread_wakeups++;
msleep_nsec(&timeout_proc_mp, &timeout_mutex, PSWP, "tmoslp",
INFSLP);
}
}
#endif /* MULTIPROCESSOR */
#ifndef SMALL_KERNEL
void
timeout_adjust_ticks(int adj)
{
struct timeout *to;
struct circq *p;
int new_ticks, b;
/* adjusting the monotonic clock backwards would be a Bad Thing */
if (adj <= 0)
return;
mtx_enter(&timeout_mutex);
new_ticks = ticks + adj;
for (b = 0; b < nitems(timeout_wheel); b++) {
p = CIRCQ_FIRST(&timeout_wheel[b]);
while (p != &timeout_wheel[b]) {
to = timeout_from_circq(p);
p = CIRCQ_FIRST(p);
/* when moving a timeout forward need to reinsert it */
if (to->to_time - ticks < adj)
to->to_time = new_ticks;
CIRCQ_REMOVE(&to->to_list);
CIRCQ_INSERT_TAIL(&timeout_todo, &to->to_list);
}
}
ticks = new_ticks;
mtx_leave(&timeout_mutex);
}
#endif
int
timeout_sysctl(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
{
struct timeoutstat status;
mtx_enter(&timeout_mutex);
memcpy(&status, &tostat, sizeof(status));
mtx_leave(&timeout_mutex);
return sysctl_rdstruct(oldp, oldlenp, newp, &status, sizeof(status));
}
#ifdef DDB
const char *db_kclock(int);
void db_show_callout_bucket(struct circq *);
void db_show_timeout(struct timeout *, struct circq *);
const char *db_timespec(const struct timespec *);
const char *
db_kclock(int kclock)
{
switch (kclock) {
case KCLOCK_UPTIME:
return "uptime";
default:
return "invalid";
}
}
const char *
db_timespec(const struct timespec *ts)
{
static char buf[32];
struct timespec tmp, zero;
if (ts->tv_sec >= 0) {
snprintf(buf, sizeof(buf), "%lld.%09ld",
ts->tv_sec, ts->tv_nsec);
return buf;
}
timespecclear(&zero);
timespecsub(&zero, ts, &tmp);
snprintf(buf, sizeof(buf), "-%lld.%09ld", tmp.tv_sec, tmp.tv_nsec);
return buf;
}
void
db_show_callout_bucket(struct circq *bucket)
{
struct circq *p;
CIRCQ_FOREACH(p, bucket)
db_show_timeout(timeout_from_circq(p), bucket);
}
void
db_show_timeout(struct timeout *to, struct circq *bucket)
{
struct timespec remaining;
struct kclock *kc;
char buf[8];
db_expr_t offset;
struct circq *wheel;
char *name, *where;
int width = sizeof(long) * 2;
db_find_sym_and_offset((vaddr_t)to->to_func, &name, &offset);
name = name ? name : "?";
if (bucket == &timeout_new)
where = "new";
else if (bucket == &timeout_todo)
where = "softint";
else if (bucket == &timeout_proc)
where = "thread";
#ifdef MULTIPROCESSOR
else if (bucket == &timeout_proc_mp)
where = "thread-mp";
#endif
else {
if (to->to_kclock == KCLOCK_UPTIME)
wheel = timeout_wheel_kc;
else if (to->to_kclock == KCLOCK_NONE)
wheel = timeout_wheel;
else
goto invalid;
snprintf(buf, sizeof(buf), "%3ld/%1ld",
(bucket - wheel) % WHEELSIZE,
(bucket - wheel) / WHEELSIZE);
where = buf;
}
if (to->to_kclock == KCLOCK_UPTIME) {
kc = &timeout_kclock[to->to_kclock];
timespecsub(&to->to_abstime, &kc->kc_lastscan, &remaining);
db_printf("%20s %8s %9s 0x%0*lx %s\n",
db_timespec(&remaining), db_kclock(to->to_kclock), where,
width, (ulong)to->to_arg, name);
} else if (to->to_kclock == KCLOCK_NONE) {
db_printf("%20d %8s %9s 0x%0*lx %s\n",
to->to_time - ticks, "ticks", where,
width, (ulong)to->to_arg, name);
} else
goto invalid;
return;
invalid:
db_printf("%s: timeout 0x%p: invalid to_kclock: %d",
__func__, to, to->to_kclock);
}
void
db_show_callout(db_expr_t addr, int haddr, db_expr_t count, char *modif)
{
struct kclock *kc;
int width = sizeof(long) * 2 + 2;
int b, i;
db_printf("%20s %8s\n", "lastscan", "clock");
db_printf("%20d %8s\n", ticks, "ticks");
for (i = 0; i < nitems(timeout_kclock); i++) {
kc = &timeout_kclock[i];
db_printf("%20s %8s\n",
db_timespec(&kc->kc_lastscan), db_kclock(i));
}
db_printf("\n");
db_printf("%20s %8s %9s %*s %s\n",
"remaining", "clock", "wheel", width, "arg", "func");
db_show_callout_bucket(&timeout_new);
db_show_callout_bucket(&timeout_todo);
db_show_callout_bucket(&timeout_proc);
#ifdef MULTIPROCESSOR
db_show_callout_bucket(&timeout_proc_mp);
#endif
for (b = 0; b < nitems(timeout_wheel); b++)
db_show_callout_bucket(&timeout_wheel[b]);
for (b = 0; b < nitems(timeout_wheel_kc); b++)
db_show_callout_bucket(&timeout_wheel_kc[b]);
}
#endif