src/sys/kern/subr_hibernate.c

2033 lines
54 KiB
C

/* $OpenBSD: subr_hibernate.c,v 1.139 2024/04/30 17:12:19 krw Exp $ */
/*
* Copyright (c) 2011 Ariane van der Steldt <ariane@stack.nl>
* Copyright (c) 2011 Mike Larkin <mlarkin@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/hibernate.h>
#include <sys/malloc.h>
#include <sys/param.h>
#include <sys/tree.h>
#include <sys/systm.h>
#include <sys/disklabel.h>
#include <sys/disk.h>
#include <sys/conf.h>
#include <sys/buf.h>
#include <sys/fcntl.h>
#include <sys/stat.h>
#include <sys/atomic.h>
#include <uvm/uvm.h>
#include <uvm/uvm_swap.h>
#include <machine/hibernate.h>
/* Make sure the signature can fit in one block */
CTASSERT(sizeof(union hibernate_info) <= DEV_BSIZE);
/*
* Hibernate piglet layout information
*
* The piglet is a scratch area of memory allocated by the suspending kernel.
* Its phys and virt addrs are recorded in the signature block. The piglet is
* used to guarantee an unused area of memory that can be used by the resuming
* kernel for various things. The piglet is excluded during unpack operations.
* The piglet size is presently 4*HIBERNATE_CHUNK_SIZE (typically 4*4MB).
*
* Offset from piglet_base Purpose
* ----------------------------------------------------------------------------
* 0 Private page for suspend I/O write functions
* 1*PAGE_SIZE I/O page used during hibernate suspend
* 2*PAGE_SIZE I/O page used during hibernate suspend
* 3*PAGE_SIZE copy page used during hibernate suspend
* 4*PAGE_SIZE final chunk ordering list (24 pages)
* 28*PAGE_SIZE RLE utility page
* 29*PAGE_SIZE start of hiballoc area
* 30*PAGE_SIZE preserved entropy
* 110*PAGE_SIZE end of hiballoc area (80 pages)
* 366*PAGE_SIZE end of retguard preservation region (256 pages)
* ... unused
* HIBERNATE_CHUNK_SIZE start of hibernate chunk table
* 2*HIBERNATE_CHUNK_SIZE bounce area for chunks being unpacked
* 4*HIBERNATE_CHUNK_SIZE end of piglet
*/
/* Temporary vaddr ranges used during hibernate */
vaddr_t hibernate_temp_page;
vaddr_t hibernate_copy_page;
vaddr_t hibernate_rle_page;
/* Hibernate info as read from disk during resume */
union hibernate_info disk_hib;
/*
* Global copy of the pig start address. This needs to be a global as we
* switch stacks after computing it - it can't be stored on the stack.
*/
paddr_t global_pig_start;
/*
* Global copies of the piglet start addresses (PA/VA). We store these
* as globals to avoid having to carry them around as parameters, as the
* piglet is allocated early and freed late - its lifecycle extends beyond
* that of the hibernate info union which is calculated on suspend/resume.
*/
vaddr_t global_piglet_va;
paddr_t global_piglet_pa;
/* #define HIB_DEBUG */
#ifdef HIB_DEBUG
int hib_debug = 99;
#define DPRINTF(x...) do { if (hib_debug) printf(x); } while (0)
#define DNPRINTF(n,x...) do { if (hib_debug > (n)) printf(x); } while (0)
#else
#define DPRINTF(x...)
#define DNPRINTF(n,x...)
#endif
#ifndef NO_PROPOLICE
extern long __guard_local;
#endif /* ! NO_PROPOLICE */
/* Retguard phys address (need to skip this region during unpack) */
paddr_t retguard_start_phys, retguard_end_phys;
extern char __retguard_start, __retguard_end;
void hibernate_copy_chunk_to_piglet(paddr_t, vaddr_t, size_t);
int hibernate_calc_rle(paddr_t, paddr_t);
int hibernate_write_rle(union hibernate_info *, paddr_t, paddr_t, daddr_t *,
size_t *);
#define MAX_RLE (HIBERNATE_CHUNK_SIZE / PAGE_SIZE)
/*
* Hib alloc enforced alignment.
*/
#define HIB_ALIGN 8 /* bytes alignment */
/*
* sizeof builtin operation, but with alignment constraint.
*/
#define HIB_SIZEOF(_type) roundup(sizeof(_type), HIB_ALIGN)
struct hiballoc_entry {
size_t hibe_use;
size_t hibe_space;
RBT_ENTRY(hiballoc_entry) hibe_entry;
};
/*
* Sort hibernate memory ranges by ascending PA
*/
void
hibernate_sort_ranges(union hibernate_info *hib_info)
{
int i, j;
struct hibernate_memory_range *ranges;
paddr_t base, end;
ranges = hib_info->ranges;
for (i = 1; i < hib_info->nranges; i++) {
j = i;
while (j > 0 && ranges[j - 1].base > ranges[j].base) {
base = ranges[j].base;
end = ranges[j].end;
ranges[j].base = ranges[j - 1].base;
ranges[j].end = ranges[j - 1].end;
ranges[j - 1].base = base;
ranges[j - 1].end = end;
j--;
}
}
}
/*
* Compare hiballoc entries based on the address they manage.
*
* Since the address is fixed, relative to struct hiballoc_entry,
* we just compare the hiballoc_entry pointers.
*/
static __inline int
hibe_cmp(const struct hiballoc_entry *l, const struct hiballoc_entry *r)
{
vaddr_t vl = (vaddr_t)l;
vaddr_t vr = (vaddr_t)r;
return vl < vr ? -1 : (vl > vr);
}
RBT_PROTOTYPE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp)
/*
* Given a hiballoc entry, return the address it manages.
*/
static __inline void *
hib_entry_to_addr(struct hiballoc_entry *entry)
{
caddr_t addr;
addr = (caddr_t)entry;
addr += HIB_SIZEOF(struct hiballoc_entry);
return addr;
}
/*
* Given an address, find the hiballoc that corresponds.
*/
static __inline struct hiballoc_entry*
hib_addr_to_entry(void *addr_param)
{
caddr_t addr;
addr = (caddr_t)addr_param;
addr -= HIB_SIZEOF(struct hiballoc_entry);
return (struct hiballoc_entry*)addr;
}
RBT_GENERATE(hiballoc_addr, hiballoc_entry, hibe_entry, hibe_cmp);
/*
* Allocate memory from the arena.
*
* Returns NULL if no memory is available.
*/
void *
hib_alloc(struct hiballoc_arena *arena, size_t alloc_sz)
{
struct hiballoc_entry *entry, *new_entry;
size_t find_sz;
/*
* Enforce alignment of HIB_ALIGN bytes.
*
* Note that, because the entry is put in front of the allocation,
* 0-byte allocations are guaranteed a unique address.
*/
alloc_sz = roundup(alloc_sz, HIB_ALIGN);
/*
* Find an entry with hibe_space >= find_sz.
*
* If the root node is not large enough, we switch to tree traversal.
* Because all entries are made at the bottom of the free space,
* traversal from the end has a slightly better chance of yielding
* a sufficiently large space.
*/
find_sz = alloc_sz + HIB_SIZEOF(struct hiballoc_entry);
entry = RBT_ROOT(hiballoc_addr, &arena->hib_addrs);
if (entry != NULL && entry->hibe_space < find_sz) {
RBT_FOREACH_REVERSE(entry, hiballoc_addr, &arena->hib_addrs) {
if (entry->hibe_space >= find_sz)
break;
}
}
/*
* Insufficient or too fragmented memory.
*/
if (entry == NULL)
return NULL;
/*
* Create new entry in allocated space.
*/
new_entry = (struct hiballoc_entry*)(
(caddr_t)hib_entry_to_addr(entry) + entry->hibe_use);
new_entry->hibe_space = entry->hibe_space - find_sz;
new_entry->hibe_use = alloc_sz;
/*
* Insert entry.
*/
if (RBT_INSERT(hiballoc_addr, &arena->hib_addrs, new_entry) != NULL)
panic("hib_alloc: insert failure");
entry->hibe_space = 0;
/* Return address managed by entry. */
return hib_entry_to_addr(new_entry);
}
void
hib_getentropy(char **bufp, size_t *bufplen)
{
if (!bufp || !bufplen)
return;
*bufp = (char *)(global_piglet_va + (29 * PAGE_SIZE));
*bufplen = PAGE_SIZE;
}
/*
* Free a pointer previously allocated from this arena.
*
* If addr is NULL, this will be silently accepted.
*/
void
hib_free(struct hiballoc_arena *arena, void *addr)
{
struct hiballoc_entry *entry, *prev;
if (addr == NULL)
return;
/*
* Derive entry from addr and check it is really in this arena.
*/
entry = hib_addr_to_entry(addr);
if (RBT_FIND(hiballoc_addr, &arena->hib_addrs, entry) != entry)
panic("hib_free: freed item %p not in hib arena", addr);
/*
* Give the space in entry to its predecessor.
*
* If entry has no predecessor, change its used space into free space
* instead.
*/
prev = RBT_PREV(hiballoc_addr, entry);
if (prev != NULL &&
(void *)((caddr_t)prev + HIB_SIZEOF(struct hiballoc_entry) +
prev->hibe_use + prev->hibe_space) == entry) {
/* Merge entry. */
RBT_REMOVE(hiballoc_addr, &arena->hib_addrs, entry);
prev->hibe_space += HIB_SIZEOF(struct hiballoc_entry) +
entry->hibe_use + entry->hibe_space;
} else {
/* Flip used memory to free space. */
entry->hibe_space += entry->hibe_use;
entry->hibe_use = 0;
}
}
/*
* Initialize hiballoc.
*
* The allocator will manage memory at ptr, which is len bytes.
*/
int
hiballoc_init(struct hiballoc_arena *arena, void *p_ptr, size_t p_len)
{
struct hiballoc_entry *entry;
caddr_t ptr;
size_t len;
RBT_INIT(hiballoc_addr, &arena->hib_addrs);
/*
* Hib allocator enforces HIB_ALIGN alignment.
* Fixup ptr and len.
*/
ptr = (caddr_t)roundup((vaddr_t)p_ptr, HIB_ALIGN);
len = p_len - ((size_t)ptr - (size_t)p_ptr);
len &= ~((size_t)HIB_ALIGN - 1);
/*
* Insufficient memory to be able to allocate and also do bookkeeping.
*/
if (len <= HIB_SIZEOF(struct hiballoc_entry))
return ENOMEM;
/*
* Create entry describing space.
*/
entry = (struct hiballoc_entry*)ptr;
entry->hibe_use = 0;
entry->hibe_space = len - HIB_SIZEOF(struct hiballoc_entry);
RBT_INSERT(hiballoc_addr, &arena->hib_addrs, entry);
return 0;
}
/*
* Zero all free memory.
*/
void
uvm_pmr_zero_everything(void)
{
struct uvm_pmemrange *pmr;
struct vm_page *pg;
int i;
uvm_lock_fpageq();
TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
/* Zero single pages. */
while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_DIRTY]))
!= NULL) {
uvm_pmr_remove(pmr, pg);
uvm_pagezero(pg);
atomic_setbits_int(&pg->pg_flags, PG_ZERO);
uvmexp.zeropages++;
uvm_pmr_insert(pmr, pg, 0);
}
/* Zero multi page ranges. */
while ((pg = RBT_ROOT(uvm_pmr_size,
&pmr->size[UVM_PMR_MEMTYPE_DIRTY])) != NULL) {
pg--; /* Size tree always has second page. */
uvm_pmr_remove(pmr, pg);
for (i = 0; i < pg->fpgsz; i++) {
uvm_pagezero(&pg[i]);
atomic_setbits_int(&pg[i].pg_flags, PG_ZERO);
uvmexp.zeropages++;
}
uvm_pmr_insert(pmr, pg, 0);
}
}
uvm_unlock_fpageq();
}
/*
* Mark all memory as dirty.
*
* Used to inform the system that the clean memory isn't clean for some
* reason, for example because we just came back from hibernate.
*/
void
uvm_pmr_dirty_everything(void)
{
struct uvm_pmemrange *pmr;
struct vm_page *pg;
int i;
uvm_lock_fpageq();
TAILQ_FOREACH(pmr, &uvm.pmr_control.use, pmr_use) {
/* Dirty single pages. */
while ((pg = TAILQ_FIRST(&pmr->single[UVM_PMR_MEMTYPE_ZERO]))
!= NULL) {
uvm_pmr_remove(pmr, pg);
atomic_clearbits_int(&pg->pg_flags, PG_ZERO);
uvm_pmr_insert(pmr, pg, 0);
}
/* Dirty multi page ranges. */
while ((pg = RBT_ROOT(uvm_pmr_size,
&pmr->size[UVM_PMR_MEMTYPE_ZERO])) != NULL) {
pg--; /* Size tree always has second page. */
uvm_pmr_remove(pmr, pg);
for (i = 0; i < pg->fpgsz; i++)
atomic_clearbits_int(&pg[i].pg_flags, PG_ZERO);
uvm_pmr_insert(pmr, pg, 0);
}
}
uvmexp.zeropages = 0;
uvm_unlock_fpageq();
}
/*
* Allocate an area that can hold sz bytes and doesn't overlap with
* the piglet at piglet_pa.
*/
int
uvm_pmr_alloc_pig(paddr_t *pa, psize_t sz, paddr_t piglet_pa)
{
struct uvm_constraint_range pig_constraint;
struct kmem_pa_mode kp_pig = {
.kp_constraint = &pig_constraint,
.kp_maxseg = 1
};
vaddr_t va;
sz = round_page(sz);
pig_constraint.ucr_low = piglet_pa + 4 * HIBERNATE_CHUNK_SIZE;
pig_constraint.ucr_high = -1;
va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait);
if (va == 0) {
pig_constraint.ucr_low = 0;
pig_constraint.ucr_high = piglet_pa - 1;
va = (vaddr_t)km_alloc(sz, &kv_any, &kp_pig, &kd_nowait);
if (va == 0)
return ENOMEM;
}
pmap_extract(pmap_kernel(), va, pa);
return 0;
}
/*
* Allocate a piglet area.
*
* This needs to be in DMA-safe memory.
* Piglets are aligned.
*
* sz and align in bytes.
*
* The call will sleep for the pagedaemon to attempt to free memory.
* The pagedaemon may decide its not possible to free enough memory, causing
* the allocation to fail.
*/
int
uvm_pmr_alloc_piglet(vaddr_t *va, paddr_t *pa, vsize_t sz, paddr_t align)
{
struct kmem_pa_mode kp_piglet = {
.kp_constraint = &dma_constraint,
.kp_align = align,
.kp_maxseg = 1
};
/* Ensure align is a power of 2 */
KASSERT((align & (align - 1)) == 0);
/*
* Fixup arguments: align must be at least PAGE_SIZE,
* sz will be converted to pagecount, since that is what
* pmemrange uses internally.
*/
if (align < PAGE_SIZE)
kp_piglet.kp_align = PAGE_SIZE;
sz = round_page(sz);
*va = (vaddr_t)km_alloc(sz, &kv_any, &kp_piglet, &kd_nowait);
if (*va == 0)
return ENOMEM;
pmap_extract(pmap_kernel(), *va, pa);
return 0;
}
/*
* Free a piglet area.
*/
void
uvm_pmr_free_piglet(vaddr_t va, vsize_t sz)
{
/*
* Fix parameters.
*/
sz = round_page(sz);
/*
* Free the physical and virtual memory.
*/
km_free((void *)va, sz, &kv_any, &kp_dma_contig);
}
/*
* Physmem RLE compression support.
*
* Given a physical page address, return the number of pages starting at the
* address that are free. Clamps to the number of pages in
* HIBERNATE_CHUNK_SIZE. Returns 0 if the page at addr is not free.
*/
int
uvm_page_rle(paddr_t addr)
{
struct vm_page *pg, *pg_end;
struct vm_physseg *vmp;
int pseg_idx, off_idx;
pseg_idx = vm_physseg_find(atop(addr), &off_idx);
if (pseg_idx == -1)
return 0;
vmp = &vm_physmem[pseg_idx];
pg = &vmp->pgs[off_idx];
if (!(pg->pg_flags & PQ_FREE))
return 0;
/*
* Search for the first non-free page after pg.
* Note that the page may not be the first page in a free pmemrange,
* therefore pg->fpgsz cannot be used.
*/
for (pg_end = pg; pg_end <= vmp->lastpg &&
(pg_end->pg_flags & PQ_FREE) == PQ_FREE &&
(pg_end - pg) < HIBERNATE_CHUNK_SIZE/PAGE_SIZE; pg_end++)
;
return pg_end - pg;
}
/*
* Fills out the hibernate_info union pointed to by hib
* with information about this machine (swap signature block
* offsets, number of memory ranges, kernel in use, etc)
*/
int
get_hibernate_info(union hibernate_info *hib, int suspend)
{
struct disklabel dl;
char err_string[128], *dl_ret;
int part;
SHA2_CTX ctx;
void *fn;
#ifndef NO_PROPOLICE
/* Save propolice guard */
hib->guard = __guard_local;
#endif /* ! NO_PROPOLICE */
/* Determine I/O function to use */
hib->io_func = get_hibernate_io_function(swdevt[0].sw_dev);
if (hib->io_func == NULL)
return (1);
/* Calculate hibernate device */
hib->dev = swdevt[0].sw_dev;
/* Read disklabel (used to calculate signature and image offsets) */
dl_ret = disk_readlabel(&dl, hib->dev, err_string, sizeof(err_string));
if (dl_ret) {
printf("Hibernate error reading disklabel: %s\n", dl_ret);
return (1);
}
/* Make sure we have a swap partition. */
part = DISKPART(hib->dev);
if (dl.d_npartitions <= part ||
dl.d_partitions[part].p_fstype != FS_SWAP ||
DL_GETPSIZE(&dl.d_partitions[part]) == 0)
return (1);
/* Magic number */
hib->magic = HIBERNATE_MAGIC;
/* Calculate signature block location */
hib->sig_offset = DL_GETPSIZE(&dl.d_partitions[part]) -
sizeof(union hibernate_info)/DEV_BSIZE;
SHA256Init(&ctx);
SHA256Update(&ctx, version, strlen(version));
fn = printf;
SHA256Update(&ctx, &fn, sizeof(fn));
fn = malloc;
SHA256Update(&ctx, &fn, sizeof(fn));
fn = km_alloc;
SHA256Update(&ctx, &fn, sizeof(fn));
fn = strlen;
SHA256Update(&ctx, &fn, sizeof(fn));
SHA256Final((u_int8_t *)&hib->kern_hash, &ctx);
if (suspend) {
/* Grab the previously-allocated piglet addresses */
hib->piglet_va = global_piglet_va;
hib->piglet_pa = global_piglet_pa;
hib->io_page = (void *)hib->piglet_va;
/*
* Initialization of the hibernate IO function for drivers
* that need to do prep work (such as allocating memory or
* setting up data structures that cannot safely be done
* during suspend without causing side effects). There is
* a matching HIB_DONE call performed after the write is
* completed.
*/
if (hib->io_func(hib->dev, DL_GETPOFFSET(&dl.d_partitions[part]),
(vaddr_t)NULL, DL_GETPSIZE(&dl.d_partitions[part]),
HIB_INIT, hib->io_page))
goto fail;
} else {
/*
* Resuming kernels use a regular private page for the driver
* No need to free this I/O page as it will vanish as part of
* the resume.
*/
hib->io_page = malloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT);
if (!hib->io_page)
goto fail;
}
if (get_hibernate_info_md(hib))
goto fail;
return (0);
fail:
return (1);
}
/*
* Allocate nitems*size bytes from the hiballoc area presently in use
*/
void *
hibernate_zlib_alloc(void *unused, int nitems, int size)
{
struct hibernate_zlib_state *hibernate_state;
hibernate_state =
(struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
return hib_alloc(&hibernate_state->hiballoc_arena, nitems*size);
}
/*
* Free the memory pointed to by addr in the hiballoc area presently in
* use
*/
void
hibernate_zlib_free(void *unused, void *addr)
{
struct hibernate_zlib_state *hibernate_state;
hibernate_state =
(struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
hib_free(&hibernate_state->hiballoc_arena, addr);
}
/*
* Inflate next page of data from the image stream.
* The rle parameter is modified on exit to contain the number of pages to
* skip in the output stream (or 0 if this page was inflated into).
*
* Returns 0 if the stream contains additional data, or 1 if the stream is
* finished.
*/
int
hibernate_inflate_page(int *rle)
{
struct hibernate_zlib_state *hibernate_state;
int i;
hibernate_state =
(struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
/* Set up the stream for RLE code inflate */
hibernate_state->hib_stream.next_out = (unsigned char *)rle;
hibernate_state->hib_stream.avail_out = sizeof(*rle);
/* Inflate RLE code */
i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH);
if (i != Z_OK && i != Z_STREAM_END) {
/*
* XXX - this will likely reboot/hang most machines
* since the console output buffer will be unmapped,
* but there's not much else we can do here.
*/
panic("rle inflate stream error");
}
if (hibernate_state->hib_stream.avail_out != 0) {
/*
* XXX - this will likely reboot/hang most machines
* since the console output buffer will be unmapped,
* but there's not much else we can do here.
*/
panic("rle short inflate error");
}
if (*rle < 0 || *rle > 1024) {
/*
* XXX - this will likely reboot/hang most machines
* since the console output buffer will be unmapped,
* but there's not much else we can do here.
*/
panic("invalid rle count");
}
if (i == Z_STREAM_END)
return (1);
if (*rle != 0)
return (0);
/* Set up the stream for page inflate */
hibernate_state->hib_stream.next_out =
(unsigned char *)HIBERNATE_INFLATE_PAGE;
hibernate_state->hib_stream.avail_out = PAGE_SIZE;
/* Process next block of data */
i = inflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH);
if (i != Z_OK && i != Z_STREAM_END) {
/*
* XXX - this will likely reboot/hang most machines
* since the console output buffer will be unmapped,
* but there's not much else we can do here.
*/
panic("inflate error");
}
/* We should always have extracted a full page ... */
if (hibernate_state->hib_stream.avail_out != 0) {
/*
* XXX - this will likely reboot/hang most machines
* since the console output buffer will be unmapped,
* but there's not much else we can do here.
*/
panic("incomplete page");
}
return (i == Z_STREAM_END);
}
/*
* Inflate size bytes from src into dest, skipping any pages in
* [src..dest] that are special (see hibernate_inflate_skip)
*
* This function executes while using the resume-time stack
* and pmap, and therefore cannot use ddb/printf/etc. Doing so
* will likely hang or reset the machine since the console output buffer
* will be unmapped.
*/
void
hibernate_inflate_region(union hibernate_info *hib, paddr_t dest,
paddr_t src, size_t size)
{
int end_stream = 0, rle, skip;
struct hibernate_zlib_state *hibernate_state;
hibernate_state =
(struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
hibernate_state->hib_stream.next_in = (unsigned char *)src;
hibernate_state->hib_stream.avail_in = size;
do {
/*
* Is this a special page? If yes, redirect the
* inflate output to a scratch page (eg, discard it)
*/
skip = hibernate_inflate_skip(hib, dest);
if (skip == HIB_SKIP) {
hibernate_enter_resume_mapping(
HIBERNATE_INFLATE_PAGE,
HIBERNATE_INFLATE_PAGE, 0);
} else if (skip == HIB_MOVE) {
/*
* Special case : retguard region. This gets moved
* temporarily into the piglet region and copied into
* place immediately before resume
*/
hibernate_enter_resume_mapping(
HIBERNATE_INFLATE_PAGE,
hib->piglet_pa + (110 * PAGE_SIZE) +
hib->retguard_ofs, 0);
hib->retguard_ofs += PAGE_SIZE;
if (hib->retguard_ofs > 255 * PAGE_SIZE) {
/*
* XXX - this will likely reboot/hang most
* machines since the console output
* buffer will be unmapped, but there's
* not much else we can do here.
*/
panic("retguard move error, out of space");
}
} else {
hibernate_enter_resume_mapping(
HIBERNATE_INFLATE_PAGE, dest, 0);
}
hibernate_flush();
end_stream = hibernate_inflate_page(&rle);
if (rle == 0)
dest += PAGE_SIZE;
else
dest += (rle * PAGE_SIZE);
} while (!end_stream);
}
/*
* deflate from src into the I/O page, up to 'remaining' bytes
*
* Returns number of input bytes consumed, and may reset
* the 'remaining' parameter if not all the output space was consumed
* (this information is needed to know how much to write to disk)
*/
size_t
hibernate_deflate(union hibernate_info *hib, paddr_t src,
size_t *remaining)
{
vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE;
struct hibernate_zlib_state *hibernate_state;
hibernate_state =
(struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
/* Set up the stream for deflate */
hibernate_state->hib_stream.next_in = (unsigned char *)src;
hibernate_state->hib_stream.avail_in = PAGE_SIZE - (src & PAGE_MASK);
hibernate_state->hib_stream.next_out =
(unsigned char *)hibernate_io_page + (PAGE_SIZE - *remaining);
hibernate_state->hib_stream.avail_out = *remaining;
/* Process next block of data */
if (deflate(&hibernate_state->hib_stream, Z_SYNC_FLUSH) != Z_OK)
panic("hibernate zlib deflate error");
/* Update pointers and return number of bytes consumed */
*remaining = hibernate_state->hib_stream.avail_out;
return (PAGE_SIZE - (src & PAGE_MASK)) -
hibernate_state->hib_stream.avail_in;
}
/*
* Write the hibernation information specified in hiber_info
* to the location in swap previously calculated (last block of
* swap), called the "signature block".
*/
int
hibernate_write_signature(union hibernate_info *hib)
{
/* Write hibernate info to disk */
return (hib->io_func(hib->dev, hib->sig_offset,
(vaddr_t)hib, DEV_BSIZE, HIB_W,
hib->io_page));
}
/*
* Write the memory chunk table to the area in swap immediately
* preceding the signature block. The chunk table is stored
* in the piglet when this function is called. Returns errno.
*/
int
hibernate_write_chunktable(union hibernate_info *hib)
{
vaddr_t hibernate_chunk_table_start;
size_t hibernate_chunk_table_size;
int i, err;
hibernate_chunk_table_size = HIBERNATE_CHUNK_TABLE_SIZE;
hibernate_chunk_table_start = hib->piglet_va +
HIBERNATE_CHUNK_SIZE;
/* Write chunk table */
for (i = 0; i < hibernate_chunk_table_size; i += MAXPHYS) {
if ((err = hib->io_func(hib->dev,
hib->chunktable_offset + (i/DEV_BSIZE),
(vaddr_t)(hibernate_chunk_table_start + i),
MAXPHYS, HIB_W, hib->io_page))) {
DPRINTF("chunktable write error: %d\n", err);
return (err);
}
}
return (0);
}
/*
* Write an empty hiber_info to the swap signature block, which is
* guaranteed to not match any valid hib.
*/
int
hibernate_clear_signature(union hibernate_info *hib)
{
union hibernate_info blank_hiber_info;
/* Zero out a blank hiber_info */
memset(&blank_hiber_info, 0, sizeof(union hibernate_info));
/* Write (zeroed) hibernate info to disk */
DPRINTF("clearing hibernate signature block location: %lld\n",
hib->sig_offset);
if (hibernate_block_io(hib,
hib->sig_offset,
DEV_BSIZE, (vaddr_t)&blank_hiber_info, 1))
printf("Warning: could not clear hibernate signature\n");
return (0);
}
/*
* Compare two hibernate_infos to determine if they are the same (eg,
* we should be performing a hibernate resume on this machine.
* Not all fields are checked - just enough to verify that the machine
* has the same memory configuration and kernel as the one that
* wrote the signature previously.
*/
int
hibernate_compare_signature(union hibernate_info *mine,
union hibernate_info *disk)
{
u_int i;
if (mine->nranges != disk->nranges) {
printf("unhibernate failed: memory layout changed\n");
return (1);
}
if (bcmp(mine->kern_hash, disk->kern_hash, SHA256_DIGEST_LENGTH) != 0) {
printf("unhibernate failed: original kernel changed\n");
return (1);
}
for (i = 0; i < mine->nranges; i++) {
if ((mine->ranges[i].base != disk->ranges[i].base) ||
(mine->ranges[i].end != disk->ranges[i].end) ) {
DPRINTF("hib range %d mismatch [%p-%p != %p-%p]\n",
i,
(void *)mine->ranges[i].base,
(void *)mine->ranges[i].end,
(void *)disk->ranges[i].base,
(void *)disk->ranges[i].end);
printf("unhibernate failed: memory size changed\n");
return (1);
}
}
return (0);
}
/*
* Transfers xfer_size bytes between the hibernate device specified in
* hib_info at offset blkctr and the vaddr specified at dest.
*
* Separate offsets and pages are used to handle misaligned reads (reads
* that span a page boundary).
*
* blkctr specifies a relative offset (relative to the start of swap),
* not an absolute disk offset
*
*/
int
hibernate_block_io(union hibernate_info *hib, daddr_t blkctr,
size_t xfer_size, vaddr_t dest, int iswrite)
{
struct buf *bp;
struct bdevsw *bdsw;
int error;
bp = geteblk(xfer_size);
bdsw = &bdevsw[major(hib->dev)];
error = (*bdsw->d_open)(hib->dev, FREAD, S_IFCHR, curproc);
if (error) {
printf("hibernate_block_io open failed\n");
return (1);
}
if (iswrite)
bcopy((caddr_t)dest, bp->b_data, xfer_size);
bp->b_bcount = xfer_size;
bp->b_blkno = blkctr;
CLR(bp->b_flags, B_READ | B_WRITE | B_DONE);
SET(bp->b_flags, B_BUSY | (iswrite ? B_WRITE : B_READ) | B_RAW);
bp->b_dev = hib->dev;
(*bdsw->d_strategy)(bp);
error = biowait(bp);
if (error) {
printf("hib block_io biowait error %d blk %lld size %zu\n",
error, (long long)blkctr, xfer_size);
error = (*bdsw->d_close)(hib->dev, 0, S_IFCHR,
curproc);
if (error)
printf("hibernate_block_io error close failed\n");
return (1);
}
error = (*bdsw->d_close)(hib->dev, FREAD, S_IFCHR, curproc);
if (error) {
printf("hibernate_block_io close failed\n");
return (1);
}
if (!iswrite)
bcopy(bp->b_data, (caddr_t)dest, xfer_size);
bp->b_flags |= B_INVAL;
brelse(bp);
return (0);
}
/*
* Preserve one page worth of random data, generated from the resuming
* kernel's arc4random. After resume, this preserved entropy can be used
* to further improve the un-hibernated machine's entropy pool. This
* random data is stored in the piglet, which is preserved across the
* unpack operation, and is restored later in the resume process (see
* hib_getentropy)
*/
void
hibernate_preserve_entropy(union hibernate_info *hib)
{
void *entropy;
entropy = km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_nowait);
if (!entropy)
return;
pmap_activate(curproc);
pmap_kenter_pa((vaddr_t)entropy,
(paddr_t)(hib->piglet_pa + (29 * PAGE_SIZE)),
PROT_READ | PROT_WRITE);
arc4random_buf((void *)entropy, PAGE_SIZE);
pmap_kremove((vaddr_t)entropy, PAGE_SIZE);
km_free(entropy, PAGE_SIZE, &kv_any, &kp_none);
}
#ifndef NO_PROPOLICE
vaddr_t
hibernate_unprotect_ssp(void)
{
struct kmem_dyn_mode kd_avoidalias;
vaddr_t va = trunc_page((vaddr_t)&__guard_local);
paddr_t pa;
pmap_extract(pmap_kernel(), va, &pa);
memset(&kd_avoidalias, 0, sizeof kd_avoidalias);
kd_avoidalias.kd_prefer = pa;
kd_avoidalias.kd_waitok = 1;
va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_avoidalias);
if (!va)
panic("hibernate_unprotect_ssp");
pmap_kenter_pa(va, pa, PROT_READ | PROT_WRITE);
pmap_update(pmap_kernel());
return va;
}
void
hibernate_reprotect_ssp(vaddr_t va)
{
pmap_kremove(va, PAGE_SIZE);
km_free((void *)va, PAGE_SIZE, &kv_any, &kp_none);
}
#endif /* NO_PROPOLICE */
/*
* Reads the signature block from swap, checks against the current machine's
* information. If the information matches, perform a resume by reading the
* saved image into the pig area, and unpacking.
*
* Must be called with interrupts enabled.
*/
void
hibernate_resume(void)
{
union hibernate_info hib;
int s;
#ifndef NO_PROPOLICE
vsize_t off = (vaddr_t)&__guard_local -
trunc_page((vaddr_t)&__guard_local);
vaddr_t guard_va;
#endif
/* Get current running machine's hibernate info */
memset(&hib, 0, sizeof(hib));
if (get_hibernate_info(&hib, 0)) {
DPRINTF("couldn't retrieve machine's hibernate info\n");
return;
}
/* Read hibernate info from disk */
s = splbio();
DPRINTF("reading hibernate signature block location: %lld\n",
hib.sig_offset);
if (hibernate_block_io(&hib,
hib.sig_offset,
DEV_BSIZE, (vaddr_t)&disk_hib, 0)) {
DPRINTF("error in hibernate read\n");
splx(s);
return;
}
/* Check magic number */
if (disk_hib.magic != HIBERNATE_MAGIC) {
DPRINTF("wrong magic number in hibernate signature: %x\n",
disk_hib.magic);
splx(s);
return;
}
/*
* We (possibly) found a hibernate signature. Clear signature first,
* to prevent accidental resume or endless resume cycles later.
*/
if (hibernate_clear_signature(&hib)) {
DPRINTF("error clearing hibernate signature block\n");
splx(s);
return;
}
/*
* If on-disk and in-memory hibernate signatures match,
* this means we should do a resume from hibernate.
*/
if (hibernate_compare_signature(&hib, &disk_hib)) {
DPRINTF("mismatched hibernate signature block\n");
splx(s);
return;
}
disk_hib.dev = hib.dev;
#ifdef MULTIPROCESSOR
/* XXX - if we fail later, we may need to rehatch APs on some archs */
DPRINTF("hibernate: quiescing APs\n");
hibernate_quiesce_cpus();
#endif /* MULTIPROCESSOR */
/* Read the image from disk into the image (pig) area */
if (hibernate_read_image(&disk_hib))
goto fail;
DPRINTF("hibernate: quiescing devices\n");
if (config_suspend_all(DVACT_QUIESCE) != 0)
goto fail;
#ifndef NO_PROPOLICE
guard_va = hibernate_unprotect_ssp();
#endif /* NO_PROPOLICE */
(void) splhigh();
hibernate_disable_intr_machdep();
cold = 2;
DPRINTF("hibernate: suspending devices\n");
if (config_suspend_all(DVACT_SUSPEND) != 0) {
cold = 0;
hibernate_enable_intr_machdep();
#ifndef NO_PROPOLICE
hibernate_reprotect_ssp(guard_va);
#endif /* ! NO_PROPOLICE */
goto fail;
}
pmap_extract(pmap_kernel(), (vaddr_t)&__retguard_start,
&retguard_start_phys);
pmap_extract(pmap_kernel(), (vaddr_t)&__retguard_end,
&retguard_end_phys);
hibernate_preserve_entropy(&disk_hib);
printf("Unpacking image...\n");
/* Switch stacks */
DPRINTF("hibernate: switching stacks\n");
hibernate_switch_stack_machdep();
#ifndef NO_PROPOLICE
/* Start using suspended kernel's propolice guard */
*(long *)(guard_va + off) = disk_hib.guard;
hibernate_reprotect_ssp(guard_va);
#endif /* ! NO_PROPOLICE */
/* Unpack and resume */
hibernate_unpack_image(&disk_hib);
fail:
splx(s);
printf("\nUnable to resume hibernated image\n");
}
/*
* Unpack image from pig area to original location by looping through the
* list of output chunks in the order they should be restored (fchunks).
*
* Note that due to the stack smash protector and the fact that we have
* switched stacks, it is not permitted to return from this function.
*/
void
hibernate_unpack_image(union hibernate_info *hib)
{
struct hibernate_disk_chunk *chunks;
union hibernate_info local_hib;
paddr_t image_cur = global_pig_start;
short i, *fchunks;
char *pva;
/* Piglet will be identity mapped (VA == PA) */
pva = (char *)hib->piglet_pa;
fchunks = (short *)(pva + (4 * PAGE_SIZE));
chunks = (struct hibernate_disk_chunk *)(pva + HIBERNATE_CHUNK_SIZE);
/* Can't use hiber_info that's passed in after this point */
bcopy(hib, &local_hib, sizeof(union hibernate_info));
local_hib.retguard_ofs = 0;
/* VA == PA */
local_hib.piglet_va = local_hib.piglet_pa;
/*
* Point of no return. Once we pass this point, only kernel code can
* be accessed. No global variables or other kernel data structures
* are guaranteed to be coherent after unpack starts.
*
* The image is now in high memory (pig area), we unpack from the pig
* to the correct location in memory. We'll eventually end up copying
* on top of ourself, but we are assured the kernel code here is the
* same between the hibernated and resuming kernel, and we are running
* on our own stack, so the overwrite is ok.
*/
DPRINTF("hibernate: activating alt. pagetable and starting unpack\n");
hibernate_activate_resume_pt_machdep();
for (i = 0; i < local_hib.chunk_ctr; i++) {
/* Reset zlib for inflate */
if (hibernate_zlib_reset(&local_hib, 0) != Z_OK)
panic("hibernate failed to reset zlib for inflate");
hibernate_process_chunk(&local_hib, &chunks[fchunks[i]],
image_cur);
image_cur += chunks[fchunks[i]].compressed_size;
}
/*
* Resume the loaded kernel by jumping to the MD resume vector.
* We won't be returning from this call. We pass the location of
* the retguard save area so the MD code can replace it before
* resuming. See the piglet layout at the top of this file for
* more information on the layout of the piglet area.
*
* We use 'global_piglet_va' here since by the time we are at
* this point, we have already unpacked the image, and we want
* the suspended kernel's view of what the piglet was, before
* suspend occurred (since we will need to use that in the retguard
* copy code in hibernate_resume_machdep.)
*/
hibernate_resume_machdep(global_piglet_va + (110 * PAGE_SIZE));
}
/*
* Bounce a compressed image chunk to the piglet, entering mappings for the
* copied pages as needed
*/
void
hibernate_copy_chunk_to_piglet(paddr_t img_cur, vaddr_t piglet, size_t size)
{
size_t ct, ofs;
paddr_t src = img_cur;
vaddr_t dest = piglet;
/* Copy first partial page */
ct = (PAGE_SIZE) - (src & PAGE_MASK);
ofs = (src & PAGE_MASK);
if (ct < PAGE_SIZE) {
hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE,
(src - ofs), 0);
hibernate_flush();
bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE + ofs), (caddr_t)dest, ct);
src += ct;
dest += ct;
}
/* Copy remaining pages */
while (src < size + img_cur) {
hibernate_enter_resume_mapping(HIBERNATE_INFLATE_PAGE, src, 0);
hibernate_flush();
ct = PAGE_SIZE;
bcopy((caddr_t)(HIBERNATE_INFLATE_PAGE), (caddr_t)dest, ct);
hibernate_flush();
src += ct;
dest += ct;
}
}
/*
* Process a chunk by bouncing it to the piglet, followed by unpacking
*/
void
hibernate_process_chunk(union hibernate_info *hib,
struct hibernate_disk_chunk *chunk, paddr_t img_cur)
{
char *pva = (char *)hib->piglet_va;
hibernate_copy_chunk_to_piglet(img_cur,
(vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)), chunk->compressed_size);
hibernate_inflate_region(hib, chunk->base,
(vaddr_t)(pva + (HIBERNATE_CHUNK_SIZE * 2)),
chunk->compressed_size);
}
/*
* Calculate RLE component for 'inaddr'. Clamps to max RLE pages between
* inaddr and range_end.
*/
int
hibernate_calc_rle(paddr_t inaddr, paddr_t range_end)
{
int rle;
rle = uvm_page_rle(inaddr);
KASSERT(rle >= 0 && rle <= MAX_RLE);
/* Clamp RLE to range end */
if (rle > 0 && inaddr + (rle * PAGE_SIZE) > range_end)
rle = (range_end - inaddr) / PAGE_SIZE;
return (rle);
}
/*
* Write the RLE byte for page at 'inaddr' to the output stream.
* Returns the number of pages to be skipped at 'inaddr'.
*/
int
hibernate_write_rle(union hibernate_info *hib, paddr_t inaddr,
paddr_t range_end, daddr_t *blkctr,
size_t *out_remaining)
{
int rle, err, *rleloc;
struct hibernate_zlib_state *hibernate_state;
vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE;
hibernate_state =
(struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
rle = hibernate_calc_rle(inaddr, range_end);
rleloc = (int *)hibernate_rle_page + MAX_RLE - 1;
*rleloc = rle;
/* Deflate the RLE byte into the stream */
hibernate_deflate(hib, (paddr_t)rleloc, out_remaining);
/* Did we fill the output page? If so, flush to disk */
if (*out_remaining == 0) {
if ((err = hib->io_func(hib->dev, *blkctr + hib->image_offset,
(vaddr_t)hibernate_io_page, PAGE_SIZE, HIB_W,
hib->io_page))) {
DPRINTF("hib write error %d\n", err);
return (err);
}
*blkctr += PAGE_SIZE / DEV_BSIZE;
*out_remaining = PAGE_SIZE;
/* If we didn't deflate the entire RLE byte, finish it now */
if (hibernate_state->hib_stream.avail_in != 0)
hibernate_deflate(hib,
(vaddr_t)hibernate_state->hib_stream.next_in,
out_remaining);
}
return (rle);
}
/*
* Write a compressed version of this machine's memory to disk, at the
* precalculated swap offset:
*
* end of swap - signature block size - chunk table size - memory size
*
* The function begins by looping through each phys mem range, cutting each
* one into MD sized chunks. These chunks are then compressed individually
* and written out to disk, in phys mem order. Some chunks might compress
* more than others, and for this reason, each chunk's size is recorded
* in the chunk table, which is written to disk after the image has
* properly been compressed and written (in hibernate_write_chunktable).
*
* When this function is called, the machine is nearly suspended - most
* devices are quiesced/suspended, interrupts are off, and cold has
* been set. This means that there can be no side effects once the
* write has started, and the write function itself can also have no
* side effects. This also means no printfs are permitted (since printf
* has side effects.)
*
* Return values :
*
* 0 - success
* EIO - I/O error occurred writing the chunks
* EINVAL - Failed to write a complete range
* ENOMEM - Memory allocation failure during preparation of the zlib arena
*/
int
hibernate_write_chunks(union hibernate_info *hib)
{
paddr_t range_base, range_end, inaddr, temp_inaddr;
size_t nblocks, out_remaining, used;
struct hibernate_disk_chunk *chunks;
vaddr_t hibernate_io_page = hib->piglet_va + PAGE_SIZE;
daddr_t blkctr = 0;
int i, rle, err;
struct hibernate_zlib_state *hibernate_state;
hibernate_state =
(struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
hib->chunk_ctr = 0;
/*
* Map the utility VAs to the piglet. See the piglet map at the
* top of this file for piglet layout information.
*/
hibernate_copy_page = hib->piglet_va + 3 * PAGE_SIZE;
hibernate_rle_page = hib->piglet_va + 28 * PAGE_SIZE;
chunks = (struct hibernate_disk_chunk *)(hib->piglet_va +
HIBERNATE_CHUNK_SIZE);
/* Calculate the chunk regions */
for (i = 0; i < hib->nranges; i++) {
range_base = hib->ranges[i].base;
range_end = hib->ranges[i].end;
inaddr = range_base;
while (inaddr < range_end) {
chunks[hib->chunk_ctr].base = inaddr;
if (inaddr + HIBERNATE_CHUNK_SIZE < range_end)
chunks[hib->chunk_ctr].end = inaddr +
HIBERNATE_CHUNK_SIZE;
else
chunks[hib->chunk_ctr].end = range_end;
inaddr += HIBERNATE_CHUNK_SIZE;
hib->chunk_ctr ++;
}
}
uvm_pmr_dirty_everything();
uvm_pmr_zero_everything();
/* Compress and write the chunks in the chunktable */
for (i = 0; i < hib->chunk_ctr; i++) {
range_base = chunks[i].base;
range_end = chunks[i].end;
chunks[i].offset = blkctr + hib->image_offset;
/* Reset zlib for deflate */
if (hibernate_zlib_reset(hib, 1) != Z_OK) {
DPRINTF("hibernate_zlib_reset failed for deflate\n");
return (ENOMEM);
}
inaddr = range_base;
/*
* For each range, loop through its phys mem region
* and write out the chunks (the last chunk might be
* smaller than the chunk size).
*/
while (inaddr < range_end) {
out_remaining = PAGE_SIZE;
while (out_remaining > 0 && inaddr < range_end) {
/*
* Adjust for regions that are not evenly
* divisible by PAGE_SIZE or overflowed
* pages from the previous iteration.
*/
temp_inaddr = (inaddr & PAGE_MASK) +
hibernate_copy_page;
/* Deflate from temp_inaddr to IO page */
if (inaddr != range_end) {
if (inaddr % PAGE_SIZE == 0) {
rle = hibernate_write_rle(hib,
inaddr,
range_end,
&blkctr,
&out_remaining);
}
if (rle == 0) {
pmap_kenter_pa(hibernate_temp_page,
inaddr & PMAP_PA_MASK,
PROT_READ);
bcopy((caddr_t)hibernate_temp_page,
(caddr_t)hibernate_copy_page,
PAGE_SIZE);
inaddr += hibernate_deflate(hib,
temp_inaddr,
&out_remaining);
} else {
inaddr += rle * PAGE_SIZE;
if (inaddr > range_end)
inaddr = range_end;
}
}
if (out_remaining == 0) {
/* Filled up the page */
nblocks = PAGE_SIZE / DEV_BSIZE;
if ((err = hib->io_func(hib->dev,
blkctr + hib->image_offset,
(vaddr_t)hibernate_io_page,
PAGE_SIZE, HIB_W, hib->io_page))) {
DPRINTF("hib write error %d\n",
err);
return (err);
}
blkctr += nblocks;
}
}
}
if (inaddr != range_end) {
DPRINTF("deflate range ended prematurely\n");
return (EINVAL);
}
/*
* End of range. Round up to next secsize bytes
* after finishing compress
*/
if (out_remaining == 0)
out_remaining = PAGE_SIZE;
/* Finish compress */
hibernate_state->hib_stream.next_in = (unsigned char *)inaddr;
hibernate_state->hib_stream.avail_in = 0;
hibernate_state->hib_stream.next_out =
(unsigned char *)hibernate_io_page +
(PAGE_SIZE - out_remaining);
/* We have an extra output page available for finalize */
hibernate_state->hib_stream.avail_out =
out_remaining + PAGE_SIZE;
if ((err = deflate(&hibernate_state->hib_stream, Z_FINISH)) !=
Z_STREAM_END) {
DPRINTF("deflate error in output stream: %d\n", err);
return (err);
}
out_remaining = hibernate_state->hib_stream.avail_out;
used = 2 * PAGE_SIZE - out_remaining;
nblocks = used / DEV_BSIZE;
/* Round up to next block if needed */
if (used % DEV_BSIZE != 0)
nblocks ++;
/* Write final block(s) for this chunk */
if ((err = hib->io_func(hib->dev, blkctr + hib->image_offset,
(vaddr_t)hibernate_io_page, nblocks*DEV_BSIZE,
HIB_W, hib->io_page))) {
DPRINTF("hib final write error %d\n", err);
return (err);
}
blkctr += nblocks;
chunks[i].compressed_size = (blkctr + hib->image_offset -
chunks[i].offset) * DEV_BSIZE;
}
hib->chunktable_offset = hib->image_offset + blkctr;
return (0);
}
/*
* Reset the zlib stream state and allocate a new hiballoc area for either
* inflate or deflate. This function is called once for each hibernate chunk.
* Calling hiballoc_init multiple times is acceptable since the memory it is
* provided is unmanaged memory (stolen). We use the memory provided to us
* by the piglet allocated via the supplied hib.
*/
int
hibernate_zlib_reset(union hibernate_info *hib, int deflate)
{
vaddr_t hibernate_zlib_start;
size_t hibernate_zlib_size;
char *pva = (char *)hib->piglet_va;
struct hibernate_zlib_state *hibernate_state;
hibernate_state =
(struct hibernate_zlib_state *)HIBERNATE_HIBALLOC_PAGE;
if (!deflate)
pva = (char *)((paddr_t)pva & (PIGLET_PAGE_MASK));
/*
* See piglet layout information at the start of this file for
* information on the zlib page assignments.
*/
hibernate_zlib_start = (vaddr_t)(pva + (30 * PAGE_SIZE));
hibernate_zlib_size = 80 * PAGE_SIZE;
memset((void *)hibernate_zlib_start, 0, hibernate_zlib_size);
memset(hibernate_state, 0, PAGE_SIZE);
/* Set up stream structure */
hibernate_state->hib_stream.zalloc = (alloc_func)hibernate_zlib_alloc;
hibernate_state->hib_stream.zfree = (free_func)hibernate_zlib_free;
/* Initialize the hiballoc arena for zlib allocs/frees */
hiballoc_init(&hibernate_state->hiballoc_arena,
(caddr_t)hibernate_zlib_start, hibernate_zlib_size);
if (deflate) {
return deflateInit(&hibernate_state->hib_stream,
Z_BEST_SPEED);
} else
return inflateInit(&hibernate_state->hib_stream);
}
/*
* Reads the hibernated memory image from disk, whose location and
* size are recorded in hib. Begin by reading the persisted
* chunk table, which records the original chunk placement location
* and compressed size for each. Next, allocate a pig region of
* sufficient size to hold the compressed image. Next, read the
* chunks into the pig area (calling hibernate_read_chunks to do this),
* and finally, if all of the above succeeds, clear the hibernate signature.
* The function will then return to hibernate_resume, which will proceed
* to unpack the pig image to the correct place in memory.
*/
int
hibernate_read_image(union hibernate_info *hib)
{
size_t compressed_size, disk_size, chunktable_size, pig_sz;
paddr_t image_start, image_end, pig_start, pig_end;
struct hibernate_disk_chunk *chunks;
daddr_t blkctr;
vaddr_t chunktable = (vaddr_t)NULL;
paddr_t piglet_chunktable = hib->piglet_pa +
HIBERNATE_CHUNK_SIZE;
int i, status;
status = 0;
pmap_activate(curproc);
/* Calculate total chunk table size in disk blocks */
chunktable_size = HIBERNATE_CHUNK_TABLE_SIZE / DEV_BSIZE;
blkctr = hib->chunktable_offset;
chunktable = (vaddr_t)km_alloc(HIBERNATE_CHUNK_TABLE_SIZE, &kv_any,
&kp_none, &kd_nowait);
if (!chunktable)
return (1);
/* Map chunktable pages */
for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE; i += PAGE_SIZE)
pmap_kenter_pa(chunktable + i, piglet_chunktable + i,
PROT_READ | PROT_WRITE);
pmap_update(pmap_kernel());
/* Read the chunktable from disk into the piglet chunktable */
for (i = 0; i < HIBERNATE_CHUNK_TABLE_SIZE;
i += MAXPHYS, blkctr += MAXPHYS/DEV_BSIZE)
hibernate_block_io(hib, blkctr, MAXPHYS,
chunktable + i, 0);
blkctr = hib->image_offset;
compressed_size = 0;
chunks = (struct hibernate_disk_chunk *)chunktable;
for (i = 0; i < hib->chunk_ctr; i++)
compressed_size += chunks[i].compressed_size;
disk_size = compressed_size;
printf("unhibernating @ block %lld length %luMB\n",
hib->sig_offset - chunktable_size,
compressed_size / (1024 * 1024));
/* Allocate the pig area */
pig_sz = compressed_size + HIBERNATE_CHUNK_SIZE;
if (uvm_pmr_alloc_pig(&pig_start, pig_sz, hib->piglet_pa) == ENOMEM) {
status = 1;
goto unmap;
}
pig_end = pig_start + pig_sz;
/* Calculate image extents. Pig image must end on a chunk boundary. */
image_end = pig_end & ~(HIBERNATE_CHUNK_SIZE - 1);
image_start = image_end - disk_size;
hibernate_read_chunks(hib, image_start, image_end, disk_size,
chunks);
/* Prepare the resume time pmap/page table */
hibernate_populate_resume_pt(hib, image_start, image_end);
unmap:
/* Unmap chunktable pages */
pmap_kremove(chunktable, HIBERNATE_CHUNK_TABLE_SIZE);
pmap_update(pmap_kernel());
return (status);
}
/*
* Read the hibernated memory chunks from disk (chunk information at this
* point is stored in the piglet) into the pig area specified by
* [pig_start .. pig_end]. Order the chunks so that the final chunk is the
* only chunk with overlap possibilities.
*/
int
hibernate_read_chunks(union hibernate_info *hib, paddr_t pig_start,
paddr_t pig_end, size_t image_compr_size,
struct hibernate_disk_chunk *chunks)
{
paddr_t img_cur, piglet_base;
daddr_t blkctr;
size_t processed, compressed_size, read_size;
int nchunks, nfchunks, num_io_pages;
vaddr_t tempva, hibernate_fchunk_area;
short *fchunks, i, j;
tempva = (vaddr_t)NULL;
hibernate_fchunk_area = (vaddr_t)NULL;
nfchunks = 0;
piglet_base = hib->piglet_pa;
global_pig_start = pig_start;
/*
* These mappings go into the resuming kernel's page table, and are
* used only during image read. They disappear from existence
* when the suspended kernel is unpacked on top of us.
*/
tempva = (vaddr_t)km_alloc(MAXPHYS + PAGE_SIZE, &kv_any, &kp_none,
&kd_nowait);
if (!tempva)
return (1);
hibernate_fchunk_area = (vaddr_t)km_alloc(24 * PAGE_SIZE, &kv_any,
&kp_none, &kd_nowait);
if (!hibernate_fchunk_area)
return (1);
/* Final output chunk ordering VA */
fchunks = (short *)hibernate_fchunk_area;
/* Map the chunk ordering region */
for(i = 0; i < 24 ; i++)
pmap_kenter_pa(hibernate_fchunk_area + (i * PAGE_SIZE),
piglet_base + ((4 + i) * PAGE_SIZE),
PROT_READ | PROT_WRITE);
pmap_update(pmap_kernel());
nchunks = hib->chunk_ctr;
/* Initially start all chunks as unplaced */
for (i = 0; i < nchunks; i++)
chunks[i].flags = 0;
/*
* Search the list for chunks that are outside the pig area. These
* can be placed first in the final output list.
*/
for (i = 0; i < nchunks; i++) {
if (chunks[i].end <= pig_start || chunks[i].base >= pig_end) {
fchunks[nfchunks] = i;
nfchunks++;
chunks[i].flags |= HIBERNATE_CHUNK_PLACED;
}
}
/*
* Walk the ordering, place the chunks in ascending memory order.
*/
for (i = 0; i < nchunks; i++) {
if (chunks[i].flags != HIBERNATE_CHUNK_PLACED) {
fchunks[nfchunks] = i;
nfchunks++;
chunks[i].flags = HIBERNATE_CHUNK_PLACED;
}
}
img_cur = pig_start;
for (i = 0; i < nfchunks; i++) {
blkctr = chunks[fchunks[i]].offset;
processed = 0;
compressed_size = chunks[fchunks[i]].compressed_size;
while (processed < compressed_size) {
if (compressed_size - processed >= MAXPHYS)
read_size = MAXPHYS;
else
read_size = compressed_size - processed;
/*
* We're reading read_size bytes, offset from the
* start of a page by img_cur % PAGE_SIZE, so the
* end will be read_size + (img_cur % PAGE_SIZE)
* from the start of the first page. Round that
* up to the next page size.
*/
num_io_pages = (read_size + (img_cur % PAGE_SIZE)
+ PAGE_SIZE - 1) / PAGE_SIZE;
KASSERT(num_io_pages <= MAXPHYS/PAGE_SIZE + 1);
/* Map pages for this read */
for (j = 0; j < num_io_pages; j ++)
pmap_kenter_pa(tempva + j * PAGE_SIZE,
img_cur + j * PAGE_SIZE,
PROT_READ | PROT_WRITE);
pmap_update(pmap_kernel());
hibernate_block_io(hib, blkctr, read_size,
tempva + (img_cur & PAGE_MASK), 0);
blkctr += (read_size / DEV_BSIZE);
pmap_kremove(tempva, num_io_pages * PAGE_SIZE);
pmap_update(pmap_kernel());
processed += read_size;
img_cur += read_size;
}
}
pmap_kremove(hibernate_fchunk_area, 24 * PAGE_SIZE);
pmap_update(pmap_kernel());
return (0);
}
/*
* Hibernating a machine comprises the following operations:
* 1. Calculating this machine's hibernate_info information
* 2. Allocating a piglet and saving the piglet's physaddr
* 3. Calculating the memory chunks
* 4. Writing the compressed chunks to disk
* 5. Writing the chunk table
* 6. Writing the signature block (hibernate_info)
*
* On most architectures, the function calling hibernate_suspend would
* then power off the machine using some MD-specific implementation.
*/
int
hibernate_suspend(void)
{
union hibernate_info hib;
u_long start, end;
/*
* Calculate memory ranges, swap offsets, etc.
* This also allocates a piglet whose physaddr is stored in
* hib->piglet_pa and vaddr stored in hib->piglet_va
*/
if (get_hibernate_info(&hib, 1)) {
DPRINTF("failed to obtain hibernate info\n");
return (1);
}
/* Find a page-addressed region in swap [start,end] */
if (uvm_hibswap(hib.dev, &start, &end)) {
printf("hibernate: cannot find any swap\n");
return (1);
}
if (end - start < 1000) {
printf("hibernate: insufficient swap (%lu is too small)\n",
end - start + 1);
return (1);
}
pmap_extract(pmap_kernel(), (vaddr_t)&__retguard_start,
&retguard_start_phys);
pmap_extract(pmap_kernel(), (vaddr_t)&__retguard_end,
&retguard_end_phys);
/* Calculate block offsets in swap */
hib.image_offset = ctod(start);
DPRINTF("hibernate @ block %lld max-length %lu blocks\n",
hib.image_offset, ctod(end) - ctod(start) + 1);
pmap_activate(curproc);
DPRINTF("hibernate: writing chunks\n");
if (hibernate_write_chunks(&hib)) {
DPRINTF("hibernate_write_chunks failed\n");
return (1);
}
DPRINTF("hibernate: writing chunktable\n");
if (hibernate_write_chunktable(&hib)) {
DPRINTF("hibernate_write_chunktable failed\n");
return (1);
}
DPRINTF("hibernate: writing signature\n");
if (hibernate_write_signature(&hib)) {
DPRINTF("hibernate_write_signature failed\n");
return (1);
}
/* Allow the disk to settle */
delay(500000);
/*
* Give the device-specific I/O function a notification that we're
* done, and that it can clean up or shutdown as needed.
*/
hib.io_func(hib.dev, 0, (vaddr_t)NULL, 0, HIB_DONE, hib.io_page);
return (0);
}
int
hibernate_alloc(void)
{
KASSERT(global_piglet_va == 0);
KASSERT(hibernate_temp_page == 0);
pmap_activate(curproc);
pmap_kenter_pa(HIBERNATE_HIBALLOC_PAGE, HIBERNATE_HIBALLOC_PAGE,
PROT_READ | PROT_WRITE);
/* Allocate a piglet, store its addresses in the supplied globals */
if (uvm_pmr_alloc_piglet(&global_piglet_va, &global_piglet_pa,
HIBERNATE_CHUNK_SIZE * 4, HIBERNATE_CHUNK_SIZE))
goto unmap;
/*
* Allocate VA for the temp page.
*
* This will become part of the suspended kernel and will
* be freed in hibernate_free, upon resume (or hibernate
* failure)
*/
hibernate_temp_page = (vaddr_t)km_alloc(PAGE_SIZE, &kv_any,
&kp_none, &kd_nowait);
if (!hibernate_temp_page) {
uvm_pmr_free_piglet(global_piglet_va, 4 * HIBERNATE_CHUNK_SIZE);
global_piglet_va = 0;
goto unmap;
}
return (0);
unmap:
pmap_kremove(HIBERNATE_HIBALLOC_PAGE, PAGE_SIZE);
pmap_update(pmap_kernel());
return (ENOMEM);
}
/*
* Free items allocated by hibernate_alloc()
*/
void
hibernate_free(void)
{
pmap_activate(curproc);
if (global_piglet_va)
uvm_pmr_free_piglet(global_piglet_va,
4 * HIBERNATE_CHUNK_SIZE);
if (hibernate_temp_page) {
pmap_kremove(hibernate_temp_page, PAGE_SIZE);
km_free((void *)hibernate_temp_page, PAGE_SIZE,
&kv_any, &kp_none);
}
global_piglet_va = 0;
hibernate_temp_page = 0;
pmap_kremove(HIBERNATE_HIBALLOC_PAGE, PAGE_SIZE);
pmap_update(pmap_kernel());
}