src/sys/kern/subr_pool.c

2295 lines
52 KiB
C

/* $OpenBSD: subr_pool.c,v 1.236 2022/08/14 01:58:28 jsg Exp $ */
/* $NetBSD: subr_pool.c,v 1.61 2001/09/26 07:14:56 chs Exp $ */
/*-
* Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
* Simulation Facility, NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/pool.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <sys/task.h>
#include <sys/time.h>
#include <sys/timeout.h>
#include <sys/percpu.h>
#include <sys/tracepoint.h>
#include <uvm/uvm_extern.h>
/*
* Pool resource management utility.
*
* Memory is allocated in pages which are split into pieces according to
* the pool item size. Each page is kept on one of three lists in the
* pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
* for empty, full and partially-full pages respectively. The individual
* pool items are on a linked list headed by `ph_items' in each page
* header. The memory for building the page list is either taken from
* the allocated pages themselves (for small pool items) or taken from
* an internal pool of page headers (`phpool').
*/
/* List of all pools */
SIMPLEQ_HEAD(,pool) pool_head = SIMPLEQ_HEAD_INITIALIZER(pool_head);
/*
* Every pool gets a unique serial number assigned to it. If this counter
* wraps, we're screwed, but we shouldn't create so many pools anyway.
*/
unsigned int pool_serial;
unsigned int pool_count;
/* Lock the previous variables making up the global pool state */
struct rwlock pool_lock = RWLOCK_INITIALIZER("pools");
/* Private pool for page header structures */
struct pool phpool;
struct pool_lock_ops {
void (*pl_init)(struct pool *, union pool_lock *,
const struct lock_type *);
void (*pl_enter)(union pool_lock *);
int (*pl_enter_try)(union pool_lock *);
void (*pl_leave)(union pool_lock *);
void (*pl_assert_locked)(union pool_lock *);
void (*pl_assert_unlocked)(union pool_lock *);
int (*pl_sleep)(void *, union pool_lock *, int, const char *);
};
static const struct pool_lock_ops pool_lock_ops_mtx;
static const struct pool_lock_ops pool_lock_ops_rw;
#ifdef WITNESS
#define pl_init(pp, pl) do { \
static const struct lock_type __lock_type = { .lt_name = #pl }; \
(pp)->pr_lock_ops->pl_init(pp, pl, &__lock_type); \
} while (0)
#else /* WITNESS */
#define pl_init(pp, pl) (pp)->pr_lock_ops->pl_init(pp, pl, NULL)
#endif /* WITNESS */
static inline void
pl_enter(struct pool *pp, union pool_lock *pl)
{
pp->pr_lock_ops->pl_enter(pl);
}
static inline int
pl_enter_try(struct pool *pp, union pool_lock *pl)
{
return pp->pr_lock_ops->pl_enter_try(pl);
}
static inline void
pl_leave(struct pool *pp, union pool_lock *pl)
{
pp->pr_lock_ops->pl_leave(pl);
}
static inline void
pl_assert_locked(struct pool *pp, union pool_lock *pl)
{
pp->pr_lock_ops->pl_assert_locked(pl);
}
static inline void
pl_assert_unlocked(struct pool *pp, union pool_lock *pl)
{
pp->pr_lock_ops->pl_assert_unlocked(pl);
}
static inline int
pl_sleep(struct pool *pp, void *ident, union pool_lock *lock, int priority,
const char *wmesg)
{
return pp->pr_lock_ops->pl_sleep(ident, lock, priority, wmesg);
}
struct pool_item {
u_long pi_magic;
XSIMPLEQ_ENTRY(pool_item) pi_list;
};
#define POOL_IMAGIC(ph, pi) ((u_long)(pi) ^ (ph)->ph_magic)
struct pool_page_header {
/* Page headers */
TAILQ_ENTRY(pool_page_header)
ph_entry; /* pool page list */
XSIMPLEQ_HEAD(, pool_item)
ph_items; /* free items on the page */
RBT_ENTRY(pool_page_header)
ph_node; /* off-page page headers */
unsigned int ph_nmissing; /* # of chunks in use */
caddr_t ph_page; /* this page's address */
caddr_t ph_colored; /* page's colored address */
unsigned long ph_magic;
uint64_t ph_timestamp;
};
#define POOL_MAGICBIT (1 << 3) /* keep away from perturbed low bits */
#define POOL_PHPOISON(ph) ISSET((ph)->ph_magic, POOL_MAGICBIT)
#ifdef MULTIPROCESSOR
struct pool_cache_item {
struct pool_cache_item *ci_next; /* next item in list */
unsigned long ci_nitems; /* number of items in list */
TAILQ_ENTRY(pool_cache_item)
ci_nextl; /* entry in list of lists */
};
/* we store whether the cached item is poisoned in the high bit of nitems */
#define POOL_CACHE_ITEM_NITEMS_MASK 0x7ffffffUL
#define POOL_CACHE_ITEM_NITEMS_POISON 0x8000000UL
#define POOL_CACHE_ITEM_NITEMS(_ci) \
((_ci)->ci_nitems & POOL_CACHE_ITEM_NITEMS_MASK)
#define POOL_CACHE_ITEM_POISONED(_ci) \
ISSET((_ci)->ci_nitems, POOL_CACHE_ITEM_NITEMS_POISON)
struct pool_cache {
struct pool_cache_item *pc_actv; /* active list of items */
unsigned long pc_nactv; /* actv head nitems cache */
struct pool_cache_item *pc_prev; /* previous list of items */
uint64_t pc_gen; /* generation number */
uint64_t pc_nget; /* # of successful requests */
uint64_t pc_nfail; /* # of unsuccessful reqs */
uint64_t pc_nput; /* # of releases */
uint64_t pc_nlget; /* # of list requests */
uint64_t pc_nlfail; /* # of fails getting a list */
uint64_t pc_nlput; /* # of list releases */
int pc_nout;
};
void *pool_cache_get(struct pool *);
void pool_cache_put(struct pool *, void *);
void pool_cache_destroy(struct pool *);
void pool_cache_gc(struct pool *);
#endif
void pool_cache_pool_info(struct pool *, struct kinfo_pool *);
int pool_cache_info(struct pool *, void *, size_t *);
int pool_cache_cpus_info(struct pool *, void *, size_t *);
#ifdef POOL_DEBUG
int pool_debug = 1;
#else
int pool_debug = 0;
#endif
#define POOL_INPGHDR(pp) ((pp)->pr_phoffset != 0)
struct pool_page_header *
pool_p_alloc(struct pool *, int, int *);
void pool_p_insert(struct pool *, struct pool_page_header *);
void pool_p_remove(struct pool *, struct pool_page_header *);
void pool_p_free(struct pool *, struct pool_page_header *);
void pool_update_curpage(struct pool *);
void *pool_do_get(struct pool *, int, int *);
void pool_do_put(struct pool *, void *);
int pool_chk_page(struct pool *, struct pool_page_header *, int);
int pool_chk(struct pool *);
void pool_get_done(struct pool *, void *, void *);
void pool_runqueue(struct pool *, int);
void *pool_allocator_alloc(struct pool *, int, int *);
void pool_allocator_free(struct pool *, void *);
/*
* The default pool allocator.
*/
void *pool_page_alloc(struct pool *, int, int *);
void pool_page_free(struct pool *, void *);
/*
* safe for interrupts; this is the default allocator
*/
struct pool_allocator pool_allocator_single = {
pool_page_alloc,
pool_page_free,
POOL_ALLOC_SIZE(PAGE_SIZE, POOL_ALLOC_ALIGNED)
};
void *pool_multi_alloc(struct pool *, int, int *);
void pool_multi_free(struct pool *, void *);
struct pool_allocator pool_allocator_multi = {
pool_multi_alloc,
pool_multi_free,
POOL_ALLOC_SIZES(PAGE_SIZE, (1UL << 31), POOL_ALLOC_ALIGNED)
};
void *pool_multi_alloc_ni(struct pool *, int, int *);
void pool_multi_free_ni(struct pool *, void *);
struct pool_allocator pool_allocator_multi_ni = {
pool_multi_alloc_ni,
pool_multi_free_ni,
POOL_ALLOC_SIZES(PAGE_SIZE, (1UL << 31), POOL_ALLOC_ALIGNED)
};
#ifdef DDB
void pool_print_pagelist(struct pool_pagelist *, int (*)(const char *, ...)
__attribute__((__format__(__kprintf__,1,2))));
void pool_print1(struct pool *, const char *, int (*)(const char *, ...)
__attribute__((__format__(__kprintf__,1,2))));
#endif
/* stale page garbage collectors */
void pool_gc_sched(void *);
struct timeout pool_gc_tick = TIMEOUT_INITIALIZER(pool_gc_sched, NULL);
void pool_gc_pages(void *);
struct task pool_gc_task = TASK_INITIALIZER(pool_gc_pages, NULL);
#define POOL_WAIT_FREE SEC_TO_NSEC(1)
#define POOL_WAIT_GC SEC_TO_NSEC(8)
RBT_PROTOTYPE(phtree, pool_page_header, ph_node, phtree_compare);
static inline int
phtree_compare(const struct pool_page_header *a,
const struct pool_page_header *b)
{
vaddr_t va = (vaddr_t)a->ph_page;
vaddr_t vb = (vaddr_t)b->ph_page;
/* the compares in this order are important for the NFIND to work */
if (vb < va)
return (-1);
if (vb > va)
return (1);
return (0);
}
RBT_GENERATE(phtree, pool_page_header, ph_node, phtree_compare);
/*
* Return the pool page header based on page address.
*/
static inline struct pool_page_header *
pr_find_pagehead(struct pool *pp, void *v)
{
struct pool_page_header *ph, key;
if (POOL_INPGHDR(pp)) {
caddr_t page;
page = (caddr_t)((vaddr_t)v & pp->pr_pgmask);
return ((struct pool_page_header *)(page + pp->pr_phoffset));
}
key.ph_page = v;
ph = RBT_NFIND(phtree, &pp->pr_phtree, &key);
if (ph == NULL)
panic("%s: %s: page header missing", __func__, pp->pr_wchan);
KASSERT(ph->ph_page <= (caddr_t)v);
if (ph->ph_page + pp->pr_pgsize <= (caddr_t)v)
panic("%s: %s: incorrect page", __func__, pp->pr_wchan);
return (ph);
}
/*
* Initialize the given pool resource structure.
*
* We export this routine to allow other kernel parts to declare
* static pools that must be initialized before malloc() is available.
*/
void
pool_init(struct pool *pp, size_t size, u_int align, int ipl, int flags,
const char *wchan, struct pool_allocator *palloc)
{
int off = 0, space;
unsigned int pgsize = PAGE_SIZE, items;
size_t pa_pagesz;
#ifdef DIAGNOSTIC
struct pool *iter;
#endif
if (align == 0)
align = ALIGN(1);
if (size < sizeof(struct pool_item))
size = sizeof(struct pool_item);
size = roundup(size, align);
while (size * 8 > pgsize)
pgsize <<= 1;
if (palloc == NULL) {
if (pgsize > PAGE_SIZE) {
palloc = ISSET(flags, PR_WAITOK) ?
&pool_allocator_multi_ni : &pool_allocator_multi;
} else
palloc = &pool_allocator_single;
pa_pagesz = palloc->pa_pagesz;
} else {
size_t pgsizes;
pa_pagesz = palloc->pa_pagesz;
if (pa_pagesz == 0)
pa_pagesz = POOL_ALLOC_DEFAULT;
pgsizes = pa_pagesz & ~POOL_ALLOC_ALIGNED;
/* make sure the allocator can fit at least one item */
if (size > pgsizes) {
panic("%s: pool %s item size 0x%zx > "
"allocator %p sizes 0x%zx", __func__, wchan,
size, palloc, pgsizes);
}
/* shrink pgsize until it fits into the range */
while (!ISSET(pgsizes, pgsize))
pgsize >>= 1;
}
KASSERT(ISSET(pa_pagesz, pgsize));
items = pgsize / size;
/*
* Decide whether to put the page header off page to avoid
* wasting too large a part of the page. Off-page page headers
* go into an RB tree, so we can match a returned item with
* its header based on the page address.
*/
if (ISSET(pa_pagesz, POOL_ALLOC_ALIGNED)) {
if (pgsize - (size * items) >
sizeof(struct pool_page_header)) {
off = pgsize - sizeof(struct pool_page_header);
} else if (sizeof(struct pool_page_header) * 2 >= size) {
off = pgsize - sizeof(struct pool_page_header);
items = off / size;
}
}
KASSERT(items > 0);
/*
* Initialize the pool structure.
*/
memset(pp, 0, sizeof(*pp));
if (ISSET(flags, PR_RWLOCK)) {
KASSERT(flags & PR_WAITOK);
pp->pr_lock_ops = &pool_lock_ops_rw;
} else
pp->pr_lock_ops = &pool_lock_ops_mtx;
TAILQ_INIT(&pp->pr_emptypages);
TAILQ_INIT(&pp->pr_fullpages);
TAILQ_INIT(&pp->pr_partpages);
pp->pr_curpage = NULL;
pp->pr_npages = 0;
pp->pr_minitems = 0;
pp->pr_minpages = 0;
pp->pr_maxpages = 8;
pp->pr_size = size;
pp->pr_pgsize = pgsize;
pp->pr_pgmask = ~0UL ^ (pgsize - 1);
pp->pr_phoffset = off;
pp->pr_itemsperpage = items;
pp->pr_wchan = wchan;
pp->pr_alloc = palloc;
pp->pr_nitems = 0;
pp->pr_nout = 0;
pp->pr_hardlimit = UINT_MAX;
pp->pr_hardlimit_warning = NULL;
pp->pr_hardlimit_ratecap.tv_sec = 0;
pp->pr_hardlimit_ratecap.tv_usec = 0;
pp->pr_hardlimit_warning_last.tv_sec = 0;
pp->pr_hardlimit_warning_last.tv_usec = 0;
RBT_INIT(phtree, &pp->pr_phtree);
/*
* Use the space between the chunks and the page header
* for cache coloring.
*/
space = POOL_INPGHDR(pp) ? pp->pr_phoffset : pp->pr_pgsize;
space -= pp->pr_itemsperpage * pp->pr_size;
pp->pr_align = align;
pp->pr_maxcolors = (space / align) + 1;
pp->pr_nget = 0;
pp->pr_nfail = 0;
pp->pr_nput = 0;
pp->pr_npagealloc = 0;
pp->pr_npagefree = 0;
pp->pr_hiwat = 0;
pp->pr_nidle = 0;
pp->pr_ipl = ipl;
pp->pr_flags = flags;
pl_init(pp, &pp->pr_lock);
pl_init(pp, &pp->pr_requests_lock);
TAILQ_INIT(&pp->pr_requests);
if (phpool.pr_size == 0) {
pool_init(&phpool, sizeof(struct pool_page_header), 0,
IPL_HIGH, 0, "phpool", NULL);
/* make sure phpool won't "recurse" */
KASSERT(POOL_INPGHDR(&phpool));
}
/* pglistalloc/constraint parameters */
pp->pr_crange = &kp_dirty;
/* Insert this into the list of all pools. */
rw_enter_write(&pool_lock);
#ifdef DIAGNOSTIC
SIMPLEQ_FOREACH(iter, &pool_head, pr_poollist) {
if (iter == pp)
panic("%s: pool %s already on list", __func__, wchan);
}
#endif
pp->pr_serial = ++pool_serial;
if (pool_serial == 0)
panic("%s: too much uptime", __func__);
SIMPLEQ_INSERT_HEAD(&pool_head, pp, pr_poollist);
pool_count++;
rw_exit_write(&pool_lock);
}
/*
* Decommission a pool resource.
*/
void
pool_destroy(struct pool *pp)
{
struct pool_page_header *ph;
struct pool *prev, *iter;
#ifdef MULTIPROCESSOR
if (pp->pr_cache != NULL)
pool_cache_destroy(pp);
#endif
#ifdef DIAGNOSTIC
if (pp->pr_nout != 0)
panic("%s: pool busy: still out: %u", __func__, pp->pr_nout);
#endif
/* Remove from global pool list */
rw_enter_write(&pool_lock);
pool_count--;
if (pp == SIMPLEQ_FIRST(&pool_head))
SIMPLEQ_REMOVE_HEAD(&pool_head, pr_poollist);
else {
prev = SIMPLEQ_FIRST(&pool_head);
SIMPLEQ_FOREACH(iter, &pool_head, pr_poollist) {
if (iter == pp) {
SIMPLEQ_REMOVE_AFTER(&pool_head, prev,
pr_poollist);
break;
}
prev = iter;
}
}
rw_exit_write(&pool_lock);
/* Remove all pages */
while ((ph = TAILQ_FIRST(&pp->pr_emptypages)) != NULL) {
pl_enter(pp, &pp->pr_lock);
pool_p_remove(pp, ph);
pl_leave(pp, &pp->pr_lock);
pool_p_free(pp, ph);
}
KASSERT(TAILQ_EMPTY(&pp->pr_fullpages));
KASSERT(TAILQ_EMPTY(&pp->pr_partpages));
}
void
pool_request_init(struct pool_request *pr,
void (*handler)(struct pool *, void *, void *), void *cookie)
{
pr->pr_handler = handler;
pr->pr_cookie = cookie;
pr->pr_item = NULL;
}
void
pool_request(struct pool *pp, struct pool_request *pr)
{
pl_enter(pp, &pp->pr_requests_lock);
TAILQ_INSERT_TAIL(&pp->pr_requests, pr, pr_entry);
pool_runqueue(pp, PR_NOWAIT);
pl_leave(pp, &pp->pr_requests_lock);
}
struct pool_get_memory {
union pool_lock lock;
void * volatile v;
};
/*
* Grab an item from the pool.
*/
void *
pool_get(struct pool *pp, int flags)
{
void *v = NULL;
int slowdown = 0;
KASSERT(flags & (PR_WAITOK | PR_NOWAIT));
if (pp->pr_flags & PR_RWLOCK)
KASSERT(flags & PR_WAITOK);
#ifdef MULTIPROCESSOR
if (pp->pr_cache != NULL) {
v = pool_cache_get(pp);
if (v != NULL)
goto good;
}
#endif
pl_enter(pp, &pp->pr_lock);
if (pp->pr_nout >= pp->pr_hardlimit) {
if (ISSET(flags, PR_NOWAIT|PR_LIMITFAIL))
goto fail;
} else if ((v = pool_do_get(pp, flags, &slowdown)) == NULL) {
if (ISSET(flags, PR_NOWAIT))
goto fail;
}
pl_leave(pp, &pp->pr_lock);
if ((slowdown || pool_debug == 2) && ISSET(flags, PR_WAITOK))
yield();
if (v == NULL) {
struct pool_get_memory mem = { .v = NULL };
struct pool_request pr;
#ifdef DIAGNOSTIC
if (ISSET(flags, PR_WAITOK) && curproc == &proc0)
panic("%s: cannot sleep for memory during boot",
__func__);
#endif
pl_init(pp, &mem.lock);
pool_request_init(&pr, pool_get_done, &mem);
pool_request(pp, &pr);
pl_enter(pp, &mem.lock);
while (mem.v == NULL)
pl_sleep(pp, &mem, &mem.lock, PSWP, pp->pr_wchan);
pl_leave(pp, &mem.lock);
v = mem.v;
}
#ifdef MULTIPROCESSOR
good:
#endif
if (ISSET(flags, PR_ZERO))
memset(v, 0, pp->pr_size);
TRACEPOINT(uvm, pool_get, pp, v, flags);
return (v);
fail:
pp->pr_nfail++;
pl_leave(pp, &pp->pr_lock);
return (NULL);
}
void
pool_get_done(struct pool *pp, void *xmem, void *v)
{
struct pool_get_memory *mem = xmem;
pl_enter(pp, &mem->lock);
mem->v = v;
pl_leave(pp, &mem->lock);
wakeup_one(mem);
}
void
pool_runqueue(struct pool *pp, int flags)
{
struct pool_requests prl = TAILQ_HEAD_INITIALIZER(prl);
struct pool_request *pr;
pl_assert_unlocked(pp, &pp->pr_lock);
pl_assert_locked(pp, &pp->pr_requests_lock);
if (pp->pr_requesting++)
return;
do {
pp->pr_requesting = 1;
TAILQ_CONCAT(&prl, &pp->pr_requests, pr_entry);
if (TAILQ_EMPTY(&prl))
continue;
pl_leave(pp, &pp->pr_requests_lock);
pl_enter(pp, &pp->pr_lock);
pr = TAILQ_FIRST(&prl);
while (pr != NULL) {
int slowdown = 0;
if (pp->pr_nout >= pp->pr_hardlimit)
break;
pr->pr_item = pool_do_get(pp, flags, &slowdown);
if (pr->pr_item == NULL) /* || slowdown ? */
break;
pr = TAILQ_NEXT(pr, pr_entry);
}
pl_leave(pp, &pp->pr_lock);
while ((pr = TAILQ_FIRST(&prl)) != NULL &&
pr->pr_item != NULL) {
TAILQ_REMOVE(&prl, pr, pr_entry);
(*pr->pr_handler)(pp, pr->pr_cookie, pr->pr_item);
}
pl_enter(pp, &pp->pr_requests_lock);
} while (--pp->pr_requesting);
TAILQ_CONCAT(&pp->pr_requests, &prl, pr_entry);
}
void *
pool_do_get(struct pool *pp, int flags, int *slowdown)
{
struct pool_item *pi;
struct pool_page_header *ph;
pl_assert_locked(pp, &pp->pr_lock);
splassert(pp->pr_ipl);
/*
* Account for this item now to avoid races if we need to give up
* pr_lock to allocate a page.
*/
pp->pr_nout++;
if (pp->pr_curpage == NULL) {
pl_leave(pp, &pp->pr_lock);
ph = pool_p_alloc(pp, flags, slowdown);
pl_enter(pp, &pp->pr_lock);
if (ph == NULL) {
pp->pr_nout--;
return (NULL);
}
pool_p_insert(pp, ph);
}
ph = pp->pr_curpage;
pi = XSIMPLEQ_FIRST(&ph->ph_items);
if (__predict_false(pi == NULL))
panic("%s: %s: page empty", __func__, pp->pr_wchan);
if (__predict_false(pi->pi_magic != POOL_IMAGIC(ph, pi))) {
panic("%s: %s free list modified: "
"page %p; item addr %p; offset 0x%x=0x%lx != 0x%lx",
__func__, pp->pr_wchan, ph->ph_page, pi,
0, pi->pi_magic, POOL_IMAGIC(ph, pi));
}
XSIMPLEQ_REMOVE_HEAD(&ph->ph_items, pi_list);
#ifdef DIAGNOSTIC
if (pool_debug && POOL_PHPOISON(ph)) {
size_t pidx;
uint32_t pval;
if (poison_check(pi + 1, pp->pr_size - sizeof(*pi),
&pidx, &pval)) {
int *ip = (int *)(pi + 1);
panic("%s: %s free list modified: "
"page %p; item addr %p; offset 0x%zx=0x%x",
__func__, pp->pr_wchan, ph->ph_page, pi,
(pidx * sizeof(int)) + sizeof(*pi), ip[pidx]);
}
}
#endif /* DIAGNOSTIC */
if (ph->ph_nmissing++ == 0) {
/*
* This page was previously empty. Move it to the list of
* partially-full pages. This page is already curpage.
*/
TAILQ_REMOVE(&pp->pr_emptypages, ph, ph_entry);
TAILQ_INSERT_TAIL(&pp->pr_partpages, ph, ph_entry);
pp->pr_nidle--;
}
if (ph->ph_nmissing == pp->pr_itemsperpage) {
/*
* This page is now full. Move it to the full list
* and select a new current page.
*/
TAILQ_REMOVE(&pp->pr_partpages, ph, ph_entry);
TAILQ_INSERT_TAIL(&pp->pr_fullpages, ph, ph_entry);
pool_update_curpage(pp);
}
pp->pr_nget++;
return (pi);
}
/*
* Return resource to the pool.
*/
void
pool_put(struct pool *pp, void *v)
{
struct pool_page_header *ph, *freeph = NULL;
#ifdef DIAGNOSTIC
if (v == NULL)
panic("%s: NULL item", __func__);
#endif
TRACEPOINT(uvm, pool_put, pp, v);
#ifdef MULTIPROCESSOR
if (pp->pr_cache != NULL && TAILQ_EMPTY(&pp->pr_requests)) {
pool_cache_put(pp, v);
return;
}
#endif
pl_enter(pp, &pp->pr_lock);
pool_do_put(pp, v);
pp->pr_nout--;
pp->pr_nput++;
/* is it time to free a page? */
if (pp->pr_nidle > pp->pr_maxpages &&
(ph = TAILQ_FIRST(&pp->pr_emptypages)) != NULL &&
getnsecuptime() - ph->ph_timestamp > POOL_WAIT_FREE) {
freeph = ph;
pool_p_remove(pp, freeph);
}
pl_leave(pp, &pp->pr_lock);
if (freeph != NULL)
pool_p_free(pp, freeph);
pool_wakeup(pp);
}
void
pool_wakeup(struct pool *pp)
{
if (!TAILQ_EMPTY(&pp->pr_requests)) {
pl_enter(pp, &pp->pr_requests_lock);
pool_runqueue(pp, PR_NOWAIT);
pl_leave(pp, &pp->pr_requests_lock);
}
}
void
pool_do_put(struct pool *pp, void *v)
{
struct pool_item *pi = v;
struct pool_page_header *ph;
splassert(pp->pr_ipl);
ph = pr_find_pagehead(pp, v);
#ifdef DIAGNOSTIC
if (pool_debug) {
struct pool_item *qi;
XSIMPLEQ_FOREACH(qi, &ph->ph_items, pi_list) {
if (pi == qi) {
panic("%s: %s: double pool_put: %p", __func__,
pp->pr_wchan, pi);
}
}
}
#endif /* DIAGNOSTIC */
pi->pi_magic = POOL_IMAGIC(ph, pi);
XSIMPLEQ_INSERT_HEAD(&ph->ph_items, pi, pi_list);
#ifdef DIAGNOSTIC
if (POOL_PHPOISON(ph))
poison_mem(pi + 1, pp->pr_size - sizeof(*pi));
#endif /* DIAGNOSTIC */
if (ph->ph_nmissing-- == pp->pr_itemsperpage) {
/*
* The page was previously completely full, move it to the
* partially-full list.
*/
TAILQ_REMOVE(&pp->pr_fullpages, ph, ph_entry);
TAILQ_INSERT_TAIL(&pp->pr_partpages, ph, ph_entry);
}
if (ph->ph_nmissing == 0) {
/*
* The page is now empty, so move it to the empty page list.
*/
pp->pr_nidle++;
ph->ph_timestamp = getnsecuptime();
TAILQ_REMOVE(&pp->pr_partpages, ph, ph_entry);
TAILQ_INSERT_TAIL(&pp->pr_emptypages, ph, ph_entry);
pool_update_curpage(pp);
}
}
/*
* Add N items to the pool.
*/
int
pool_prime(struct pool *pp, int n)
{
struct pool_pagelist pl = TAILQ_HEAD_INITIALIZER(pl);
struct pool_page_header *ph;
int newpages;
newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
while (newpages-- > 0) {
int slowdown = 0;
ph = pool_p_alloc(pp, PR_NOWAIT, &slowdown);
if (ph == NULL) /* or slowdown? */
break;
TAILQ_INSERT_TAIL(&pl, ph, ph_entry);
}
pl_enter(pp, &pp->pr_lock);
while ((ph = TAILQ_FIRST(&pl)) != NULL) {
TAILQ_REMOVE(&pl, ph, ph_entry);
pool_p_insert(pp, ph);
}
pl_leave(pp, &pp->pr_lock);
return (0);
}
struct pool_page_header *
pool_p_alloc(struct pool *pp, int flags, int *slowdown)
{
struct pool_page_header *ph;
struct pool_item *pi;
caddr_t addr;
unsigned int order;
int o;
int n;
pl_assert_unlocked(pp, &pp->pr_lock);
KASSERT(pp->pr_size >= sizeof(*pi));
addr = pool_allocator_alloc(pp, flags, slowdown);
if (addr == NULL)
return (NULL);
if (POOL_INPGHDR(pp))
ph = (struct pool_page_header *)(addr + pp->pr_phoffset);
else {
ph = pool_get(&phpool, flags);
if (ph == NULL) {
pool_allocator_free(pp, addr);
return (NULL);
}
}
XSIMPLEQ_INIT(&ph->ph_items);
ph->ph_page = addr;
addr += pp->pr_align * (pp->pr_npagealloc % pp->pr_maxcolors);
ph->ph_colored = addr;
ph->ph_nmissing = 0;
arc4random_buf(&ph->ph_magic, sizeof(ph->ph_magic));
#ifdef DIAGNOSTIC
/* use a bit in ph_magic to record if we poison page items */
if (pool_debug)
SET(ph->ph_magic, POOL_MAGICBIT);
else
CLR(ph->ph_magic, POOL_MAGICBIT);
#endif /* DIAGNOSTIC */
n = pp->pr_itemsperpage;
o = 32;
while (n--) {
pi = (struct pool_item *)addr;
pi->pi_magic = POOL_IMAGIC(ph, pi);
if (o == 32) {
order = arc4random();
o = 0;
}
if (ISSET(order, 1U << o++))
XSIMPLEQ_INSERT_TAIL(&ph->ph_items, pi, pi_list);
else
XSIMPLEQ_INSERT_HEAD(&ph->ph_items, pi, pi_list);
#ifdef DIAGNOSTIC
if (POOL_PHPOISON(ph))
poison_mem(pi + 1, pp->pr_size - sizeof(*pi));
#endif /* DIAGNOSTIC */
addr += pp->pr_size;
}
return (ph);
}
void
pool_p_free(struct pool *pp, struct pool_page_header *ph)
{
struct pool_item *pi;
pl_assert_unlocked(pp, &pp->pr_lock);
KASSERT(ph->ph_nmissing == 0);
XSIMPLEQ_FOREACH(pi, &ph->ph_items, pi_list) {
if (__predict_false(pi->pi_magic != POOL_IMAGIC(ph, pi))) {
panic("%s: %s free list modified: "
"page %p; item addr %p; offset 0x%x=0x%lx",
__func__, pp->pr_wchan, ph->ph_page, pi,
0, pi->pi_magic);
}
#ifdef DIAGNOSTIC
if (POOL_PHPOISON(ph)) {
size_t pidx;
uint32_t pval;
if (poison_check(pi + 1, pp->pr_size - sizeof(*pi),
&pidx, &pval)) {
int *ip = (int *)(pi + 1);
panic("%s: %s free list modified: "
"page %p; item addr %p; offset 0x%zx=0x%x",
__func__, pp->pr_wchan, ph->ph_page, pi,
pidx * sizeof(int), ip[pidx]);
}
}
#endif
}
pool_allocator_free(pp, ph->ph_page);
if (!POOL_INPGHDR(pp))
pool_put(&phpool, ph);
}
void
pool_p_insert(struct pool *pp, struct pool_page_header *ph)
{
pl_assert_locked(pp, &pp->pr_lock);
/* If the pool was depleted, point at the new page */
if (pp->pr_curpage == NULL)
pp->pr_curpage = ph;
TAILQ_INSERT_TAIL(&pp->pr_emptypages, ph, ph_entry);
if (!POOL_INPGHDR(pp))
RBT_INSERT(phtree, &pp->pr_phtree, ph);
pp->pr_nitems += pp->pr_itemsperpage;
pp->pr_nidle++;
pp->pr_npagealloc++;
if (++pp->pr_npages > pp->pr_hiwat)
pp->pr_hiwat = pp->pr_npages;
}
void
pool_p_remove(struct pool *pp, struct pool_page_header *ph)
{
pl_assert_locked(pp, &pp->pr_lock);
pp->pr_npagefree++;
pp->pr_npages--;
pp->pr_nidle--;
pp->pr_nitems -= pp->pr_itemsperpage;
if (!POOL_INPGHDR(pp))
RBT_REMOVE(phtree, &pp->pr_phtree, ph);
TAILQ_REMOVE(&pp->pr_emptypages, ph, ph_entry);
pool_update_curpage(pp);
}
void
pool_update_curpage(struct pool *pp)
{
pp->pr_curpage = TAILQ_LAST(&pp->pr_partpages, pool_pagelist);
if (pp->pr_curpage == NULL) {
pp->pr_curpage = TAILQ_LAST(&pp->pr_emptypages, pool_pagelist);
}
}
void
pool_setlowat(struct pool *pp, int n)
{
int prime = 0;
pl_enter(pp, &pp->pr_lock);
pp->pr_minitems = n;
pp->pr_minpages = (n == 0)
? 0
: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
if (pp->pr_nitems < n)
prime = n - pp->pr_nitems;
pl_leave(pp, &pp->pr_lock);
if (prime > 0)
pool_prime(pp, prime);
}
void
pool_sethiwat(struct pool *pp, int n)
{
pp->pr_maxpages = (n == 0)
? 0
: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
}
int
pool_sethardlimit(struct pool *pp, u_int n, const char *warnmsg, int ratecap)
{
int error = 0;
if (n < pp->pr_nout) {
error = EINVAL;
goto done;
}
pp->pr_hardlimit = n;
pp->pr_hardlimit_warning = warnmsg;
pp->pr_hardlimit_ratecap.tv_sec = ratecap;
pp->pr_hardlimit_warning_last.tv_sec = 0;
pp->pr_hardlimit_warning_last.tv_usec = 0;
done:
return (error);
}
void
pool_set_constraints(struct pool *pp, const struct kmem_pa_mode *mode)
{
pp->pr_crange = mode;
}
/*
* Release all complete pages that have not been used recently.
*
* Returns non-zero if any pages have been reclaimed.
*/
int
pool_reclaim(struct pool *pp)
{
struct pool_page_header *ph, *phnext;
struct pool_pagelist pl = TAILQ_HEAD_INITIALIZER(pl);
pl_enter(pp, &pp->pr_lock);
for (ph = TAILQ_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
phnext = TAILQ_NEXT(ph, ph_entry);
/* Check our minimum page claim */
if (pp->pr_npages <= pp->pr_minpages)
break;
/*
* If freeing this page would put us below
* the low water mark, stop now.
*/
if ((pp->pr_nitems - pp->pr_itemsperpage) <
pp->pr_minitems)
break;
pool_p_remove(pp, ph);
TAILQ_INSERT_TAIL(&pl, ph, ph_entry);
}
pl_leave(pp, &pp->pr_lock);
if (TAILQ_EMPTY(&pl))
return (0);
while ((ph = TAILQ_FIRST(&pl)) != NULL) {
TAILQ_REMOVE(&pl, ph, ph_entry);
pool_p_free(pp, ph);
}
return (1);
}
/*
* Release all complete pages that have not been used recently
* from all pools.
*/
void
pool_reclaim_all(void)
{
struct pool *pp;
rw_enter_read(&pool_lock);
SIMPLEQ_FOREACH(pp, &pool_head, pr_poollist)
pool_reclaim(pp);
rw_exit_read(&pool_lock);
}
#ifdef DDB
#include <machine/db_machdep.h>
#include <ddb/db_output.h>
/*
* Diagnostic helpers.
*/
void
pool_printit(struct pool *pp, const char *modif,
int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))))
{
pool_print1(pp, modif, pr);
}
void
pool_print_pagelist(struct pool_pagelist *pl,
int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))))
{
struct pool_page_header *ph;
struct pool_item *pi;
TAILQ_FOREACH(ph, pl, ph_entry) {
(*pr)("\t\tpage %p, color %p, nmissing %d\n",
ph->ph_page, ph->ph_colored, ph->ph_nmissing);
XSIMPLEQ_FOREACH(pi, &ph->ph_items, pi_list) {
if (pi->pi_magic != POOL_IMAGIC(ph, pi)) {
(*pr)("\t\t\titem %p, magic 0x%lx\n",
pi, pi->pi_magic);
}
}
}
}
void
pool_print1(struct pool *pp, const char *modif,
int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))))
{
struct pool_page_header *ph;
int print_pagelist = 0;
char c;
while ((c = *modif++) != '\0') {
if (c == 'p')
print_pagelist = 1;
modif++;
}
(*pr)("POOL %s: size %u maxcolors %u\n", pp->pr_wchan, pp->pr_size,
pp->pr_maxcolors);
(*pr)("\talloc %p\n", pp->pr_alloc);
(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
pp->pr_nget, pp->pr_nfail, pp->pr_nput);
(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
if (print_pagelist == 0)
return;
if ((ph = TAILQ_FIRST(&pp->pr_emptypages)) != NULL)
(*pr)("\n\tempty page list:\n");
pool_print_pagelist(&pp->pr_emptypages, pr);
if ((ph = TAILQ_FIRST(&pp->pr_fullpages)) != NULL)
(*pr)("\n\tfull page list:\n");
pool_print_pagelist(&pp->pr_fullpages, pr);
if ((ph = TAILQ_FIRST(&pp->pr_partpages)) != NULL)
(*pr)("\n\tpartial-page list:\n");
pool_print_pagelist(&pp->pr_partpages, pr);
if (pp->pr_curpage == NULL)
(*pr)("\tno current page\n");
else
(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
}
void
db_show_all_pools(db_expr_t expr, int haddr, db_expr_t count, char *modif)
{
struct pool *pp;
char maxp[16];
int ovflw;
char mode;
mode = modif[0];
if (mode != '\0' && mode != 'a') {
db_printf("usage: show all pools [/a]\n");
return;
}
if (mode == '\0')
db_printf("%-10s%4s%9s%5s%9s%6s%6s%6s%6s%6s%6s%5s\n",
"Name",
"Size",
"Requests",
"Fail",
"Releases",
"Pgreq",
"Pgrel",
"Npage",
"Hiwat",
"Minpg",
"Maxpg",
"Idle");
else
db_printf("%-12s %18s %18s\n",
"Name", "Address", "Allocator");
SIMPLEQ_FOREACH(pp, &pool_head, pr_poollist) {
if (mode == 'a') {
db_printf("%-12s %18p %18p\n", pp->pr_wchan, pp,
pp->pr_alloc);
continue;
}
if (!pp->pr_nget)
continue;
if (pp->pr_maxpages == UINT_MAX)
snprintf(maxp, sizeof maxp, "inf");
else
snprintf(maxp, sizeof maxp, "%u", pp->pr_maxpages);
#define PRWORD(ovflw, fmt, width, fixed, val) do { \
(ovflw) += db_printf((fmt), \
(width) - (fixed) - (ovflw) > 0 ? \
(width) - (fixed) - (ovflw) : 0, \
(val)) - (width); \
if ((ovflw) < 0) \
(ovflw) = 0; \
} while (/* CONSTCOND */0)
ovflw = 0;
PRWORD(ovflw, "%-*s", 10, 0, pp->pr_wchan);
PRWORD(ovflw, " %*u", 4, 1, pp->pr_size);
PRWORD(ovflw, " %*lu", 9, 1, pp->pr_nget);
PRWORD(ovflw, " %*lu", 5, 1, pp->pr_nfail);
PRWORD(ovflw, " %*lu", 9, 1, pp->pr_nput);
PRWORD(ovflw, " %*lu", 6, 1, pp->pr_npagealloc);
PRWORD(ovflw, " %*lu", 6, 1, pp->pr_npagefree);
PRWORD(ovflw, " %*d", 6, 1, pp->pr_npages);
PRWORD(ovflw, " %*d", 6, 1, pp->pr_hiwat);
PRWORD(ovflw, " %*d", 6, 1, pp->pr_minpages);
PRWORD(ovflw, " %*s", 6, 1, maxp);
PRWORD(ovflw, " %*lu\n", 5, 1, pp->pr_nidle);
pool_chk(pp);
}
}
#endif /* DDB */
#if defined(POOL_DEBUG) || defined(DDB)
int
pool_chk_page(struct pool *pp, struct pool_page_header *ph, int expected)
{
struct pool_item *pi;
caddr_t page;
int n;
const char *label = pp->pr_wchan;
page = (caddr_t)((u_long)ph & pp->pr_pgmask);
if (page != ph->ph_page && POOL_INPGHDR(pp)) {
printf("%s: ", label);
printf("pool(%p:%s): page inconsistency: page %p; "
"at page head addr %p (p %p)\n",
pp, pp->pr_wchan, ph->ph_page, ph, page);
return 1;
}
for (pi = XSIMPLEQ_FIRST(&ph->ph_items), n = 0;
pi != NULL;
pi = XSIMPLEQ_NEXT(&ph->ph_items, pi, pi_list), n++) {
if ((caddr_t)pi < ph->ph_page ||
(caddr_t)pi >= ph->ph_page + pp->pr_pgsize) {
printf("%s: ", label);
printf("pool(%p:%s): page inconsistency: page %p;"
" item ordinal %d; addr %p\n", pp,
pp->pr_wchan, ph->ph_page, n, pi);
return (1);
}
if (pi->pi_magic != POOL_IMAGIC(ph, pi)) {
printf("%s: ", label);
printf("pool(%p:%s): free list modified: "
"page %p; item ordinal %d; addr %p "
"(p %p); offset 0x%x=0x%lx\n",
pp, pp->pr_wchan, ph->ph_page, n, pi, page,
0, pi->pi_magic);
}
#ifdef DIAGNOSTIC
if (POOL_PHPOISON(ph)) {
size_t pidx;
uint32_t pval;
if (poison_check(pi + 1, pp->pr_size - sizeof(*pi),
&pidx, &pval)) {
int *ip = (int *)(pi + 1);
printf("pool(%s): free list modified: "
"page %p; item ordinal %d; addr %p "
"(p %p); offset 0x%zx=0x%x\n",
pp->pr_wchan, ph->ph_page, n, pi,
page, pidx * sizeof(int), ip[pidx]);
}
}
#endif /* DIAGNOSTIC */
}
if (n + ph->ph_nmissing != pp->pr_itemsperpage) {
printf("pool(%p:%s): page inconsistency: page %p;"
" %d on list, %d missing, %d items per page\n", pp,
pp->pr_wchan, ph->ph_page, n, ph->ph_nmissing,
pp->pr_itemsperpage);
return 1;
}
if (expected >= 0 && n != expected) {
printf("pool(%p:%s): page inconsistency: page %p;"
" %d on list, %d missing, %d expected\n", pp,
pp->pr_wchan, ph->ph_page, n, ph->ph_nmissing,
expected);
return 1;
}
return 0;
}
int
pool_chk(struct pool *pp)
{
struct pool_page_header *ph;
int r = 0;
TAILQ_FOREACH(ph, &pp->pr_emptypages, ph_entry)
r += pool_chk_page(pp, ph, pp->pr_itemsperpage);
TAILQ_FOREACH(ph, &pp->pr_fullpages, ph_entry)
r += pool_chk_page(pp, ph, 0);
TAILQ_FOREACH(ph, &pp->pr_partpages, ph_entry)
r += pool_chk_page(pp, ph, -1);
return (r);
}
#endif /* defined(POOL_DEBUG) || defined(DDB) */
#ifdef DDB
void
pool_walk(struct pool *pp, int full,
int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2))),
void (*func)(void *, int, int (*)(const char *, ...)
__attribute__((__format__(__kprintf__,1,2)))))
{
struct pool_page_header *ph;
struct pool_item *pi;
caddr_t cp;
int n;
TAILQ_FOREACH(ph, &pp->pr_fullpages, ph_entry) {
cp = ph->ph_colored;
n = ph->ph_nmissing;
while (n--) {
func(cp, full, pr);
cp += pp->pr_size;
}
}
TAILQ_FOREACH(ph, &pp->pr_partpages, ph_entry) {
cp = ph->ph_colored;
n = ph->ph_nmissing;
do {
XSIMPLEQ_FOREACH(pi, &ph->ph_items, pi_list) {
if (cp == (caddr_t)pi)
break;
}
if (cp != (caddr_t)pi) {
func(cp, full, pr);
n--;
}
cp += pp->pr_size;
} while (n > 0);
}
}
#endif
/*
* We have three different sysctls.
* kern.pool.npools - the number of pools.
* kern.pool.pool.<pool#> - the pool struct for the pool#.
* kern.pool.name.<pool#> - the name for pool#.
*/
int
sysctl_dopool(int *name, u_int namelen, char *oldp, size_t *oldlenp)
{
struct kinfo_pool pi;
struct pool *pp;
int rv = ENOENT;
switch (name[0]) {
case KERN_POOL_NPOOLS:
if (namelen != 1)
return (ENOTDIR);
return (sysctl_rdint(oldp, oldlenp, NULL, pool_count));
case KERN_POOL_NAME:
case KERN_POOL_POOL:
case KERN_POOL_CACHE:
case KERN_POOL_CACHE_CPUS:
break;
default:
return (EOPNOTSUPP);
}
if (namelen != 2)
return (ENOTDIR);
rw_enter_read(&pool_lock);
SIMPLEQ_FOREACH(pp, &pool_head, pr_poollist) {
if (name[1] == pp->pr_serial)
break;
}
if (pp == NULL)
goto done;
switch (name[0]) {
case KERN_POOL_NAME:
rv = sysctl_rdstring(oldp, oldlenp, NULL, pp->pr_wchan);
break;
case KERN_POOL_POOL:
memset(&pi, 0, sizeof(pi));
pl_enter(pp, &pp->pr_lock);
pi.pr_size = pp->pr_size;
pi.pr_pgsize = pp->pr_pgsize;
pi.pr_itemsperpage = pp->pr_itemsperpage;
pi.pr_npages = pp->pr_npages;
pi.pr_minpages = pp->pr_minpages;
pi.pr_maxpages = pp->pr_maxpages;
pi.pr_hardlimit = pp->pr_hardlimit;
pi.pr_nout = pp->pr_nout;
pi.pr_nitems = pp->pr_nitems;
pi.pr_nget = pp->pr_nget;
pi.pr_nput = pp->pr_nput;
pi.pr_nfail = pp->pr_nfail;
pi.pr_npagealloc = pp->pr_npagealloc;
pi.pr_npagefree = pp->pr_npagefree;
pi.pr_hiwat = pp->pr_hiwat;
pi.pr_nidle = pp->pr_nidle;
pl_leave(pp, &pp->pr_lock);
pool_cache_pool_info(pp, &pi);
rv = sysctl_rdstruct(oldp, oldlenp, NULL, &pi, sizeof(pi));
break;
case KERN_POOL_CACHE:
rv = pool_cache_info(pp, oldp, oldlenp);
break;
case KERN_POOL_CACHE_CPUS:
rv = pool_cache_cpus_info(pp, oldp, oldlenp);
break;
}
done:
rw_exit_read(&pool_lock);
return (rv);
}
void
pool_gc_sched(void *null)
{
task_add(systqmp, &pool_gc_task);
}
void
pool_gc_pages(void *null)
{
struct pool *pp;
struct pool_page_header *ph, *freeph;
int s;
rw_enter_read(&pool_lock);
s = splvm(); /* XXX go to splvm until all pools _setipl properly */
SIMPLEQ_FOREACH(pp, &pool_head, pr_poollist) {
#ifdef MULTIPROCESSOR
if (pp->pr_cache != NULL)
pool_cache_gc(pp);
#endif
if (pp->pr_nidle <= pp->pr_minpages || /* guess */
!pl_enter_try(pp, &pp->pr_lock)) /* try */
continue;
/* is it time to free a page? */
if (pp->pr_nidle > pp->pr_minpages &&
(ph = TAILQ_FIRST(&pp->pr_emptypages)) != NULL &&
getnsecuptime() - ph->ph_timestamp > POOL_WAIT_GC) {
freeph = ph;
pool_p_remove(pp, freeph);
} else
freeph = NULL;
pl_leave(pp, &pp->pr_lock);
if (freeph != NULL)
pool_p_free(pp, freeph);
}
splx(s);
rw_exit_read(&pool_lock);
timeout_add_sec(&pool_gc_tick, 1);
}
/*
* Pool backend allocators.
*/
void *
pool_allocator_alloc(struct pool *pp, int flags, int *slowdown)
{
void *v;
v = (*pp->pr_alloc->pa_alloc)(pp, flags, slowdown);
#ifdef DIAGNOSTIC
if (v != NULL && POOL_INPGHDR(pp)) {
vaddr_t addr = (vaddr_t)v;
if ((addr & pp->pr_pgmask) != addr) {
panic("%s: %s page address %p isn't aligned to %u",
__func__, pp->pr_wchan, v, pp->pr_pgsize);
}
}
#endif
return (v);
}
void
pool_allocator_free(struct pool *pp, void *v)
{
struct pool_allocator *pa = pp->pr_alloc;
(*pa->pa_free)(pp, v);
}
void *
pool_page_alloc(struct pool *pp, int flags, int *slowdown)
{
struct kmem_dyn_mode kd = KMEM_DYN_INITIALIZER;
kd.kd_waitok = ISSET(flags, PR_WAITOK);
kd.kd_slowdown = slowdown;
return (km_alloc(pp->pr_pgsize, &kv_page, pp->pr_crange, &kd));
}
void
pool_page_free(struct pool *pp, void *v)
{
km_free(v, pp->pr_pgsize, &kv_page, pp->pr_crange);
}
void *
pool_multi_alloc(struct pool *pp, int flags, int *slowdown)
{
struct kmem_va_mode kv = kv_intrsafe;
struct kmem_dyn_mode kd = KMEM_DYN_INITIALIZER;
void *v;
int s;
if (POOL_INPGHDR(pp))
kv.kv_align = pp->pr_pgsize;
kd.kd_waitok = ISSET(flags, PR_WAITOK);
kd.kd_slowdown = slowdown;
s = splvm();
v = km_alloc(pp->pr_pgsize, &kv, pp->pr_crange, &kd);
splx(s);
return (v);
}
void
pool_multi_free(struct pool *pp, void *v)
{
struct kmem_va_mode kv = kv_intrsafe;
int s;
if (POOL_INPGHDR(pp))
kv.kv_align = pp->pr_pgsize;
s = splvm();
km_free(v, pp->pr_pgsize, &kv, pp->pr_crange);
splx(s);
}
void *
pool_multi_alloc_ni(struct pool *pp, int flags, int *slowdown)
{
struct kmem_va_mode kv = kv_any;
struct kmem_dyn_mode kd = KMEM_DYN_INITIALIZER;
void *v;
if (POOL_INPGHDR(pp))
kv.kv_align = pp->pr_pgsize;
kd.kd_waitok = ISSET(flags, PR_WAITOK);
kd.kd_slowdown = slowdown;
KERNEL_LOCK();
v = km_alloc(pp->pr_pgsize, &kv, pp->pr_crange, &kd);
KERNEL_UNLOCK();
return (v);
}
void
pool_multi_free_ni(struct pool *pp, void *v)
{
struct kmem_va_mode kv = kv_any;
if (POOL_INPGHDR(pp))
kv.kv_align = pp->pr_pgsize;
KERNEL_LOCK();
km_free(v, pp->pr_pgsize, &kv, pp->pr_crange);
KERNEL_UNLOCK();
}
#ifdef MULTIPROCESSOR
struct pool pool_caches; /* per cpu cache entries */
void
pool_cache_init(struct pool *pp)
{
struct cpumem *cm;
struct pool_cache *pc;
struct cpumem_iter i;
if (pool_caches.pr_size == 0) {
pool_init(&pool_caches, sizeof(struct pool_cache),
CACHELINESIZE, IPL_NONE, PR_WAITOK | PR_RWLOCK,
"plcache", NULL);
}
/* must be able to use the pool items as cache list items */
KASSERT(pp->pr_size >= sizeof(struct pool_cache_item));
cm = cpumem_get(&pool_caches);
pl_init(pp, &pp->pr_cache_lock);
arc4random_buf(pp->pr_cache_magic, sizeof(pp->pr_cache_magic));
TAILQ_INIT(&pp->pr_cache_lists);
pp->pr_cache_nitems = 0;
pp->pr_cache_timestamp = getnsecuptime();
pp->pr_cache_items = 8;
pp->pr_cache_contention = 0;
pp->pr_cache_ngc = 0;
CPUMEM_FOREACH(pc, &i, cm) {
pc->pc_actv = NULL;
pc->pc_nactv = 0;
pc->pc_prev = NULL;
pc->pc_nget = 0;
pc->pc_nfail = 0;
pc->pc_nput = 0;
pc->pc_nlget = 0;
pc->pc_nlfail = 0;
pc->pc_nlput = 0;
pc->pc_nout = 0;
}
membar_producer();
pp->pr_cache = cm;
}
static inline void
pool_cache_item_magic(struct pool *pp, struct pool_cache_item *ci)
{
unsigned long *entry = (unsigned long *)&ci->ci_nextl;
entry[0] = pp->pr_cache_magic[0] ^ (u_long)ci;
entry[1] = pp->pr_cache_magic[1] ^ (u_long)ci->ci_next;
}
static inline void
pool_cache_item_magic_check(struct pool *pp, struct pool_cache_item *ci)
{
unsigned long *entry;
unsigned long val;
entry = (unsigned long *)&ci->ci_nextl;
val = pp->pr_cache_magic[0] ^ (u_long)ci;
if (*entry != val)
goto fail;
entry++;
val = pp->pr_cache_magic[1] ^ (u_long)ci->ci_next;
if (*entry != val)
goto fail;
return;
fail:
panic("%s: %s cpu free list modified: item addr %p+%zu 0x%lx!=0x%lx",
__func__, pp->pr_wchan, ci, (caddr_t)entry - (caddr_t)ci,
*entry, val);
}
static inline void
pool_list_enter(struct pool *pp)
{
if (pl_enter_try(pp, &pp->pr_cache_lock) == 0) {
pl_enter(pp, &pp->pr_cache_lock);
pp->pr_cache_contention++;
}
}
static inline void
pool_list_leave(struct pool *pp)
{
pl_leave(pp, &pp->pr_cache_lock);
}
static inline struct pool_cache_item *
pool_cache_list_alloc(struct pool *pp, struct pool_cache *pc)
{
struct pool_cache_item *pl;
pool_list_enter(pp);
pl = TAILQ_FIRST(&pp->pr_cache_lists);
if (pl != NULL) {
TAILQ_REMOVE(&pp->pr_cache_lists, pl, ci_nextl);
pp->pr_cache_nitems -= POOL_CACHE_ITEM_NITEMS(pl);
pool_cache_item_magic(pp, pl);
pc->pc_nlget++;
} else
pc->pc_nlfail++;
/* fold this cpus nout into the global while we have the lock */
pp->pr_cache_nout += pc->pc_nout;
pc->pc_nout = 0;
pool_list_leave(pp);
return (pl);
}
static inline void
pool_cache_list_free(struct pool *pp, struct pool_cache *pc,
struct pool_cache_item *ci)
{
pool_list_enter(pp);
if (TAILQ_EMPTY(&pp->pr_cache_lists))
pp->pr_cache_timestamp = getnsecuptime();
pp->pr_cache_nitems += POOL_CACHE_ITEM_NITEMS(ci);
TAILQ_INSERT_TAIL(&pp->pr_cache_lists, ci, ci_nextl);
pc->pc_nlput++;
/* fold this cpus nout into the global while we have the lock */
pp->pr_cache_nout += pc->pc_nout;
pc->pc_nout = 0;
pool_list_leave(pp);
}
static inline struct pool_cache *
pool_cache_enter(struct pool *pp, int *s)
{
struct pool_cache *pc;
pc = cpumem_enter(pp->pr_cache);
*s = splraise(pp->pr_ipl);
pc->pc_gen++;
return (pc);
}
static inline void
pool_cache_leave(struct pool *pp, struct pool_cache *pc, int s)
{
pc->pc_gen++;
splx(s);
cpumem_leave(pp->pr_cache, pc);
}
void *
pool_cache_get(struct pool *pp)
{
struct pool_cache *pc;
struct pool_cache_item *ci;
int s;
pc = pool_cache_enter(pp, &s);
if (pc->pc_actv != NULL) {
ci = pc->pc_actv;
} else if (pc->pc_prev != NULL) {
ci = pc->pc_prev;
pc->pc_prev = NULL;
} else if ((ci = pool_cache_list_alloc(pp, pc)) == NULL) {
pc->pc_nfail++;
goto done;
}
pool_cache_item_magic_check(pp, ci);
#ifdef DIAGNOSTIC
if (pool_debug && POOL_CACHE_ITEM_POISONED(ci)) {
size_t pidx;
uint32_t pval;
if (poison_check(ci + 1, pp->pr_size - sizeof(*ci),
&pidx, &pval)) {
int *ip = (int *)(ci + 1);
ip += pidx;
panic("%s: %s cpu free list modified: "
"item addr %p+%zu 0x%x!=0x%x",
__func__, pp->pr_wchan, ci,
(caddr_t)ip - (caddr_t)ci, *ip, pval);
}
}
#endif
pc->pc_actv = ci->ci_next;
pc->pc_nactv = POOL_CACHE_ITEM_NITEMS(ci) - 1;
pc->pc_nget++;
pc->pc_nout++;
done:
pool_cache_leave(pp, pc, s);
return (ci);
}
void
pool_cache_put(struct pool *pp, void *v)
{
struct pool_cache *pc;
struct pool_cache_item *ci = v;
unsigned long nitems;
int s;
#ifdef DIAGNOSTIC
int poison = pool_debug && pp->pr_size > sizeof(*ci);
if (poison)
poison_mem(ci + 1, pp->pr_size - sizeof(*ci));
#endif
pc = pool_cache_enter(pp, &s);
nitems = pc->pc_nactv;
if (nitems >= pp->pr_cache_items) {
if (pc->pc_prev != NULL)
pool_cache_list_free(pp, pc, pc->pc_prev);
pc->pc_prev = pc->pc_actv;
pc->pc_actv = NULL;
pc->pc_nactv = 0;
nitems = 0;
}
ci->ci_next = pc->pc_actv;
ci->ci_nitems = ++nitems;
#ifdef DIAGNOSTIC
ci->ci_nitems |= poison ? POOL_CACHE_ITEM_NITEMS_POISON : 0;
#endif
pool_cache_item_magic(pp, ci);
pc->pc_actv = ci;
pc->pc_nactv = nitems;
pc->pc_nput++;
pc->pc_nout--;
pool_cache_leave(pp, pc, s);
}
struct pool_cache_item *
pool_cache_list_put(struct pool *pp, struct pool_cache_item *pl)
{
struct pool_cache_item *rpl, *next;
if (pl == NULL)
return (NULL);
rpl = TAILQ_NEXT(pl, ci_nextl);
pl_enter(pp, &pp->pr_lock);
do {
next = pl->ci_next;
pool_do_put(pp, pl);
pl = next;
} while (pl != NULL);
pl_leave(pp, &pp->pr_lock);
return (rpl);
}
void
pool_cache_destroy(struct pool *pp)
{
struct pool_cache *pc;
struct pool_cache_item *pl;
struct cpumem_iter i;
struct cpumem *cm;
rw_enter_write(&pool_lock); /* serialise with the gc */
cm = pp->pr_cache;
pp->pr_cache = NULL; /* make pool_put avoid the cache */
rw_exit_write(&pool_lock);
CPUMEM_FOREACH(pc, &i, cm) {
pool_cache_list_put(pp, pc->pc_actv);
pool_cache_list_put(pp, pc->pc_prev);
}
cpumem_put(&pool_caches, cm);
pl = TAILQ_FIRST(&pp->pr_cache_lists);
while (pl != NULL)
pl = pool_cache_list_put(pp, pl);
}
void
pool_cache_gc(struct pool *pp)
{
unsigned int contention, delta;
if (getnsecuptime() - pp->pr_cache_timestamp > POOL_WAIT_GC &&
!TAILQ_EMPTY(&pp->pr_cache_lists) &&
pl_enter_try(pp, &pp->pr_cache_lock)) {
struct pool_cache_item *pl = NULL;
pl = TAILQ_FIRST(&pp->pr_cache_lists);
if (pl != NULL) {
TAILQ_REMOVE(&pp->pr_cache_lists, pl, ci_nextl);
pp->pr_cache_nitems -= POOL_CACHE_ITEM_NITEMS(pl);
pp->pr_cache_timestamp = getnsecuptime();
pp->pr_cache_ngc++;
}
pl_leave(pp, &pp->pr_cache_lock);
pool_cache_list_put(pp, pl);
}
/*
* if there's a lot of contention on the pr_cache_mtx then consider
* growing the length of the list to reduce the need to access the
* global pool.
*/
contention = pp->pr_cache_contention;
delta = contention - pp->pr_cache_contention_prev;
if (delta > 8 /* magic */) {
if ((ncpusfound * 8 * 2) <= pp->pr_cache_nitems)
pp->pr_cache_items += 8;
} else if (delta == 0) {
if (pp->pr_cache_items > 8)
pp->pr_cache_items--;
}
pp->pr_cache_contention_prev = contention;
}
void
pool_cache_pool_info(struct pool *pp, struct kinfo_pool *pi)
{
struct pool_cache *pc;
struct cpumem_iter i;
if (pp->pr_cache == NULL)
return;
/* loop through the caches twice to collect stats */
/* once without the lock so we can yield while reading nget/nput */
CPUMEM_FOREACH(pc, &i, pp->pr_cache) {
uint64_t gen, nget, nput;
do {
while ((gen = pc->pc_gen) & 1)
yield();
nget = pc->pc_nget;
nput = pc->pc_nput;
} while (gen != pc->pc_gen);
pi->pr_nget += nget;
pi->pr_nput += nput;
}
/* and once with the mtx so we can get consistent nout values */
pl_enter(pp, &pp->pr_cache_lock);
CPUMEM_FOREACH(pc, &i, pp->pr_cache)
pi->pr_nout += pc->pc_nout;
pi->pr_nout += pp->pr_cache_nout;
pl_leave(pp, &pp->pr_cache_lock);
}
int
pool_cache_info(struct pool *pp, void *oldp, size_t *oldlenp)
{
struct kinfo_pool_cache kpc;
if (pp->pr_cache == NULL)
return (EOPNOTSUPP);
memset(&kpc, 0, sizeof(kpc)); /* don't leak padding */
pl_enter(pp, &pp->pr_cache_lock);
kpc.pr_ngc = pp->pr_cache_ngc;
kpc.pr_len = pp->pr_cache_items;
kpc.pr_nitems = pp->pr_cache_nitems;
kpc.pr_contention = pp->pr_cache_contention;
pl_leave(pp, &pp->pr_cache_lock);
return (sysctl_rdstruct(oldp, oldlenp, NULL, &kpc, sizeof(kpc)));
}
int
pool_cache_cpus_info(struct pool *pp, void *oldp, size_t *oldlenp)
{
struct pool_cache *pc;
struct kinfo_pool_cache_cpu *kpcc, *info;
unsigned int cpu = 0;
struct cpumem_iter i;
int error = 0;
size_t len;
if (pp->pr_cache == NULL)
return (EOPNOTSUPP);
if (*oldlenp % sizeof(*kpcc))
return (EINVAL);
kpcc = mallocarray(ncpusfound, sizeof(*kpcc), M_TEMP,
M_WAITOK|M_CANFAIL|M_ZERO);
if (kpcc == NULL)
return (EIO);
len = ncpusfound * sizeof(*kpcc);
CPUMEM_FOREACH(pc, &i, pp->pr_cache) {
uint64_t gen;
if (cpu >= ncpusfound) {
error = EIO;
goto err;
}
info = &kpcc[cpu];
info->pr_cpu = cpu;
do {
while ((gen = pc->pc_gen) & 1)
yield();
info->pr_nget = pc->pc_nget;
info->pr_nfail = pc->pc_nfail;
info->pr_nput = pc->pc_nput;
info->pr_nlget = pc->pc_nlget;
info->pr_nlfail = pc->pc_nlfail;
info->pr_nlput = pc->pc_nlput;
} while (gen != pc->pc_gen);
cpu++;
}
error = sysctl_rdstruct(oldp, oldlenp, NULL, kpcc, len);
err:
free(kpcc, M_TEMP, len);
return (error);
}
#else /* MULTIPROCESSOR */
void
pool_cache_init(struct pool *pp)
{
/* nop */
}
void
pool_cache_pool_info(struct pool *pp, struct kinfo_pool *pi)
{
/* nop */
}
int
pool_cache_info(struct pool *pp, void *oldp, size_t *oldlenp)
{
return (EOPNOTSUPP);
}
int
pool_cache_cpus_info(struct pool *pp, void *oldp, size_t *oldlenp)
{
return (EOPNOTSUPP);
}
#endif /* MULTIPROCESSOR */
void
pool_lock_mtx_init(struct pool *pp, union pool_lock *lock,
const struct lock_type *type)
{
_mtx_init_flags(&lock->prl_mtx, pp->pr_ipl, pp->pr_wchan, 0, type);
}
void
pool_lock_mtx_enter(union pool_lock *lock)
{
mtx_enter(&lock->prl_mtx);
}
int
pool_lock_mtx_enter_try(union pool_lock *lock)
{
return (mtx_enter_try(&lock->prl_mtx));
}
void
pool_lock_mtx_leave(union pool_lock *lock)
{
mtx_leave(&lock->prl_mtx);
}
void
pool_lock_mtx_assert_locked(union pool_lock *lock)
{
MUTEX_ASSERT_LOCKED(&lock->prl_mtx);
}
void
pool_lock_mtx_assert_unlocked(union pool_lock *lock)
{
MUTEX_ASSERT_UNLOCKED(&lock->prl_mtx);
}
int
pool_lock_mtx_sleep(void *ident, union pool_lock *lock, int priority,
const char *wmesg)
{
return msleep_nsec(ident, &lock->prl_mtx, priority, wmesg, INFSLP);
}
static const struct pool_lock_ops pool_lock_ops_mtx = {
pool_lock_mtx_init,
pool_lock_mtx_enter,
pool_lock_mtx_enter_try,
pool_lock_mtx_leave,
pool_lock_mtx_assert_locked,
pool_lock_mtx_assert_unlocked,
pool_lock_mtx_sleep,
};
void
pool_lock_rw_init(struct pool *pp, union pool_lock *lock,
const struct lock_type *type)
{
_rw_init_flags(&lock->prl_rwlock, pp->pr_wchan, 0, type);
}
void
pool_lock_rw_enter(union pool_lock *lock)
{
rw_enter_write(&lock->prl_rwlock);
}
int
pool_lock_rw_enter_try(union pool_lock *lock)
{
return (rw_enter(&lock->prl_rwlock, RW_WRITE | RW_NOSLEEP) == 0);
}
void
pool_lock_rw_leave(union pool_lock *lock)
{
rw_exit_write(&lock->prl_rwlock);
}
void
pool_lock_rw_assert_locked(union pool_lock *lock)
{
rw_assert_wrlock(&lock->prl_rwlock);
}
void
pool_lock_rw_assert_unlocked(union pool_lock *lock)
{
KASSERT(rw_status(&lock->prl_rwlock) != RW_WRITE);
}
int
pool_lock_rw_sleep(void *ident, union pool_lock *lock, int priority,
const char *wmesg)
{
return rwsleep_nsec(ident, &lock->prl_rwlock, priority, wmesg, INFSLP);
}
static const struct pool_lock_ops pool_lock_ops_rw = {
pool_lock_rw_init,
pool_lock_rw_enter,
pool_lock_rw_enter_try,
pool_lock_rw_leave,
pool_lock_rw_assert_locked,
pool_lock_rw_assert_unlocked,
pool_lock_rw_sleep,
};