src/sys/kern/sys_pipe.c

1036 lines
23 KiB
C

/* $OpenBSD: sys_pipe.c,v 1.146 2023/05/09 14:22:17 visa Exp $ */
/*
* Copyright (c) 1996 John S. Dyson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice immediately at the beginning of the file, without modification,
* this list of conditions, and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Absolutely no warranty of function or purpose is made by the author
* John S. Dyson.
* 4. Modifications may be freely made to this file if the above conditions
* are met.
*/
/*
* This file contains a high-performance replacement for the socket-based
* pipes scheme originally used in FreeBSD/4.4Lite. It does not support
* all features of sockets, but does do everything that pipes normally
* do.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/fcntl.h>
#include <sys/file.h>
#include <sys/filedesc.h>
#include <sys/pool.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/signalvar.h>
#include <sys/mount.h>
#include <sys/syscallargs.h>
#include <sys/event.h>
#ifdef KTRACE
#include <sys/ktrace.h>
#endif
#include <uvm/uvm_extern.h>
#include <sys/pipe.h>
struct pipe_pair {
struct pipe pp_wpipe;
struct pipe pp_rpipe;
struct rwlock pp_lock;
};
/*
* interfaces to the outside world
*/
int pipe_read(struct file *, struct uio *, int);
int pipe_write(struct file *, struct uio *, int);
int pipe_close(struct file *, struct proc *);
int pipe_kqfilter(struct file *fp, struct knote *kn);
int pipe_ioctl(struct file *, u_long, caddr_t, struct proc *);
int pipe_stat(struct file *fp, struct stat *ub, struct proc *p);
static const struct fileops pipeops = {
.fo_read = pipe_read,
.fo_write = pipe_write,
.fo_ioctl = pipe_ioctl,
.fo_kqfilter = pipe_kqfilter,
.fo_stat = pipe_stat,
.fo_close = pipe_close
};
void filt_pipedetach(struct knote *kn);
int filt_piperead(struct knote *kn, long hint);
int filt_pipewrite(struct knote *kn, long hint);
int filt_pipeexcept(struct knote *kn, long hint);
int filt_pipemodify(struct kevent *kev, struct knote *kn);
int filt_pipeprocess(struct knote *kn, struct kevent *kev);
const struct filterops pipe_rfiltops = {
.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
.f_attach = NULL,
.f_detach = filt_pipedetach,
.f_event = filt_piperead,
.f_modify = filt_pipemodify,
.f_process = filt_pipeprocess,
};
const struct filterops pipe_wfiltops = {
.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
.f_attach = NULL,
.f_detach = filt_pipedetach,
.f_event = filt_pipewrite,
.f_modify = filt_pipemodify,
.f_process = filt_pipeprocess,
};
const struct filterops pipe_efiltops = {
.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
.f_attach = NULL,
.f_detach = filt_pipedetach,
.f_event = filt_pipeexcept,
.f_modify = filt_pipemodify,
.f_process = filt_pipeprocess,
};
/*
* Default pipe buffer size(s), this can be kind-of large now because pipe
* space is pageable. The pipe code will try to maintain locality of
* reference for performance reasons, so small amounts of outstanding I/O
* will not wipe the cache.
*/
#define MINPIPESIZE (PIPE_SIZE/3)
/*
* Limit the number of "big" pipes
*/
#define LIMITBIGPIPES 32
unsigned int nbigpipe;
static unsigned int amountpipekva;
struct pool pipe_pair_pool;
int dopipe(struct proc *, int *, int);
void pipe_wakeup(struct pipe *);
int pipe_create(struct pipe *);
void pipe_destroy(struct pipe *);
int pipe_rundown(struct pipe *);
struct pipe *pipe_peer(struct pipe *);
int pipe_buffer_realloc(struct pipe *, u_int);
void pipe_buffer_free(struct pipe *);
int pipe_iolock(struct pipe *);
void pipe_iounlock(struct pipe *);
int pipe_iosleep(struct pipe *, const char *);
struct pipe_pair *pipe_pair_create(void);
void pipe_pair_destroy(struct pipe_pair *);
/*
* The pipe system call for the DTYPE_PIPE type of pipes
*/
int
sys_pipe(struct proc *p, void *v, register_t *retval)
{
struct sys_pipe_args /* {
syscallarg(int *) fdp;
} */ *uap = v;
return (dopipe(p, SCARG(uap, fdp), 0));
}
int
sys_pipe2(struct proc *p, void *v, register_t *retval)
{
struct sys_pipe2_args /* {
syscallarg(int *) fdp;
syscallarg(int) flags;
} */ *uap = v;
if (SCARG(uap, flags) & ~(O_CLOEXEC | FNONBLOCK))
return (EINVAL);
return (dopipe(p, SCARG(uap, fdp), SCARG(uap, flags)));
}
int
dopipe(struct proc *p, int *ufds, int flags)
{
struct filedesc *fdp = p->p_fd;
struct file *rf, *wf;
struct pipe_pair *pp;
struct pipe *rpipe, *wpipe = NULL;
int fds[2], cloexec, error;
cloexec = (flags & O_CLOEXEC) ? UF_EXCLOSE : 0;
pp = pipe_pair_create();
if (pp == NULL)
return (ENOMEM);
wpipe = &pp->pp_wpipe;
rpipe = &pp->pp_rpipe;
fdplock(fdp);
error = falloc(p, &rf, &fds[0]);
if (error != 0)
goto free2;
rf->f_flag = FREAD | FWRITE | (flags & FNONBLOCK);
rf->f_type = DTYPE_PIPE;
rf->f_data = rpipe;
rf->f_ops = &pipeops;
error = falloc(p, &wf, &fds[1]);
if (error != 0)
goto free3;
wf->f_flag = FREAD | FWRITE | (flags & FNONBLOCK);
wf->f_type = DTYPE_PIPE;
wf->f_data = wpipe;
wf->f_ops = &pipeops;
fdinsert(fdp, fds[0], cloexec, rf);
fdinsert(fdp, fds[1], cloexec, wf);
error = copyout(fds, ufds, sizeof(fds));
if (error == 0) {
fdpunlock(fdp);
#ifdef KTRACE
if (KTRPOINT(p, KTR_STRUCT))
ktrfds(p, fds, 2);
#endif
} else {
/* fdrelease() unlocks fdp. */
fdrelease(p, fds[0]);
fdplock(fdp);
fdrelease(p, fds[1]);
}
FRELE(rf, p);
FRELE(wf, p);
return (error);
free3:
fdremove(fdp, fds[0]);
closef(rf, p);
rpipe = NULL;
free2:
fdpunlock(fdp);
pipe_destroy(wpipe);
pipe_destroy(rpipe);
return (error);
}
/*
* Allocate kva for pipe circular buffer, the space is pageable.
* This routine will 'realloc' the size of a pipe safely, if it fails
* it will retain the old buffer.
* If it fails it will return ENOMEM.
*/
int
pipe_buffer_realloc(struct pipe *cpipe, u_int size)
{
caddr_t buffer;
/* buffer uninitialized or pipe locked */
KASSERT((cpipe->pipe_buffer.buffer == NULL) ||
(cpipe->pipe_state & PIPE_LOCK));
/* buffer should be empty */
KASSERT(cpipe->pipe_buffer.cnt == 0);
KERNEL_LOCK();
buffer = km_alloc(size, &kv_any, &kp_pageable, &kd_waitok);
KERNEL_UNLOCK();
if (buffer == NULL)
return (ENOMEM);
/* free old resources if we are resizing */
pipe_buffer_free(cpipe);
cpipe->pipe_buffer.buffer = buffer;
cpipe->pipe_buffer.size = size;
cpipe->pipe_buffer.in = 0;
cpipe->pipe_buffer.out = 0;
atomic_add_int(&amountpipekva, cpipe->pipe_buffer.size);
return (0);
}
/*
* initialize and allocate VM and memory for pipe
*/
int
pipe_create(struct pipe *cpipe)
{
int error;
error = pipe_buffer_realloc(cpipe, PIPE_SIZE);
if (error != 0)
return (error);
sigio_init(&cpipe->pipe_sigio);
getnanotime(&cpipe->pipe_ctime);
cpipe->pipe_atime = cpipe->pipe_ctime;
cpipe->pipe_mtime = cpipe->pipe_ctime;
return (0);
}
struct pipe *
pipe_peer(struct pipe *cpipe)
{
struct pipe *peer;
rw_assert_anylock(cpipe->pipe_lock);
peer = cpipe->pipe_peer;
if (peer == NULL || (peer->pipe_state & PIPE_EOF))
return (NULL);
return (peer);
}
/*
* Lock a pipe for exclusive I/O access.
*/
int
pipe_iolock(struct pipe *cpipe)
{
int error;
rw_assert_wrlock(cpipe->pipe_lock);
while (cpipe->pipe_state & PIPE_LOCK) {
cpipe->pipe_state |= PIPE_LWANT;
error = rwsleep_nsec(cpipe, cpipe->pipe_lock, PRIBIO | PCATCH,
"pipeiolk", INFSLP);
if (error)
return (error);
}
cpipe->pipe_state |= PIPE_LOCK;
return (0);
}
/*
* Unlock a pipe I/O lock.
*/
void
pipe_iounlock(struct pipe *cpipe)
{
rw_assert_wrlock(cpipe->pipe_lock);
KASSERT(cpipe->pipe_state & PIPE_LOCK);
cpipe->pipe_state &= ~PIPE_LOCK;
if (cpipe->pipe_state & PIPE_LWANT) {
cpipe->pipe_state &= ~PIPE_LWANT;
wakeup(cpipe);
}
}
/*
* Unlock the pipe I/O lock and go to sleep. Returns 0 on success and the I/O
* lock is relocked. Otherwise if a signal was caught, non-zero is returned and
* the I/O lock is not locked.
*
* Any caller must obtain a reference to the pipe by incrementing `pipe_busy'
* before calling this function in order ensure that the same pipe is not
* destroyed while sleeping.
*/
int
pipe_iosleep(struct pipe *cpipe, const char *wmesg)
{
int error;
pipe_iounlock(cpipe);
error = rwsleep_nsec(cpipe, cpipe->pipe_lock, PRIBIO | PCATCH, wmesg,
INFSLP);
if (error)
return (error);
return (pipe_iolock(cpipe));
}
void
pipe_wakeup(struct pipe *cpipe)
{
rw_assert_wrlock(cpipe->pipe_lock);
knote_locked(&cpipe->pipe_klist, 0);
if (cpipe->pipe_state & PIPE_ASYNC)
pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
}
int
pipe_read(struct file *fp, struct uio *uio, int fflags)
{
struct pipe *rpipe = fp->f_data;
size_t nread = 0, size;
int error;
rw_enter_write(rpipe->pipe_lock);
++rpipe->pipe_busy;
error = pipe_iolock(rpipe);
if (error) {
--rpipe->pipe_busy;
pipe_rundown(rpipe);
rw_exit_write(rpipe->pipe_lock);
return (error);
}
while (uio->uio_resid) {
/* Normal pipe buffer receive. */
if (rpipe->pipe_buffer.cnt > 0) {
size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
if (size > rpipe->pipe_buffer.cnt)
size = rpipe->pipe_buffer.cnt;
if (size > uio->uio_resid)
size = uio->uio_resid;
rw_exit_write(rpipe->pipe_lock);
error = uiomove(&rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
size, uio);
rw_enter_write(rpipe->pipe_lock);
if (error) {
break;
}
rpipe->pipe_buffer.out += size;
if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
rpipe->pipe_buffer.out = 0;
rpipe->pipe_buffer.cnt -= size;
/*
* If there is no more to read in the pipe, reset
* its pointers to the beginning. This improves
* cache hit stats.
*/
if (rpipe->pipe_buffer.cnt == 0) {
rpipe->pipe_buffer.in = 0;
rpipe->pipe_buffer.out = 0;
}
nread += size;
} else {
/*
* detect EOF condition
* read returns 0 on EOF, no need to set error
*/
if (rpipe->pipe_state & PIPE_EOF)
break;
/* If the "write-side" has been blocked, wake it up. */
if (rpipe->pipe_state & PIPE_WANTW) {
rpipe->pipe_state &= ~PIPE_WANTW;
wakeup(rpipe);
}
/* Break if some data was read. */
if (nread > 0)
break;
/* Handle non-blocking mode operation. */
if (fp->f_flag & FNONBLOCK) {
error = EAGAIN;
break;
}
/* Wait for more data. */
rpipe->pipe_state |= PIPE_WANTR;
error = pipe_iosleep(rpipe, "piperd");
if (error)
goto unlocked_error;
}
}
pipe_iounlock(rpipe);
if (error == 0)
getnanotime(&rpipe->pipe_atime);
unlocked_error:
--rpipe->pipe_busy;
if (pipe_rundown(rpipe) == 0 && rpipe->pipe_buffer.cnt < MINPIPESIZE) {
/* Handle write blocking hysteresis. */
if (rpipe->pipe_state & PIPE_WANTW) {
rpipe->pipe_state &= ~PIPE_WANTW;
wakeup(rpipe);
}
}
if (rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt >= PIPE_BUF)
pipe_wakeup(rpipe);
rw_exit_write(rpipe->pipe_lock);
return (error);
}
int
pipe_write(struct file *fp, struct uio *uio, int fflags)
{
struct pipe *rpipe = fp->f_data, *wpipe;
struct rwlock *lock = rpipe->pipe_lock;
size_t orig_resid;
int error;
rw_enter_write(lock);
wpipe = pipe_peer(rpipe);
/* Detect loss of pipe read side, issue SIGPIPE if lost. */
if (wpipe == NULL) {
rw_exit_write(lock);
return (EPIPE);
}
++wpipe->pipe_busy;
error = pipe_iolock(wpipe);
if (error) {
--wpipe->pipe_busy;
pipe_rundown(wpipe);
rw_exit_write(lock);
return (error);
}
/* If it is advantageous to resize the pipe buffer, do so. */
if (uio->uio_resid > PIPE_SIZE &&
wpipe->pipe_buffer.size <= PIPE_SIZE &&
wpipe->pipe_buffer.cnt == 0) {
unsigned int npipe;
npipe = atomic_inc_int_nv(&nbigpipe);
if (npipe > LIMITBIGPIPES ||
pipe_buffer_realloc(wpipe, BIG_PIPE_SIZE) != 0)
atomic_dec_int(&nbigpipe);
}
orig_resid = uio->uio_resid;
while (uio->uio_resid) {
size_t space;
if (wpipe->pipe_state & PIPE_EOF) {
error = EPIPE;
break;
}
space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
/* Writes of size <= PIPE_BUF must be atomic. */
if (space < uio->uio_resid && orig_resid <= PIPE_BUF)
space = 0;
if (space > 0) {
size_t size; /* Transfer size */
size_t segsize; /* first segment to transfer */
/*
* Transfer size is minimum of uio transfer
* and free space in pipe buffer.
*/
if (space > uio->uio_resid)
size = uio->uio_resid;
else
size = space;
/*
* First segment to transfer is minimum of
* transfer size and contiguous space in
* pipe buffer. If first segment to transfer
* is less than the transfer size, we've got
* a wraparound in the buffer.
*/
segsize = wpipe->pipe_buffer.size -
wpipe->pipe_buffer.in;
if (segsize > size)
segsize = size;
/* Transfer first segment */
rw_exit_write(lock);
error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
segsize, uio);
rw_enter_write(lock);
if (error == 0 && segsize < size) {
/*
* Transfer remaining part now, to
* support atomic writes. Wraparound
* happened.
*/
#ifdef DIAGNOSTIC
if (wpipe->pipe_buffer.in + segsize !=
wpipe->pipe_buffer.size)
panic("Expected pipe buffer wraparound disappeared");
#endif
rw_exit_write(lock);
error = uiomove(&wpipe->pipe_buffer.buffer[0],
size - segsize, uio);
rw_enter_write(lock);
}
if (error == 0) {
wpipe->pipe_buffer.in += size;
if (wpipe->pipe_buffer.in >=
wpipe->pipe_buffer.size) {
#ifdef DIAGNOSTIC
if (wpipe->pipe_buffer.in != size - segsize + wpipe->pipe_buffer.size)
panic("Expected wraparound bad");
#endif
wpipe->pipe_buffer.in = size - segsize;
}
wpipe->pipe_buffer.cnt += size;
#ifdef DIAGNOSTIC
if (wpipe->pipe_buffer.cnt > wpipe->pipe_buffer.size)
panic("Pipe buffer overflow");
#endif
}
if (error)
break;
} else {
/* If the "read-side" has been blocked, wake it up. */
if (wpipe->pipe_state & PIPE_WANTR) {
wpipe->pipe_state &= ~PIPE_WANTR;
wakeup(wpipe);
}
/* Don't block on non-blocking I/O. */
if (fp->f_flag & FNONBLOCK) {
error = EAGAIN;
break;
}
/*
* We have no more space and have something to offer,
* wake up select/poll.
*/
pipe_wakeup(wpipe);
wpipe->pipe_state |= PIPE_WANTW;
error = pipe_iosleep(wpipe, "pipewr");
if (error)
goto unlocked_error;
/*
* If read side wants to go away, we just issue a
* signal to ourselves.
*/
if (wpipe->pipe_state & PIPE_EOF) {
error = EPIPE;
break;
}
}
}
pipe_iounlock(wpipe);
unlocked_error:
--wpipe->pipe_busy;
if (pipe_rundown(wpipe) == 0 && wpipe->pipe_buffer.cnt > 0) {
/*
* If we have put any characters in the buffer, we wake up
* the reader.
*/
if (wpipe->pipe_state & PIPE_WANTR) {
wpipe->pipe_state &= ~PIPE_WANTR;
wakeup(wpipe);
}
}
/* Don't return EPIPE if I/O was successful. */
if (wpipe->pipe_buffer.cnt == 0 &&
uio->uio_resid == 0 &&
error == EPIPE) {
error = 0;
}
if (error == 0)
getnanotime(&wpipe->pipe_mtime);
/* We have something to offer, wake up select/poll. */
if (wpipe->pipe_buffer.cnt)
pipe_wakeup(wpipe);
rw_exit_write(lock);
return (error);
}
/*
* we implement a very minimal set of ioctls for compatibility with sockets.
*/
int
pipe_ioctl(struct file *fp, u_long cmd, caddr_t data, struct proc *p)
{
struct pipe *mpipe = fp->f_data;
int error = 0;
switch (cmd) {
case FIONBIO:
break;
case FIOASYNC:
rw_enter_write(mpipe->pipe_lock);
if (*(int *)data) {
mpipe->pipe_state |= PIPE_ASYNC;
} else {
mpipe->pipe_state &= ~PIPE_ASYNC;
}
rw_exit_write(mpipe->pipe_lock);
break;
case FIONREAD:
rw_enter_read(mpipe->pipe_lock);
*(int *)data = mpipe->pipe_buffer.cnt;
rw_exit_read(mpipe->pipe_lock);
break;
case FIOSETOWN:
case SIOCSPGRP:
case TIOCSPGRP:
error = sigio_setown(&mpipe->pipe_sigio, cmd, data);
break;
case FIOGETOWN:
case SIOCGPGRP:
case TIOCGPGRP:
sigio_getown(&mpipe->pipe_sigio, cmd, data);
break;
default:
error = ENOTTY;
}
return (error);
}
int
pipe_stat(struct file *fp, struct stat *ub, struct proc *p)
{
struct pipe *pipe = fp->f_data;
memset(ub, 0, sizeof(*ub));
rw_enter_read(pipe->pipe_lock);
ub->st_mode = S_IFIFO;
ub->st_blksize = pipe->pipe_buffer.size;
ub->st_size = pipe->pipe_buffer.cnt;
ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
ub->st_atim.tv_sec = pipe->pipe_atime.tv_sec;
ub->st_atim.tv_nsec = pipe->pipe_atime.tv_nsec;
ub->st_mtim.tv_sec = pipe->pipe_mtime.tv_sec;
ub->st_mtim.tv_nsec = pipe->pipe_mtime.tv_nsec;
ub->st_ctim.tv_sec = pipe->pipe_ctime.tv_sec;
ub->st_ctim.tv_nsec = pipe->pipe_ctime.tv_nsec;
ub->st_uid = fp->f_cred->cr_uid;
ub->st_gid = fp->f_cred->cr_gid;
rw_exit_read(pipe->pipe_lock);
/*
* Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
* XXX (st_dev, st_ino) should be unique.
*/
return (0);
}
int
pipe_close(struct file *fp, struct proc *p)
{
struct pipe *cpipe = fp->f_data;
fp->f_ops = NULL;
fp->f_data = NULL;
pipe_destroy(cpipe);
return (0);
}
/*
* Free kva for pipe circular buffer.
* No pipe lock check as only called from pipe_buffer_realloc() and pipeclose()
*/
void
pipe_buffer_free(struct pipe *cpipe)
{
u_int size;
if (cpipe->pipe_buffer.buffer == NULL)
return;
size = cpipe->pipe_buffer.size;
KERNEL_LOCK();
km_free(cpipe->pipe_buffer.buffer, size, &kv_any, &kp_pageable);
KERNEL_UNLOCK();
cpipe->pipe_buffer.buffer = NULL;
atomic_sub_int(&amountpipekva, size);
if (size > PIPE_SIZE)
atomic_dec_int(&nbigpipe);
}
/*
* shutdown the pipe, and free resources.
*/
void
pipe_destroy(struct pipe *cpipe)
{
struct pipe *ppipe;
if (cpipe == NULL)
return;
rw_enter_write(cpipe->pipe_lock);
pipe_wakeup(cpipe);
sigio_free(&cpipe->pipe_sigio);
/*
* If the other side is blocked, wake it up saying that
* we want to close it down.
*/
cpipe->pipe_state |= PIPE_EOF;
while (cpipe->pipe_busy) {
wakeup(cpipe);
cpipe->pipe_state |= PIPE_WANTD;
rwsleep_nsec(cpipe, cpipe->pipe_lock, PRIBIO, "pipecl", INFSLP);
}
/* Disconnect from peer. */
if ((ppipe = cpipe->pipe_peer) != NULL) {
pipe_wakeup(ppipe);
ppipe->pipe_state |= PIPE_EOF;
wakeup(ppipe);
ppipe->pipe_peer = NULL;
}
pipe_buffer_free(cpipe);
rw_exit_write(cpipe->pipe_lock);
if (ppipe == NULL)
pipe_pair_destroy(cpipe->pipe_pair);
}
/*
* Returns non-zero if a rundown is currently ongoing.
*/
int
pipe_rundown(struct pipe *cpipe)
{
rw_assert_wrlock(cpipe->pipe_lock);
if (cpipe->pipe_busy > 0 || (cpipe->pipe_state & PIPE_WANTD) == 0)
return (0);
/* Only wakeup pipe_destroy() once the pipe is no longer busy. */
cpipe->pipe_state &= ~(PIPE_WANTD | PIPE_WANTR | PIPE_WANTW);
wakeup(cpipe);
return (1);
}
int
pipe_kqfilter(struct file *fp, struct knote *kn)
{
struct pipe *rpipe = kn->kn_fp->f_data, *wpipe;
struct rwlock *lock = rpipe->pipe_lock;
int error = 0;
rw_enter_write(lock);
wpipe = pipe_peer(rpipe);
switch (kn->kn_filter) {
case EVFILT_READ:
kn->kn_fop = &pipe_rfiltops;
kn->kn_hook = rpipe;
klist_insert_locked(&rpipe->pipe_klist, kn);
break;
case EVFILT_WRITE:
if (wpipe == NULL) {
/*
* The other end of the pipe has been closed.
* Since the filter now always indicates a pending
* event, attach the knote to the current side
* to proceed with the registration.
*/
wpipe = rpipe;
}
kn->kn_fop = &pipe_wfiltops;
kn->kn_hook = wpipe;
klist_insert_locked(&wpipe->pipe_klist, kn);
break;
case EVFILT_EXCEPT:
if (kn->kn_flags & __EV_SELECT) {
/* Prevent triggering exceptfds. */
error = EPERM;
break;
}
if ((kn->kn_flags & __EV_POLL) == 0) {
/* Disallow usage through kevent(2). */
error = EINVAL;
break;
}
kn->kn_fop = &pipe_efiltops;
kn->kn_hook = rpipe;
klist_insert_locked(&rpipe->pipe_klist, kn);
break;
default:
error = EINVAL;
}
rw_exit_write(lock);
return (error);
}
void
filt_pipedetach(struct knote *kn)
{
struct pipe *cpipe = kn->kn_hook;
klist_remove(&cpipe->pipe_klist, kn);
}
int
filt_piperead(struct knote *kn, long hint)
{
struct pipe *rpipe = kn->kn_fp->f_data, *wpipe;
rw_assert_wrlock(rpipe->pipe_lock);
wpipe = pipe_peer(rpipe);
kn->kn_data = rpipe->pipe_buffer.cnt;
if ((rpipe->pipe_state & PIPE_EOF) || wpipe == NULL) {
kn->kn_flags |= EV_EOF;
if (kn->kn_flags & __EV_POLL)
kn->kn_flags |= __EV_HUP;
return (1);
}
return (kn->kn_data > 0);
}
int
filt_pipewrite(struct knote *kn, long hint)
{
struct pipe *rpipe = kn->kn_fp->f_data, *wpipe;
rw_assert_wrlock(rpipe->pipe_lock);
wpipe = pipe_peer(rpipe);
if (wpipe == NULL) {
kn->kn_data = 0;
kn->kn_flags |= EV_EOF;
if (kn->kn_flags & __EV_POLL)
kn->kn_flags |= __EV_HUP;
return (1);
}
kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
return (kn->kn_data >= PIPE_BUF);
}
int
filt_pipeexcept(struct knote *kn, long hint)
{
struct pipe *rpipe = kn->kn_fp->f_data, *wpipe;
int active = 0;
rw_assert_wrlock(rpipe->pipe_lock);
wpipe = pipe_peer(rpipe);
if (kn->kn_flags & __EV_POLL) {
if ((rpipe->pipe_state & PIPE_EOF) || wpipe == NULL) {
kn->kn_flags |= __EV_HUP;
active = 1;
}
}
return (active);
}
int
filt_pipemodify(struct kevent *kev, struct knote *kn)
{
struct pipe *rpipe = kn->kn_fp->f_data;
int active;
rw_enter_write(rpipe->pipe_lock);
active = knote_modify(kev, kn);
rw_exit_write(rpipe->pipe_lock);
return (active);
}
int
filt_pipeprocess(struct knote *kn, struct kevent *kev)
{
struct pipe *rpipe = kn->kn_fp->f_data;
int active;
rw_enter_write(rpipe->pipe_lock);
active = knote_process(kn, kev);
rw_exit_write(rpipe->pipe_lock);
return (active);
}
void
pipe_init(void)
{
pool_init(&pipe_pair_pool, sizeof(struct pipe_pair), 0, IPL_MPFLOOR,
PR_WAITOK, "pipepl", NULL);
}
struct pipe_pair *
pipe_pair_create(void)
{
struct pipe_pair *pp;
pp = pool_get(&pipe_pair_pool, PR_WAITOK | PR_ZERO);
pp->pp_wpipe.pipe_pair = pp;
pp->pp_rpipe.pipe_pair = pp;
pp->pp_wpipe.pipe_peer = &pp->pp_rpipe;
pp->pp_rpipe.pipe_peer = &pp->pp_wpipe;
/*
* One lock is used per pipe pair in order to obtain exclusive access to
* the pipe pair.
*/
rw_init(&pp->pp_lock, "pipelk");
pp->pp_wpipe.pipe_lock = &pp->pp_lock;
pp->pp_rpipe.pipe_lock = &pp->pp_lock;
klist_init_rwlock(&pp->pp_wpipe.pipe_klist, &pp->pp_lock);
klist_init_rwlock(&pp->pp_rpipe.pipe_klist, &pp->pp_lock);
if (pipe_create(&pp->pp_wpipe) || pipe_create(&pp->pp_rpipe))
goto err;
return (pp);
err:
pipe_destroy(&pp->pp_wpipe);
pipe_destroy(&pp->pp_rpipe);
return (NULL);
}
void
pipe_pair_destroy(struct pipe_pair *pp)
{
klist_free(&pp->pp_wpipe.pipe_klist);
klist_free(&pp->pp_rpipe.pipe_klist);
pool_put(&pipe_pair_pool, pp);
}