src/sys/kern/vfs_lockf.c

905 lines
22 KiB
C

/* $OpenBSD: vfs_lockf.c,v 1.50 2022/08/14 01:58:28 jsg Exp $ */
/* $NetBSD: vfs_lockf.c,v 1.7 1996/02/04 02:18:21 christos Exp $ */
/*
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Scooter Morris at Genentech Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ufs_lockf.c 8.3 (Berkeley) 1/6/94
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/pool.h>
#include <sys/fcntl.h>
#include <sys/lockf.h>
#include <sys/rwlock.h>
#include <sys/unistd.h>
/*
* The lockf structure is a kernel structure which contains the information
* associated with a byte range lock. The lockf structures are linked into
* the inode structure. Locks are sorted by the starting byte of the lock for
* efficiency.
*/
TAILQ_HEAD(locklist, lockf);
struct lockf {
short lf_flags; /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
short lf_type; /* Lock type: F_RDLCK, F_WRLCK */
off_t lf_start; /* The byte # of the start of the lock */
off_t lf_end; /* The byte # of the end of the lock (-1=EOF)*/
caddr_t lf_id; /* The id of the resource holding the lock */
struct lockf_state *lf_state; /* State associated with the lock */
TAILQ_ENTRY(lockf) lf_entry;
struct lockf *lf_blk; /* The lock that blocks us */
struct locklist lf_blkhd; /* The list of blocked locks */
TAILQ_ENTRY(lockf) lf_block; /* A request waiting for a lock */
uid_t lf_uid; /* User ID responsible */
pid_t lf_pid; /* POSIX - owner pid */
};
struct lockf_state {
TAILQ_HEAD(, lockf) ls_locks; /* list of active locks */
TAILQ_HEAD(, lockf) ls_pending; /* list of pending locks */
struct lockf_state **ls_owner; /* owner */
int ls_refs; /* reference counter */
};
struct pool lockf_state_pool;
struct pool lockf_pool;
#define SELF 0x1
#define OTHERS 0x2
#ifdef LOCKF_DEBUG
#define DEBUG_SETLOCK 0x01
#define DEBUG_CLEARLOCK 0x02
#define DEBUG_GETLOCK 0x04
#define DEBUG_FINDOVR 0x08
#define DEBUG_SPLIT 0x10
#define DEBUG_WAKELOCK 0x20
#define DEBUG_LINK 0x40
int lockf_debug = DEBUG_SETLOCK|DEBUG_CLEARLOCK|DEBUG_WAKELOCK;
void lf_print(const char *, struct lockf *);
void lf_printlist(const char *, struct lockf *);
#define DPRINTF(args, level) if (lockf_debug & (level)) printf args
#define LFPRINT(args, level) if (lockf_debug & (level)) lf_print args
#else
#define DPRINTF(args, level)
#define LFPRINT(args, level)
#endif
struct lockf *lf_alloc(uid_t, int);
void lf_free(struct lockf *);
int lf_clearlock(struct lockf *);
int lf_findoverlap(struct lockf *, struct lockf *, int, struct lockf **);
struct lockf *lf_getblock(struct lockf *, struct lockf *);
int lf_getlock(struct lockf *, struct flock *);
int lf_setlock(struct lockf *);
void lf_split(struct lockf *, struct lockf *);
void lf_wakelock(struct lockf *, int);
int lf_deadlock(struct lockf *);
void ls_ref(struct lockf_state *);
void ls_rele(struct lockf_state *);
/*
* Serializes access to each instance of struct lockf and struct lockf_state
* and each pointer from a vnode to struct lockf_state.
*/
struct rwlock lockf_lock = RWLOCK_INITIALIZER("lockflk");
void
lf_init(void)
{
pool_init(&lockf_state_pool, sizeof(struct lockf_state), 0, IPL_NONE,
PR_WAITOK | PR_RWLOCK, "lockfspl", NULL);
pool_init(&lockf_pool, sizeof(struct lockf), 0, IPL_NONE,
PR_WAITOK | PR_RWLOCK, "lockfpl", NULL);
}
void
ls_ref(struct lockf_state *ls)
{
rw_assert_wrlock(&lockf_lock);
ls->ls_refs++;
}
void
ls_rele(struct lockf_state *ls)
{
rw_assert_wrlock(&lockf_lock);
if (--ls->ls_refs > 0)
return;
KASSERT(TAILQ_EMPTY(&ls->ls_locks));
KASSERT(TAILQ_EMPTY(&ls->ls_pending));
*ls->ls_owner = NULL;
pool_put(&lockf_state_pool, ls);
}
/*
* We enforce a limit on locks by uid, so that a single user cannot
* run the kernel out of memory. For now, the limit is pretty coarse.
* There is no limit on root.
*
* Splitting a lock will always succeed, regardless of current allocations.
* If you're slightly above the limit, we still have to permit an allocation
* so that the unlock can succeed. If the unlocking causes too many splits,
* however, you're totally cutoff.
*/
int maxlocksperuid = 1024;
/*
* 3 options for allowfail.
* 0 - always allocate. 1 - cutoff at limit. 2 - cutoff at double limit.
*/
struct lockf *
lf_alloc(uid_t uid, int allowfail)
{
struct uidinfo *uip;
struct lockf *lock;
uip = uid_find(uid);
if (uid && allowfail && uip->ui_lockcnt >
(allowfail == 1 ? maxlocksperuid : (maxlocksperuid * 2))) {
uid_release(uip);
return (NULL);
}
uip->ui_lockcnt++;
uid_release(uip);
lock = pool_get(&lockf_pool, PR_WAITOK);
lock->lf_uid = uid;
return (lock);
}
void
lf_free(struct lockf *lock)
{
struct uidinfo *uip;
rw_assert_wrlock(&lockf_lock);
LFPRINT(("lf_free", lock), DEBUG_LINK);
KASSERT(TAILQ_EMPTY(&lock->lf_blkhd));
ls_rele(lock->lf_state);
uip = uid_find(lock->lf_uid);
uip->ui_lockcnt--;
uid_release(uip);
pool_put(&lockf_pool, lock);
}
/*
* Do an advisory lock operation.
*/
int
lf_advlock(struct lockf_state **state, off_t size, caddr_t id, int op,
struct flock *fl, int flags)
{
struct proc *p = curproc;
struct lockf_state *ls;
struct lockf *lock;
off_t start, end;
int error = 0;
/*
* Convert the flock structure into a start and end.
*/
switch (fl->l_whence) {
case SEEK_SET:
case SEEK_CUR:
/*
* Caller is responsible for adding any necessary offset
* when SEEK_CUR is used.
*/
start = fl->l_start;
break;
case SEEK_END:
start = size + fl->l_start;
break;
default:
return (EINVAL);
}
if (start < 0)
return (EINVAL);
if (fl->l_len > 0) {
if (fl->l_len - 1 > LLONG_MAX - start)
return (EOVERFLOW);
end = start + (fl->l_len - 1);
/* Avoid ambiguity at the end of the range. */
if (end == LLONG_MAX)
end = -1;
} else if (fl->l_len < 0) {
if (start + fl->l_len < 0)
return (EINVAL);
end = start - 1;
start += fl->l_len;
} else {
end = -1;
}
rw_enter_write(&lockf_lock);
ls = *state;
/*
* Avoid the common case of unlocking when inode has no locks.
*/
if (ls == NULL && op != F_SETLK) {
fl->l_type = F_UNLCK;
goto out;
}
if (ls == NULL) {
ls = pool_get(&lockf_state_pool, PR_WAITOK | PR_ZERO);
ls->ls_owner = state;
TAILQ_INIT(&ls->ls_locks);
TAILQ_INIT(&ls->ls_pending);
*state = ls;
}
ls_ref(ls);
lock = lf_alloc(p->p_ucred->cr_uid, op == F_SETLK ? 1 : 2);
if (!lock) {
ls_rele(ls);
error = ENOLCK;
goto out;
}
lock->lf_flags = flags;
lock->lf_type = fl->l_type;
lock->lf_start = start;
lock->lf_end = end;
lock->lf_id = id;
lock->lf_state = ls;
lock->lf_blk = NULL;
lock->lf_pid = (flags & F_POSIX) ? p->p_p->ps_pid : -1;
TAILQ_INIT(&lock->lf_blkhd);
switch (op) {
case F_SETLK:
error = lf_setlock(lock);
break;
case F_UNLCK:
error = lf_clearlock(lock);
lf_free(lock);
break;
case F_GETLK:
error = lf_getlock(lock, fl);
lf_free(lock);
break;
default:
lf_free(lock);
error = EINVAL;
break;
}
out:
rw_exit_write(&lockf_lock);
return (error);
}
/*
* Set a byte-range lock.
*/
int
lf_setlock(struct lockf *lock)
{
struct lockf *block;
struct lockf *overlap, *ltmp;
int ovcase, priority, needtolink, error;
rw_assert_wrlock(&lockf_lock);
LFPRINT(("lf_setlock", lock), DEBUG_SETLOCK);
priority = PLOCK;
if (lock->lf_type == F_WRLCK)
priority += 4;
priority |= PCATCH;
/*
* Scan lock list for this file looking for locks that would block us.
*/
for (;;) {
block = lf_getblock(TAILQ_FIRST(&lock->lf_state->ls_locks),
lock);
if (block == NULL)
break;
if ((lock->lf_flags & F_WAIT) == 0) {
lf_free(lock);
return (EAGAIN);
}
/*
* Lock is blocked, check for deadlock before proceeding.
* Note: flock style locks cover the whole file, there is no
* chance for deadlock.
*/
if ((lock->lf_flags & F_POSIX) && lf_deadlock(lock)) {
lf_free(lock);
return (EDEADLK);
}
/*
* For flock type locks, we must first remove
* any shared locks that we hold before we sleep
* waiting for an exclusive lock.
*/
if ((lock->lf_flags & F_FLOCK) && lock->lf_type == F_WRLCK) {
lock->lf_type = F_UNLCK;
(void)lf_clearlock(lock);
lock->lf_type = F_WRLCK;
}
/*
* Add our lock to the blocked list and sleep until we're free.
* Remember who blocked us (for deadlock detection).
*/
lock->lf_blk = block;
LFPRINT(("lf_setlock", lock), DEBUG_SETLOCK);
LFPRINT(("lf_setlock: blocking on", block), DEBUG_SETLOCK);
TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
TAILQ_INSERT_TAIL(&lock->lf_state->ls_pending, lock, lf_entry);
error = rwsleep_nsec(lock, &lockf_lock, priority, "lockf",
INFSLP);
TAILQ_REMOVE(&lock->lf_state->ls_pending, lock, lf_entry);
wakeup_one(lock->lf_state);
if (lock->lf_blk != NULL) {
TAILQ_REMOVE(&lock->lf_blk->lf_blkhd, lock, lf_block);
lock->lf_blk = NULL;
}
if (error) {
lf_free(lock);
return (error);
}
if (lock->lf_flags & F_INTR) {
lf_free(lock);
return (EINTR);
}
}
/*
* No blocks!! Add the lock. Note that we will
* downgrade or upgrade any overlapping locks this
* process already owns.
*
* Skip over locks owned by other processes.
* Handle any locks that overlap and are owned by ourselves.
*/
block = TAILQ_FIRST(&lock->lf_state->ls_locks);
overlap = NULL;
needtolink = 1;
for (;;) {
ovcase = lf_findoverlap(block, lock, SELF, &overlap);
if (ovcase)
block = TAILQ_NEXT(overlap, lf_entry);
/*
* Six cases:
* 0) no overlap
* 1) overlap == lock
* 2) overlap contains lock
* 3) lock contains overlap
* 4) overlap starts before lock
* 5) overlap ends after lock
*/
switch (ovcase) {
case 0: /* no overlap */
if (needtolink) {
if (overlap) /* insert before overlap */
TAILQ_INSERT_BEFORE(overlap, lock,
lf_entry);
else /* first or last lock in list */
TAILQ_INSERT_TAIL(&lock->lf_state->ls_locks,
lock, lf_entry);
}
break;
case 1: /* overlap == lock */
/*
* If downgrading lock, others may be
* able to acquire it.
*/
if (lock->lf_type == F_RDLCK &&
overlap->lf_type == F_WRLCK)
lf_wakelock(overlap, 0);
overlap->lf_type = lock->lf_type;
lf_free(lock);
lock = overlap; /* for debug output below */
break;
case 2: /* overlap contains lock */
/*
* Check for common starting point and different types.
*/
if (overlap->lf_type == lock->lf_type) {
if (!needtolink)
TAILQ_REMOVE(&lock->lf_state->ls_locks,
lock, lf_entry);
lf_free(lock);
lock = overlap; /* for debug output below */
break;
}
if (overlap->lf_start == lock->lf_start) {
if (!needtolink)
TAILQ_REMOVE(&lock->lf_state->ls_locks,
lock, lf_entry);
TAILQ_INSERT_BEFORE(overlap, lock, lf_entry);
overlap->lf_start = lock->lf_end + 1;
} else
lf_split(overlap, lock);
lf_wakelock(overlap, 0);
break;
case 3: /* lock contains overlap */
/*
* If downgrading lock, others may be able to
* acquire it, otherwise take the list.
*/
if (lock->lf_type == F_RDLCK &&
overlap->lf_type == F_WRLCK) {
lf_wakelock(overlap, 0);
} else {
while ((ltmp =
TAILQ_FIRST(&overlap->lf_blkhd))) {
TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
lf_block);
ltmp->lf_blk = lock;
TAILQ_INSERT_TAIL(&lock->lf_blkhd,
ltmp, lf_block);
}
}
/*
* Add the new lock if necessary and delete the overlap.
*/
if (needtolink) {
TAILQ_INSERT_BEFORE(overlap, lock, lf_entry);
needtolink = 0;
}
TAILQ_REMOVE(&lock->lf_state->ls_locks, overlap, lf_entry);
lf_free(overlap);
continue;
case 4: /* overlap starts before lock */
/*
* Add lock after overlap on the list.
*/
if (!needtolink)
TAILQ_REMOVE(&lock->lf_state->ls_locks, lock,
lf_entry);
TAILQ_INSERT_AFTER(&lock->lf_state->ls_locks, overlap,
lock, lf_entry);
overlap->lf_end = lock->lf_start - 1;
lf_wakelock(overlap, 0);
needtolink = 0;
continue;
case 5: /* overlap ends after lock */
/*
* Add the new lock before overlap.
*/
if (needtolink)
TAILQ_INSERT_BEFORE(overlap, lock, lf_entry);
overlap->lf_start = lock->lf_end + 1;
lf_wakelock(overlap, 0);
break;
}
break;
}
LFPRINT(("lf_setlock: got the lock", lock), DEBUG_SETLOCK);
return (0);
}
/*
* Remove a byte-range lock on an inode.
*
* Generally, find the lock (or an overlap to that lock)
* and remove it (or shrink it), then wakeup anyone we can.
*/
int
lf_clearlock(struct lockf *lock)
{
struct lockf *lf, *overlap;
int ovcase;
rw_assert_wrlock(&lockf_lock);
lf = TAILQ_FIRST(&lock->lf_state->ls_locks);
if (lf == NULL)
return (0);
LFPRINT(("lf_clearlock", lock), DEBUG_CLEARLOCK);
while ((ovcase = lf_findoverlap(lf, lock, SELF, &overlap))) {
lf_wakelock(overlap, 0);
switch (ovcase) {
case 1: /* overlap == lock */
TAILQ_REMOVE(&lock->lf_state->ls_locks, overlap,
lf_entry);
lf_free(overlap);
break;
case 2: /* overlap contains lock: split it */
if (overlap->lf_start == lock->lf_start) {
overlap->lf_start = lock->lf_end + 1;
break;
}
lf_split(overlap, lock);
/*
* The lock is now part of the list, lf_clearlock() must
* ensure that the lock remains detached from the list.
*/
TAILQ_REMOVE(&lock->lf_state->ls_locks, lock, lf_entry);
break;
case 3: /* lock contains overlap */
lf = TAILQ_NEXT(overlap, lf_entry);
TAILQ_REMOVE(&lock->lf_state->ls_locks, overlap,
lf_entry);
lf_free(overlap);
continue;
case 4: /* overlap starts before lock */
overlap->lf_end = lock->lf_start - 1;
lf = TAILQ_NEXT(overlap, lf_entry);
continue;
case 5: /* overlap ends after lock */
overlap->lf_start = lock->lf_end + 1;
break;
}
break;
}
return (0);
}
/*
* Check whether there is a blocking lock,
* and if so return its process identifier.
*/
int
lf_getlock(struct lockf *lock, struct flock *fl)
{
struct lockf *block, *lf;
rw_assert_wrlock(&lockf_lock);
LFPRINT(("lf_getlock", lock), DEBUG_CLEARLOCK);
lf = TAILQ_FIRST(&lock->lf_state->ls_locks);
if ((block = lf_getblock(lf, lock)) != NULL) {
fl->l_type = block->lf_type;
fl->l_whence = SEEK_SET;
fl->l_start = block->lf_start;
if (block->lf_end == -1)
fl->l_len = 0;
else
fl->l_len = block->lf_end - block->lf_start + 1;
fl->l_pid = block->lf_pid;
} else {
fl->l_type = F_UNLCK;
}
return (0);
}
/*
* Walk the list of locks for an inode and
* return the first blocking lock.
*/
struct lockf *
lf_getblock(struct lockf *lf, struct lockf *lock)
{
struct lockf *overlap;
rw_assert_wrlock(&lockf_lock);
while (lf_findoverlap(lf, lock, OTHERS, &overlap) != 0) {
/*
* We've found an overlap, see if it blocks us
*/
if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
return (overlap);
/*
* Nope, point to the next one on the list and
* see if it blocks us
*/
lf = TAILQ_NEXT(overlap, lf_entry);
}
return (NULL);
}
/*
* Walk the list of locks for an inode to
* find an overlapping lock (if any).
*
* NOTE: this returns only the FIRST overlapping lock. There
* may be more than one.
*/
int
lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
struct lockf **overlap)
{
off_t start, end;
rw_assert_wrlock(&lockf_lock);
LFPRINT(("lf_findoverlap: looking for overlap in", lock), DEBUG_FINDOVR);
*overlap = lf;
start = lock->lf_start;
end = lock->lf_end;
while (lf != NULL) {
if (((type & SELF) && lf->lf_id != lock->lf_id) ||
((type & OTHERS) && lf->lf_id == lock->lf_id)) {
*overlap = lf = TAILQ_NEXT(lf, lf_entry);
continue;
}
LFPRINT(("\tchecking", lf), DEBUG_FINDOVR);
/*
* OK, check for overlap
*
* Six cases:
* 0) no overlap
* 1) overlap == lock
* 2) overlap contains lock
* 3) lock contains overlap
* 4) overlap starts before lock
* 5) overlap ends after lock
*/
/* Case 0 */
if ((lf->lf_end != -1 && start > lf->lf_end) ||
(end != -1 && lf->lf_start > end)) {
DPRINTF(("no overlap\n"), DEBUG_FINDOVR);
if ((type & SELF) && end != -1 && lf->lf_start > end)
return (0);
*overlap = lf = TAILQ_NEXT(lf, lf_entry);
continue;
}
/* Case 1 */
if ((lf->lf_start == start) && (lf->lf_end == end)) {
DPRINTF(("overlap == lock\n"), DEBUG_FINDOVR);
return (1);
}
/* Case 2 */
if ((lf->lf_start <= start) &&
(lf->lf_end == -1 || (end != -1 && lf->lf_end >= end))) {
DPRINTF(("overlap contains lock\n"), DEBUG_FINDOVR);
return (2);
}
/* Case 3 */
if (start <= lf->lf_start &&
(end == -1 || (lf->lf_end != -1 && end >= lf->lf_end))) {
DPRINTF(("lock contains overlap\n"), DEBUG_FINDOVR);
return (3);
}
/* Case 4 */
if ((lf->lf_start < start) &&
((lf->lf_end >= start) || (lf->lf_end == -1))) {
DPRINTF(("overlap starts before lock\n"),
DEBUG_FINDOVR);
return (4);
}
/* Case 5 */
if ((lf->lf_start > start) && (end != -1) &&
((lf->lf_end > end) || (lf->lf_end == -1))) {
DPRINTF(("overlap ends after lock\n"), DEBUG_FINDOVR);
return (5);
}
panic("lf_findoverlap: default");
}
return (0);
}
/*
* Purge all locks associated with the given lock state.
*/
void
lf_purgelocks(struct lockf_state **state)
{
struct lockf_state *ls;
struct lockf *lock;
rw_enter_write(&lockf_lock);
ls = *state;
if (ls == NULL)
goto out;
ls_ref(ls);
/* Interrupt blocked locks and wait for all of them to finish. */
TAILQ_FOREACH(lock, &ls->ls_locks, lf_entry) {
LFPRINT(("lf_purgelocks: wakeup", lock), DEBUG_SETLOCK);
lf_wakelock(lock, F_INTR);
}
while (!TAILQ_EMPTY(&ls->ls_pending))
rwsleep_nsec(ls, &lockf_lock, PLOCK, "lockfp", INFSLP);
/*
* Any remaining locks cannot block other locks at this point and can
* safely be removed.
*/
while ((lock = TAILQ_FIRST(&ls->ls_locks))) {
TAILQ_REMOVE(&ls->ls_locks, lock, lf_entry);
lf_free(lock);
}
/* This is the last expected thread to hold a lock state reference. */
KASSERT(ls->ls_refs == 1);
ls_rele(ls);
out:
rw_exit_write(&lockf_lock);
}
/*
* Split a lock and a contained region into
* two or three locks as necessary.
*/
void
lf_split(struct lockf *lock1, struct lockf *lock2)
{
struct lockf *splitlock;
rw_assert_wrlock(&lockf_lock);
LFPRINT(("lf_split", lock1), DEBUG_SPLIT);
LFPRINT(("splitting from", lock2), DEBUG_SPLIT);
/*
* Check to see if splitting into only two pieces.
*/
if (lock1->lf_start == lock2->lf_start) {
lock1->lf_start = lock2->lf_end + 1;
TAILQ_INSERT_BEFORE(lock1, lock2, lf_entry);
return;
}
if (lock1->lf_end == lock2->lf_end) {
lock1->lf_end = lock2->lf_start - 1;
TAILQ_INSERT_AFTER(&lock1->lf_state->ls_locks, lock1, lock2,
lf_entry);
return;
}
/*
* Make a new lock consisting of the last part of
* the encompassing lock
*/
splitlock = lf_alloc(lock1->lf_uid, 0);
splitlock->lf_flags = lock1->lf_flags;
splitlock->lf_type = lock1->lf_type;
splitlock->lf_start = lock2->lf_end + 1;
splitlock->lf_end = lock1->lf_end;
splitlock->lf_id = lock1->lf_id;
splitlock->lf_state = lock1->lf_state;
splitlock->lf_blk = NULL;
splitlock->lf_pid = lock1->lf_pid;
TAILQ_INIT(&splitlock->lf_blkhd);
ls_ref(splitlock->lf_state);
lock1->lf_end = lock2->lf_start - 1;
TAILQ_INSERT_AFTER(&lock1->lf_state->ls_locks, lock1, lock2, lf_entry);
TAILQ_INSERT_AFTER(&lock1->lf_state->ls_locks, lock2, splitlock,
lf_entry);
}
/*
* Wakeup a blocklist
*/
void
lf_wakelock(struct lockf *lock, int flags)
{
struct lockf *wakelock;
rw_assert_wrlock(&lockf_lock);
while ((wakelock = TAILQ_FIRST(&lock->lf_blkhd))) {
TAILQ_REMOVE(&lock->lf_blkhd, wakelock, lf_block);
wakelock->lf_blk = NULL;
wakelock->lf_flags |= flags;
wakeup_one(wakelock);
}
}
/*
* Returns non-zero if the given lock would cause a deadlock.
*/
int
lf_deadlock(struct lockf *lock)
{
struct lockf *block, *lf, *pending;
lf = TAILQ_FIRST(&lock->lf_state->ls_locks);
for (; (block = lf_getblock(lf, lock)) != NULL;
lf = TAILQ_NEXT(block, lf_entry)) {
if ((block->lf_flags & F_POSIX) == 0)
continue;
TAILQ_FOREACH(pending, &lock->lf_state->ls_pending, lf_entry) {
if (pending->lf_blk == NULL)
continue; /* lock already unblocked */
if (pending->lf_pid == block->lf_pid &&
pending->lf_blk->lf_pid == lock->lf_pid)
return (1);
}
}
return (0);
}
#ifdef LOCKF_DEBUG
/*
* Print out a lock.
*/
void
lf_print(const char *tag, struct lockf *lock)
{
struct lockf *block;
if (tag)
printf("%s: ", tag);
printf("lock %p", lock);
if (lock == NULL) {
printf("\n");
return;
}
printf(", %s %p %s, start %lld, end %lld",
lock->lf_flags & F_POSIX ? "posix" : "flock",
lock->lf_id,
lock->lf_type == F_RDLCK ? "shared" :
lock->lf_type == F_WRLCK ? "exclusive" :
lock->lf_type == F_UNLCK ? "unlock" :
"unknown", lock->lf_start, lock->lf_end);
printf(", next %p, state %p",
TAILQ_NEXT(lock, lf_entry), lock->lf_state);
block = TAILQ_FIRST(&lock->lf_blkhd);
if (block)
printf(", block");
TAILQ_FOREACH(block, &lock->lf_blkhd, lf_block)
printf(" %p,", block);
printf("\n");
}
void
lf_printlist(const char *tag, struct lockf *lock)
{
struct lockf *lf;
printf("%s: Lock list:\n", tag);
TAILQ_FOREACH(lf, &lock->lf_state->ls_locks, lf_entry) {
if (lock == lf)
printf(" * ");
else
printf(" ");
lf_print(NULL, lf);
}
}
#endif /* LOCKF_DEBUG */