src/sys/net/radix.c

1179 lines
29 KiB
C

/* $OpenBSD: radix.c,v 1.61 2022/01/02 22:36:04 jsg Exp $ */
/* $NetBSD: radix.c,v 1.20 2003/08/07 16:32:56 agc Exp $ */
/*
* Copyright (c) 1988, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)radix.c 8.6 (Berkeley) 10/17/95
*/
/*
* Routines to build and maintain radix trees for routing lookups.
*/
#ifndef _KERNEL
#include "kern_compat.h"
#else
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/syslog.h>
#include <sys/pool.h>
#endif
#include <net/radix.h>
#define SALEN(sa) (*(u_char *)(sa))
/*
* Read-only variables, allocated & filled during rn_init().
*/
static char *rn_zeros; /* array of 0s */
static char *rn_ones; /* array of 1s */
static unsigned int max_keylen; /* size of the above arrays */
#define KEYLEN_LIMIT 64 /* maximum allowed keylen */
struct radix_node_head *mask_rnhead; /* head of shared mask tree */
struct pool rtmask_pool; /* pool for radix_mask structures */
static inline int rn_satisfies_leaf(char *, struct radix_node *, int);
static inline int rn_lexobetter(void *, void *);
static inline struct radix_mask *rn_new_radix_mask(struct radix_node *,
struct radix_mask *);
int rn_refines(void *, void *);
int rn_inithead0(struct radix_node_head *, int);
struct radix_node *rn_addmask(void *, int, int);
struct radix_node *rn_insert(void *, struct radix_node_head *, int *,
struct radix_node [2]);
struct radix_node *rn_newpair(void *, int, struct radix_node[2]);
void rn_link_dupedkey(struct radix_node *, struct radix_node *, int);
static inline struct radix_node *rn_search(void *, struct radix_node *);
struct radix_node *rn_search_m(void *, struct radix_node *, void *);
int rn_add_dupedkey(struct radix_node *, struct radix_node_head *,
struct radix_node [2], u_int8_t);
void rn_fixup_nodes(struct radix_node *);
static inline struct radix_node *rn_lift_node(struct radix_node *);
void rn_add_radix_mask(struct radix_node *, int);
int rn_del_radix_mask(struct radix_node *);
static inline void rn_swap_nodes(struct radix_node *, struct radix_node *);
/*
* The data structure for the keys is a radix tree with one way
* branching removed. The index rn_b at an internal node n represents a bit
* position to be tested. The tree is arranged so that all descendants
* of a node n have keys whose bits all agree up to position rn_b - 1.
* (We say the index of n is rn_b.)
*
* There is at least one descendant which has a one bit at position rn_b,
* and at least one with a zero there.
*
* A route is determined by a pair of key and mask. We require that the
* bit-wise logical and of the key and mask to be the key.
* We define the index of a route to associated with the mask to be
* the first bit number in the mask where 0 occurs (with bit number 0
* representing the highest order bit).
*
* We say a mask is normal if every bit is 0, past the index of the mask.
* If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
* and m is a normal mask, then the route applies to every descendant of n.
* If the index(m) < rn_b, this implies the trailing last few bits of k
* before bit b are all 0, (and hence consequently true of every descendant
* of n), so the route applies to all descendants of the node as well.
*
* Similar logic shows that a non-normal mask m such that
* index(m) <= index(n) could potentially apply to many children of n.
* Thus, for each non-host route, we attach its mask to a list at an internal
* node as high in the tree as we can go.
*
* The present version of the code makes use of normal routes in short-
* circuiting an explicit mask and compare operation when testing whether
* a key satisfies a normal route, and also in remembering the unique leaf
* that governs a subtree.
*/
static inline struct radix_node *
rn_search(void *v_arg, struct radix_node *head)
{
struct radix_node *x = head;
caddr_t v = v_arg;
while (x->rn_b >= 0) {
if (x->rn_bmask & v[x->rn_off])
x = x->rn_r;
else
x = x->rn_l;
}
return (x);
}
struct radix_node *
rn_search_m(void *v_arg, struct radix_node *head, void *m_arg)
{
struct radix_node *x = head;
caddr_t v = v_arg;
caddr_t m = m_arg;
while (x->rn_b >= 0) {
if ((x->rn_bmask & m[x->rn_off]) &&
(x->rn_bmask & v[x->rn_off]))
x = x->rn_r;
else
x = x->rn_l;
}
return x;
}
int
rn_refines(void *m_arg, void *n_arg)
{
caddr_t m = m_arg;
caddr_t n = n_arg;
caddr_t lim, lim2;
int longer;
int masks_are_equal = 1;
lim2 = lim = n + *(u_char *)n;
longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
if (longer > 0)
lim -= longer;
while (n < lim) {
if (*n & ~(*m))
return 0;
if (*n++ != *m++)
masks_are_equal = 0;
}
while (n < lim2)
if (*n++)
return 0;
if (masks_are_equal && (longer < 0))
for (lim2 = m - longer; m < lim2; )
if (*m++)
return 1;
return (!masks_are_equal);
}
/* return a perfect match if m_arg is set, else do a regular rn_match */
struct radix_node *
rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head)
{
struct radix_node *x, *tm;
caddr_t netmask = 0;
if (m_arg) {
tm = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off);
if (tm == NULL)
return (NULL);
netmask = tm->rn_key;
}
x = rn_match(v_arg, head);
if (x && netmask) {
while (x && x->rn_mask != netmask)
x = x->rn_dupedkey;
}
/* Never return internal nodes to the upper layer. */
if (x && (x->rn_flags & RNF_ROOT))
return (NULL);
return x;
}
static inline int
rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip)
{
char *cp = trial;
char *cp2 = leaf->rn_key;
char *cp3 = leaf->rn_mask;
char *cplim;
int length;
length = min(SALEN(cp), SALEN(cp2));
if (cp3 == NULL)
cp3 = rn_ones;
else
length = min(length, SALEN(cp3));
cplim = cp + length;
cp += skip;
cp2 += skip;
cp3 += skip;
while (cp < cplim) {
if ((*cp ^ *cp2) & *cp3)
return 0;
cp++, cp2++, cp3++;
}
return 1;
}
struct radix_node *
rn_match(void *v_arg, struct radix_node_head *head)
{
caddr_t v = v_arg;
caddr_t cp, cp2, cplim;
struct radix_node *top = head->rnh_treetop;
struct radix_node *saved_t, *t;
int off = top->rn_off;
int vlen, matched_off;
int test, b, rn_b;
t = rn_search(v, top);
/*
* See if we match exactly as a host destination
* or at least learn how many bits match, for normal mask finesse.
*
* It doesn't hurt us to limit how many bytes to check
* to the length of the mask, since if it matches we had a genuine
* match and the leaf we have is the most specific one anyway;
* if it didn't match with a shorter length it would fail
* with a long one. This wins big for class B&C netmasks which
* are probably the most common case...
*/
if (t->rn_mask)
vlen = SALEN(t->rn_mask);
else
vlen = SALEN(v);
cp = v + off;
cp2 = t->rn_key + off;
cplim = v + vlen;
for (; cp < cplim; cp++, cp2++)
if (*cp != *cp2)
goto on1;
/*
* This extra grot is in case we are explicitly asked
* to look up the default. Ugh!
*/
if (t->rn_flags & RNF_ROOT)
t = t->rn_dupedkey;
KASSERT(t == NULL || (t->rn_flags & RNF_ROOT) == 0);
return t;
on1:
test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
for (b = 7; (test >>= 1) > 0;)
b--;
matched_off = cp - v;
b += matched_off << 3;
rn_b = -1 - b;
/*
* If there is a host route in a duped-key chain, it will be first.
*/
saved_t = t;
if (t->rn_mask == NULL)
t = t->rn_dupedkey;
for (; t; t = t->rn_dupedkey)
/*
* Even if we don't match exactly as a host,
* we may match if the leaf we wound up at is
* a route to a net.
*/
if (t->rn_flags & RNF_NORMAL) {
if (rn_b <= t->rn_b) {
KASSERT((t->rn_flags & RNF_ROOT) == 0);
return t;
}
} else if (rn_satisfies_leaf(v, t, matched_off)) {
KASSERT((t->rn_flags & RNF_ROOT) == 0);
return t;
}
t = saved_t;
/* start searching up the tree */
do {
struct radix_mask *m;
t = t->rn_p;
m = t->rn_mklist;
while (m) {
/*
* If non-contiguous masks ever become important
* we can restore the masking and open coding of
* the search and satisfaction test and put the
* calculation of "off" back before the "do".
*/
if (m->rm_flags & RNF_NORMAL) {
if (rn_b <= m->rm_b) {
KASSERT((m->rm_leaf->rn_flags &
RNF_ROOT) == 0);
return (m->rm_leaf);
}
} else {
struct radix_node *x;
off = min(t->rn_off, matched_off);
x = rn_search_m(v, t, m->rm_mask);
while (x && x->rn_mask != m->rm_mask)
x = x->rn_dupedkey;
if (x && rn_satisfies_leaf(v, x, off)) {
KASSERT((x->rn_flags & RNF_ROOT) == 0);
return x;
}
}
m = m->rm_mklist;
}
} while (t != top);
return NULL;
}
struct radix_node *
rn_newpair(void *v, int b, struct radix_node nodes[2])
{
struct radix_node *tt = nodes, *t = nodes + 1;
t->rn_b = b;
t->rn_bmask = 0x80 >> (b & 7);
t->rn_l = tt;
t->rn_off = b >> 3;
tt->rn_b = -1;
tt->rn_key = v;
tt->rn_p = t;
tt->rn_flags = t->rn_flags = RNF_ACTIVE;
return t;
}
struct radix_node *
rn_insert(void *v_arg, struct radix_node_head *head,
int *dupentry, struct radix_node nodes[2])
{
caddr_t v = v_arg;
struct radix_node *top = head->rnh_treetop;
struct radix_node *t, *tt;
int off = top->rn_off;
int b;
t = rn_search(v_arg, top);
/*
* Find first bit at which v and t->rn_key differ
*/
{
caddr_t cp, cp2, cplim;
int vlen, cmp_res;
vlen = SALEN(v);
cp = v + off;
cp2 = t->rn_key + off;
cplim = v + vlen;
while (cp < cplim)
if (*cp2++ != *cp++)
goto on1;
*dupentry = 1;
return t;
on1:
*dupentry = 0;
cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
for (b = (cp - v) << 3; cmp_res; b--)
cmp_res >>= 1;
}
{
struct radix_node *p, *x = top;
caddr_t cp = v;
do {
p = x;
if (cp[x->rn_off] & x->rn_bmask)
x = x->rn_r;
else
x = x->rn_l;
} while (b > (unsigned int) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
t = rn_newpair(v_arg, b, nodes);
tt = t->rn_l;
if ((cp[p->rn_off] & p->rn_bmask) == 0)
p->rn_l = t;
else
p->rn_r = t;
x->rn_p = t;
t->rn_p = p; /* frees x, p as temp vars below */
if ((cp[t->rn_off] & t->rn_bmask) == 0) {
t->rn_r = x;
} else {
t->rn_r = tt;
t->rn_l = x;
}
}
return (tt);
}
struct radix_node *
rn_addmask(void *n_arg, int search, int skip)
{
caddr_t netmask = n_arg;
struct radix_node *tm, *saved_tm;
caddr_t cp, cplim;
int b = 0, mlen, j;
int maskduplicated, m0, isnormal;
char addmask_key[KEYLEN_LIMIT];
if ((mlen = SALEN(netmask)) > max_keylen)
mlen = max_keylen;
if (skip == 0)
skip = 1;
if (mlen <= skip)
return (mask_rnhead->rnh_nodes); /* rn_zero root node */
if (skip > 1)
memcpy(addmask_key + 1, rn_ones + 1, skip - 1);
if ((m0 = mlen) > skip)
memcpy(addmask_key + skip, netmask + skip, mlen - skip);
/*
* Trim trailing zeroes.
*/
for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
cp--;
mlen = cp - addmask_key;
if (mlen <= skip)
return (mask_rnhead->rnh_nodes);
memset(addmask_key + m0, 0, max_keylen - m0);
SALEN(addmask_key) = mlen;
tm = rn_search(addmask_key, mask_rnhead->rnh_treetop);
if (memcmp(addmask_key, tm->rn_key, mlen) != 0)
tm = NULL;
if (tm || search)
return (tm);
tm = malloc(max_keylen + 2 * sizeof(*tm), M_RTABLE, M_NOWAIT | M_ZERO);
if (tm == NULL)
return (0);
saved_tm = tm;
netmask = cp = (caddr_t)(tm + 2);
memcpy(cp, addmask_key, mlen);
tm = rn_insert(cp, mask_rnhead, &maskduplicated, tm);
if (maskduplicated) {
log(LOG_ERR, "%s: mask impossibly already in tree\n", __func__);
free(saved_tm, M_RTABLE, max_keylen + 2 * sizeof(*saved_tm));
return (tm);
}
/*
* Calculate index of mask, and check for normalcy.
*/
cplim = netmask + mlen;
isnormal = 1;
for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
cp++;
if (cp != cplim) {
static const char normal_chars[] = {
0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1
};
for (j = 0x80; (j & *cp) != 0; j >>= 1)
b++;
if (*cp != normal_chars[b] || cp != (cplim - 1))
isnormal = 0;
}
b += (cp - netmask) << 3;
tm->rn_b = -1 - b;
if (isnormal)
tm->rn_flags |= RNF_NORMAL;
return (tm);
}
/* rn_lexobetter: return a arbitrary ordering for non-contiguous masks */
static inline int
rn_lexobetter(void *m_arg, void *n_arg)
{
u_char *mp = m_arg, *np = n_arg;
/*
* Longer masks might not really be lexicographically better,
* but longer masks always have precedence since they must be checked
* first. The netmasks were normalized before calling this function and
* don't have unneeded trailing zeros.
*/
if (SALEN(mp) > SALEN(np))
return 1;
if (SALEN(mp) < SALEN(np))
return 0;
/*
* Must return the first difference between the masks
* to ensure deterministic sorting.
*/
return (memcmp(mp, np, *mp) > 0);
}
static inline struct radix_mask *
rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next)
{
struct radix_mask *m;
m = pool_get(&rtmask_pool, PR_NOWAIT | PR_ZERO);
if (m == NULL) {
log(LOG_ERR, "Mask for route not entered\n");
return (0);
}
m->rm_b = tt->rn_b;
m->rm_flags = tt->rn_flags;
if (tt->rn_flags & RNF_NORMAL)
m->rm_leaf = tt;
else
m->rm_mask = tt->rn_mask;
m->rm_mklist = next;
tt->rn_mklist = m;
return m;
}
/*
* Find the point where the rn_mklist needs to be changed.
*/
static inline struct radix_node *
rn_lift_node(struct radix_node *t)
{
struct radix_node *x = t;
int b = -1 - t->rn_b;
/* rewind possible dupedkey list to head */
while (t->rn_b < 0)
t = t->rn_p;
/* can't lift node above head of dupedkey list, give up */
if (b > t->rn_b)
return (NULL);
do {
x = t;
t = t->rn_p;
} while (b <= t->rn_b && x != t);
return (x);
}
void
rn_add_radix_mask(struct radix_node *tt, int keyduplicated)
{
caddr_t netmask, mmask;
struct radix_node *x;
struct radix_mask *m, **mp;
int b_leaf = tt->rn_b;
/* Add new route to highest possible ancestor's list */
if (tt->rn_mask == NULL)
return; /* can't lift at all */
x = rn_lift_node(tt);
if (x == NULL)
return; /* didn't lift either */
/*
* Search through routes associated with node to
* insert new route according to index.
* Need same criteria as when sorting dupedkeys to avoid
* double loop on deletion.
*/
netmask = tt->rn_mask;
for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
if (m->rm_b < b_leaf)
continue;
if (m->rm_b > b_leaf)
break;
if (m->rm_flags & RNF_NORMAL) {
if (keyduplicated) {
if (m->rm_leaf->rn_p == tt)
/* new route is better */
m->rm_leaf = tt;
#ifdef DIAGNOSTIC
else {
struct radix_node *t;
for (t = m->rm_leaf;
t && t->rn_mklist == m;
t = t->rn_dupedkey)
if (t == tt)
break;
if (t == NULL) {
log(LOG_ERR, "Non-unique "
"normal route on dupedkey, "
"mask not entered\n");
return;
}
}
#endif
m->rm_refs++;
tt->rn_mklist = m;
return;
} else if (tt->rn_flags & RNF_NORMAL) {
log(LOG_ERR, "Non-unique normal route,"
" mask not entered\n");
return;
}
mmask = m->rm_leaf->rn_mask;
} else
mmask = m->rm_mask;
if (mmask == netmask) {
m->rm_refs++;
tt->rn_mklist = m;
return;
}
if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
break;
}
*mp = rn_new_radix_mask(tt, *mp);
}
int
rn_add_dupedkey(struct radix_node *saved_tt, struct radix_node_head *head,
struct radix_node *tt, u_int8_t prio)
{
caddr_t netmask = tt->rn_mask;
struct radix_node *x = saved_tt, *xp;
int before = -1;
int b_leaf = 0;
if (netmask)
b_leaf = tt->rn_b;
for (xp = x; x; xp = x, x = x->rn_dupedkey) {
if (x->rn_mask == netmask)
return (-1);
if (netmask == NULL ||
(x->rn_mask &&
((b_leaf < x->rn_b) || /* index(netmask) > node */
rn_refines(netmask, x->rn_mask) ||
rn_lexobetter(netmask, x->rn_mask))))
break;
}
/*
* If the mask is not duplicated, we wouldn't
* find it among possible duplicate key entries
* anyway, so the above test doesn't hurt.
*
* We sort the masks for a duplicated key the same way as
* in a masklist -- most specific to least specific.
* This may require the unfortunate nuisance of relocating
* the head of the list.
*
* We also reverse, or doubly link the list through the
* parent pointer.
*/
if ((x == saved_tt && before) || before == 1)
before = 1;
else
before = 0;
rn_link_dupedkey(tt, xp, before);
return (0);
}
/*
* Insert tt after x or in place of x if before is true.
*/
void
rn_link_dupedkey(struct radix_node *tt, struct radix_node *x, int before)
{
if (before) {
if (x->rn_p->rn_b > 0) {
/* link in at head of list */
tt->rn_dupedkey = x;
tt->rn_flags = x->rn_flags;
tt->rn_p = x->rn_p;
x->rn_p = tt;
if (tt->rn_p->rn_l == x)
tt->rn_p->rn_l = tt;
else
tt->rn_p->rn_r = tt;
} else {
tt->rn_dupedkey = x;
x->rn_p->rn_dupedkey = tt;
tt->rn_p = x->rn_p;
x->rn_p = tt;
}
} else {
tt->rn_dupedkey = x->rn_dupedkey;
x->rn_dupedkey = tt;
tt->rn_p = x;
if (tt->rn_dupedkey)
tt->rn_dupedkey->rn_p = tt;
}
}
/*
* This function ensures that routes are properly promoted upwards.
* It adjusts the rn_mklist of the parent node to make sure overlapping
* routes can be found.
*
* There are two cases:
* - leaf nodes with possible rn_dupedkey list
* - internal nodes with maybe their own mklist
* If the mask of the route is bigger than the current branch bit then
* a rn_mklist entry needs to be made.
*/
void
rn_fixup_nodes(struct radix_node *tt)
{
struct radix_node *tp, *x;
struct radix_mask *m, **mp;
int b_leaf;
tp = tt->rn_p;
if (tp->rn_r == tt)
x = tp->rn_l;
else
x = tp->rn_r;
b_leaf = -1 - tp->rn_b;
if (x->rn_b < 0) { /* x is a leaf node */
struct radix_node *xx = NULL;
for (mp = &tp->rn_mklist; x; xx = x, x = x->rn_dupedkey) {
if (xx && xx->rn_mklist && xx->rn_mask == x->rn_mask &&
x->rn_mklist == 0) {
/* multipath route */
x->rn_mklist = xx->rn_mklist;
x->rn_mklist->rm_refs++;
}
if (x->rn_mask && (x->rn_b >= b_leaf) &&
x->rn_mklist == 0) {
*mp = m = rn_new_radix_mask(x, 0);
if (m)
mp = &m->rm_mklist;
}
}
} else if (x->rn_mklist) { /* x is an internal node */
/*
* Skip over masks whose index is > that of new node
*/
for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
if (m->rm_b >= b_leaf)
break;
tp->rn_mklist = m;
*mp = 0;
}
}
struct radix_node *
rn_addroute(void *v_arg, void *n_arg, struct radix_node_head *head,
struct radix_node treenodes[2], u_int8_t prio)
{
caddr_t v = v_arg;
struct radix_node *top = head->rnh_treetop;
struct radix_node *tt, *saved_tt, *tm = NULL;
int keyduplicated;
/*
* In dealing with non-contiguous masks, there may be
* many different routes which have the same mask.
* We will find it useful to have a unique pointer to
* the mask to speed avoiding duplicate references at
* nodes and possibly save time in calculating indices.
*/
if (n_arg) {
if ((tm = rn_addmask(n_arg, 0, top->rn_off)) == 0)
return (0);
}
tt = rn_insert(v, head, &keyduplicated, treenodes);
if (keyduplicated) {
saved_tt = tt;
tt = treenodes;
tt->rn_key = v_arg;
tt->rn_b = -1;
tt->rn_flags = RNF_ACTIVE;
}
/* Put mask into the node. */
if (tm) {
tt->rn_mask = tm->rn_key;
tt->rn_b = tm->rn_b;
tt->rn_flags |= tm->rn_flags & RNF_NORMAL;
}
/* Either insert into dupedkey list or as a leaf node. */
if (keyduplicated) {
if (rn_add_dupedkey(saved_tt, head, tt, prio))
return (NULL);
} else {
rn_fixup_nodes(tt);
}
/* finally insert a radix_mask element if needed */
rn_add_radix_mask(tt, keyduplicated);
return (tt);
}
/*
* Cleanup mask list, tt points to route that needs to be cleaned
*/
int
rn_del_radix_mask(struct radix_node *tt)
{
struct radix_node *x;
struct radix_mask *m, *saved_m, **mp;
/*
* Cleanup mask list from possible references to this route.
*/
saved_m = m = tt->rn_mklist;
if (tt->rn_mask == NULL || m == NULL)
return (0);
if (tt->rn_flags & RNF_NORMAL) {
if (m->rm_leaf != tt && m->rm_refs == 0) {
log(LOG_ERR, "rn_delete: inconsistent normal "
"annotation\n");
return (-1);
}
if (m->rm_leaf != tt) {
if (--m->rm_refs >= 0)
return (0);
else
log(LOG_ERR, "rn_delete: "
"inconsistent mklist refcount\n");
}
/*
* If we end up here tt should be m->rm_leaf and therefore
* tt should be the head of a multipath chain.
* If this is not the case the table is no longer consistent.
*/
if (m->rm_refs > 0) {
if (tt->rn_dupedkey == NULL ||
tt->rn_dupedkey->rn_mklist != m) {
log(LOG_ERR, "rn_delete: inconsistent "
"dupedkey list\n");
return (-1);
}
m->rm_leaf = tt->rn_dupedkey;
--m->rm_refs;
return (0);
}
/* else tt is last and only route */
} else {
if (m->rm_mask != tt->rn_mask) {
log(LOG_ERR, "rn_delete: inconsistent annotation\n");
return (0);
}
if (--m->rm_refs >= 0)
return (0);
}
/*
* No other references hold to the radix_mask remove it from
* the tree.
*/
x = rn_lift_node(tt);
if (x == NULL)
return (0); /* Wasn't lifted at all */
/* Finally eliminate the radix_mask from the tree */
for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
if (m == saved_m) {
*mp = m->rm_mklist;
pool_put(&rtmask_pool, m);
break;
}
if (m == NULL) {
log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
if (tt->rn_flags & RNF_NORMAL)
return (-1); /* Dangling ref to us */
}
return (0);
}
/* swap two internal nodes and fixup the parent and child pointers */
static inline void
rn_swap_nodes(struct radix_node *from, struct radix_node *to)
{
*to = *from;
if (from->rn_p->rn_l == from)
from->rn_p->rn_l = to;
else
from->rn_p->rn_r = to;
to->rn_l->rn_p = to;
to->rn_r->rn_p = to;
}
struct radix_node *
rn_delete(void *v_arg, void *n_arg, struct radix_node_head *head,
struct radix_node *rn)
{
caddr_t v = v_arg;
caddr_t netmask = n_arg;
struct radix_node *top = head->rnh_treetop;
struct radix_node *tt, *tp, *pp, *x;
struct radix_node *dupedkey_tt, *saved_tt;
int off = top->rn_off;
int vlen;
vlen = SALEN(v);
/*
* Implement a lookup similar to rn_lookup but we need to save
* the radix leaf node (where th rn_dupedkey list starts) so
* it is not possible to use rn_lookup.
*/
tt = rn_search(v, top);
/* make sure the key is a perfect match */
if (memcmp(v + off, tt->rn_key + off, vlen - off))
return (NULL);
/*
* Here, tt is the deletion target, and
* saved_tt is the head of the dupedkey chain.
* dupedkey_tt will point to the start of the multipath chain.
*/
saved_tt = tt;
/*
* make tt point to the start of the rn_dupedkey list of multipath
* routes.
*/
if (netmask) {
struct radix_node *tm;
if ((tm = rn_addmask(netmask, 1, off)) == NULL)
return (NULL);
netmask = tm->rn_key;
while (tt->rn_mask != netmask)
if ((tt = tt->rn_dupedkey) == NULL)
return (NULL);
}
/* save start of multi path chain for later use */
dupedkey_tt = tt;
KASSERT((tt->rn_flags & RNF_ROOT) == 0);
/* remove possible radix_mask */
if (rn_del_radix_mask(tt))
return (NULL);
/*
* Finally eliminate us from tree
*/
tp = tt->rn_p;
if (saved_tt->rn_dupedkey) {
if (tt == saved_tt) {
x = saved_tt->rn_dupedkey;
x->rn_p = tp;
if (tp->rn_l == tt)
tp->rn_l = x;
else
tp->rn_r = x;
/* head changed adjust dupedkey pointer */
dupedkey_tt = x;
} else {
x = saved_tt;
/* dupedkey will change so adjust pointer */
if (dupedkey_tt == tt)
dupedkey_tt = tt->rn_dupedkey;
tp->rn_dupedkey = tt->rn_dupedkey;
if (tt->rn_dupedkey)
tt->rn_dupedkey->rn_p = tp;
}
/*
* We may be holding an active internal node in the tree.
*/
if (tt[1].rn_flags & RNF_ACTIVE)
rn_swap_nodes(&tt[1], &x[1]);
/* over and out */
goto out;
}
/* non-rn_dupedkey case, remove tt and tp node from the tree */
if (tp->rn_l == tt)
x = tp->rn_r;
else
x = tp->rn_l;
pp = tp->rn_p;
if (pp->rn_r == tp)
pp->rn_r = x;
else
pp->rn_l = x;
x->rn_p = pp;
/*
* Demote routes attached to us (actually on the internal parent node).
*/
if (tp->rn_mklist) {
struct radix_mask *m, **mp;
if (x->rn_b >= 0) {
for (mp = &x->rn_mklist; (m = *mp);)
mp = &m->rm_mklist;
*mp = tp->rn_mklist;
} else {
/* If there are any key,mask pairs in a sibling
duped-key chain, some subset will appear sorted
in the same order attached to our mklist */
for (m = tp->rn_mklist; m && x; x = x->rn_dupedkey)
if (m == x->rn_mklist) {
struct radix_mask *mm = m->rm_mklist;
x->rn_mklist = 0;
if (--(m->rm_refs) < 0)
pool_put(&rtmask_pool, m);
else if (m->rm_flags & RNF_NORMAL)
/*
* don't progress because this
* a multipath route. Next
* route will use the same m.
*/
mm = m;
m = mm;
}
if (m)
log(LOG_ERR, "%s %p at %p\n",
"rn_delete: Orphaned Mask", m, x);
}
}
/*
* We may be holding an active internal node in the tree.
* If so swap our internal node (t) with the parent node (tp)
* since that one was just removed from the tree.
*/
if (tp != &tt[1])
rn_swap_nodes(&tt[1], tp);
/* no rn_dupedkey list so no need to fixup multipath chains */
out:
tt[0].rn_flags &= ~RNF_ACTIVE;
tt[1].rn_flags &= ~RNF_ACTIVE;
return (tt);
}
int
rn_walktree(struct radix_node_head *h, int (*f)(struct radix_node *, void *,
u_int), void *w)
{
int error;
struct radix_node *base, *next;
struct radix_node *rn = h->rnh_treetop;
/*
* This gets complicated because we may delete the node
* while applying the function f to it, so we need to calculate
* the successor node in advance.
*/
/* First time through node, go left */
while (rn->rn_b >= 0)
rn = rn->rn_l;
for (;;) {
base = rn;
/* If at right child go back up, otherwise, go right */
while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
rn = rn->rn_p;
/* Find the next *leaf* since next node might vanish, too */
for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
rn = rn->rn_l;
next = rn;
/* Process leaves */
while ((rn = base) != NULL) {
base = rn->rn_dupedkey;
if (!(rn->rn_flags & RNF_ROOT) &&
(error = (*f)(rn, w, h->rnh_rtableid)))
return (error);
}
rn = next;
if (rn->rn_flags & RNF_ROOT)
return (0);
}
/* NOTREACHED */
}
int
rn_initmask(void)
{
if (mask_rnhead != NULL)
return (0);
KASSERT(max_keylen > 0);
mask_rnhead = malloc(sizeof(*mask_rnhead), M_RTABLE, M_NOWAIT);
if (mask_rnhead == NULL)
return (1);
rn_inithead0(mask_rnhead, 0);
return (0);
}
int
rn_inithead(void **head, int off)
{
struct radix_node_head *rnh;
if (*head != NULL)
return (1);
if (rn_initmask())
panic("failed to initialize the mask tree");
rnh = malloc(sizeof(*rnh), M_RTABLE, M_NOWAIT);
if (rnh == NULL)
return (0);
*head = rnh;
rn_inithead0(rnh, off);
return (1);
}
int
rn_inithead0(struct radix_node_head *rnh, int offset)
{
struct radix_node *t, *tt, *ttt;
int off = offset * NBBY;
memset(rnh, 0, sizeof(*rnh));
t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
ttt = rnh->rnh_nodes + 2;
t->rn_r = ttt;
t->rn_p = t;
tt = t->rn_l;
tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
tt->rn_b = -1 - off;
*ttt = *tt;
ttt->rn_key = rn_ones;
rnh->rnh_treetop = t;
return (1);
}
/*
* rn_init() can be called multiple time with a different key length
* as long as no radix tree head has been allocated.
*/
void
rn_init(unsigned int keylen)
{
char *cp, *cplim;
KASSERT(keylen <= KEYLEN_LIMIT);
if (max_keylen == 0) {
pool_init(&rtmask_pool, sizeof(struct radix_mask), 0,
IPL_SOFTNET, 0, "rtmask", NULL);
}
if (keylen <= max_keylen)
return;
KASSERT(mask_rnhead == NULL);
free(rn_zeros, M_RTABLE, 2 * max_keylen);
rn_zeros = mallocarray(2, keylen, M_RTABLE, M_NOWAIT | M_ZERO);
if (rn_zeros == NULL)
panic("cannot initialize a radix tree without memory");
max_keylen = keylen;
cp = rn_ones = rn_zeros + max_keylen;
cplim = rn_ones + max_keylen;
while (cp < cplim)
*cp++ = -1;
}