src/sys/net/route.c

2079 lines
50 KiB
C

/* $OpenBSD: route.c,v 1.436 2024/03/31 15:53:12 bluhm Exp $ */
/* $NetBSD: route.c,v 1.14 1996/02/13 22:00:46 christos Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright (c) 1980, 1986, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)route.c 8.2 (Berkeley) 11/15/93
*/
/*
* @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
*
* NRL grants permission for redistribution and use in source and binary
* forms, with or without modification, of the software and documentation
* created at NRL provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgements:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* This product includes software developed at the Information
* Technology Division, US Naval Research Laboratory.
* 4. Neither the name of the NRL nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
* IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation
* are those of the authors and should not be interpreted as representing
* official policies, either expressed or implied, of the US Naval
* Research Laboratory (NRL).
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/timeout.h>
#include <sys/domain.h>
#include <sys/ioctl.h>
#include <sys/kernel.h>
#include <sys/queue.h>
#include <sys/pool.h>
#include <sys/atomic.h>
#include <sys/mutex.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_dl.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/ip_var.h>
#include <netinet/in_var.h>
#ifdef INET6
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#include <netinet6/in6_var.h>
#endif
#ifdef MPLS
#include <netmpls/mpls.h>
#endif
#ifdef BFD
#include <net/bfd.h>
#endif
/*
* Locks used to protect struct members:
* a atomic operations
* I immutable after creation
* L rtlabel_mtx
* T rttimer_mtx
*/
#define ROUNDUP(a) (a>0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long))
/* Give some jitter to hash, to avoid synchronization between routers. */
static uint32_t rt_hashjitter;
extern unsigned int rtmap_limit;
struct cpumem *rtcounters;
int rttrash; /* [a] routes not in table but not freed */
u_long rtgeneration; /* [a] generation number, routes changed */
struct pool rtentry_pool; /* pool for rtentry structures */
struct pool rttimer_pool; /* pool for rttimer structures */
int rt_setgwroute(struct rtentry *, const struct sockaddr *, u_int);
void rt_putgwroute(struct rtentry *, struct rtentry *);
int rtflushclone1(struct rtentry *, void *, u_int);
int rtflushclone(struct rtentry *, unsigned int);
int rt_ifa_purge_walker(struct rtentry *, void *, unsigned int);
struct rtentry *rt_match(const struct sockaddr *, uint32_t *, int,
unsigned int);
int rt_clone(struct rtentry **, const struct sockaddr *, unsigned int);
struct sockaddr *rt_plentosa(sa_family_t, int, struct sockaddr_in6 *);
static int rt_copysa(const struct sockaddr *, const struct sockaddr *,
struct sockaddr **);
#define LABELID_MAX 50000
struct rt_label {
TAILQ_ENTRY(rt_label) rtl_entry; /* [L] */
char rtl_name[RTLABEL_LEN]; /* [I] */
u_int16_t rtl_id; /* [I] */
int rtl_ref; /* [L] */
};
TAILQ_HEAD(rt_labels, rt_label) rt_labels =
TAILQ_HEAD_INITIALIZER(rt_labels); /* [L] */
struct mutex rtlabel_mtx = MUTEX_INITIALIZER(IPL_NET);
void
route_init(void)
{
rtcounters = counters_alloc(rts_ncounters);
pool_init(&rtentry_pool, sizeof(struct rtentry), 0, IPL_MPFLOOR, 0,
"rtentry", NULL);
while (rt_hashjitter == 0)
rt_hashjitter = arc4random();
#ifdef BFD
bfdinit();
#endif
}
int
route_cache(struct route *ro, const struct in_addr *dst,
const struct in_addr *src, u_int rtableid)
{
u_long gen;
gen = atomic_load_long(&rtgeneration);
membar_consumer();
if (rtisvalid(ro->ro_rt) &&
ro->ro_generation == gen &&
ro->ro_tableid == rtableid &&
ro->ro_dstsa.sa_family == AF_INET &&
ro->ro_dstsin.sin_addr.s_addr == dst->s_addr) {
if (src == NULL || !ipmultipath ||
!ISSET(ro->ro_rt->rt_flags, RTF_MPATH) ||
(ro->ro_srcin.s_addr != INADDR_ANY &&
ro->ro_srcin.s_addr == src->s_addr)) {
ipstat_inc(ips_rtcachehit);
return (0);
}
}
ipstat_inc(ips_rtcachemiss);
rtfree(ro->ro_rt);
memset(ro, 0, sizeof(*ro));
ro->ro_generation = gen;
ro->ro_tableid = rtableid;
ro->ro_dstsin.sin_family = AF_INET;
ro->ro_dstsin.sin_len = sizeof(struct sockaddr_in);
ro->ro_dstsin.sin_addr = *dst;
if (src != NULL)
ro->ro_srcin = *src;
return (ESRCH);
}
/*
* Check cache for route, else allocate a new one, potentially using multipath
* to select the peer. Update cache and return valid route or NULL.
*/
struct rtentry *
route_mpath(struct route *ro, const struct in_addr *dst,
const struct in_addr *src, u_int rtableid)
{
if (route_cache(ro, dst, src, rtableid)) {
uint32_t *s = NULL;
if (ro->ro_srcin.s_addr != INADDR_ANY)
s = &ro->ro_srcin.s_addr;
ro->ro_rt = rtalloc_mpath(&ro->ro_dstsa, s, ro->ro_tableid);
}
return (ro->ro_rt);
}
#ifdef INET6
int
route6_cache(struct route *ro, const struct in6_addr *dst,
const struct in6_addr *src, u_int rtableid)
{
u_long gen;
gen = atomic_load_long(&rtgeneration);
membar_consumer();
if (rtisvalid(ro->ro_rt) &&
ro->ro_generation == gen &&
ro->ro_tableid == rtableid &&
ro->ro_dstsa.sa_family == AF_INET6 &&
IN6_ARE_ADDR_EQUAL(&ro->ro_dstsin6.sin6_addr, dst)) {
if (src == NULL || !ip6_multipath ||
!ISSET(ro->ro_rt->rt_flags, RTF_MPATH) ||
(!IN6_IS_ADDR_UNSPECIFIED(&ro->ro_srcin6) &&
IN6_ARE_ADDR_EQUAL(&ro->ro_srcin6, src))) {
ip6stat_inc(ip6s_rtcachehit);
return (0);
}
}
ip6stat_inc(ip6s_rtcachemiss);
rtfree(ro->ro_rt);
memset(ro, 0, sizeof(*ro));
ro->ro_generation = gen;
ro->ro_tableid = rtableid;
ro->ro_dstsin6.sin6_family = AF_INET6;
ro->ro_dstsin6.sin6_len = sizeof(struct sockaddr_in6);
ro->ro_dstsin6.sin6_addr = *dst;
if (src != NULL)
ro->ro_srcin6 = *src;
return (ESRCH);
}
struct rtentry *
route6_mpath(struct route *ro, const struct in6_addr *dst,
const struct in6_addr *src, u_int rtableid)
{
if (route6_cache(ro, dst, src, rtableid)) {
uint32_t *s = NULL;
if (!IN6_IS_ADDR_UNSPECIFIED(&ro->ro_srcin6))
s = &ro->ro_srcin6.s6_addr32[0];
ro->ro_rt = rtalloc_mpath(&ro->ro_dstsa, s, ro->ro_tableid);
}
return (ro->ro_rt);
}
#endif
/*
* Returns 1 if the (cached) ``rt'' entry is still valid, 0 otherwise.
*/
int
rtisvalid(struct rtentry *rt)
{
if (rt == NULL)
return (0);
if (!ISSET(rt->rt_flags, RTF_UP))
return (0);
if (ISSET(rt->rt_flags, RTF_GATEWAY)) {
KASSERT(rt->rt_gwroute != NULL);
KASSERT(!ISSET(rt->rt_gwroute->rt_flags, RTF_GATEWAY));
if (!ISSET(rt->rt_gwroute->rt_flags, RTF_UP))
return (0);
}
return (1);
}
/*
* Do the actual lookup for rtalloc(9), do not use directly!
*
* Return the best matching entry for the destination ``dst''.
*
* "RT_RESOLVE" means that a corresponding L2 entry should
* be added to the routing table and resolved (via ARP or
* NDP), if it does not exist.
*/
struct rtentry *
rt_match(const struct sockaddr *dst, uint32_t *src, int flags,
unsigned int tableid)
{
struct rtentry *rt = NULL;
rt = rtable_match(tableid, dst, src);
if (rt == NULL) {
rtstat_inc(rts_unreach);
return (NULL);
}
if (ISSET(rt->rt_flags, RTF_CLONING) && ISSET(flags, RT_RESOLVE))
rt_clone(&rt, dst, tableid);
rt->rt_use++;
return (rt);
}
int
rt_clone(struct rtentry **rtp, const struct sockaddr *dst,
unsigned int rtableid)
{
struct rt_addrinfo info;
struct rtentry *rt = *rtp;
int error = 0;
memset(&info, 0, sizeof(info));
info.rti_info[RTAX_DST] = dst;
/*
* The priority of cloned route should be different
* to avoid conflict with /32 cloning routes.
*
* It should also be higher to let the ARP layer find
* cloned routes instead of the cloning one.
*/
KERNEL_LOCK();
error = rtrequest(RTM_RESOLVE, &info, rt->rt_priority - 1, &rt,
rtableid);
KERNEL_UNLOCK();
if (error) {
rtm_miss(RTM_MISS, &info, 0, RTP_NONE, 0, error, rtableid);
} else {
/* Inform listeners of the new route */
rtm_send(rt, RTM_ADD, 0, rtableid);
rtfree(*rtp);
*rtp = rt;
}
return (error);
}
/*
* Originated from bridge_hash() in if_bridge.c
*/
#define mix(a, b, c) do { \
a -= b; a -= c; a ^= (c >> 13); \
b -= c; b -= a; b ^= (a << 8); \
c -= a; c -= b; c ^= (b >> 13); \
a -= b; a -= c; a ^= (c >> 12); \
b -= c; b -= a; b ^= (a << 16); \
c -= a; c -= b; c ^= (b >> 5); \
a -= b; a -= c; a ^= (c >> 3); \
b -= c; b -= a; b ^= (a << 10); \
c -= a; c -= b; c ^= (b >> 15); \
} while (0)
int
rt_hash(struct rtentry *rt, const struct sockaddr *dst, uint32_t *src)
{
uint32_t a, b, c;
if (src == NULL || !rtisvalid(rt) || !ISSET(rt->rt_flags, RTF_MPATH))
return (-1);
a = b = 0x9e3779b9;
c = rt_hashjitter;
switch (dst->sa_family) {
case AF_INET:
{
const struct sockaddr_in *sin;
if (!ipmultipath)
return (-1);
sin = satosin_const(dst);
a += sin->sin_addr.s_addr;
b += src[0];
mix(a, b, c);
break;
}
#ifdef INET6
case AF_INET6:
{
const struct sockaddr_in6 *sin6;
if (!ip6_multipath)
return (-1);
sin6 = satosin6_const(dst);
a += sin6->sin6_addr.s6_addr32[0];
b += sin6->sin6_addr.s6_addr32[2];
c += src[0];
mix(a, b, c);
a += sin6->sin6_addr.s6_addr32[1];
b += sin6->sin6_addr.s6_addr32[3];
c += src[1];
mix(a, b, c);
a += sin6->sin6_addr.s6_addr32[2];
b += sin6->sin6_addr.s6_addr32[1];
c += src[2];
mix(a, b, c);
a += sin6->sin6_addr.s6_addr32[3];
b += sin6->sin6_addr.s6_addr32[0];
c += src[3];
mix(a, b, c);
break;
}
#endif /* INET6 */
}
return (c & 0xffff);
}
/*
* Allocate a route, potentially using multipath to select the peer.
*/
struct rtentry *
rtalloc_mpath(const struct sockaddr *dst, uint32_t *src, unsigned int rtableid)
{
return (rt_match(dst, src, RT_RESOLVE, rtableid));
}
/*
* Look in the routing table for the best matching entry for
* ``dst''.
*
* If a route with a gateway is found and its next hop is no
* longer valid, try to cache it.
*/
struct rtentry *
rtalloc(const struct sockaddr *dst, int flags, unsigned int rtableid)
{
return (rt_match(dst, NULL, flags, rtableid));
}
/*
* Cache the route entry corresponding to a reachable next hop in
* the gateway entry ``rt''.
*/
int
rt_setgwroute(struct rtentry *rt, const struct sockaddr *gate, u_int rtableid)
{
struct rtentry *prt, *nhrt;
unsigned int rdomain = rtable_l2(rtableid);
int error;
NET_ASSERT_LOCKED();
/* If we cannot find a valid next hop bail. */
nhrt = rt_match(gate, NULL, RT_RESOLVE, rdomain);
if (nhrt == NULL)
return (ENOENT);
/* Next hop entry must be on the same interface. */
if (nhrt->rt_ifidx != rt->rt_ifidx) {
struct sockaddr_in6 sa_mask;
if (!ISSET(nhrt->rt_flags, RTF_LLINFO) ||
!ISSET(nhrt->rt_flags, RTF_CLONED)) {
rtfree(nhrt);
return (EHOSTUNREACH);
}
/*
* We found a L2 entry, so we might have multiple
* RTF_CLONING routes for the same subnet. Query
* the first route of the multipath chain and iterate
* until we find the correct one.
*/
prt = rtable_lookup(rdomain, rt_key(nhrt->rt_parent),
rt_plen2mask(nhrt->rt_parent, &sa_mask), NULL, RTP_ANY);
rtfree(nhrt);
while (prt != NULL && prt->rt_ifidx != rt->rt_ifidx)
prt = rtable_iterate(prt);
/* We found nothing or a non-cloning MPATH route. */
if (prt == NULL || !ISSET(prt->rt_flags, RTF_CLONING)) {
rtfree(prt);
return (EHOSTUNREACH);
}
error = rt_clone(&prt, gate, rdomain);
if (error) {
rtfree(prt);
return (error);
}
nhrt = prt;
}
/*
* Next hop must be reachable, this also prevents rtentry
* loops for example when rt->rt_gwroute points to rt.
*/
if (ISSET(nhrt->rt_flags, RTF_CLONING|RTF_GATEWAY)) {
rtfree(nhrt);
return (ENETUNREACH);
}
/*
* If the MTU of next hop is 0, this will reset the MTU of the
* route to run PMTUD again from scratch.
*/
if (!ISSET(rt->rt_locks, RTV_MTU) && (rt->rt_mtu > nhrt->rt_mtu))
rt->rt_mtu = nhrt->rt_mtu;
/*
* To avoid reference counting problems when writing link-layer
* addresses in an outgoing packet, we ensure that the lifetime
* of a cached entry is greater than the bigger lifetime of the
* gateway entries it is pointed by.
*/
nhrt->rt_flags |= RTF_CACHED;
nhrt->rt_cachecnt++;
/* commit */
rt_putgwroute(rt, nhrt);
return (0);
}
/*
* Invalidate the cached route entry of the gateway entry ``rt''.
*/
void
rt_putgwroute(struct rtentry *rt, struct rtentry *nhrt)
{
struct rtentry *onhrt;
NET_ASSERT_LOCKED();
if (!ISSET(rt->rt_flags, RTF_GATEWAY))
return;
/* this is protected as per [X] in route.h */
onhrt = rt->rt_gwroute;
rt->rt_gwroute = nhrt;
if (onhrt != NULL) {
KASSERT(onhrt->rt_cachecnt > 0);
KASSERT(ISSET(onhrt->rt_flags, RTF_CACHED));
--onhrt->rt_cachecnt;
if (onhrt->rt_cachecnt == 0)
CLR(onhrt->rt_flags, RTF_CACHED);
rtfree(onhrt);
}
}
void
rtref(struct rtentry *rt)
{
refcnt_take(&rt->rt_refcnt);
}
void
rtfree(struct rtentry *rt)
{
if (rt == NULL)
return;
if (refcnt_rele(&rt->rt_refcnt) == 0)
return;
KASSERT(!ISSET(rt->rt_flags, RTF_UP));
KASSERT(!RT_ROOT(rt));
atomic_dec_int(&rttrash);
rt_timer_remove_all(rt);
ifafree(rt->rt_ifa);
rtlabel_unref(rt->rt_labelid);
#ifdef MPLS
rt_mpls_clear(rt);
#endif
if (rt->rt_gateway != NULL) {
free(rt->rt_gateway, M_RTABLE,
ROUNDUP(rt->rt_gateway->sa_len));
}
free(rt_key(rt), M_RTABLE, rt_key(rt)->sa_len);
pool_put(&rtentry_pool, rt);
}
struct ifaddr *
ifaref(struct ifaddr *ifa)
{
refcnt_take(&ifa->ifa_refcnt);
return ifa;
}
void
ifafree(struct ifaddr *ifa)
{
if (refcnt_rele(&ifa->ifa_refcnt) == 0)
return;
free(ifa, M_IFADDR, 0);
}
/*
* Force a routing table entry to the specified
* destination to go through the given gateway.
* Normally called as a result of a routing redirect
* message from the network layer.
*/
void
rtredirect(struct sockaddr *dst, struct sockaddr *gateway,
struct sockaddr *src, struct rtentry **rtp, unsigned int rdomain)
{
struct rtentry *rt;
int error = 0;
enum rtstat_counters stat = rts_ncounters;
struct rt_addrinfo info;
struct ifaddr *ifa;
unsigned int ifidx = 0;
int flags = RTF_GATEWAY|RTF_HOST;
uint8_t prio = RTP_NONE;
NET_ASSERT_LOCKED();
/* verify the gateway is directly reachable */
rt = rtalloc(gateway, 0, rdomain);
if (!rtisvalid(rt) || ISSET(rt->rt_flags, RTF_GATEWAY)) {
rtfree(rt);
error = ENETUNREACH;
goto out;
}
ifidx = rt->rt_ifidx;
ifa = rt->rt_ifa;
rtfree(rt);
rt = NULL;
rt = rtable_lookup(rdomain, dst, NULL, NULL, RTP_ANY);
/*
* If the redirect isn't from our current router for this dst,
* it's either old or wrong. If it redirects us to ourselves,
* we have a routing loop, perhaps as a result of an interface
* going down recently.
*/
#define equal(a1, a2) \
((a1)->sa_len == (a2)->sa_len && \
bcmp((caddr_t)(a1), (caddr_t)(a2), (a1)->sa_len) == 0)
if (rt != NULL && (!equal(src, rt->rt_gateway) || rt->rt_ifa != ifa))
error = EINVAL;
else if (ifa_ifwithaddr(gateway, rdomain) != NULL ||
(gateway->sa_family == AF_INET &&
in_broadcast(satosin(gateway)->sin_addr, rdomain)))
error = EHOSTUNREACH;
if (error)
goto done;
/*
* Create a new entry if we just got back a wildcard entry
* or the lookup failed. This is necessary for hosts
* which use routing redirects generated by smart gateways
* to dynamically build the routing tables.
*/
if (rt == NULL)
goto create;
/*
* Don't listen to the redirect if it's
* for a route to an interface.
*/
if (ISSET(rt->rt_flags, RTF_GATEWAY)) {
if (!ISSET(rt->rt_flags, RTF_HOST)) {
/*
* Changing from route to net => route to host.
* Create new route, rather than smashing route to net.
*/
create:
rtfree(rt);
flags |= RTF_DYNAMIC;
bzero(&info, sizeof(info));
info.rti_info[RTAX_DST] = dst;
info.rti_info[RTAX_GATEWAY] = gateway;
info.rti_ifa = ifa;
info.rti_flags = flags;
rt = NULL;
error = rtrequest(RTM_ADD, &info, RTP_DEFAULT, &rt,
rdomain);
if (error == 0) {
flags = rt->rt_flags;
prio = rt->rt_priority;
}
stat = rts_dynamic;
} else {
/*
* Smash the current notion of the gateway to
* this destination. Should check about netmask!!!
*/
rt->rt_flags |= RTF_MODIFIED;
flags |= RTF_MODIFIED;
prio = rt->rt_priority;
stat = rts_newgateway;
rt_setgate(rt, gateway, rdomain);
}
} else
error = EHOSTUNREACH;
done:
if (rt) {
if (rtp && !error)
*rtp = rt;
else
rtfree(rt);
}
out:
if (error)
rtstat_inc(rts_badredirect);
else if (stat != rts_ncounters)
rtstat_inc(stat);
bzero((caddr_t)&info, sizeof(info));
info.rti_info[RTAX_DST] = dst;
info.rti_info[RTAX_GATEWAY] = gateway;
info.rti_info[RTAX_AUTHOR] = src;
rtm_miss(RTM_REDIRECT, &info, flags, prio, ifidx, error, rdomain);
}
/*
* Delete a route and generate a message
*/
int
rtdeletemsg(struct rtentry *rt, struct ifnet *ifp, u_int tableid)
{
int error;
struct rt_addrinfo info;
struct sockaddr_rtlabel sa_rl;
struct sockaddr_in6 sa_mask;
KASSERT(rt->rt_ifidx == ifp->if_index);
/*
* Request the new route so that the entry is not actually
* deleted. That will allow the information being reported to
* be accurate (and consistent with route_output()).
*/
memset(&info, 0, sizeof(info));
info.rti_info[RTAX_DST] = rt_key(rt);
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
if (!ISSET(rt->rt_flags, RTF_HOST))
info.rti_info[RTAX_NETMASK] = rt_plen2mask(rt, &sa_mask);
info.rti_info[RTAX_LABEL] = rtlabel_id2sa(rt->rt_labelid, &sa_rl);
info.rti_flags = rt->rt_flags;
info.rti_info[RTAX_IFP] = sdltosa(ifp->if_sadl);
info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
error = rtrequest_delete(&info, rt->rt_priority, ifp, &rt, tableid);
rtm_miss(RTM_DELETE, &info, info.rti_flags, rt->rt_priority,
rt->rt_ifidx, error, tableid);
if (error == 0)
rtfree(rt);
return (error);
}
static inline int
rtequal(struct rtentry *a, struct rtentry *b)
{
if (a == b)
return 1;
if (memcmp(rt_key(a), rt_key(b), rt_key(a)->sa_len) == 0 &&
rt_plen(a) == rt_plen(b))
return 1;
else
return 0;
}
int
rtflushclone1(struct rtentry *rt, void *arg, u_int id)
{
struct rtentry *cloningrt = arg;
struct ifnet *ifp;
if (!ISSET(rt->rt_flags, RTF_CLONED))
return 0;
/* Cached route must stay alive as long as their parent are alive. */
if (ISSET(rt->rt_flags, RTF_CACHED) && (rt->rt_parent != cloningrt))
return 0;
if (!rtequal(rt->rt_parent, cloningrt))
return 0;
/*
* This happens when an interface with a RTF_CLONING route is
* being detached. In this case it's safe to bail because all
* the routes are being purged by rt_ifa_purge().
*/
ifp = if_get(rt->rt_ifidx);
if (ifp == NULL)
return 0;
if_put(ifp);
return EEXIST;
}
int
rtflushclone(struct rtentry *parent, unsigned int rtableid)
{
struct rtentry *rt = NULL;
struct ifnet *ifp;
int error;
#ifdef DIAGNOSTIC
if (!parent || (parent->rt_flags & RTF_CLONING) == 0)
panic("rtflushclone: called with a non-cloning route");
#endif
do {
error = rtable_walk(rtableid, rt_key(parent)->sa_family, &rt,
rtflushclone1, parent);
if (rt != NULL && error == EEXIST) {
ifp = if_get(rt->rt_ifidx);
if (ifp == NULL) {
error = EAGAIN;
} else {
error = rtdeletemsg(rt, ifp, rtableid);
if (error == 0)
error = EAGAIN;
if_put(ifp);
}
}
rtfree(rt);
rt = NULL;
} while (error == EAGAIN);
return error;
}
int
rtrequest_delete(struct rt_addrinfo *info, u_int8_t prio, struct ifnet *ifp,
struct rtentry **ret_nrt, u_int tableid)
{
struct rtentry *rt;
int error;
NET_ASSERT_LOCKED();
if (!rtable_exists(tableid))
return (EAFNOSUPPORT);
rt = rtable_lookup(tableid, info->rti_info[RTAX_DST],
info->rti_info[RTAX_NETMASK], info->rti_info[RTAX_GATEWAY], prio);
if (rt == NULL)
return (ESRCH);
/* Make sure that's the route the caller want to delete. */
if (ifp != NULL && ifp->if_index != rt->rt_ifidx) {
rtfree(rt);
return (ESRCH);
}
#ifdef BFD
if (ISSET(rt->rt_flags, RTF_BFD))
bfdclear(rt);
#endif
error = rtable_delete(tableid, info->rti_info[RTAX_DST],
info->rti_info[RTAX_NETMASK], rt);
if (error != 0) {
rtfree(rt);
return (ESRCH);
}
/* Release next hop cache before flushing cloned entries. */
rt_putgwroute(rt, NULL);
/* Clean up any cloned children. */
if (ISSET(rt->rt_flags, RTF_CLONING))
rtflushclone(rt, tableid);
rtfree(rt->rt_parent);
rt->rt_parent = NULL;
rt->rt_flags &= ~RTF_UP;
KASSERT(ifp->if_index == rt->rt_ifidx);
ifp->if_rtrequest(ifp, RTM_DELETE, rt);
atomic_inc_int(&rttrash);
if (ret_nrt != NULL)
*ret_nrt = rt;
else
rtfree(rt);
membar_producer();
atomic_inc_long(&rtgeneration);
return (0);
}
int
rtrequest(int req, struct rt_addrinfo *info, u_int8_t prio,
struct rtentry **ret_nrt, u_int tableid)
{
struct ifnet *ifp;
struct rtentry *rt, *crt;
struct ifaddr *ifa;
struct sockaddr *ndst;
struct sockaddr_rtlabel *sa_rl, sa_rl2;
struct sockaddr_dl sa_dl = { sizeof(sa_dl), AF_LINK };
int error;
NET_ASSERT_LOCKED();
if (!rtable_exists(tableid))
return (EAFNOSUPPORT);
if (info->rti_flags & RTF_HOST)
info->rti_info[RTAX_NETMASK] = NULL;
switch (req) {
case RTM_DELETE:
return (EINVAL);
case RTM_RESOLVE:
if (ret_nrt == NULL || (rt = *ret_nrt) == NULL)
return (EINVAL);
if ((rt->rt_flags & RTF_CLONING) == 0)
return (EINVAL);
KASSERT(rt->rt_ifa->ifa_ifp != NULL);
info->rti_ifa = rt->rt_ifa;
info->rti_flags = rt->rt_flags | (RTF_CLONED|RTF_HOST);
info->rti_flags &= ~(RTF_CLONING|RTF_CONNECTED|RTF_STATIC);
info->rti_info[RTAX_GATEWAY] = sdltosa(&sa_dl);
info->rti_info[RTAX_LABEL] =
rtlabel_id2sa(rt->rt_labelid, &sa_rl2);
/* FALLTHROUGH */
case RTM_ADD:
if (info->rti_ifa == NULL)
return (EINVAL);
ifa = info->rti_ifa;
ifp = ifa->ifa_ifp;
if (prio == 0)
prio = ifp->if_priority + RTP_STATIC;
error = rt_copysa(info->rti_info[RTAX_DST],
info->rti_info[RTAX_NETMASK], &ndst);
if (error)
return (error);
rt = pool_get(&rtentry_pool, PR_NOWAIT | PR_ZERO);
if (rt == NULL) {
free(ndst, M_RTABLE, ndst->sa_len);
return (ENOBUFS);
}
refcnt_init_trace(&rt->rt_refcnt, DT_REFCNT_IDX_RTENTRY);
rt->rt_flags = info->rti_flags | RTF_UP;
rt->rt_priority = prio; /* init routing priority */
LIST_INIT(&rt->rt_timer);
/* Check the link state if the table supports it. */
if (rtable_mpath_capable(tableid, ndst->sa_family) &&
!ISSET(rt->rt_flags, RTF_LOCAL) &&
(!LINK_STATE_IS_UP(ifp->if_link_state) ||
!ISSET(ifp->if_flags, IFF_UP))) {
rt->rt_flags &= ~RTF_UP;
rt->rt_priority |= RTP_DOWN;
}
if (info->rti_info[RTAX_LABEL] != NULL) {
sa_rl = (struct sockaddr_rtlabel *)
info->rti_info[RTAX_LABEL];
rt->rt_labelid = rtlabel_name2id(sa_rl->sr_label);
}
#ifdef MPLS
/* We have to allocate additional space for MPLS infos */
if (info->rti_flags & RTF_MPLS &&
(info->rti_info[RTAX_SRC] != NULL ||
info->rti_info[RTAX_DST]->sa_family == AF_MPLS)) {
error = rt_mpls_set(rt, info->rti_info[RTAX_SRC],
info->rti_mpls);
if (error) {
free(ndst, M_RTABLE, ndst->sa_len);
pool_put(&rtentry_pool, rt);
return (error);
}
} else
rt_mpls_clear(rt);
#endif
rt->rt_ifa = ifaref(ifa);
rt->rt_ifidx = ifp->if_index;
/*
* Copy metrics and a back pointer from the cloned
* route's parent.
*/
if (ISSET(rt->rt_flags, RTF_CLONED)) {
rtref(*ret_nrt);
rt->rt_parent = *ret_nrt;
rt->rt_rmx = (*ret_nrt)->rt_rmx;
}
/*
* We must set rt->rt_gateway before adding ``rt'' to
* the routing table because the radix MPATH code use
* it to (re)order routes.
*/
if ((error = rt_setgate(rt, info->rti_info[RTAX_GATEWAY],
tableid))) {
ifafree(ifa);
rtfree(rt->rt_parent);
rt_putgwroute(rt, NULL);
if (rt->rt_gateway != NULL) {
free(rt->rt_gateway, M_RTABLE,
ROUNDUP(rt->rt_gateway->sa_len));
}
free(ndst, M_RTABLE, ndst->sa_len);
pool_put(&rtentry_pool, rt);
return (error);
}
error = rtable_insert(tableid, ndst,
info->rti_info[RTAX_NETMASK], info->rti_info[RTAX_GATEWAY],
rt->rt_priority, rt);
if (error != 0 &&
(crt = rtable_match(tableid, ndst, NULL)) != NULL) {
/* overwrite cloned route */
if (ISSET(crt->rt_flags, RTF_CLONED) &&
!ISSET(crt->rt_flags, RTF_CACHED)) {
struct ifnet *cifp;
cifp = if_get(crt->rt_ifidx);
KASSERT(cifp != NULL);
rtdeletemsg(crt, cifp, tableid);
if_put(cifp);
error = rtable_insert(tableid, ndst,
info->rti_info[RTAX_NETMASK],
info->rti_info[RTAX_GATEWAY],
rt->rt_priority, rt);
}
rtfree(crt);
}
if (error != 0) {
ifafree(ifa);
rtfree(rt->rt_parent);
rt_putgwroute(rt, NULL);
if (rt->rt_gateway != NULL) {
free(rt->rt_gateway, M_RTABLE,
ROUNDUP(rt->rt_gateway->sa_len));
}
free(ndst, M_RTABLE, ndst->sa_len);
pool_put(&rtentry_pool, rt);
return (EEXIST);
}
ifp->if_rtrequest(ifp, req, rt);
if_group_routechange(info->rti_info[RTAX_DST],
info->rti_info[RTAX_NETMASK]);
if (ret_nrt != NULL)
*ret_nrt = rt;
else
rtfree(rt);
membar_producer();
atomic_inc_long(&rtgeneration);
break;
}
return (0);
}
int
rt_setgate(struct rtentry *rt, const struct sockaddr *gate, u_int rtableid)
{
int glen = ROUNDUP(gate->sa_len);
struct sockaddr *sa, *osa;
int error = 0;
KASSERT(gate != NULL);
if (rt->rt_gateway == gate) {
/* nop */
return (0);
};
sa = malloc(glen, M_RTABLE, M_NOWAIT | M_ZERO);
if (sa == NULL)
return (ENOBUFS);
memcpy(sa, gate, gate->sa_len);
KERNEL_LOCK(); /* see [X] in route.h */
osa = rt->rt_gateway;
rt->rt_gateway = sa;
if (ISSET(rt->rt_flags, RTF_GATEWAY))
error = rt_setgwroute(rt, gate, rtableid);
KERNEL_UNLOCK();
if (osa != NULL)
free(osa, M_RTABLE, ROUNDUP(osa->sa_len));
return (error);
}
/*
* Return the route entry containing the next hop link-layer
* address corresponding to ``rt''.
*/
struct rtentry *
rt_getll(struct rtentry *rt)
{
if (ISSET(rt->rt_flags, RTF_GATEWAY)) {
KASSERT(rt->rt_gwroute != NULL);
return (rt->rt_gwroute);
}
return (rt);
}
void
rt_maskedcopy(struct sockaddr *src, struct sockaddr *dst,
struct sockaddr *netmask)
{
u_char *cp1 = (u_char *)src;
u_char *cp2 = (u_char *)dst;
u_char *cp3 = (u_char *)netmask;
u_char *cplim = cp2 + *cp3;
u_char *cplim2 = cp2 + *cp1;
*cp2++ = *cp1++; *cp2++ = *cp1++; /* copies sa_len & sa_family */
cp3 += 2;
if (cplim > cplim2)
cplim = cplim2;
while (cp2 < cplim)
*cp2++ = *cp1++ & *cp3++;
if (cp2 < cplim2)
bzero(cp2, cplim2 - cp2);
}
/*
* allocate new sockaddr structure based on the user supplied src and mask
* that is useable for the routing table.
*/
static int
rt_copysa(const struct sockaddr *src, const struct sockaddr *mask,
struct sockaddr **dst)
{
static const u_char maskarray[] = {
0x0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe };
struct sockaddr *ndst;
const struct domain *dp;
u_char *csrc, *cdst;
int i, plen;
for (i = 0; (dp = domains[i]) != NULL; i++) {
if (dp->dom_rtoffset == 0)
continue;
if (src->sa_family == dp->dom_family)
break;
}
if (dp == NULL)
return (EAFNOSUPPORT);
if (src->sa_len < dp->dom_sasize)
return (EINVAL);
plen = rtable_satoplen(src->sa_family, mask);
if (plen == -1)
return (EINVAL);
ndst = malloc(dp->dom_sasize, M_RTABLE, M_NOWAIT|M_ZERO);
if (ndst == NULL)
return (ENOBUFS);
ndst->sa_family = src->sa_family;
ndst->sa_len = dp->dom_sasize;
csrc = (u_char *)src + dp->dom_rtoffset;
cdst = (u_char *)ndst + dp->dom_rtoffset;
memcpy(cdst, csrc, plen / 8);
if (plen % 8 != 0)
cdst[plen / 8] = csrc[plen / 8] & maskarray[plen % 8];
*dst = ndst;
return (0);
}
int
rt_ifa_add(struct ifaddr *ifa, int flags, struct sockaddr *dst,
unsigned int rdomain)
{
struct ifnet *ifp = ifa->ifa_ifp;
struct rtentry *rt;
struct sockaddr_rtlabel sa_rl;
struct rt_addrinfo info;
uint8_t prio = ifp->if_priority + RTP_STATIC;
int error;
KASSERT(rdomain == rtable_l2(rdomain));
memset(&info, 0, sizeof(info));
info.rti_ifa = ifa;
info.rti_flags = flags;
info.rti_info[RTAX_DST] = dst;
if (flags & RTF_LLINFO)
info.rti_info[RTAX_GATEWAY] = sdltosa(ifp->if_sadl);
else
info.rti_info[RTAX_GATEWAY] = ifa->ifa_addr;
info.rti_info[RTAX_LABEL] = rtlabel_id2sa(ifp->if_rtlabelid, &sa_rl);
#ifdef MPLS
if ((flags & RTF_MPLS) == RTF_MPLS)
info.rti_mpls = MPLS_OP_POP;
#endif /* MPLS */
if ((flags & RTF_HOST) == 0)
info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
if (flags & (RTF_LOCAL|RTF_BROADCAST))
prio = RTP_LOCAL;
if (flags & RTF_CONNECTED)
prio = ifp->if_priority + RTP_CONNECTED;
error = rtrequest(RTM_ADD, &info, prio, &rt, rdomain);
if (error == 0) {
/*
* A local route is created for every address configured
* on an interface, so use this information to notify
* userland that a new address has been added.
*/
if (flags & RTF_LOCAL)
rtm_addr(RTM_NEWADDR, ifa);
rtm_send(rt, RTM_ADD, 0, rdomain);
rtfree(rt);
}
return (error);
}
int
rt_ifa_del(struct ifaddr *ifa, int flags, struct sockaddr *dst,
unsigned int rdomain)
{
struct ifnet *ifp = ifa->ifa_ifp;
struct rtentry *rt;
struct mbuf *m = NULL;
struct sockaddr *deldst;
struct rt_addrinfo info;
struct sockaddr_rtlabel sa_rl;
uint8_t prio = ifp->if_priority + RTP_STATIC;
int error;
KASSERT(rdomain == rtable_l2(rdomain));
if ((flags & RTF_HOST) == 0 && ifa->ifa_netmask) {
m = m_get(M_DONTWAIT, MT_SONAME);
if (m == NULL)
return (ENOBUFS);
deldst = mtod(m, struct sockaddr *);
rt_maskedcopy(dst, deldst, ifa->ifa_netmask);
dst = deldst;
}
memset(&info, 0, sizeof(info));
info.rti_ifa = ifa;
info.rti_flags = flags;
info.rti_info[RTAX_DST] = dst;
if ((flags & RTF_LLINFO) == 0)
info.rti_info[RTAX_GATEWAY] = ifa->ifa_addr;
info.rti_info[RTAX_LABEL] = rtlabel_id2sa(ifp->if_rtlabelid, &sa_rl);
if ((flags & RTF_HOST) == 0)
info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
if (flags & (RTF_LOCAL|RTF_BROADCAST))
prio = RTP_LOCAL;
if (flags & RTF_CONNECTED)
prio = ifp->if_priority + RTP_CONNECTED;
rtable_clearsource(rdomain, ifa->ifa_addr);
error = rtrequest_delete(&info, prio, ifp, &rt, rdomain);
if (error == 0) {
rtm_send(rt, RTM_DELETE, 0, rdomain);
if (flags & RTF_LOCAL)
rtm_addr(RTM_DELADDR, ifa);
rtfree(rt);
}
m_free(m);
return (error);
}
/*
* Add ifa's address as a local rtentry.
*/
int
rt_ifa_addlocal(struct ifaddr *ifa)
{
struct ifnet *ifp = ifa->ifa_ifp;
struct rtentry *rt;
u_int flags = RTF_HOST|RTF_LOCAL;
int error = 0;
/*
* If the configured address correspond to the magical "any"
* address do not add a local route entry because that might
* corrupt the routing tree which uses this value for the
* default routes.
*/
switch (ifa->ifa_addr->sa_family) {
case AF_INET:
if (satosin(ifa->ifa_addr)->sin_addr.s_addr == INADDR_ANY)
return (0);
break;
#ifdef INET6
case AF_INET6:
if (IN6_ARE_ADDR_EQUAL(&satosin6(ifa->ifa_addr)->sin6_addr,
&in6addr_any))
return (0);
break;
#endif
default:
break;
}
if (!ISSET(ifp->if_flags, (IFF_LOOPBACK|IFF_POINTOPOINT)))
flags |= RTF_LLINFO;
/* If there is no local entry, allocate one. */
rt = rtalloc(ifa->ifa_addr, 0, ifp->if_rdomain);
if (rt == NULL || ISSET(rt->rt_flags, flags) != flags) {
error = rt_ifa_add(ifa, flags | RTF_MPATH, ifa->ifa_addr,
ifp->if_rdomain);
}
rtfree(rt);
return (error);
}
/*
* Remove local rtentry of ifa's address if it exists.
*/
int
rt_ifa_dellocal(struct ifaddr *ifa)
{
struct ifnet *ifp = ifa->ifa_ifp;
struct rtentry *rt;
u_int flags = RTF_HOST|RTF_LOCAL;
int error = 0;
/*
* We do not add local routes for such address, so do not bother
* removing them.
*/
switch (ifa->ifa_addr->sa_family) {
case AF_INET:
if (satosin(ifa->ifa_addr)->sin_addr.s_addr == INADDR_ANY)
return (0);
break;
#ifdef INET6
case AF_INET6:
if (IN6_ARE_ADDR_EQUAL(&satosin6(ifa->ifa_addr)->sin6_addr,
&in6addr_any))
return (0);
break;
#endif
default:
break;
}
if (!ISSET(ifp->if_flags, (IFF_LOOPBACK|IFF_POINTOPOINT)))
flags |= RTF_LLINFO;
/*
* Before deleting, check if a corresponding local host
* route surely exists. With this check, we can avoid to
* delete an interface direct route whose destination is same
* as the address being removed. This can happen when removing
* a subnet-router anycast address on an interface attached
* to a shared medium.
*/
rt = rtalloc(ifa->ifa_addr, 0, ifp->if_rdomain);
if (rt != NULL && ISSET(rt->rt_flags, flags) == flags) {
error = rt_ifa_del(ifa, flags, ifa->ifa_addr,
ifp->if_rdomain);
}
rtfree(rt);
return (error);
}
/*
* Remove all addresses attached to ``ifa''.
*/
void
rt_ifa_purge(struct ifaddr *ifa)
{
struct ifnet *ifp = ifa->ifa_ifp;
struct rtentry *rt = NULL;
unsigned int rtableid;
int error, af = ifa->ifa_addr->sa_family;
KASSERT(ifp != NULL);
for (rtableid = 0; rtableid < rtmap_limit; rtableid++) {
/* skip rtables that are not in the rdomain of the ifp */
if (rtable_l2(rtableid) != ifp->if_rdomain)
continue;
do {
error = rtable_walk(rtableid, af, &rt,
rt_ifa_purge_walker, ifa);
if (rt != NULL && error == EEXIST) {
error = rtdeletemsg(rt, ifp, rtableid);
if (error == 0)
error = EAGAIN;
}
rtfree(rt);
rt = NULL;
} while (error == EAGAIN);
if (error == EAFNOSUPPORT)
error = 0;
if (error)
break;
}
}
int
rt_ifa_purge_walker(struct rtentry *rt, void *vifa, unsigned int rtableid)
{
struct ifaddr *ifa = vifa;
if (rt->rt_ifa == ifa)
return EEXIST;
return 0;
}
/*
* Route timer routines. These routines allow functions to be called
* for various routes at any time. This is useful in supporting
* path MTU discovery and redirect route deletion.
*
* This is similar to some BSDI internal functions, but it provides
* for multiple queues for efficiency's sake...
*/
struct mutex rttimer_mtx;
struct rttimer {
TAILQ_ENTRY(rttimer) rtt_next; /* [T] entry on timer queue */
LIST_ENTRY(rttimer) rtt_link; /* [T] timers per rtentry */
struct timeout rtt_timeout; /* [I] timeout for this entry */
struct rttimer_queue *rtt_queue; /* [I] back pointer to queue */
struct rtentry *rtt_rt; /* [T] back pointer to route */
time_t rtt_expire; /* [I] rt expire time */
u_int rtt_tableid; /* [I] rtable id of rtt_rt */
};
#define RTTIMER_CALLOUT(r) { \
if (r->rtt_queue->rtq_func != NULL) { \
(*r->rtt_queue->rtq_func)(r->rtt_rt, r->rtt_tableid); \
} else { \
struct ifnet *ifp; \
\
ifp = if_get(r->rtt_rt->rt_ifidx); \
if (ifp != NULL && \
(r->rtt_rt->rt_flags & (RTF_DYNAMIC|RTF_HOST)) == \
(RTF_DYNAMIC|RTF_HOST)) \
rtdeletemsg(r->rtt_rt, ifp, r->rtt_tableid); \
if_put(ifp); \
} \
}
void
rt_timer_init(void)
{
pool_init(&rttimer_pool, sizeof(struct rttimer), 0,
IPL_MPFLOOR, 0, "rttmr", NULL);
mtx_init(&rttimer_mtx, IPL_MPFLOOR);
}
void
rt_timer_queue_init(struct rttimer_queue *rtq, int timeout,
void (*func)(struct rtentry *, u_int))
{
rtq->rtq_timeout = timeout;
rtq->rtq_count = 0;
rtq->rtq_func = func;
TAILQ_INIT(&rtq->rtq_head);
}
void
rt_timer_queue_change(struct rttimer_queue *rtq, int timeout)
{
mtx_enter(&rttimer_mtx);
rtq->rtq_timeout = timeout;
mtx_leave(&rttimer_mtx);
}
void
rt_timer_queue_flush(struct rttimer_queue *rtq)
{
struct rttimer *r;
TAILQ_HEAD(, rttimer) rttlist;
NET_ASSERT_LOCKED();
TAILQ_INIT(&rttlist);
mtx_enter(&rttimer_mtx);
while ((r = TAILQ_FIRST(&rtq->rtq_head)) != NULL) {
LIST_REMOVE(r, rtt_link);
TAILQ_REMOVE(&rtq->rtq_head, r, rtt_next);
TAILQ_INSERT_TAIL(&rttlist, r, rtt_next);
KASSERT(rtq->rtq_count > 0);
rtq->rtq_count--;
}
mtx_leave(&rttimer_mtx);
while ((r = TAILQ_FIRST(&rttlist)) != NULL) {
TAILQ_REMOVE(&rttlist, r, rtt_next);
RTTIMER_CALLOUT(r);
pool_put(&rttimer_pool, r);
}
}
unsigned long
rt_timer_queue_count(struct rttimer_queue *rtq)
{
return (rtq->rtq_count);
}
static inline struct rttimer *
rt_timer_unlink(struct rttimer *r)
{
MUTEX_ASSERT_LOCKED(&rttimer_mtx);
LIST_REMOVE(r, rtt_link);
r->rtt_rt = NULL;
if (timeout_del(&r->rtt_timeout) == 0) {
/* timeout fired, so rt_timer_timer will do the cleanup */
return NULL;
}
TAILQ_REMOVE(&r->rtt_queue->rtq_head, r, rtt_next);
KASSERT(r->rtt_queue->rtq_count > 0);
r->rtt_queue->rtq_count--;
return r;
}
void
rt_timer_remove_all(struct rtentry *rt)
{
struct rttimer *r;
TAILQ_HEAD(, rttimer) rttlist;
TAILQ_INIT(&rttlist);
mtx_enter(&rttimer_mtx);
while ((r = LIST_FIRST(&rt->rt_timer)) != NULL) {
r = rt_timer_unlink(r);
if (r != NULL)
TAILQ_INSERT_TAIL(&rttlist, r, rtt_next);
}
mtx_leave(&rttimer_mtx);
while ((r = TAILQ_FIRST(&rttlist)) != NULL) {
TAILQ_REMOVE(&rttlist, r, rtt_next);
pool_put(&rttimer_pool, r);
}
}
time_t
rt_timer_get_expire(const struct rtentry *rt)
{
const struct rttimer *r;
time_t expire = 0;
mtx_enter(&rttimer_mtx);
LIST_FOREACH(r, &rt->rt_timer, rtt_link) {
if (expire == 0 || expire > r->rtt_expire)
expire = r->rtt_expire;
}
mtx_leave(&rttimer_mtx);
return expire;
}
int
rt_timer_add(struct rtentry *rt, struct rttimer_queue *queue, u_int rtableid)
{
struct rttimer *r, *rnew;
rnew = pool_get(&rttimer_pool, PR_NOWAIT | PR_ZERO);
if (rnew == NULL)
return (ENOBUFS);
rnew->rtt_rt = rt;
rnew->rtt_queue = queue;
rnew->rtt_tableid = rtableid;
rnew->rtt_expire = getuptime() + queue->rtq_timeout;
timeout_set_proc(&rnew->rtt_timeout, rt_timer_timer, rnew);
mtx_enter(&rttimer_mtx);
/*
* If there's already a timer with this action, destroy it before
* we add a new one.
*/
LIST_FOREACH(r, &rt->rt_timer, rtt_link) {
if (r->rtt_queue == queue) {
r = rt_timer_unlink(r);
break; /* only one per list, so we can quit... */
}
}
LIST_INSERT_HEAD(&rt->rt_timer, rnew, rtt_link);
TAILQ_INSERT_TAIL(&queue->rtq_head, rnew, rtt_next);
timeout_add_sec(&rnew->rtt_timeout, queue->rtq_timeout);
rnew->rtt_queue->rtq_count++;
mtx_leave(&rttimer_mtx);
if (r != NULL)
pool_put(&rttimer_pool, r);
return (0);
}
void
rt_timer_timer(void *arg)
{
struct rttimer *r = arg;
struct rttimer_queue *rtq = r->rtt_queue;
NET_LOCK();
mtx_enter(&rttimer_mtx);
if (r->rtt_rt != NULL)
LIST_REMOVE(r, rtt_link);
TAILQ_REMOVE(&rtq->rtq_head, r, rtt_next);
KASSERT(rtq->rtq_count > 0);
rtq->rtq_count--;
mtx_leave(&rttimer_mtx);
if (r->rtt_rt != NULL)
RTTIMER_CALLOUT(r);
NET_UNLOCK();
pool_put(&rttimer_pool, r);
}
#ifdef MPLS
int
rt_mpls_set(struct rtentry *rt, const struct sockaddr *src, uint8_t op)
{
struct sockaddr_mpls *psa_mpls = (struct sockaddr_mpls *)src;
struct rt_mpls *rt_mpls;
if (psa_mpls == NULL && op != MPLS_OP_POP)
return (EOPNOTSUPP);
if (psa_mpls != NULL && psa_mpls->smpls_len != sizeof(*psa_mpls))
return (EINVAL);
if (psa_mpls != NULL && psa_mpls->smpls_family != AF_MPLS)
return (EAFNOSUPPORT);
rt->rt_llinfo = malloc(sizeof(struct rt_mpls), M_TEMP, M_NOWAIT|M_ZERO);
if (rt->rt_llinfo == NULL)
return (ENOMEM);
rt_mpls = (struct rt_mpls *)rt->rt_llinfo;
if (psa_mpls != NULL)
rt_mpls->mpls_label = psa_mpls->smpls_label;
rt_mpls->mpls_operation = op;
/* XXX: set experimental bits */
rt->rt_flags |= RTF_MPLS;
return (0);
}
void
rt_mpls_clear(struct rtentry *rt)
{
if (rt->rt_llinfo != NULL && rt->rt_flags & RTF_MPLS) {
free(rt->rt_llinfo, M_TEMP, sizeof(struct rt_mpls));
rt->rt_llinfo = NULL;
}
rt->rt_flags &= ~RTF_MPLS;
}
#endif
u_int16_t
rtlabel_name2id(const char *name)
{
struct rt_label *label, *p;
u_int16_t new_id = 1, id = 0;
if (!name[0])
return (0);
mtx_enter(&rtlabel_mtx);
TAILQ_FOREACH(label, &rt_labels, rtl_entry)
if (strcmp(name, label->rtl_name) == 0) {
label->rtl_ref++;
id = label->rtl_id;
goto out;
}
/*
* to avoid fragmentation, we do a linear search from the beginning
* and take the first free slot we find. if there is none or the list
* is empty, append a new entry at the end.
*/
TAILQ_FOREACH(p, &rt_labels, rtl_entry) {
if (p->rtl_id != new_id)
break;
new_id = p->rtl_id + 1;
}
if (new_id > LABELID_MAX)
goto out;
label = malloc(sizeof(*label), M_RTABLE, M_NOWAIT|M_ZERO);
if (label == NULL)
goto out;
strlcpy(label->rtl_name, name, sizeof(label->rtl_name));
label->rtl_id = new_id;
label->rtl_ref++;
if (p != NULL) /* insert new entry before p */
TAILQ_INSERT_BEFORE(p, label, rtl_entry);
else /* either list empty or no free slot in between */
TAILQ_INSERT_TAIL(&rt_labels, label, rtl_entry);
id = label->rtl_id;
out:
mtx_leave(&rtlabel_mtx);
return (id);
}
const char *
rtlabel_id2name_locked(u_int16_t id)
{
struct rt_label *label;
MUTEX_ASSERT_LOCKED(&rtlabel_mtx);
TAILQ_FOREACH(label, &rt_labels, rtl_entry)
if (label->rtl_id == id)
return (label->rtl_name);
return (NULL);
}
const char *
rtlabel_id2name(u_int16_t id, char *rtlabelbuf, size_t sz)
{
const char *label;
if (id == 0)
return (NULL);
mtx_enter(&rtlabel_mtx);
if ((label = rtlabel_id2name_locked(id)) != NULL)
strlcpy(rtlabelbuf, label, sz);
mtx_leave(&rtlabel_mtx);
if (label == NULL)
return (NULL);
return (rtlabelbuf);
}
struct sockaddr *
rtlabel_id2sa(u_int16_t labelid, struct sockaddr_rtlabel *sa_rl)
{
const char *label;
if (labelid == 0)
return (NULL);
mtx_enter(&rtlabel_mtx);
if ((label = rtlabel_id2name_locked(labelid)) != NULL) {
bzero(sa_rl, sizeof(*sa_rl));
sa_rl->sr_len = sizeof(*sa_rl);
sa_rl->sr_family = AF_UNSPEC;
strlcpy(sa_rl->sr_label, label, sizeof(sa_rl->sr_label));
}
mtx_leave(&rtlabel_mtx);
if (label == NULL)
return (NULL);
return ((struct sockaddr *)sa_rl);
}
void
rtlabel_unref(u_int16_t id)
{
struct rt_label *p, *next;
if (id == 0)
return;
mtx_enter(&rtlabel_mtx);
TAILQ_FOREACH_SAFE(p, &rt_labels, rtl_entry, next) {
if (id == p->rtl_id) {
if (--p->rtl_ref == 0) {
TAILQ_REMOVE(&rt_labels, p, rtl_entry);
free(p, M_RTABLE, sizeof(*p));
}
break;
}
}
mtx_leave(&rtlabel_mtx);
}
int
rt_if_track(struct ifnet *ifp)
{
unsigned int rtableid;
struct rtentry *rt = NULL;
int i, error = 0;
for (rtableid = 0; rtableid < rtmap_limit; rtableid++) {
/* skip rtables that are not in the rdomain of the ifp */
if (rtable_l2(rtableid) != ifp->if_rdomain)
continue;
for (i = 1; i <= AF_MAX; i++) {
if (!rtable_mpath_capable(rtableid, i))
continue;
do {
error = rtable_walk(rtableid, i, &rt,
rt_if_linkstate_change, ifp);
if (rt != NULL && error == EEXIST) {
error = rtdeletemsg(rt, ifp, rtableid);
if (error == 0)
error = EAGAIN;
}
rtfree(rt);
rt = NULL;
} while (error == EAGAIN);
if (error == EAFNOSUPPORT)
error = 0;
if (error)
break;
}
}
return (error);
}
int
rt_if_linkstate_change(struct rtentry *rt, void *arg, u_int id)
{
struct ifnet *ifp = arg;
struct sockaddr_in6 sa_mask;
int error;
if (rt->rt_ifidx != ifp->if_index)
return (0);
/* Local routes are always usable. */
if (rt->rt_flags & RTF_LOCAL) {
rt->rt_flags |= RTF_UP;
return (0);
}
if (LINK_STATE_IS_UP(ifp->if_link_state) && ifp->if_flags & IFF_UP) {
if (ISSET(rt->rt_flags, RTF_UP))
return (0);
/* bring route up */
rt->rt_flags |= RTF_UP;
error = rtable_mpath_reprio(id, rt_key(rt), rt_plen(rt),
rt->rt_priority & RTP_MASK, rt);
} else {
/*
* Remove redirected and cloned routes (mainly ARP)
* from down interfaces so we have a chance to get
* new routes from a better source.
*/
if (ISSET(rt->rt_flags, RTF_CLONED|RTF_DYNAMIC) &&
!ISSET(rt->rt_flags, RTF_CACHED|RTF_BFD)) {
return (EEXIST);
}
if (!ISSET(rt->rt_flags, RTF_UP))
return (0);
/* take route down */
rt->rt_flags &= ~RTF_UP;
error = rtable_mpath_reprio(id, rt_key(rt), rt_plen(rt),
rt->rt_priority | RTP_DOWN, rt);
}
if_group_routechange(rt_key(rt), rt_plen2mask(rt, &sa_mask));
membar_producer();
atomic_inc_long(&rtgeneration);
return (error);
}
struct sockaddr *
rt_plentosa(sa_family_t af, int plen, struct sockaddr_in6 *sa_mask)
{
struct sockaddr_in *sin = (struct sockaddr_in *)sa_mask;
#ifdef INET6
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa_mask;
#endif
KASSERT(plen >= 0 || plen == -1);
if (plen == -1)
return (NULL);
memset(sa_mask, 0, sizeof(*sa_mask));
switch (af) {
case AF_INET:
sin->sin_family = AF_INET;
sin->sin_len = sizeof(struct sockaddr_in);
in_prefixlen2mask(&sin->sin_addr, plen);
break;
#ifdef INET6
case AF_INET6:
sin6->sin6_family = AF_INET6;
sin6->sin6_len = sizeof(struct sockaddr_in6);
in6_prefixlen2mask(&sin6->sin6_addr, plen);
break;
#endif /* INET6 */
default:
return (NULL);
}
return ((struct sockaddr *)sa_mask);
}
struct sockaddr *
rt_plen2mask(struct rtentry *rt, struct sockaddr_in6 *sa_mask)
{
return (rt_plentosa(rt_key(rt)->sa_family, rt_plen(rt), sa_mask));
}
#ifdef DDB
#include <machine/db_machdep.h>
#include <ddb/db_output.h>
void db_print_sa(struct sockaddr *);
void db_print_ifa(struct ifaddr *);
void
db_print_sa(struct sockaddr *sa)
{
int len;
u_char *p;
if (sa == NULL) {
db_printf("[NULL]");
return;
}
p = (u_char *)sa;
len = sa->sa_len;
db_printf("[");
while (len > 0) {
db_printf("%d", *p);
p++;
len--;
if (len)
db_printf(",");
}
db_printf("]\n");
}
void
db_print_ifa(struct ifaddr *ifa)
{
if (ifa == NULL)
return;
db_printf(" ifa_addr=");
db_print_sa(ifa->ifa_addr);
db_printf(" ifa_dsta=");
db_print_sa(ifa->ifa_dstaddr);
db_printf(" ifa_mask=");
db_print_sa(ifa->ifa_netmask);
db_printf(" flags=0x%x, refcnt=%u, metric=%d\n",
ifa->ifa_flags, ifa->ifa_refcnt.r_refs, ifa->ifa_metric);
}
/*
* Function to pass to rtable_walk().
* Return non-zero error to abort walk.
*/
int
db_show_rtentry(struct rtentry *rt, void *w, unsigned int id)
{
db_printf("rtentry=%p", rt);
db_printf(" flags=0x%x refcnt=%u use=%llu expire=%lld\n",
rt->rt_flags, rt->rt_refcnt.r_refs, rt->rt_use, rt->rt_expire);
db_printf(" key="); db_print_sa(rt_key(rt));
db_printf(" plen=%d", rt_plen(rt));
db_printf(" gw="); db_print_sa(rt->rt_gateway);
db_printf(" ifidx=%u ", rt->rt_ifidx);
db_printf(" ifa=%p\n", rt->rt_ifa);
db_print_ifa(rt->rt_ifa);
db_printf(" gwroute=%p llinfo=%p priority=%d\n",
rt->rt_gwroute, rt->rt_llinfo, rt->rt_priority);
return (0);
}
/*
* Function to print all the route trees.
*/
int
db_show_rtable(int af, unsigned int rtableid)
{
db_printf("Route tree for af %d, rtableid %u\n", af, rtableid);
rtable_walk(rtableid, af, NULL, db_show_rtentry, NULL);
return (0);
}
#endif /* DDB */