src/sys/net80211/ieee80211.c

1453 lines
40 KiB
C

/* $OpenBSD: ieee80211.c,v 1.89 2024/02/15 15:40:56 stsp Exp $ */
/* $NetBSD: ieee80211.c,v 1.19 2004/06/06 05:45:29 dyoung Exp $ */
/*-
* Copyright (c) 2001 Atsushi Onoe
* Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* IEEE 802.11 generic handler
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/endian.h>
#include <sys/errno.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_priv.h>
#ifdef IEEE80211_DEBUG
int ieee80211_debug = 0;
#endif
int ieee80211_cache_size = IEEE80211_CACHE_SIZE;
void ieee80211_setbasicrates(struct ieee80211com *);
int ieee80211_findrate(struct ieee80211com *, enum ieee80211_phymode, int);
void ieee80211_configure_ampdu_tx(struct ieee80211com *, int);
void
ieee80211_begin_bgscan(struct ifnet *ifp)
{
struct ieee80211com *ic = (void *)ifp;
if ((ic->ic_flags & IEEE80211_F_BGSCAN) ||
ic->ic_state != IEEE80211_S_RUN || ic->ic_mgt_timer != 0)
return;
if ((ic->ic_flags & IEEE80211_F_RSNON) && !ic->ic_bss->ni_port_valid)
return;
if (ic->ic_bgscan_start != NULL && ic->ic_bgscan_start(ic) == 0) {
/*
* Free the nodes table to ensure we get an up-to-date view
* of APs around us. In particular, we need to kick out the
* AP we are associated to. Otherwise, our current AP might
* stay cached if it is turned off while we are scanning, and
* we could end up picking a now non-existent AP over and over.
*/
ieee80211_free_allnodes(ic, 0 /* keep ic->ic_bss */);
ic->ic_flags |= IEEE80211_F_BGSCAN;
if (ifp->if_flags & IFF_DEBUG)
printf("%s: begin background scan\n", ifp->if_xname);
/* Driver calls ieee80211_end_scan() when done. */
}
}
void
ieee80211_bgscan_timeout(void *arg)
{
struct ifnet *ifp = arg;
ieee80211_begin_bgscan(ifp);
}
void
ieee80211_channel_init(struct ifnet *ifp)
{
struct ieee80211com *ic = (void *)ifp;
struct ieee80211_channel *c;
int i;
/*
* Fill in 802.11 available channel set, mark
* all available channels as active, and pick
* a default channel if not already specified.
*/
memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
ic->ic_modecaps |= 1<<IEEE80211_MODE_AUTO;
for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
c = &ic->ic_channels[i];
if (c->ic_flags) {
/*
* Verify driver passed us valid data.
*/
if (i != ieee80211_chan2ieee(ic, c)) {
printf("%s: bad channel ignored; "
"freq %u flags %x number %u\n",
ifp->if_xname, c->ic_freq, c->ic_flags,
i);
c->ic_flags = 0; /* NB: remove */
continue;
}
setbit(ic->ic_chan_avail, i);
/*
* Identify mode capabilities.
*/
if (IEEE80211_IS_CHAN_A(c))
ic->ic_modecaps |= 1<<IEEE80211_MODE_11A;
if (IEEE80211_IS_CHAN_B(c))
ic->ic_modecaps |= 1<<IEEE80211_MODE_11B;
if (IEEE80211_IS_CHAN_PUREG(c))
ic->ic_modecaps |= 1<<IEEE80211_MODE_11G;
if (IEEE80211_IS_CHAN_N(c))
ic->ic_modecaps |= 1<<IEEE80211_MODE_11N;
if (IEEE80211_IS_CHAN_AC(c))
ic->ic_modecaps |= 1<<IEEE80211_MODE_11AC;
}
}
/* validate ic->ic_curmode */
if ((ic->ic_modecaps & (1<<ic->ic_curmode)) == 0)
ic->ic_curmode = IEEE80211_MODE_AUTO;
ic->ic_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */
}
void
ieee80211_ifattach(struct ifnet *ifp)
{
struct ieee80211com *ic = (void *)ifp;
memcpy(((struct arpcom *)ifp)->ac_enaddr, ic->ic_myaddr,
ETHER_ADDR_LEN);
ether_ifattach(ifp);
ifp->if_output = ieee80211_output;
#if NBPFILTER > 0
bpfattach(&ic->ic_rawbpf, ifp, DLT_IEEE802_11,
sizeof(struct ieee80211_frame_addr4));
#endif
ieee80211_crypto_attach(ifp);
ieee80211_channel_init(ifp);
/* IEEE 802.11 defines a MTU >= 2290 */
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ieee80211_setbasicrates(ic);
(void)ieee80211_setmode(ic, ic->ic_curmode);
if (ic->ic_lintval == 0)
ic->ic_lintval = 100; /* default sleep */
ic->ic_bmissthres = IEEE80211_BEACON_MISS_THRES;
ic->ic_dtim_period = 1; /* all TIMs are DTIMs */
ieee80211_node_attach(ifp);
ieee80211_proto_attach(ifp);
if_addgroup(ifp, "wlan");
ifp->if_priority = IF_WIRELESS_DEFAULT_PRIORITY;
task_set(&ic->ic_rtm_80211info_task, ieee80211_rtm_80211info_task, ic);
ieee80211_set_link_state(ic, LINK_STATE_DOWN);
timeout_set(&ic->ic_bgscan_timeout, ieee80211_bgscan_timeout, ifp);
}
void
ieee80211_ifdetach(struct ifnet *ifp)
{
struct ieee80211com *ic = (void *)ifp;
task_del(systq, &ic->ic_rtm_80211info_task);
timeout_del(&ic->ic_bgscan_timeout);
/*
* Undo pseudo-driver changes. Pseudo-driver detach hooks could
* call back into the driver, e.g. via ioctl. So deactivate the
* interface before freeing net80211-specific data structures.
*/
if_deactivate(ifp);
ieee80211_proto_detach(ifp);
ieee80211_crypto_detach(ifp);
ieee80211_node_detach(ifp);
ifmedia_delete_instance(&ic->ic_media, IFM_INST_ANY);
ether_ifdetach(ifp);
}
/*
* Convert MHz frequency to IEEE channel number.
*/
u_int
ieee80211_mhz2ieee(u_int freq, u_int flags)
{
if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */
if (freq == 2484)
return 14;
if (freq < 2484)
return (freq - 2407) / 5;
else
return 15 + ((freq - 2512) / 20);
} else if (flags & IEEE80211_CHAN_5GHZ) { /* 5GHz band */
return (freq - 5000) / 5;
} else { /* either, guess */
if (freq == 2484)
return 14;
if (freq < 2484)
return (freq - 2407) / 5;
if (freq < 5000)
return 15 + ((freq - 2512) / 20);
return (freq - 5000) / 5;
}
}
/*
* Convert channel to IEEE channel number.
*/
u_int
ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
{
struct ifnet *ifp = &ic->ic_if;
if (ic->ic_channels <= c && c <= &ic->ic_channels[IEEE80211_CHAN_MAX])
return c - ic->ic_channels;
else if (c == IEEE80211_CHAN_ANYC)
return IEEE80211_CHAN_ANY;
panic("%s: bogus channel pointer", ifp->if_xname);
}
/*
* Convert IEEE channel number to MHz frequency.
*/
u_int
ieee80211_ieee2mhz(u_int chan, u_int flags)
{
if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */
if (chan == 14)
return 2484;
if (chan < 14)
return 2407 + chan*5;
else
return 2512 + ((chan-15)*20);
} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5GHz band */
return 5000 + (chan*5);
} else { /* either, guess */
if (chan == 14)
return 2484;
if (chan < 14) /* 0-13 */
return 2407 + chan*5;
if (chan < 27) /* 15-26 */
return 2512 + ((chan-15)*20);
return 5000 + (chan*5);
}
}
void
ieee80211_configure_ampdu_tx(struct ieee80211com *ic, int enable)
{
if ((ic->ic_caps & IEEE80211_C_TX_AMPDU) == 0)
return;
/* Sending AMPDUs requires QoS support. */
if ((ic->ic_caps & IEEE80211_C_QOS) == 0)
return;
if (enable)
ic->ic_flags |= IEEE80211_F_QOS;
else
ic->ic_flags &= ~IEEE80211_F_QOS;
}
/*
* Setup the media data structures according to the channel and
* rate tables. This must be called by the driver after
* ieee80211_attach and before most anything else.
*/
void
ieee80211_media_init(struct ifnet *ifp,
ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
{
#define ADD(_ic, _s, _o) \
ifmedia_add(&(_ic)->ic_media, \
IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
struct ieee80211com *ic = (void *)ifp;
struct ifmediareq imr;
int i, j, mode, rate, maxrate, r;
uint64_t mword, mopt;
const struct ieee80211_rateset *rs;
struct ieee80211_rateset allrates;
/*
* Do late attach work that must wait for any subclass
* (i.e. driver) work such as overriding methods.
*/
ieee80211_node_lateattach(ifp);
/*
* Fill in media characteristics.
*/
ifmedia_init(&ic->ic_media, 0, media_change, media_stat);
maxrate = 0;
memset(&allrates, 0, sizeof(allrates));
for (mode = IEEE80211_MODE_AUTO; mode <= IEEE80211_MODE_11G; mode++) {
static const uint64_t mopts[] = {
IFM_AUTO,
IFM_IEEE80211_11A,
IFM_IEEE80211_11B,
IFM_IEEE80211_11G,
};
if ((ic->ic_modecaps & (1<<mode)) == 0)
continue;
mopt = mopts[mode];
ADD(ic, IFM_AUTO, mopt); /* e.g. 11a auto */
#ifndef IEEE80211_STA_ONLY
if (ic->ic_caps & IEEE80211_C_IBSS)
ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_IBSS);
if (ic->ic_caps & IEEE80211_C_HOSTAP)
ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_HOSTAP);
if (ic->ic_caps & IEEE80211_C_AHDEMO)
ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_ADHOC);
#endif
if (ic->ic_caps & IEEE80211_C_MONITOR)
ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_MONITOR);
if (mode == IEEE80211_MODE_AUTO)
continue;
rs = &ic->ic_sup_rates[mode];
for (i = 0; i < rs->rs_nrates; i++) {
rate = rs->rs_rates[i];
mword = ieee80211_rate2media(ic, rate, mode);
if (mword == 0)
continue;
ADD(ic, mword, mopt);
#ifndef IEEE80211_STA_ONLY
if (ic->ic_caps & IEEE80211_C_IBSS)
ADD(ic, mword, mopt | IFM_IEEE80211_IBSS);
if (ic->ic_caps & IEEE80211_C_HOSTAP)
ADD(ic, mword, mopt | IFM_IEEE80211_HOSTAP);
if (ic->ic_caps & IEEE80211_C_AHDEMO)
ADD(ic, mword, mopt | IFM_IEEE80211_ADHOC);
#endif
if (ic->ic_caps & IEEE80211_C_MONITOR)
ADD(ic, mword, mopt | IFM_IEEE80211_MONITOR);
/*
* Add rate to the collection of all rates.
*/
r = rate & IEEE80211_RATE_VAL;
for (j = 0; j < allrates.rs_nrates; j++)
if (allrates.rs_rates[j] == r)
break;
if (j == allrates.rs_nrates) {
/* unique, add to the set */
allrates.rs_rates[j] = r;
allrates.rs_nrates++;
}
rate = (rate & IEEE80211_RATE_VAL) / 2;
if (rate > maxrate)
maxrate = rate;
}
}
for (i = 0; i < allrates.rs_nrates; i++) {
mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
IEEE80211_MODE_AUTO);
if (mword == 0)
continue;
mword = IFM_SUBTYPE(mword); /* remove media options */
ADD(ic, mword, 0);
#ifndef IEEE80211_STA_ONLY
if (ic->ic_caps & IEEE80211_C_IBSS)
ADD(ic, mword, IFM_IEEE80211_IBSS);
if (ic->ic_caps & IEEE80211_C_HOSTAP)
ADD(ic, mword, IFM_IEEE80211_HOSTAP);
if (ic->ic_caps & IEEE80211_C_AHDEMO)
ADD(ic, mword, IFM_IEEE80211_ADHOC);
#endif
if (ic->ic_caps & IEEE80211_C_MONITOR)
ADD(ic, mword, IFM_IEEE80211_MONITOR);
}
if (ic->ic_modecaps & (1 << IEEE80211_MODE_11N)) {
mopt = IFM_IEEE80211_11N;
ADD(ic, IFM_AUTO, mopt);
#ifndef IEEE80211_STA_ONLY
if (ic->ic_caps & IEEE80211_C_IBSS)
ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_IBSS);
if (ic->ic_caps & IEEE80211_C_HOSTAP)
ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_HOSTAP);
#endif
if (ic->ic_caps & IEEE80211_C_MONITOR)
ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_MONITOR);
for (i = 0; i < IEEE80211_HT_NUM_MCS; i++) {
if (!isset(ic->ic_sup_mcs, i))
continue;
ADD(ic, IFM_IEEE80211_HT_MCS0 + i, mopt);
#ifndef IEEE80211_STA_ONLY
if (ic->ic_caps & IEEE80211_C_IBSS)
ADD(ic, IFM_IEEE80211_HT_MCS0 + i,
mopt | IFM_IEEE80211_IBSS);
if (ic->ic_caps & IEEE80211_C_HOSTAP)
ADD(ic, IFM_IEEE80211_HT_MCS0 + i,
mopt | IFM_IEEE80211_HOSTAP);
#endif
if (ic->ic_caps & IEEE80211_C_MONITOR)
ADD(ic, IFM_IEEE80211_HT_MCS0 + i,
mopt | IFM_IEEE80211_MONITOR);
}
ic->ic_flags |= IEEE80211_F_HTON; /* enable 11n by default */
ieee80211_configure_ampdu_tx(ic, 1);
}
if (ic->ic_modecaps & (1 << IEEE80211_MODE_11AC)) {
mopt = IFM_IEEE80211_11AC;
ADD(ic, IFM_AUTO, mopt);
#ifndef IEEE80211_STA_ONLY
if (ic->ic_caps & IEEE80211_C_IBSS)
ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_IBSS);
if (ic->ic_caps & IEEE80211_C_HOSTAP)
ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_HOSTAP);
#endif
if (ic->ic_caps & IEEE80211_C_MONITOR)
ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_MONITOR);
for (i = 0; i < IEEE80211_VHT_NUM_MCS; i++) {
#if 0
/* TODO: Obtain VHT MCS information from VHT CAP IE. */
if (!vht_mcs_supported)
continue;
#endif
ADD(ic, IFM_IEEE80211_VHT_MCS0 + i, mopt);
#ifndef IEEE80211_STA_ONLY
if (ic->ic_caps & IEEE80211_C_IBSS)
ADD(ic, IFM_IEEE80211_VHT_MCS0 + i,
mopt | IFM_IEEE80211_IBSS);
if (ic->ic_caps & IEEE80211_C_HOSTAP)
ADD(ic, IFM_IEEE80211_VHT_MCS0 + i,
mopt | IFM_IEEE80211_HOSTAP);
#endif
if (ic->ic_caps & IEEE80211_C_MONITOR)
ADD(ic, IFM_IEEE80211_VHT_MCS0 + i,
mopt | IFM_IEEE80211_MONITOR);
}
ic->ic_flags |= IEEE80211_F_VHTON; /* enable 11ac by default */
ic->ic_flags |= IEEE80211_F_HTON; /* 11ac implies 11n */
if (ic->ic_caps & IEEE80211_C_QOS)
ic->ic_flags |= IEEE80211_F_QOS;
}
ieee80211_media_status(ifp, &imr);
ifmedia_set(&ic->ic_media, imr.ifm_active);
if (maxrate)
ifp->if_baudrate = IF_Mbps(maxrate);
#undef ADD
}
int
ieee80211_findrate(struct ieee80211com *ic, enum ieee80211_phymode mode,
int rate)
{
#define IEEERATE(_ic,_m,_i) \
((_ic)->ic_sup_rates[_m].rs_rates[_i] & IEEE80211_RATE_VAL)
int i, nrates = ic->ic_sup_rates[mode].rs_nrates;
for (i = 0; i < nrates; i++)
if (IEEERATE(ic, mode, i) == rate)
return i;
return -1;
#undef IEEERATE
}
/*
* Handle a media change request.
*/
int
ieee80211_media_change(struct ifnet *ifp)
{
struct ieee80211com *ic = (void *)ifp;
struct ifmedia_entry *ime;
enum ieee80211_opmode newopmode;
enum ieee80211_phymode newphymode;
int i, j, newrate, error = 0;
ime = ic->ic_media.ifm_cur;
/*
* First, identify the phy mode.
*/
switch (IFM_MODE(ime->ifm_media)) {
case IFM_IEEE80211_11A:
newphymode = IEEE80211_MODE_11A;
break;
case IFM_IEEE80211_11B:
newphymode = IEEE80211_MODE_11B;
break;
case IFM_IEEE80211_11G:
newphymode = IEEE80211_MODE_11G;
break;
case IFM_IEEE80211_11N:
newphymode = IEEE80211_MODE_11N;
break;
case IFM_IEEE80211_11AC:
newphymode = IEEE80211_MODE_11AC;
break;
case IFM_AUTO:
newphymode = IEEE80211_MODE_AUTO;
break;
default:
return EINVAL;
}
/*
* Validate requested mode is available.
*/
if ((ic->ic_modecaps & (1<<newphymode)) == 0)
return EINVAL;
/*
* Next, the fixed/variable rate.
*/
i = -1;
if (IFM_SUBTYPE(ime->ifm_media) >= IFM_IEEE80211_VHT_MCS0 &&
IFM_SUBTYPE(ime->ifm_media) <= IFM_IEEE80211_VHT_MCS9) {
if ((ic->ic_modecaps & (1 << IEEE80211_MODE_11AC)) == 0)
return EINVAL;
if (newphymode != IEEE80211_MODE_AUTO &&
newphymode != IEEE80211_MODE_11AC)
return EINVAL;
i = ieee80211_media2mcs(ime->ifm_media);
/* TODO: Obtain VHT MCS information from VHT CAP IE. */
if (i == -1 /* || !vht_mcs_supported */)
return EINVAL;
} else if (IFM_SUBTYPE(ime->ifm_media) >= IFM_IEEE80211_HT_MCS0 &&
IFM_SUBTYPE(ime->ifm_media) <= IFM_IEEE80211_HT_MCS76) {
if ((ic->ic_modecaps & (1 << IEEE80211_MODE_11N)) == 0)
return EINVAL;
if (newphymode != IEEE80211_MODE_AUTO &&
newphymode != IEEE80211_MODE_11N)
return EINVAL;
i = ieee80211_media2mcs(ime->ifm_media);
if (i == -1 || isclr(ic->ic_sup_mcs, i))
return EINVAL;
} else if (IFM_SUBTYPE(ime->ifm_media) != IFM_AUTO) {
/*
* Convert media subtype to rate.
*/
newrate = ieee80211_media2rate(ime->ifm_media);
if (newrate == 0)
return EINVAL;
/*
* Check the rate table for the specified/current phy.
*/
if (newphymode == IEEE80211_MODE_AUTO) {
/*
* In autoselect mode search for the rate.
*/
for (j = IEEE80211_MODE_11A;
j < IEEE80211_MODE_MAX; j++) {
if ((ic->ic_modecaps & (1<<j)) == 0)
continue;
i = ieee80211_findrate(ic, j, newrate);
if (i != -1) {
/* lock mode too */
newphymode = j;
break;
}
}
} else {
i = ieee80211_findrate(ic, newphymode, newrate);
}
if (i == -1) /* mode/rate mismatch */
return EINVAL;
}
/* NB: defer rate setting to later */
/*
* Deduce new operating mode but don't install it just yet.
*/
#ifndef IEEE80211_STA_ONLY
if (ime->ifm_media & IFM_IEEE80211_ADHOC)
newopmode = IEEE80211_M_AHDEMO;
else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
newopmode = IEEE80211_M_HOSTAP;
else if (ime->ifm_media & IFM_IEEE80211_IBSS)
newopmode = IEEE80211_M_IBSS;
else
#endif
if (ime->ifm_media & IFM_IEEE80211_MONITOR)
newopmode = IEEE80211_M_MONITOR;
else
newopmode = IEEE80211_M_STA;
#ifndef IEEE80211_STA_ONLY
/*
* Autoselect doesn't make sense when operating as an AP.
* If no phy mode has been selected, pick one and lock it
* down so rate tables can be used in forming beacon frames
* and the like.
*/
if (newopmode == IEEE80211_M_HOSTAP &&
newphymode == IEEE80211_MODE_AUTO) {
if (ic->ic_modecaps & (1 << IEEE80211_MODE_11AC))
newphymode = IEEE80211_MODE_11AC;
else if (ic->ic_modecaps & (1 << IEEE80211_MODE_11N))
newphymode = IEEE80211_MODE_11N;
else if (ic->ic_modecaps & (1 << IEEE80211_MODE_11A))
newphymode = IEEE80211_MODE_11A;
else if (ic->ic_modecaps & (1 << IEEE80211_MODE_11G))
newphymode = IEEE80211_MODE_11G;
else
newphymode = IEEE80211_MODE_11B;
}
#endif
/*
* Handle phy mode change.
*/
if (ic->ic_curmode != newphymode) { /* change phy mode */
error = ieee80211_setmode(ic, newphymode);
if (error != 0)
return error;
error = ENETRESET;
}
/*
* Committed to changes, install the MCS/rate setting.
*/
ic->ic_flags &= ~(IEEE80211_F_HTON | IEEE80211_F_VHTON);
ieee80211_configure_ampdu_tx(ic, 0);
if ((ic->ic_modecaps & (1 << IEEE80211_MODE_11AC)) &&
(newphymode == IEEE80211_MODE_AUTO ||
newphymode == IEEE80211_MODE_11AC)) {
ic->ic_flags |= IEEE80211_F_VHTON;
ic->ic_flags |= IEEE80211_F_HTON;
ieee80211_configure_ampdu_tx(ic, 1);
} else if ((ic->ic_modecaps & (1 << IEEE80211_MODE_11N)) &&
(newphymode == IEEE80211_MODE_AUTO ||
newphymode == IEEE80211_MODE_11N)) {
ic->ic_flags |= IEEE80211_F_HTON;
ieee80211_configure_ampdu_tx(ic, 1);
}
if ((ic->ic_flags & (IEEE80211_F_HTON | IEEE80211_F_VHTON)) == 0) {
ic->ic_fixed_mcs = -1;
if (ic->ic_fixed_rate != i) {
ic->ic_fixed_rate = i; /* set fixed tx rate */
error = ENETRESET;
}
} else {
ic->ic_fixed_rate = -1;
if (ic->ic_fixed_mcs != i) {
ic->ic_fixed_mcs = i; /* set fixed mcs */
error = ENETRESET;
}
}
/*
* Handle operating mode change.
*/
if (ic->ic_opmode != newopmode) {
ic->ic_opmode = newopmode;
#ifndef IEEE80211_STA_ONLY
switch (newopmode) {
case IEEE80211_M_AHDEMO:
case IEEE80211_M_HOSTAP:
case IEEE80211_M_STA:
case IEEE80211_M_MONITOR:
ic->ic_flags &= ~IEEE80211_F_IBSSON;
break;
case IEEE80211_M_IBSS:
ic->ic_flags |= IEEE80211_F_IBSSON;
break;
}
#endif
/*
* Yech, slot time may change depending on the
* operating mode so reset it to be sure everything
* is setup appropriately.
*/
ieee80211_reset_erp(ic);
error = ENETRESET;
}
#ifdef notdef
if (error == 0)
ifp->if_baudrate = ifmedia_baudrate(ime->ifm_media);
#endif
return error;
}
void
ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
{
struct ieee80211com *ic = (void *)ifp;
const struct ieee80211_node *ni = NULL;
imr->ifm_status = IFM_AVALID;
imr->ifm_active = IFM_IEEE80211;
if (ic->ic_state == IEEE80211_S_RUN &&
(ic->ic_opmode != IEEE80211_M_STA ||
!(ic->ic_flags & IEEE80211_F_RSNON) ||
ic->ic_bss->ni_port_valid))
imr->ifm_status |= IFM_ACTIVE;
imr->ifm_active |= IFM_AUTO;
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
ni = ic->ic_bss;
if (ic->ic_curmode == IEEE80211_MODE_11N ||
ic->ic_curmode == IEEE80211_MODE_11AC)
imr->ifm_active |= ieee80211_mcs2media(ic,
ni->ni_txmcs, ic->ic_curmode);
else if (ni->ni_flags & IEEE80211_NODE_VHT) /* in MODE_AUTO */
imr->ifm_active |= ieee80211_mcs2media(ic,
ni->ni_txmcs, IEEE80211_MODE_11AC);
else if (ni->ni_flags & IEEE80211_NODE_HT) /* in MODE_AUTO */
imr->ifm_active |= ieee80211_mcs2media(ic,
ni->ni_txmcs, IEEE80211_MODE_11N);
else
/* calculate rate subtype */
imr->ifm_active |= ieee80211_rate2media(ic,
ni->ni_rates.rs_rates[ni->ni_txrate],
ic->ic_curmode);
break;
#ifndef IEEE80211_STA_ONLY
case IEEE80211_M_IBSS:
imr->ifm_active |= IFM_IEEE80211_IBSS;
break;
case IEEE80211_M_AHDEMO:
imr->ifm_active |= IFM_IEEE80211_ADHOC;
break;
case IEEE80211_M_HOSTAP:
imr->ifm_active |= IFM_IEEE80211_HOSTAP;
break;
#endif
case IEEE80211_M_MONITOR:
imr->ifm_active |= IFM_IEEE80211_MONITOR;
break;
default:
break;
}
switch (ic->ic_curmode) {
case IEEE80211_MODE_11A:
imr->ifm_active |= IFM_IEEE80211_11A;
break;
case IEEE80211_MODE_11B:
imr->ifm_active |= IFM_IEEE80211_11B;
break;
case IEEE80211_MODE_11G:
imr->ifm_active |= IFM_IEEE80211_11G;
break;
case IEEE80211_MODE_11N:
imr->ifm_active |= IFM_IEEE80211_11N;
break;
case IEEE80211_MODE_11AC:
imr->ifm_active |= IFM_IEEE80211_11AC;
break;
}
}
void
ieee80211_watchdog(struct ifnet *ifp)
{
struct ieee80211com *ic = (void *)ifp;
if (ic->ic_mgt_timer && --ic->ic_mgt_timer == 0) {
if (ic->ic_opmode == IEEE80211_M_STA &&
(ic->ic_state == IEEE80211_S_AUTH ||
ic->ic_state == IEEE80211_S_ASSOC)) {
struct ieee80211_node *ni;
if (ifp->if_flags & IFF_DEBUG)
printf("%s: %s timed out for %s\n",
ifp->if_xname,
ic->ic_state == IEEE80211_S_ASSOC ?
"association" : "authentication",
ether_sprintf(ic->ic_bss->ni_macaddr));
ni = ieee80211_find_node(ic, ic->ic_bss->ni_macaddr);
if (ni)
ni->ni_fails++;
if (ISSET(ic->ic_flags, IEEE80211_F_AUTO_JOIN))
ieee80211_deselect_ess(ic);
}
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
}
if (ic->ic_mgt_timer != 0)
ifp->if_timer = 1;
}
const struct ieee80211_rateset ieee80211_std_rateset_11a =
{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
const struct ieee80211_rateset ieee80211_std_rateset_11b =
{ 4, { 2, 4, 11, 22 } };
const struct ieee80211_rateset ieee80211_std_rateset_11g =
{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
const struct ieee80211_ht_rateset ieee80211_std_ratesets_11n[] = {
/* MCS 0-7, 20MHz channel, no SGI */
{ 8, { 13, 26, 39, 52, 78, 104, 117, 130 },
0x000000ff, 0, 7, 0, 0},
/* MCS 0-7, 20MHz channel, SGI */
{ 8, { 14, 29, 43, 58, 87, 116, 130, 144 },
0x000000ff, 0, 7, 0, 1 },
/* MCS 8-15, 20MHz channel, no SGI */
{ 8, { 26, 52, 78, 104, 156, 208, 234, 260 },
0x0000ff00, 8, 15, 0, 0 },
/* MCS 8-15, 20MHz channel, SGI */
{ 8, { 29, 58, 87, 116, 173, 231, 261, 289 },
0x0000ff00, 8, 15, 0, 1 },
/* MCS 16-23, 20MHz channel, no SGI */
{ 8, { 39, 78, 117, 156, 234, 312, 351, 390 },
0x00ff0000, 16, 23, 0, 0 },
/* MCS 16-23, 20MHz channel, SGI */
{ 8, { 43, 87, 130, 173, 260, 347, 390, 433 },
0x00ff0000, 16, 23, 0, 1 },
/* MCS 24-31, 20MHz channel, no SGI */
{ 8, { 52, 104, 156, 208, 312, 416, 468, 520 },
0xff000000, 24, 31, 0, 0 },
/* MCS 24-31, 20MHz channel, SGI */
{ 8, { 58, 116, 173, 231, 347, 462, 520, 578 },
0xff000000, 24, 31, 0, 1 },
/* MCS 0-7, 40MHz channel, no SGI */
{ 8, { 27, 54, 81, 108, 162, 216, 243, 270 },
0x000000ff, 0, 7, 1, 0 },
/* MCS 0-7, 40MHz channel, SGI */
{ 8, { 30, 60, 90, 120, 180, 240, 270, 300 },
0x000000ff, 0, 7, 1, 1 },
/* MCS 8-15, 40MHz channel, no SGI */
{ 8, { 54, 108, 192, 216, 324, 432, 486, 540 },
0x0000ff00, 8, 15, 1, 0 },
/* MCS 8-15, 40MHz channel, SGI */
{ 8, { 60, 120, 180, 240, 360, 480, 540, 600 },
0x0000ff00, 8, 15, 1, 1 },
/* MCS 16-23, 40MHz channel, no SGI */
{ 8, { 81, 162, 243, 324, 486, 648, 729, 810 },
0x00ff0000, 16, 23, 1, 0 },
/* MCS 16-23, 40MHz channel, SGI */
{ 8, { 90, 180, 270, 360, 540, 720, 810, 900 },
0x00ff0000, 16, 23, 1, 1 },
/* MCS 24-31, 40MHz channel, no SGI */
{ 8, { 108, 216, 324, 432, 324, 864, 972, 1080 },
0xff000000, 24, 31, 1, 0 },
/* MCS 24-31, 40MHz channel, SGI */
{ 8, { 120, 240, 360, 480, 520, 960, 1080, 1200 },
0xff000000, 24, 31, 1, 1 },
};
const struct ieee80211_vht_rateset ieee80211_std_ratesets_11ac[] = {
/* MCS 0-8 (MCS 9 N/A), 1 SS, 20MHz channel, no SGI */
{ 0, 9, { 13, 26, 39, 52, 78, 104, 117, 130, 156 },
1, 0, 0, 0 },
/* MCS 0-8 (MCS 9 N/A), 1 SS, 20MHz channel, SGI */
{ 1, 9, { 14, 29, 43, 58, 87, 116, 130, 144, 174 },
1, 0, 0, 1 },
/* MCS 0-8 (MCS 9 N/A), 2 SS, 20MHz channel, no SGI */
{ 2, 9, { 26, 52, 78, 104, 156, 208, 234, 260, 312 },
2, 0, 0, 0 },
/* MCS 0-8 (MCS 9 N/A), 2 SS, 20MHz channel, SGI */
{ 3, 9, { 29, 58, 87, 116, 173, 231, 261, 289, 347 },
2, 0, 0, 1 },
/* MCS 0-9, 1 SS, 40MHz channel, no SGI */
{ 4, 10, { 27, 54, 81, 108, 162, 216, 243, 270, 324, 360 },
1, 1, 0, 0 },
/* MCS 0-9, 1 SS, 40MHz channel, SGI */
{ 5, 10, { 30, 60, 90, 120, 180, 240, 270, 300, 360, 400 },
1, 1, 0, 1 },
/* MCS 0-9, 2 SS, 40MHz channel, no SGI */
{ 6, 10, { 54, 108, 162, 216, 324, 432, 486, 540, 648, 720 },
2, 1, 0, 0 },
/* MCS 0-9, 2 SS, 40MHz channel, SGI */
{ 7, 10, { 60, 120, 180, 240, 360, 480, 540, 600, 720, 800 },
2, 1, 0, 1 },
/* MCS 0-9, 1 SS, 80MHz channel, no SGI */
{ 8, 10, { 59, 117, 176, 234, 351, 468, 527, 585, 702, 780 },
1, 0, 1, 0 },
/* MCS 0-9, 1 SS, 80MHz channel, SGI */
{ 9, 10, { 65, 130, 195, 260, 390, 520, 585, 650, 780, 867 },
1, 0, 1, 1 },
/* MCS 0-9, 2 SS, 80MHz channel, no SGI */
{ 10, 10, { 117, 234, 351, 468, 702, 936, 1053, 1404, 1560 },
2, 0, 1, 0 },
/* MCS 0-9, 2 SS, 80MHz channel, SGI */
{ 11, 10, { 130, 260, 390, 520, 780, 1040, 1170, 1300, 1560, 1734 },
2, 0, 1, 1 },
};
/*
* Mark the basic rates for the 11g rate table based on the
* operating mode. For real 11g we mark all the 11b rates
* and 6, 12, and 24 OFDM. For 11b compatibility we mark only
* 11b rates. There's also a pseudo 11a-mode used to mark only
* the basic OFDM rates.
*/
void
ieee80211_setbasicrates(struct ieee80211com *ic)
{
static const struct ieee80211_rateset basic[] = {
{ 0 }, /* IEEE80211_MODE_AUTO */
{ 3, { 12, 24, 48 } }, /* IEEE80211_MODE_11A */
{ 2, { 2, 4 } }, /* IEEE80211_MODE_11B */
{ 4, { 2, 4, 11, 22 } }, /* IEEE80211_MODE_11G */
{ 0 }, /* IEEE80211_MODE_11N */
{ 0 }, /* IEEE80211_MODE_11AC */
};
enum ieee80211_phymode mode;
struct ieee80211_rateset *rs;
int i, j;
for (mode = 0; mode < IEEE80211_MODE_MAX; mode++) {
rs = &ic->ic_sup_rates[mode];
for (i = 0; i < rs->rs_nrates; i++) {
rs->rs_rates[i] &= IEEE80211_RATE_VAL;
for (j = 0; j < basic[mode].rs_nrates; j++) {
if (basic[mode].rs_rates[j] ==
rs->rs_rates[i]) {
rs->rs_rates[i] |=
IEEE80211_RATE_BASIC;
break;
}
}
}
}
}
int
ieee80211_min_basic_rate(struct ieee80211com *ic)
{
struct ieee80211_rateset *rs = &ic->ic_bss->ni_rates;
int i, min, rval;
min = -1;
for (i = 0; i < rs->rs_nrates; i++) {
if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) == 0)
continue;
rval = (rs->rs_rates[i] & IEEE80211_RATE_VAL);
if (min == -1)
min = rval;
else if (rval < min)
min = rval;
}
/* Default to 1 Mbit/s on 2GHz and 6 Mbit/s on 5GHz. */
if (min == -1)
min = IEEE80211_IS_CHAN_2GHZ(ic->ic_bss->ni_chan) ? 2 : 12;
return min;
}
int
ieee80211_max_basic_rate(struct ieee80211com *ic)
{
struct ieee80211_rateset *rs = &ic->ic_bss->ni_rates;
int i, max, rval;
/* Default to 1 Mbit/s on 2GHz and 6 Mbit/s on 5GHz. */
max = IEEE80211_IS_CHAN_2GHZ(ic->ic_bss->ni_chan) ? 2 : 12;
for (i = 0; i < rs->rs_nrates; i++) {
if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) == 0)
continue;
rval = (rs->rs_rates[i] & IEEE80211_RATE_VAL);
if (rval > max)
max = rval;
}
return max;
}
/*
* Set the current phy mode and recalculate the active channel
* set based on the available channels for this mode. Also
* select a new default/current channel if the current one is
* inappropriate for this mode.
*/
int
ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
{
struct ifnet *ifp = &ic->ic_if;
static const u_int chanflags[] = {
0, /* IEEE80211_MODE_AUTO */
IEEE80211_CHAN_A, /* IEEE80211_MODE_11A */
IEEE80211_CHAN_B, /* IEEE80211_MODE_11B */
IEEE80211_CHAN_PUREG, /* IEEE80211_MODE_11G */
IEEE80211_CHAN_HT, /* IEEE80211_MODE_11N */
IEEE80211_CHAN_VHT, /* IEEE80211_MODE_11AC */
};
const struct ieee80211_channel *c;
u_int modeflags;
int i;
/* validate new mode */
if ((ic->ic_modecaps & (1<<mode)) == 0) {
DPRINTF(("mode %u not supported (caps 0x%x)\n",
mode, ic->ic_modecaps));
return EINVAL;
}
/*
* Verify at least one channel is present in the available
* channel list before committing to the new mode.
*/
if (mode >= nitems(chanflags))
panic("%s: unexpected mode %u", __func__, mode);
modeflags = chanflags[mode];
for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
c = &ic->ic_channels[i];
if (mode == IEEE80211_MODE_AUTO) {
if (c->ic_flags != 0)
break;
} else if ((c->ic_flags & modeflags) == modeflags)
break;
}
if (i > IEEE80211_CHAN_MAX) {
DPRINTF(("no channels found for mode %u\n", mode));
return EINVAL;
}
/*
* Calculate the active channel set.
*/
memset(ic->ic_chan_active, 0, sizeof(ic->ic_chan_active));
for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
c = &ic->ic_channels[i];
if (mode == IEEE80211_MODE_AUTO) {
if (c->ic_flags != 0)
setbit(ic->ic_chan_active, i);
} else if ((c->ic_flags & modeflags) == modeflags)
setbit(ic->ic_chan_active, i);
}
/*
* If no current/default channel is setup or the current
* channel is wrong for the mode then pick the first
* available channel from the active list. This is likely
* not the right one.
*/
if (ic->ic_ibss_chan == NULL || isclr(ic->ic_chan_active,
ieee80211_chan2ieee(ic, ic->ic_ibss_chan))) {
for (i = 0; i <= IEEE80211_CHAN_MAX; i++)
if (isset(ic->ic_chan_active, i)) {
ic->ic_ibss_chan = &ic->ic_channels[i];
break;
}
if ((ic->ic_ibss_chan == NULL) || isclr(ic->ic_chan_active,
ieee80211_chan2ieee(ic, ic->ic_ibss_chan)))
panic("Bad IBSS channel %u",
ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
}
/*
* Reset the scan state for the new mode. This avoids scanning
* of invalid channels, ie. 5GHz channels in 11b mode.
*/
ieee80211_reset_scan(ifp);
ic->ic_curmode = mode;
ieee80211_reset_erp(ic); /* reset ERP state */
return 0;
}
enum ieee80211_phymode
ieee80211_next_mode(struct ifnet *ifp)
{
struct ieee80211com *ic = (void *)ifp;
uint16_t mode;
/*
* Indicate a wrap-around if we're running in a fixed, user-specified
* phy mode.
*/
if (IFM_SUBTYPE(ic->ic_media.ifm_cur->ifm_media) != IFM_AUTO)
return (IEEE80211_MODE_AUTO);
/*
* Always scan in AUTO mode if the driver scans all bands.
* The current mode might have changed during association
* so we must reset it here.
*/
if (ic->ic_caps & IEEE80211_C_SCANALLBAND) {
ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
return (ic->ic_curmode);
}
/*
* Get the next supported mode; effectively, this alternates between
* the 11a (5GHz) and 11b/g (2GHz) modes. What matters is that each
* supported channel gets scanned.
*/
for (mode = ic->ic_curmode + 1; mode <= IEEE80211_MODE_MAX; mode++) {
/*
* Skip over 11n mode. Its set of channels is the superset
* of all channels supported by the other modes.
*/
if (mode == IEEE80211_MODE_11N)
continue;
/*
* Skip over 11ac mode. Its set of channels is the set
* of all channels supported by 11a.
*/
if (mode == IEEE80211_MODE_11AC)
continue;
/* Start over if we have already tried all modes. */
if (mode == IEEE80211_MODE_MAX) {
mode = IEEE80211_MODE_AUTO;
break;
}
if (ic->ic_modecaps & (1 << mode))
break;
}
if (mode != ic->ic_curmode)
ieee80211_setmode(ic, mode);
return (ic->ic_curmode);
}
/*
* Return the phy mode for with the specified channel so the
* caller can select a rate set. This is problematic and the
* work here assumes how things work elsewhere in this code.
*
* Because the result of this function is ultimately used to select a
* rate from the rate set of the returned mode, it must return one of the
* legacy 11a/b/g modes; 11n and 11ac modes use MCS instead of rate sets.
*/
enum ieee80211_phymode
ieee80211_chan2mode(struct ieee80211com *ic,
const struct ieee80211_channel *chan)
{
/*
* Are we fixed in 11a/b/g mode?
* NB: this assumes the channel would not be supplied to us
* unless it was already compatible with the current mode.
*/
if (ic->ic_curmode == IEEE80211_MODE_11A ||
ic->ic_curmode == IEEE80211_MODE_11B ||
ic->ic_curmode == IEEE80211_MODE_11G)
return ic->ic_curmode;
/* If no channel was provided, return the most suitable legacy mode. */
if (chan == IEEE80211_CHAN_ANYC) {
switch (ic->ic_curmode) {
case IEEE80211_MODE_AUTO:
case IEEE80211_MODE_11N:
if (ic->ic_modecaps & (1 << IEEE80211_MODE_11A))
return IEEE80211_MODE_11A;
if (ic->ic_modecaps & (1 << IEEE80211_MODE_11G))
return IEEE80211_MODE_11G;
return IEEE80211_MODE_11B;
case IEEE80211_MODE_11AC:
return IEEE80211_MODE_11A;
default:
return ic->ic_curmode;
}
}
/* Deduce a legacy mode based on the channel characteristics. */
if (IEEE80211_IS_CHAN_5GHZ(chan))
return IEEE80211_MODE_11A;
else if (chan->ic_flags & (IEEE80211_CHAN_OFDM|IEEE80211_CHAN_DYN))
return IEEE80211_MODE_11G;
else
return IEEE80211_MODE_11B;
}
/*
* Convert IEEE80211 MCS index to ifmedia subtype.
*/
uint64_t
ieee80211_mcs2media(struct ieee80211com *ic, int mcs,
enum ieee80211_phymode mode)
{
switch (mode) {
case IEEE80211_MODE_11A:
case IEEE80211_MODE_11B:
case IEEE80211_MODE_11G:
/* these modes use rates, not MCS */
panic("%s: unexpected mode %d", __func__, mode);
break;
case IEEE80211_MODE_11N:
if (mcs >= 0 && mcs < IEEE80211_HT_NUM_MCS)
return (IFM_IEEE80211_11N |
(IFM_IEEE80211_HT_MCS0 + mcs));
break;
case IEEE80211_MODE_11AC:
if (mcs >= 0 && mcs < IEEE80211_VHT_NUM_MCS)
return (IFM_IEEE80211_11AC |
(IFM_IEEE80211_VHT_MCS0 + mcs));
break;
case IEEE80211_MODE_AUTO:
break;
}
return IFM_AUTO;
}
/*
* Convert ifmedia subtype to IEEE80211 MCS index.
*/
int
ieee80211_media2mcs(uint64_t mword)
{
uint64_t subtype;
subtype = IFM_SUBTYPE(mword);
if (subtype == IFM_AUTO)
return -1;
else if (subtype == IFM_MANUAL || subtype == IFM_NONE)
return 0;
if (subtype >= IFM_IEEE80211_HT_MCS0 &&
subtype <= IFM_IEEE80211_HT_MCS76)
return (int)(subtype - IFM_IEEE80211_HT_MCS0);
if (subtype >= IFM_IEEE80211_VHT_MCS0 &&
subtype <= IFM_IEEE80211_VHT_MCS9)
return (int)(subtype - IFM_IEEE80211_VHT_MCS0);
return -1;
}
/*
* convert IEEE80211 rate value to ifmedia subtype.
* ieee80211 rate is in unit of 0.5Mbps.
*/
uint64_t
ieee80211_rate2media(struct ieee80211com *ic, int rate,
enum ieee80211_phymode mode)
{
static const struct {
uint64_t m; /* rate + mode */
uint64_t r; /* if_media rate */
} rates[] = {
{ 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
{ 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
{ 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
{ 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
{ 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
{ 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
{ 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
{ 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
{ 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
{ 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
{ 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
{ 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
{ 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
{ 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
{ 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
{ 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
{ 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
{ 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
{ 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
{ 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
{ 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
{ 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
{ 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
/* NB: OFDM72 doesn't really exist so we don't handle it */
};
uint64_t mask;
int i;
mask = rate & IEEE80211_RATE_VAL;
switch (mode) {
case IEEE80211_MODE_11A:
mask |= IFM_IEEE80211_11A;
break;
case IEEE80211_MODE_11B:
mask |= IFM_IEEE80211_11B;
break;
case IEEE80211_MODE_AUTO:
/* NB: hack, 11g matches both 11b+11a rates */
/* FALLTHROUGH */
case IEEE80211_MODE_11G:
mask |= IFM_IEEE80211_11G;
break;
case IEEE80211_MODE_11N:
case IEEE80211_MODE_11AC:
/* 11n/11ac uses MCS, not rates. */
panic("%s: unexpected mode %d", __func__, mode);
break;
}
for (i = 0; i < nitems(rates); i++)
if (rates[i].m == mask)
return rates[i].r;
return IFM_AUTO;
}
int
ieee80211_media2rate(uint64_t mword)
{
int i;
static const struct {
uint64_t subtype;
int rate;
} ieeerates[] = {
{ IFM_AUTO, -1 },
{ IFM_MANUAL, 0 },
{ IFM_NONE, 0 },
{ IFM_IEEE80211_DS1, 2 },
{ IFM_IEEE80211_DS2, 4 },
{ IFM_IEEE80211_DS5, 11 },
{ IFM_IEEE80211_DS11, 22 },
{ IFM_IEEE80211_DS22, 44 },
{ IFM_IEEE80211_OFDM6, 12 },
{ IFM_IEEE80211_OFDM9, 18 },
{ IFM_IEEE80211_OFDM12, 24 },
{ IFM_IEEE80211_OFDM18, 36 },
{ IFM_IEEE80211_OFDM24, 48 },
{ IFM_IEEE80211_OFDM36, 72 },
{ IFM_IEEE80211_OFDM48, 96 },
{ IFM_IEEE80211_OFDM54, 108 },
{ IFM_IEEE80211_OFDM72, 144 },
};
for (i = 0; i < nitems(ieeerates); i++) {
if (ieeerates[i].subtype == IFM_SUBTYPE(mword))
return ieeerates[i].rate;
}
return 0;
}
/*
* Convert bit rate (in 0.5Mbps units) to PLCP signal (R4-R1) and vice versa.
*/
u_int8_t
ieee80211_rate2plcp(u_int8_t rate, enum ieee80211_phymode mode)
{
rate &= IEEE80211_RATE_VAL;
if (mode == IEEE80211_MODE_11B) {
/* IEEE Std 802.11b-1999 page 15, subclause 18.2.3.3 */
switch (rate) {
case 2: return 10;
case 4: return 20;
case 11: return 55;
case 22: return 110;
/* IEEE Std 802.11g-2003 page 19, subclause 19.3.2.1 */
case 44: return 220;
}
} else if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11A) {
/* IEEE Std 802.11a-1999 page 14, subclause 17.3.4.1 */
switch (rate) {
case 12: return 0x0b;
case 18: return 0x0f;
case 24: return 0x0a;
case 36: return 0x0e;
case 48: return 0x09;
case 72: return 0x0d;
case 96: return 0x08;
case 108: return 0x0c;
}
} else
panic("%s: unexpected mode %u", __func__, mode);
DPRINTF(("unsupported rate %u\n", rate));
return 0;
}
u_int8_t
ieee80211_plcp2rate(u_int8_t plcp, enum ieee80211_phymode mode)
{
if (mode == IEEE80211_MODE_11B) {
/* IEEE Std 802.11g-2003 page 19, subclause 19.3.2.1 */
switch (plcp) {
case 10: return 2;
case 20: return 4;
case 55: return 11;
case 110: return 22;
/* IEEE Std 802.11g-2003 page 19, subclause 19.3.2.1 */
case 220: return 44;
}
} else if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11A) {
/* IEEE Std 802.11a-1999 page 14, subclause 17.3.4.1 */
switch (plcp) {
case 0x0b: return 12;
case 0x0f: return 18;
case 0x0a: return 24;
case 0x0e: return 36;
case 0x09: return 48;
case 0x0d: return 72;
case 0x08: return 96;
case 0x0c: return 108;
}
} else
panic("%s: unexpected mode %u", __func__, mode);
DPRINTF(("unsupported plcp %u\n", plcp));
return 0;
}