src/sys/net80211/ieee80211_ra.c

745 lines
20 KiB
C

/* $OpenBSD: ieee80211_ra.c,v 1.5 2022/03/19 10:28:44 stsp Exp $ */
/*
* Copyright (c) 2021 Christian Ehrhardt <ehrhardt@genua.de>
* Copyright (c) 2016, 2021 Stefan Sperling <stsp@openbsd.org>
* Copyright (c) 2016 Theo Buehler <tb@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_media.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_ra.h>
int ieee80211_ra_next_intra_rate(struct ieee80211_ra_node *,
struct ieee80211_node *);
const struct ieee80211_ht_rateset * ieee80211_ra_next_rateset(
struct ieee80211_ra_node *, struct ieee80211_node *);
int ieee80211_ra_best_mcs_in_rateset(struct ieee80211_ra_node *,
const struct ieee80211_ht_rateset *);
void ieee80211_ra_probe_next_rateset(struct ieee80211_ra_node *,
struct ieee80211_node *, const struct ieee80211_ht_rateset *);
int ieee80211_ra_next_mcs(struct ieee80211_ra_node *,
struct ieee80211_node *);
void ieee80211_ra_probe_done(struct ieee80211_ra_node *);
int ieee80211_ra_intra_mode_ra_finished(
struct ieee80211_ra_node *, struct ieee80211_node *);
void ieee80211_ra_trigger_next_rateset(struct ieee80211_ra_node *,
struct ieee80211_node *);
int ieee80211_ra_inter_mode_ra_finished(
struct ieee80211_ra_node *, struct ieee80211_node *);
int ieee80211_ra_best_rate(struct ieee80211_ra_node *,
struct ieee80211_node *);
void ieee80211_ra_probe_next_rate(struct ieee80211_ra_node *,
struct ieee80211_node *);
int ieee80211_ra_valid_tx_mcs(struct ieee80211com *, int);
uint32_t ieee80211_ra_valid_rates(struct ieee80211com *,
struct ieee80211_node *);
int ieee80211_ra_probe_valid(struct ieee80211_ra_goodput_stats *);
/* We use fixed point arithmetic with 64 bit integers. */
#define RA_FP_SHIFT 21
#define RA_FP_INT(x) (x ## ULL << RA_FP_SHIFT) /* the integer x */
#define RA_FP_1 RA_FP_INT(1)
/* Multiply two fixed point numbers. */
#define RA_FP_MUL(a, b) \
(((a) * (b)) >> RA_FP_SHIFT)
/* Divide two fixed point numbers. */
#define RA_FP_DIV(a, b) \
(b == 0 ? (uint64_t)-1 : (((a) << RA_FP_SHIFT) / (b)))
#ifdef RA_DEBUG
#define DPRINTF(x) do { if (ra_debug > 0) printf x; } while (0)
#define DPRINTFN(n, x) do { if (ra_debug >= (n)) printf x; } while (0)
int ra_debug = 0;
#else
#define DPRINTF(x) do { ; } while (0)
#define DPRINTFN(n, x) do { ; } while (0)
#endif
#ifdef RA_DEBUG
void
ra_fixedp_split(uint32_t *i, uint32_t *f, uint64_t fp)
{
uint64_t tmp;
/* integer part */
*i = (fp >> RA_FP_SHIFT);
/* fractional part */
tmp = (fp & ((uint64_t)-1 >> (64 - RA_FP_SHIFT)));
tmp *= 100;
*f = (uint32_t)(tmp >> RA_FP_SHIFT);
}
char *
ra_fp_sprintf(uint64_t fp)
{
uint32_t i, f;
static char buf[64];
int ret;
ra_fixedp_split(&i, &f, fp);
ret = snprintf(buf, sizeof(buf), "%u.%02u", i, f);
if (ret == -1 || ret >= sizeof(buf))
return "ERR";
return buf;
}
#endif /* RA_DEBUG */
const struct ieee80211_ht_rateset *
ieee80211_ra_get_ht_rateset(int mcs, int chan40, int sgi)
{
const struct ieee80211_ht_rateset *rs;
int i;
for (i = 0; i < IEEE80211_HT_NUM_RATESETS; i++) {
rs = &ieee80211_std_ratesets_11n[i];
if (chan40 == rs->chan40 && sgi == rs->sgi &&
mcs >= rs->min_mcs && mcs <= rs->max_mcs)
return rs;
}
panic("MCS %d is not part of any rateset", mcs);
}
int
ieee80211_ra_use_ht_sgi(struct ieee80211_node *ni)
{
if ((ni->ni_chan->ic_flags & IEEE80211_CHAN_40MHZ) &&
ieee80211_node_supports_ht_chan40(ni)) {
if (ni->ni_flags & IEEE80211_NODE_HT_SGI40)
return 1;
} else if (ni->ni_flags & IEEE80211_NODE_HT_SGI20)
return 1;
return 0;
}
/*
* Update goodput statistics.
*/
uint64_t
ieee80211_ra_get_txrate(int mcs, int chan40, int sgi)
{
const struct ieee80211_ht_rateset *rs;
uint64_t txrate;
rs = ieee80211_ra_get_ht_rateset(mcs, chan40, sgi);
txrate = rs->rates[mcs - rs->min_mcs];
txrate <<= RA_FP_SHIFT; /* convert to fixed-point */
txrate *= 500; /* convert to kbit/s */
txrate /= 1000; /* convert to mbit/s */
return txrate;
}
/*
* Rate selection.
*/
/* A rate's goodput has to be at least this much larger to be "better". */
#define IEEE80211_RA_RATE_THRESHOLD (RA_FP_1 / 64) /* ~ 0.015 */
int
ieee80211_ra_next_lower_intra_rate(struct ieee80211_ra_node *rn,
struct ieee80211_node *ni)
{
const struct ieee80211_ht_rateset *rs;
int i, next;
rs = ieee80211_ra_get_ht_rateset(ni->ni_txmcs,
ieee80211_node_supports_ht_chan40(ni), ieee80211_ra_use_ht_sgi(ni));
if (ni->ni_txmcs == rs->min_mcs)
return rs->min_mcs;
next = ni->ni_txmcs;
for (i = rs->nrates - 1; i >= 0; i--) {
if ((rn->valid_rates & (1 << (i + rs->min_mcs))) == 0)
continue;
if (i + rs->min_mcs < ni->ni_txmcs) {
next = i + rs->min_mcs;
break;
}
}
return next;
}
int
ieee80211_ra_next_intra_rate(struct ieee80211_ra_node *rn,
struct ieee80211_node *ni)
{
const struct ieee80211_ht_rateset *rs;
int i, next;
rs = ieee80211_ra_get_ht_rateset(ni->ni_txmcs,
ieee80211_node_supports_ht_chan40(ni), ieee80211_ra_use_ht_sgi(ni));
if (ni->ni_txmcs == rs->max_mcs)
return rs->max_mcs;
next = ni->ni_txmcs;
for (i = 0; i < rs->nrates; i++) {
if ((rn->valid_rates & (1 << (i + rs->min_mcs))) == 0)
continue;
if (i + rs->min_mcs > ni->ni_txmcs) {
next = i + rs->min_mcs;
break;
}
}
return next;
}
const struct ieee80211_ht_rateset *
ieee80211_ra_next_rateset(struct ieee80211_ra_node *rn,
struct ieee80211_node *ni)
{
const struct ieee80211_ht_rateset *rs, *rsnext;
int next;
int chan40 = ieee80211_node_supports_ht_chan40(ni);
int sgi = ieee80211_ra_use_ht_sgi(ni);
int mcs = ni->ni_txmcs;
rs = ieee80211_ra_get_ht_rateset(mcs, chan40, sgi);
if (rn->probing & IEEE80211_RA_PROBING_UP) {
if (rs->max_mcs == 7) { /* MCS 0-7 */
if (chan40)
next = sgi ? IEEE80211_HT_RATESET_MIMO2_SGI40 :
IEEE80211_HT_RATESET_MIMO2_40;
else
next = sgi ? IEEE80211_HT_RATESET_MIMO2_SGI :
IEEE80211_HT_RATESET_MIMO2;
} else if (rs->max_mcs == 15) { /* MCS 8-15 */
if (chan40)
next = sgi ? IEEE80211_HT_RATESET_MIMO3_SGI40 :
IEEE80211_HT_RATESET_MIMO3_40;
else
next = sgi ? IEEE80211_HT_RATESET_MIMO3_SGI :
IEEE80211_HT_RATESET_MIMO3;
} else if (rs->max_mcs == 23) { /* MCS 16-23 */
if (chan40)
next = sgi ? IEEE80211_HT_RATESET_MIMO4_SGI40 :
IEEE80211_HT_RATESET_MIMO4_40;
else
next = sgi ? IEEE80211_HT_RATESET_MIMO4_SGI :
IEEE80211_HT_RATESET_MIMO4;
} else /* MCS 24-31 */
return NULL;
} else if (rn->probing & IEEE80211_RA_PROBING_DOWN) {
if (rs->min_mcs == 24) { /* MCS 24-31 */
if (chan40)
next = sgi ? IEEE80211_HT_RATESET_MIMO3_SGI40 :
IEEE80211_HT_RATESET_MIMO3_40;
else
next = sgi ? IEEE80211_HT_RATESET_MIMO3_SGI :
IEEE80211_HT_RATESET_MIMO3;
} else if (rs->min_mcs == 16) { /* MCS 16-23 */
if (chan40)
next = sgi ? IEEE80211_HT_RATESET_MIMO2_SGI40 :
IEEE80211_HT_RATESET_MIMO2_40;
else
next = sgi ? IEEE80211_HT_RATESET_MIMO2_SGI :
IEEE80211_HT_RATESET_MIMO2;
} else if (rs->min_mcs == 8) { /* MCS 8-15 */
if (chan40)
next = sgi ? IEEE80211_HT_RATESET_SISO_SGI40 :
IEEE80211_HT_RATESET_SISO_40;
else
next = sgi ? IEEE80211_HT_RATESET_SISO_SGI :
IEEE80211_HT_RATESET_SISO;
} else /* MCS 0-7 */
return NULL;
} else
panic("%s: invalid probing mode %d", __func__, rn->probing);
rsnext = &ieee80211_std_ratesets_11n[next];
if ((rsnext->mcs_mask & rn->valid_rates) == 0)
return NULL;
return rsnext;
}
int
ieee80211_ra_best_mcs_in_rateset(struct ieee80211_ra_node *rn,
const struct ieee80211_ht_rateset *rs)
{
uint64_t gmax = 0;
int i, best_mcs = rs->min_mcs;
for (i = 0; i < rs->nrates; i++) {
int mcs = rs->min_mcs + i;
struct ieee80211_ra_goodput_stats *g = &rn->g[mcs];
if (((1 << mcs) & rn->valid_rates) == 0)
continue;
if (g->measured > gmax + IEEE80211_RA_RATE_THRESHOLD) {
gmax = g->measured;
best_mcs = mcs;
}
}
return best_mcs;
}
void
ieee80211_ra_probe_next_rateset(struct ieee80211_ra_node *rn,
struct ieee80211_node *ni, const struct ieee80211_ht_rateset *rsnext)
{
const struct ieee80211_ht_rateset *rs;
struct ieee80211_ra_goodput_stats *g;
int best_mcs, i;
/* Find most recently measured best MCS from the current rateset. */
rs = ieee80211_ra_get_ht_rateset(ni->ni_txmcs,
ieee80211_node_supports_ht_chan40(ni), ieee80211_ra_use_ht_sgi(ni));
best_mcs = ieee80211_ra_best_mcs_in_rateset(rn, rs);
/* Switch to the next rateset. */
ni->ni_txmcs = rsnext->min_mcs;
if ((rn->valid_rates & (1 << rsnext->min_mcs)) == 0)
ni->ni_txmcs = ieee80211_ra_next_intra_rate(rn, ni);
/* Select the lowest rate from the next rateset with loss-free
* goodput close to the current best measurement. */
g = &rn->g[best_mcs];
for (i = 0; i < rsnext->nrates; i++) {
int mcs = rsnext->min_mcs + i;
uint64_t txrate = rsnext->rates[i];
if ((rn->valid_rates & (1 << mcs)) == 0)
continue;
txrate = txrate * 500; /* convert to kbit/s */
txrate <<= RA_FP_SHIFT; /* convert to fixed-point */
txrate /= 1000; /* convert to mbit/s */
if (txrate > g->measured + IEEE80211_RA_RATE_THRESHOLD) {
ni->ni_txmcs = mcs;
break;
}
}
/* If all rates are lower the maximum rate is the closest match. */
if (i == rsnext->nrates)
ni->ni_txmcs = rsnext->max_mcs;
/* Add rates from the next rateset as candidates. */
rn->candidate_rates |= (1 << ni->ni_txmcs);
if (rn->probing & IEEE80211_RA_PROBING_UP) {
rn->candidate_rates |=
(1 << ieee80211_ra_next_intra_rate(rn, ni));
} else if (rn->probing & IEEE80211_RA_PROBING_DOWN) {
rn->candidate_rates |=
(1 << ieee80211_ra_next_lower_intra_rate(rn, ni));
} else
panic("%s: invalid probing mode %d", __func__, rn->probing);
}
int
ieee80211_ra_next_mcs(struct ieee80211_ra_node *rn,
struct ieee80211_node *ni)
{
int next;
if (rn->probing & IEEE80211_RA_PROBING_DOWN)
next = ieee80211_ra_next_lower_intra_rate(rn, ni);
else if (rn->probing & IEEE80211_RA_PROBING_UP)
next = ieee80211_ra_next_intra_rate(rn, ni);
else
panic("%s: invalid probing mode %d", __func__, rn->probing);
return next;
}
void
ieee80211_ra_probe_clear(struct ieee80211_ra_node *rn,
struct ieee80211_node *ni)
{
struct ieee80211_ra_goodput_stats *g = &rn->g[ni->ni_txmcs];
g->nprobe_pkts = 0;
g->nprobe_fail = 0;
}
void
ieee80211_ra_probe_done(struct ieee80211_ra_node *rn)
{
rn->probing = IEEE80211_RA_NOT_PROBING;
rn->probed_rates = 0;
rn->valid_probes = 0;
rn->candidate_rates = 0;
}
int
ieee80211_ra_intra_mode_ra_finished(struct ieee80211_ra_node *rn,
struct ieee80211_node *ni)
{
const struct ieee80211_ht_rateset *rs;
struct ieee80211_ra_goodput_stats *g = &rn->g[ni->ni_txmcs];
int next_mcs, best_mcs;
uint64_t next_rate;
int chan40 = ieee80211_node_supports_ht_chan40(ni);
int sgi = ieee80211_ra_use_ht_sgi(ni);
rn->probed_rates = (rn->probed_rates | (1 << ni->ni_txmcs));
/* Check if the min/max MCS in this rateset has been probed. */
rs = ieee80211_ra_get_ht_rateset(ni->ni_txmcs, chan40, sgi);
if (rn->probing & IEEE80211_RA_PROBING_DOWN) {
if (ni->ni_txmcs == rs->min_mcs ||
rn->probed_rates & (1 << rs->min_mcs)) {
ieee80211_ra_trigger_next_rateset(rn, ni);
return 1;
}
} else if (rn->probing & IEEE80211_RA_PROBING_UP) {
if (ni->ni_txmcs == rs->max_mcs ||
rn->probed_rates & (1 << rs->max_mcs)) {
ieee80211_ra_trigger_next_rateset(rn, ni);
return 1;
}
}
/*
* Check if the measured goodput is loss-free and better than the
* loss-free goodput of the candidate rate.
*/
next_mcs = ieee80211_ra_next_mcs(rn, ni);
if (next_mcs == ni->ni_txmcs) {
ieee80211_ra_trigger_next_rateset(rn, ni);
return 1;
}
next_rate = ieee80211_ra_get_txrate(next_mcs, chan40, sgi);
if (g->loss == 0 &&
g->measured >= next_rate + IEEE80211_RA_RATE_THRESHOLD) {
ieee80211_ra_trigger_next_rateset(rn, ni);
return 1;
}
/* Check if we had a better measurement at a previously probed MCS. */
best_mcs = ieee80211_ra_best_mcs_in_rateset(rn, rs);
if (best_mcs != ni->ni_txmcs && (rn->probed_rates & (1 << best_mcs))) {
if ((rn->probing & IEEE80211_RA_PROBING_UP) &&
best_mcs < ni->ni_txmcs) {
ieee80211_ra_trigger_next_rateset(rn, ni);
return 1;
}
if ((rn->probing & IEEE80211_RA_PROBING_DOWN) &&
best_mcs > ni->ni_txmcs) {
ieee80211_ra_trigger_next_rateset(rn, ni);
return 1;
}
}
/* Check if all rates in the set of candidate rates have been probed. */
if ((rn->candidate_rates & rn->probed_rates) == rn->candidate_rates) {
/* Remain in the current rateset until above checks trigger. */
rn->probing &= ~IEEE80211_RA_PROBING_INTER;
return 1;
}
return 0;
}
void
ieee80211_ra_trigger_next_rateset(struct ieee80211_ra_node *rn,
struct ieee80211_node *ni)
{
const struct ieee80211_ht_rateset *rsnext;
rsnext = ieee80211_ra_next_rateset(rn, ni);
if (rsnext) {
ieee80211_ra_probe_next_rateset(rn, ni, rsnext);
rn->probing |= IEEE80211_RA_PROBING_INTER;
} else
rn->probing &= ~IEEE80211_RA_PROBING_INTER;
}
int
ieee80211_ra_inter_mode_ra_finished(struct ieee80211_ra_node *rn,
struct ieee80211_node *ni)
{
return ((rn->probing & IEEE80211_RA_PROBING_INTER) == 0);
}
int
ieee80211_ra_best_rate(struct ieee80211_ra_node *rn,
struct ieee80211_node *ni)
{
int i, best = rn->best_mcs;
uint64_t gmax = rn->g[rn->best_mcs].measured;
for (i = 0; i < nitems(rn->g); i++) {
struct ieee80211_ra_goodput_stats *g = &rn->g[i];
if (((1 << i) & rn->valid_rates) == 0)
continue;
if (g->measured > gmax + IEEE80211_RA_RATE_THRESHOLD) {
gmax = g->measured;
best = i;
}
}
#ifdef RA_DEBUG
if (rn->best_mcs != best) {
DPRINTF(("MCS %d is best; MCS{cur|avg|loss}:", best));
for (i = 0; i < IEEE80211_HT_RATESET_NUM_MCS; i++) {
struct ieee80211_ra_goodput_stats *g = &rn->g[i];
if ((rn->valid_rates & (1 << i)) == 0)
continue;
DPRINTF((" %d{%s|", i, ra_fp_sprintf(g->measured)));
DPRINTF(("%s|", ra_fp_sprintf(g->average)));
DPRINTF(("%s%%}", ra_fp_sprintf(g->loss)));
}
DPRINTF(("\n"));
}
#endif
return best;
}
void
ieee80211_ra_probe_next_rate(struct ieee80211_ra_node *rn,
struct ieee80211_node *ni)
{
/* Select the next rate to probe. */
rn->probed_rates |= (1 << ni->ni_txmcs);
ni->ni_txmcs = ieee80211_ra_next_mcs(rn, ni);
}
int
ieee80211_ra_valid_tx_mcs(struct ieee80211com *ic, int mcs)
{
uint32_t ntxstreams = 1;
static const int max_mcs[] = { 7, 15, 23, 31 };
if ((ic->ic_tx_mcs_set & IEEE80211_TX_RX_MCS_NOT_EQUAL) == 0)
return isset(ic->ic_sup_mcs, mcs);
ntxstreams += ((ic->ic_tx_mcs_set & IEEE80211_TX_SPATIAL_STREAMS) >> 2);
if (ntxstreams < 1 || ntxstreams > 4)
panic("invalid number of Tx streams: %u", ntxstreams);
return (mcs <= max_mcs[ntxstreams - 1] && isset(ic->ic_sup_mcs, mcs));
}
uint32_t
ieee80211_ra_valid_rates(struct ieee80211com *ic, struct ieee80211_node *ni)
{
uint32_t valid_mcs = 0;
int i;
for (i = 0; i < IEEE80211_HT_RATESET_NUM_MCS; i++) {
if (!isset(ni->ni_rxmcs, i))
continue;
if (!ieee80211_ra_valid_tx_mcs(ic, i))
continue;
valid_mcs |= (1 << i);
}
return valid_mcs;
}
int
ieee80211_ra_probe_valid(struct ieee80211_ra_goodput_stats *g)
{
/* 128 packets make up a valid probe in any case. */
if (g->nprobe_pkts >= 128)
return 1;
/* 8 packets with > 75% loss make a valid probe, too. */
if (g->nprobe_pkts >= 8 &&
g->nprobe_pkts - g->nprobe_fail < g->nprobe_pkts / 4)
return 1;
return 0;
}
void
ieee80211_ra_add_stats_ht(struct ieee80211_ra_node *rn,
struct ieee80211com *ic, struct ieee80211_node *ni,
int mcs, uint32_t total, uint32_t fail)
{
static const uint64_t alpha = RA_FP_1 / 8; /* 1/8 = 0.125 */
static const uint64_t beta = RA_FP_1 / 4; /* 1/4 = 0.25 */
int s;
struct ieee80211_ra_goodput_stats *g;
uint64_t sfer, rate, delta;
/*
* Ignore invalid values. These values may come from hardware
* so asserting valid values via panic is not appropriate.
*/
if (mcs < 0 || mcs >= IEEE80211_HT_RATESET_NUM_MCS)
return;
if (total == 0)
return;
s = splnet();
g = &rn->g[mcs];
g->nprobe_pkts += total;
g->nprobe_fail += fail;
if (!ieee80211_ra_probe_valid(g)) {
splx(s);
return;
}
rn->valid_probes |= 1U << mcs;
if (g->nprobe_fail > g->nprobe_pkts) {
DPRINTF(("%s fail %u > pkts %u\n",
ether_sprintf(ni->ni_macaddr),
g->nprobe_fail, g->nprobe_pkts));
g->nprobe_fail = g->nprobe_pkts;
}
sfer = g->nprobe_fail << RA_FP_SHIFT;
sfer /= g->nprobe_pkts;
g->nprobe_fail = 0;
g->nprobe_pkts = 0;
rate = ieee80211_ra_get_txrate(mcs,
ieee80211_node_supports_ht_chan40(ni),
ieee80211_ra_use_ht_sgi(ni));
g->loss = sfer * 100;
g->measured = RA_FP_MUL(RA_FP_1 - sfer, rate);
g->average = RA_FP_MUL(RA_FP_1 - alpha, g->average);
g->average += RA_FP_MUL(alpha, g->measured);
g->stddeviation = RA_FP_MUL(RA_FP_1 - beta, g->stddeviation);
if (g->average > g->measured)
delta = g->average - g->measured;
else
delta = g->measured - g->average;
g->stddeviation += RA_FP_MUL(beta, delta);
splx(s);
}
void
ieee80211_ra_choose(struct ieee80211_ra_node *rn, struct ieee80211com *ic,
struct ieee80211_node *ni)
{
struct ieee80211_ra_goodput_stats *g = &rn->g[ni->ni_txmcs];
int s;
int chan40 = ieee80211_node_supports_ht_chan40(ni);
int sgi = ieee80211_ra_use_ht_sgi(ni);
const struct ieee80211_ht_rateset *rs, *rsnext;
s = splnet();
if (rn->valid_rates == 0)
rn->valid_rates = ieee80211_ra_valid_rates(ic, ni);
if (rn->probing) {
/* Probe another rate or settle at the best rate. */
if (!(rn->valid_probes & (1UL << ni->ni_txmcs))) {
splx(s);
return;
}
ieee80211_ra_probe_clear(rn, ni);
if (!ieee80211_ra_intra_mode_ra_finished(rn, ni)) {
ieee80211_ra_probe_next_rate(rn, ni);
DPRINTFN(3, ("probing MCS %d\n", ni->ni_txmcs));
} else if (ieee80211_ra_inter_mode_ra_finished(rn, ni)) {
rn->best_mcs = ieee80211_ra_best_rate(rn, ni);
ni->ni_txmcs = rn->best_mcs;
ieee80211_ra_probe_done(rn);
}
splx(s);
return;
} else {
rn->valid_probes = 0;
}
rs = ieee80211_ra_get_ht_rateset(ni->ni_txmcs, chan40, sgi);
if ((g->measured >> RA_FP_SHIFT) == 0LL ||
(g->average >= 3 * g->stddeviation &&
g->measured < g->average - 3 * g->stddeviation)) {
/* Channel becomes bad. Probe downwards. */
rn->probing = IEEE80211_RA_PROBING_DOWN;
rn->probed_rates = 0;
if (ni->ni_txmcs == rs->min_mcs) {
rsnext = ieee80211_ra_next_rateset(rn, ni);
if (rsnext) {
ieee80211_ra_probe_next_rateset(rn, ni,
rsnext);
} else {
/* Cannot probe further down. */
rn->probing = IEEE80211_RA_NOT_PROBING;
}
} else {
ni->ni_txmcs = ieee80211_ra_next_mcs(rn, ni);
rn->candidate_rates = (1 << ni->ni_txmcs);
}
} else if (g->loss < 2 * RA_FP_1 ||
g->measured > g->average + 3 * g->stddeviation) {
/* Channel becomes good. */
rn->probing = IEEE80211_RA_PROBING_UP;
rn->probed_rates = 0;
if (ni->ni_txmcs == rs->max_mcs) {
rsnext = ieee80211_ra_next_rateset(rn, ni);
if (rsnext) {
ieee80211_ra_probe_next_rateset(rn, ni,
rsnext);
} else {
/* Cannot probe further up. */
rn->probing = IEEE80211_RA_NOT_PROBING;
}
} else {
ni->ni_txmcs = ieee80211_ra_next_mcs(rn, ni);
rn->candidate_rates = (1 << ni->ni_txmcs);
}
} else {
/* Remain at current rate. */
rn->probing = IEEE80211_RA_NOT_PROBING;
rn->probed_rates = 0;
rn->candidate_rates = 0;
}
splx(s);
if (rn->probing) {
if (rn->probing & IEEE80211_RA_PROBING_UP)
DPRINTFN(2, ("channel becomes good; probe up\n"));
else
DPRINTFN(2, ("channel becomes bad; probe down\n"));
DPRINTFN(3, ("measured: %s Mbit/s\n",
ra_fp_sprintf(g->measured)));
DPRINTFN(3, ("average: %s Mbit/s\n",
ra_fp_sprintf(g->average)));
DPRINTFN(3, ("stddeviation: %s\n",
ra_fp_sprintf(g->stddeviation)));
DPRINTFN(3, ("loss: %s%%\n", ra_fp_sprintf(g->loss)));
}
}
void
ieee80211_ra_node_init(struct ieee80211_ra_node *rn)
{
memset(rn, 0, sizeof(*rn));
}