src/sys/netinet/ip_ipsp.c

1397 lines
33 KiB
C

/* $OpenBSD: ip_ipsp.c,v 1.278 2023/12/03 10:50:25 mvs Exp $ */
/*
* The authors of this code are John Ioannidis (ji@tla.org),
* Angelos D. Keromytis (kermit@csd.uch.gr),
* Niels Provos (provos@physnet.uni-hamburg.de) and
* Niklas Hallqvist (niklas@appli.se).
*
* The original version of this code was written by John Ioannidis
* for BSD/OS in Athens, Greece, in November 1995.
*
* Ported to OpenBSD and NetBSD, with additional transforms, in December 1996,
* by Angelos D. Keromytis.
*
* Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis
* and Niels Provos.
*
* Additional features in 1999 by Angelos D. Keromytis and Niklas Hallqvist.
*
* Copyright (c) 1995, 1996, 1997, 1998, 1999 by John Ioannidis,
* Angelos D. Keromytis and Niels Provos.
* Copyright (c) 1999 Niklas Hallqvist.
* Copyright (c) 2001, Angelos D. Keromytis.
*
* Permission to use, copy, and modify this software with or without fee
* is hereby granted, provided that this entire notice is included in
* all copies of any software which is or includes a copy or
* modification of this software.
* You may use this code under the GNU public license if you so wish. Please
* contribute changes back to the authors under this freer than GPL license
* so that we may further the use of strong encryption without limitations to
* all.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
* PURPOSE.
*/
#include "pf.h"
#include "pfsync.h"
#include "sec.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/kernel.h>
#include <sys/timeout.h>
#include <sys/pool.h>
#include <sys/atomic.h>
#include <sys/mutex.h>
#include <net/if.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/in_pcb.h>
#include <netinet/ip_var.h>
#include <netinet/ip_ipip.h>
#if NPF > 0
#include <net/pfvar.h>
#endif
#if NPFSYNC > 0
#include <net/if_pfsync.h>
#endif
#if NSEC > 0
#include <net/if_sec.h>
#endif
#include <netinet/ip_ipsp.h>
#include <net/pfkeyv2.h>
#ifdef DDB
#include <ddb/db_output.h>
void tdb_hashstats(void);
#endif
#ifdef ENCDEBUG
#define DPRINTF(fmt, args...) \
do { \
if (encdebug) \
printf("%s: " fmt "\n", __func__, ## args); \
} while (0)
#else
#define DPRINTF(fmt, args...) \
do { } while (0)
#endif
/*
* Locks used to protect global data and struct members:
* D tdb_sadb_mtx
* F ipsec_flows_mtx SA database global mutex
*/
struct mutex ipsec_flows_mtx = MUTEX_INITIALIZER(IPL_SOFTNET);
int tdb_rehash(void);
void tdb_timeout(void *);
void tdb_firstuse(void *);
void tdb_soft_timeout(void *);
void tdb_soft_firstuse(void *);
int tdb_hash(u_int32_t, union sockaddr_union *, u_int8_t);
int ipsec_in_use = 0;
u_int64_t ipsec_last_added = 0;
int ipsec_ids_idle = 100; /* keep free ids for 100s */
struct pool tdb_pool;
/* Protected by the NET_LOCK(). */
u_int32_t ipsec_ids_next_flow = 1; /* [F] may not be zero */
struct ipsec_ids_tree ipsec_ids_tree; /* [F] */
struct ipsec_ids_flows ipsec_ids_flows; /* [F] */
struct ipsec_policy_head ipsec_policy_head =
TAILQ_HEAD_INITIALIZER(ipsec_policy_head);
void ipsp_ids_gc(void *);
LIST_HEAD(, ipsec_ids) ipsp_ids_gc_list =
LIST_HEAD_INITIALIZER(ipsp_ids_gc_list); /* [F] */
struct timeout ipsp_ids_gc_timeout =
TIMEOUT_INITIALIZER_FLAGS(ipsp_ids_gc, NULL, KCLOCK_NONE,
TIMEOUT_PROC | TIMEOUT_MPSAFE);
static inline int ipsp_ids_cmp(const struct ipsec_ids *,
const struct ipsec_ids *);
static inline int ipsp_ids_flow_cmp(const struct ipsec_ids *,
const struct ipsec_ids *);
RBT_PROTOTYPE(ipsec_ids_tree, ipsec_ids, id_node_flow, ipsp_ids_cmp);
RBT_PROTOTYPE(ipsec_ids_flows, ipsec_ids, id_node_id, ipsp_ids_flow_cmp);
RBT_GENERATE(ipsec_ids_tree, ipsec_ids, id_node_flow, ipsp_ids_cmp);
RBT_GENERATE(ipsec_ids_flows, ipsec_ids, id_node_id, ipsp_ids_flow_cmp);
/*
* This is the proper place to define the various encapsulation transforms.
*/
const struct xformsw xformsw[] = {
#ifdef IPSEC
{
.xf_type = XF_IP4,
.xf_flags = 0,
.xf_name = "IPv4 Simple Encapsulation",
.xf_attach = ipe4_attach,
.xf_init = ipe4_init,
.xf_zeroize = ipe4_zeroize,
.xf_input = ipe4_input,
.xf_output = NULL,
},
{
.xf_type = XF_AH,
.xf_flags = XFT_AUTH,
.xf_name = "IPsec AH",
.xf_attach = ah_attach,
.xf_init = ah_init,
.xf_zeroize = ah_zeroize,
.xf_input = ah_input,
.xf_output = ah_output,
},
{
.xf_type = XF_ESP,
.xf_flags = XFT_CONF|XFT_AUTH,
.xf_name = "IPsec ESP",
.xf_attach = esp_attach,
.xf_init = esp_init,
.xf_zeroize = esp_zeroize,
.xf_input = esp_input,
.xf_output = esp_output,
},
{
.xf_type = XF_IPCOMP,
.xf_flags = XFT_COMP,
.xf_name = "IPcomp",
.xf_attach = ipcomp_attach,
.xf_init = ipcomp_init,
.xf_zeroize = ipcomp_zeroize,
.xf_input = ipcomp_input,
.xf_output = ipcomp_output,
},
#endif /* IPSEC */
#ifdef TCP_SIGNATURE
{
.xf_type = XF_TCPSIGNATURE,
.xf_flags = XFT_AUTH,
.xf_name = "TCP MD5 Signature Option, RFC 2385",
.xf_attach = tcp_signature_tdb_attach,
.xf_init = tcp_signature_tdb_init,
.xf_zeroize = tcp_signature_tdb_zeroize,
.xf_input = tcp_signature_tdb_input,
.xf_output = tcp_signature_tdb_output,
}
#endif /* TCP_SIGNATURE */
};
const struct xformsw *const xformswNXFORMSW = &xformsw[nitems(xformsw)];
#define TDB_HASHSIZE_INIT 32
struct mutex tdb_sadb_mtx = MUTEX_INITIALIZER(IPL_SOFTNET);
static SIPHASH_KEY tdbkey; /* [D] */
static struct tdb **tdbh; /* [D] */
static struct tdb **tdbdst; /* [D] */
static struct tdb **tdbsrc; /* [D] */
static u_int tdb_hashmask = TDB_HASHSIZE_INIT - 1; /* [D] */
static int tdb_count; /* [D] */
void
ipsp_init(void)
{
pool_init(&tdb_pool, sizeof(struct tdb), 0, IPL_SOFTNET, 0,
"tdb", NULL);
arc4random_buf(&tdbkey, sizeof(tdbkey));
tdbh = mallocarray(tdb_hashmask + 1, sizeof(struct tdb *), M_TDB,
M_WAITOK | M_ZERO);
tdbdst = mallocarray(tdb_hashmask + 1, sizeof(struct tdb *), M_TDB,
M_WAITOK | M_ZERO);
tdbsrc = mallocarray(tdb_hashmask + 1, sizeof(struct tdb *), M_TDB,
M_WAITOK | M_ZERO);
}
/*
* Our hashing function needs to stir things with a non-zero random multiplier
* so we cannot be DoS-attacked via choosing of the data to hash.
*/
int
tdb_hash(u_int32_t spi, union sockaddr_union *dst,
u_int8_t proto)
{
SIPHASH_CTX ctx;
MUTEX_ASSERT_LOCKED(&tdb_sadb_mtx);
SipHash24_Init(&ctx, &tdbkey);
SipHash24_Update(&ctx, &spi, sizeof(spi));
SipHash24_Update(&ctx, &proto, sizeof(proto));
SipHash24_Update(&ctx, dst, dst->sa.sa_len);
return (SipHash24_End(&ctx) & tdb_hashmask);
}
/*
* Reserve an SPI; the SA is not valid yet though. We use 0 as
* an error return value.
*/
u_int32_t
reserve_spi(u_int rdomain, u_int32_t sspi, u_int32_t tspi,
union sockaddr_union *src, union sockaddr_union *dst,
u_int8_t sproto, int *errval)
{
struct tdb *tdbp, *exists;
u_int32_t spi;
int nums;
/* Don't accept ranges only encompassing reserved SPIs. */
if (sproto != IPPROTO_IPCOMP &&
(tspi < sspi || tspi <= SPI_RESERVED_MAX)) {
(*errval) = EINVAL;
return 0;
}
if (sproto == IPPROTO_IPCOMP && (tspi < sspi ||
tspi <= CPI_RESERVED_MAX ||
tspi >= CPI_PRIVATE_MIN)) {
(*errval) = EINVAL;
return 0;
}
/* Limit the range to not include reserved areas. */
if (sspi <= SPI_RESERVED_MAX)
sspi = SPI_RESERVED_MAX + 1;
/* For IPCOMP the CPI is only 16 bits long, what a good idea.... */
if (sproto == IPPROTO_IPCOMP) {
u_int32_t t;
if (sspi >= 0x10000)
sspi = 0xffff;
if (tspi >= 0x10000)
tspi = 0xffff;
if (sspi > tspi) {
t = sspi; sspi = tspi; tspi = t;
}
}
if (sspi == tspi) /* Asking for a specific SPI. */
nums = 1;
else
nums = 100; /* Arbitrarily chosen */
/* allocate ahead of time to avoid potential sleeping race in loop */
tdbp = tdb_alloc(rdomain);
while (nums--) {
if (sspi == tspi) /* Specific SPI asked. */
spi = tspi;
else /* Range specified */
spi = sspi + arc4random_uniform(tspi - sspi);
/* Don't allocate reserved SPIs. */
if (spi >= SPI_RESERVED_MIN && spi <= SPI_RESERVED_MAX)
continue;
else
spi = htonl(spi);
/* Check whether we're using this SPI already. */
exists = gettdb(rdomain, spi, dst, sproto);
if (exists != NULL) {
tdb_unref(exists);
continue;
}
tdbp->tdb_spi = spi;
memcpy(&tdbp->tdb_dst.sa, &dst->sa, dst->sa.sa_len);
memcpy(&tdbp->tdb_src.sa, &src->sa, src->sa.sa_len);
tdbp->tdb_sproto = sproto;
tdbp->tdb_flags |= TDBF_INVALID; /* Mark SA invalid for now. */
tdbp->tdb_satype = SADB_SATYPE_UNSPEC;
puttdb(tdbp);
#ifdef IPSEC
/* Setup a "silent" expiration (since TDBF_INVALID's set). */
if (ipsec_keep_invalid > 0) {
mtx_enter(&tdbp->tdb_mtx);
tdbp->tdb_flags |= TDBF_TIMER;
tdbp->tdb_exp_timeout = ipsec_keep_invalid;
if (timeout_add_sec(&tdbp->tdb_timer_tmo,
ipsec_keep_invalid))
tdb_ref(tdbp);
mtx_leave(&tdbp->tdb_mtx);
}
#endif
return spi;
}
(*errval) = EEXIST;
tdb_unref(tdbp);
return 0;
}
/*
* An IPSP SAID is really the concatenation of the SPI found in the
* packet, the destination address of the packet and the IPsec protocol.
* When we receive an IPSP packet, we need to look up its tunnel descriptor
* block, based on the SPI in the packet and the destination address (which
* is really one of our addresses if we received the packet!
*/
struct tdb *
gettdb_dir(u_int rdomain, u_int32_t spi, union sockaddr_union *dst,
u_int8_t proto, int reverse)
{
u_int32_t hashval;
struct tdb *tdbp;
NET_ASSERT_LOCKED();
mtx_enter(&tdb_sadb_mtx);
hashval = tdb_hash(spi, dst, proto);
for (tdbp = tdbh[hashval]; tdbp != NULL; tdbp = tdbp->tdb_hnext)
if ((tdbp->tdb_spi == spi) && (tdbp->tdb_sproto == proto) &&
((!reverse && tdbp->tdb_rdomain == rdomain) ||
(reverse && tdbp->tdb_rdomain_post == rdomain)) &&
!memcmp(&tdbp->tdb_dst, dst, dst->sa.sa_len))
break;
tdb_ref(tdbp);
mtx_leave(&tdb_sadb_mtx);
return tdbp;
}
/*
* Same as gettdb() but compare SRC as well, so we
* use the tdbsrc[] hash table. Setting spi to 0
* matches all SPIs.
*/
struct tdb *
gettdbbysrcdst_dir(u_int rdomain, u_int32_t spi, union sockaddr_union *src,
union sockaddr_union *dst, u_int8_t proto, int reverse)
{
u_int32_t hashval;
struct tdb *tdbp;
union sockaddr_union su_null;
mtx_enter(&tdb_sadb_mtx);
hashval = tdb_hash(0, src, proto);
for (tdbp = tdbsrc[hashval]; tdbp != NULL; tdbp = tdbp->tdb_snext) {
if (tdbp->tdb_sproto == proto &&
(spi == 0 || tdbp->tdb_spi == spi) &&
((!reverse && tdbp->tdb_rdomain == rdomain) ||
(reverse && tdbp->tdb_rdomain_post == rdomain)) &&
((tdbp->tdb_flags & TDBF_INVALID) == 0) &&
(tdbp->tdb_dst.sa.sa_family == AF_UNSPEC ||
!memcmp(&tdbp->tdb_dst, dst, dst->sa.sa_len)) &&
!memcmp(&tdbp->tdb_src, src, src->sa.sa_len))
break;
}
if (tdbp != NULL) {
tdb_ref(tdbp);
mtx_leave(&tdb_sadb_mtx);
return tdbp;
}
memset(&su_null, 0, sizeof(su_null));
su_null.sa.sa_len = sizeof(struct sockaddr);
hashval = tdb_hash(0, &su_null, proto);
for (tdbp = tdbsrc[hashval]; tdbp != NULL; tdbp = tdbp->tdb_snext) {
if (tdbp->tdb_sproto == proto &&
(spi == 0 || tdbp->tdb_spi == spi) &&
((!reverse && tdbp->tdb_rdomain == rdomain) ||
(reverse && tdbp->tdb_rdomain_post == rdomain)) &&
((tdbp->tdb_flags & TDBF_INVALID) == 0) &&
(tdbp->tdb_dst.sa.sa_family == AF_UNSPEC ||
!memcmp(&tdbp->tdb_dst, dst, dst->sa.sa_len)) &&
tdbp->tdb_src.sa.sa_family == AF_UNSPEC)
break;
}
tdb_ref(tdbp);
mtx_leave(&tdb_sadb_mtx);
return tdbp;
}
/*
* Check that IDs match. Return true if so. The t* range of
* arguments contains information from TDBs; the p* range of
* arguments contains information from policies or already
* established TDBs.
*/
int
ipsp_aux_match(struct tdb *tdb,
struct ipsec_ids *ids,
struct sockaddr_encap *pfilter,
struct sockaddr_encap *pfiltermask)
{
if (ids != NULL)
if (tdb->tdb_ids == NULL ||
!ipsp_ids_match(tdb->tdb_ids, ids))
return 0;
/* Check for filter matches. */
if (pfilter != NULL && pfiltermask != NULL &&
tdb->tdb_filter.sen_type) {
/*
* XXX We should really be doing a subnet-check (see
* whether the TDB-associated filter is a subset
* of the policy's. For now, an exact match will solve
* most problems (all this will do is make every
* policy get its own SAs).
*/
if (memcmp(&tdb->tdb_filter, pfilter,
sizeof(struct sockaddr_encap)) ||
memcmp(&tdb->tdb_filtermask, pfiltermask,
sizeof(struct sockaddr_encap)))
return 0;
}
return 1;
}
/*
* Get an SA given the remote address, the security protocol type, and
* the desired IDs.
*/
struct tdb *
gettdbbydst(u_int rdomain, union sockaddr_union *dst, u_int8_t sproto,
struct ipsec_ids *ids,
struct sockaddr_encap *filter, struct sockaddr_encap *filtermask)
{
u_int32_t hashval;
struct tdb *tdbp;
mtx_enter(&tdb_sadb_mtx);
hashval = tdb_hash(0, dst, sproto);
for (tdbp = tdbdst[hashval]; tdbp != NULL; tdbp = tdbp->tdb_dnext)
if ((tdbp->tdb_sproto == sproto) &&
(tdbp->tdb_rdomain == rdomain) &&
((tdbp->tdb_flags & TDBF_INVALID) == 0) &&
(!memcmp(&tdbp->tdb_dst, dst, dst->sa.sa_len))) {
/* Check whether IDs match */
if (!ipsp_aux_match(tdbp, ids, filter, filtermask))
continue;
break;
}
tdb_ref(tdbp);
mtx_leave(&tdb_sadb_mtx);
return tdbp;
}
/*
* Get an SA given the source address, the security protocol type, and
* the desired IDs.
*/
struct tdb *
gettdbbysrc(u_int rdomain, union sockaddr_union *src, u_int8_t sproto,
struct ipsec_ids *ids,
struct sockaddr_encap *filter, struct sockaddr_encap *filtermask)
{
u_int32_t hashval;
struct tdb *tdbp;
mtx_enter(&tdb_sadb_mtx);
hashval = tdb_hash(0, src, sproto);
for (tdbp = tdbsrc[hashval]; tdbp != NULL; tdbp = tdbp->tdb_snext) {
if ((tdbp->tdb_sproto == sproto) &&
(tdbp->tdb_rdomain == rdomain) &&
((tdbp->tdb_flags & TDBF_INVALID) == 0) &&
(!memcmp(&tdbp->tdb_src, src, src->sa.sa_len))) {
/* Check whether IDs match */
if (!ipsp_aux_match(tdbp, ids, filter, filtermask))
continue;
break;
}
}
tdb_ref(tdbp);
mtx_leave(&tdb_sadb_mtx);
return tdbp;
}
#ifdef DDB
#define NBUCKETS 16
void
tdb_hashstats(void)
{
int i, cnt, buckets[NBUCKETS];
struct tdb *tdbp;
if (tdbh == NULL) {
db_printf("no tdb hash table\n");
return;
}
memset(buckets, 0, sizeof(buckets));
for (i = 0; i <= tdb_hashmask; i++) {
cnt = 0;
for (tdbp = tdbh[i]; cnt < NBUCKETS - 1 && tdbp != NULL;
tdbp = tdbp->tdb_hnext)
cnt++;
buckets[cnt]++;
}
db_printf("tdb cnt\t\tbucket cnt\n");
for (i = 0; i < NBUCKETS; i++)
if (buckets[i] > 0)
db_printf("%d%s\t\t%d\n", i, i == NBUCKETS - 1 ?
"+" : "", buckets[i]);
}
#define DUMP(m, f) pr("%18s: " f "\n", #m, tdb->tdb_##m)
void
tdb_printit(void *addr, int full, int (*pr)(const char *, ...))
{
struct tdb *tdb = addr;
char buf[INET6_ADDRSTRLEN];
if (full) {
pr("tdb at %p\n", tdb);
DUMP(hnext, "%p");
DUMP(dnext, "%p");
DUMP(snext, "%p");
DUMP(inext, "%p");
DUMP(onext, "%p");
DUMP(xform, "%p");
pr("%18s: %d\n", "refcnt", tdb->tdb_refcnt.r_refs);
DUMP(encalgxform, "%p");
DUMP(authalgxform, "%p");
DUMP(compalgxform, "%p");
pr("%18s: %b\n", "flags", tdb->tdb_flags, TDBF_BITS);
/* tdb_XXX_tmo */
DUMP(seq, "%d");
DUMP(exp_allocations, "%d");
DUMP(soft_allocations, "%d");
DUMP(cur_allocations, "%d");
DUMP(exp_bytes, "%lld");
DUMP(soft_bytes, "%lld");
DUMP(cur_bytes, "%lld");
DUMP(exp_timeout, "%lld");
DUMP(soft_timeout, "%lld");
DUMP(established, "%lld");
DUMP(first_use, "%lld");
DUMP(soft_first_use, "%lld");
DUMP(exp_first_use, "%lld");
DUMP(last_used, "%lld");
DUMP(last_marked, "%lld");
/* tdb_data */
DUMP(cryptoid, "%lld");
pr("%18s: %08x\n", "tdb_spi", ntohl(tdb->tdb_spi));
DUMP(amxkeylen, "%d");
DUMP(emxkeylen, "%d");
DUMP(ivlen, "%d");
DUMP(sproto, "%d");
DUMP(wnd, "%d");
DUMP(satype, "%d");
DUMP(updates, "%d");
pr("%18s: %s\n", "dst",
ipsp_address(&tdb->tdb_dst, buf, sizeof(buf)));
pr("%18s: %s\n", "src",
ipsp_address(&tdb->tdb_src, buf, sizeof(buf)));
DUMP(amxkey, "%p");
DUMP(emxkey, "%p");
DUMP(rpl, "%lld");
/* tdb_seen */
/* tdb_iv */
DUMP(ids, "%p");
DUMP(ids_swapped, "%d");
DUMP(mtu, "%d");
DUMP(mtutimeout, "%lld");
pr("%18s: %d\n", "udpencap_port",
ntohs(tdb->tdb_udpencap_port));
DUMP(tag, "%d");
DUMP(tap, "%d");
DUMP(rdomain, "%d");
DUMP(rdomain_post, "%d");
/* tdb_filter */
/* tdb_filtermask */
/* tdb_policy_head */
/* tdb_sync_entry */
} else {
pr("%p:", tdb);
pr(" %08x", ntohl(tdb->tdb_spi));
pr(" %s", ipsp_address(&tdb->tdb_src, buf, sizeof(buf)));
pr("->%s", ipsp_address(&tdb->tdb_dst, buf, sizeof(buf)));
pr(":%d", tdb->tdb_sproto);
pr(" #%d", tdb->tdb_refcnt.r_refs);
pr(" %08x\n", tdb->tdb_flags);
}
}
#undef DUMP
#endif /* DDB */
int
tdb_walk(u_int rdomain, int (*walker)(struct tdb *, void *, int), void *arg)
{
SIMPLEQ_HEAD(, tdb) tdblist;
struct tdb *tdbp;
int i, rval;
/*
* The walker may sleep. So we cannot hold the tdb_sadb_mtx while
* traversing the tdb_hnext list. Create a new tdb_walk list with
* exclusive netlock protection.
*/
NET_ASSERT_LOCKED_EXCLUSIVE();
SIMPLEQ_INIT(&tdblist);
mtx_enter(&tdb_sadb_mtx);
for (i = 0; i <= tdb_hashmask; i++) {
for (tdbp = tdbh[i]; tdbp != NULL; tdbp = tdbp->tdb_hnext) {
if (rdomain != tdbp->tdb_rdomain)
continue;
tdb_ref(tdbp);
SIMPLEQ_INSERT_TAIL(&tdblist, tdbp, tdb_walk);
}
}
mtx_leave(&tdb_sadb_mtx);
rval = 0;
while ((tdbp = SIMPLEQ_FIRST(&tdblist)) != NULL) {
SIMPLEQ_REMOVE_HEAD(&tdblist, tdb_walk);
if (rval == 0)
rval = walker(tdbp, arg, SIMPLEQ_EMPTY(&tdblist));
tdb_unref(tdbp);
}
return rval;
}
void
tdb_timeout(void *v)
{
struct tdb *tdb = v;
NET_LOCK();
if (tdb->tdb_flags & TDBF_TIMER) {
/* If it's an "invalid" TDB do a silent expiration. */
if (!(tdb->tdb_flags & TDBF_INVALID)) {
#ifdef IPSEC
ipsecstat_inc(ipsec_exctdb);
#endif /* IPSEC */
pfkeyv2_expire(tdb, SADB_EXT_LIFETIME_HARD);
}
tdb_delete(tdb);
}
/* decrement refcount of the timeout argument */
tdb_unref(tdb);
NET_UNLOCK();
}
void
tdb_firstuse(void *v)
{
struct tdb *tdb = v;
NET_LOCK();
if (tdb->tdb_flags & TDBF_SOFT_FIRSTUSE) {
/* If the TDB hasn't been used, don't renew it. */
if (tdb->tdb_first_use != 0) {
#ifdef IPSEC
ipsecstat_inc(ipsec_exctdb);
#endif /* IPSEC */
pfkeyv2_expire(tdb, SADB_EXT_LIFETIME_HARD);
}
tdb_delete(tdb);
}
/* decrement refcount of the timeout argument */
tdb_unref(tdb);
NET_UNLOCK();
}
void
tdb_addtimeouts(struct tdb *tdbp)
{
mtx_enter(&tdbp->tdb_mtx);
if (tdbp->tdb_flags & TDBF_TIMER) {
if (timeout_add_sec(&tdbp->tdb_timer_tmo,
tdbp->tdb_exp_timeout))
tdb_ref(tdbp);
}
if (tdbp->tdb_flags & TDBF_SOFT_TIMER) {
if (timeout_add_sec(&tdbp->tdb_stimer_tmo,
tdbp->tdb_soft_timeout))
tdb_ref(tdbp);
}
mtx_leave(&tdbp->tdb_mtx);
}
void
tdb_soft_timeout(void *v)
{
struct tdb *tdb = v;
NET_LOCK();
mtx_enter(&tdb->tdb_mtx);
if (tdb->tdb_flags & TDBF_SOFT_TIMER) {
tdb->tdb_flags &= ~TDBF_SOFT_TIMER;
mtx_leave(&tdb->tdb_mtx);
/* Soft expirations. */
pfkeyv2_expire(tdb, SADB_EXT_LIFETIME_SOFT);
} else
mtx_leave(&tdb->tdb_mtx);
/* decrement refcount of the timeout argument */
tdb_unref(tdb);
NET_UNLOCK();
}
void
tdb_soft_firstuse(void *v)
{
struct tdb *tdb = v;
NET_LOCK();
mtx_enter(&tdb->tdb_mtx);
if (tdb->tdb_flags & TDBF_SOFT_FIRSTUSE) {
tdb->tdb_flags &= ~TDBF_SOFT_FIRSTUSE;
mtx_leave(&tdb->tdb_mtx);
/* If the TDB hasn't been used, don't renew it. */
if (tdb->tdb_first_use != 0)
pfkeyv2_expire(tdb, SADB_EXT_LIFETIME_SOFT);
} else
mtx_leave(&tdb->tdb_mtx);
/* decrement refcount of the timeout argument */
tdb_unref(tdb);
NET_UNLOCK();
}
int
tdb_rehash(void)
{
struct tdb **new_tdbh, **new_tdbdst, **new_srcaddr, *tdbp, *tdbnp;
u_int i, old_hashmask;
u_int32_t hashval;
MUTEX_ASSERT_LOCKED(&tdb_sadb_mtx);
old_hashmask = tdb_hashmask;
tdb_hashmask = (tdb_hashmask << 1) | 1;
arc4random_buf(&tdbkey, sizeof(tdbkey));
new_tdbh = mallocarray(tdb_hashmask + 1, sizeof(struct tdb *), M_TDB,
M_NOWAIT | M_ZERO);
new_tdbdst = mallocarray(tdb_hashmask + 1, sizeof(struct tdb *), M_TDB,
M_NOWAIT | M_ZERO);
new_srcaddr = mallocarray(tdb_hashmask + 1, sizeof(struct tdb *), M_TDB,
M_NOWAIT | M_ZERO);
if (new_tdbh == NULL ||
new_tdbdst == NULL ||
new_srcaddr == NULL) {
free(new_tdbh, M_TDB, 0);
free(new_tdbdst, M_TDB, 0);
free(new_srcaddr, M_TDB, 0);
return (ENOMEM);
}
for (i = 0; i <= old_hashmask; i++) {
for (tdbp = tdbh[i]; tdbp != NULL; tdbp = tdbnp) {
tdbnp = tdbp->tdb_hnext;
hashval = tdb_hash(tdbp->tdb_spi, &tdbp->tdb_dst,
tdbp->tdb_sproto);
tdbp->tdb_hnext = new_tdbh[hashval];
new_tdbh[hashval] = tdbp;
}
for (tdbp = tdbdst[i]; tdbp != NULL; tdbp = tdbnp) {
tdbnp = tdbp->tdb_dnext;
hashval = tdb_hash(0, &tdbp->tdb_dst, tdbp->tdb_sproto);
tdbp->tdb_dnext = new_tdbdst[hashval];
new_tdbdst[hashval] = tdbp;
}
for (tdbp = tdbsrc[i]; tdbp != NULL; tdbp = tdbnp) {
tdbnp = tdbp->tdb_snext;
hashval = tdb_hash(0, &tdbp->tdb_src, tdbp->tdb_sproto);
tdbp->tdb_snext = new_srcaddr[hashval];
new_srcaddr[hashval] = tdbp;
}
}
free(tdbh, M_TDB, 0);
tdbh = new_tdbh;
free(tdbdst, M_TDB, 0);
tdbdst = new_tdbdst;
free(tdbsrc, M_TDB, 0);
tdbsrc = new_srcaddr;
return 0;
}
/*
* Add TDB in the hash table.
*/
void
puttdb(struct tdb *tdbp)
{
mtx_enter(&tdb_sadb_mtx);
puttdb_locked(tdbp);
mtx_leave(&tdb_sadb_mtx);
}
void
puttdb_locked(struct tdb *tdbp)
{
u_int32_t hashval;
MUTEX_ASSERT_LOCKED(&tdb_sadb_mtx);
hashval = tdb_hash(tdbp->tdb_spi, &tdbp->tdb_dst, tdbp->tdb_sproto);
/*
* Rehash if this tdb would cause a bucket to have more than
* two items and if the number of tdbs exceed 10% of the
* bucket count. This number is arbitrarily chosen and is
* just a measure to not keep rehashing when adding and
* removing tdbs which happens to always end up in the same
* bucket, which is not uncommon when doing manual keying.
*/
if (tdbh[hashval] != NULL && tdbh[hashval]->tdb_hnext != NULL &&
tdb_count * 10 > tdb_hashmask + 1) {
if (tdb_rehash() == 0)
hashval = tdb_hash(tdbp->tdb_spi, &tdbp->tdb_dst,
tdbp->tdb_sproto);
}
tdbp->tdb_hnext = tdbh[hashval];
tdbh[hashval] = tdbp;
tdb_count++;
#ifdef IPSEC
if ((tdbp->tdb_flags & (TDBF_INVALID|TDBF_TUNNELING)) == TDBF_TUNNELING)
ipsecstat_inc(ipsec_tunnels);
#endif /* IPSEC */
ipsec_last_added = getuptime();
if (ISSET(tdbp->tdb_flags, TDBF_IFACE)) {
#if NSEC > 0
sec_tdb_insert(tdbp);
#endif
return;
}
hashval = tdb_hash(0, &tdbp->tdb_dst, tdbp->tdb_sproto);
tdbp->tdb_dnext = tdbdst[hashval];
tdbdst[hashval] = tdbp;
hashval = tdb_hash(0, &tdbp->tdb_src, tdbp->tdb_sproto);
tdbp->tdb_snext = tdbsrc[hashval];
tdbsrc[hashval] = tdbp;
}
void
tdb_unlink(struct tdb *tdbp)
{
mtx_enter(&tdb_sadb_mtx);
tdb_unlink_locked(tdbp);
mtx_leave(&tdb_sadb_mtx);
}
void
tdb_unlink_locked(struct tdb *tdbp)
{
struct tdb *tdbpp;
u_int32_t hashval;
MUTEX_ASSERT_LOCKED(&tdb_sadb_mtx);
hashval = tdb_hash(tdbp->tdb_spi, &tdbp->tdb_dst, tdbp->tdb_sproto);
if (tdbh[hashval] == tdbp) {
tdbh[hashval] = tdbp->tdb_hnext;
} else {
for (tdbpp = tdbh[hashval]; tdbpp != NULL;
tdbpp = tdbpp->tdb_hnext) {
if (tdbpp->tdb_hnext == tdbp) {
tdbpp->tdb_hnext = tdbp->tdb_hnext;
break;
}
}
}
tdbp->tdb_hnext = NULL;
tdb_count--;
#ifdef IPSEC
if ((tdbp->tdb_flags & (TDBF_INVALID|TDBF_TUNNELING)) ==
TDBF_TUNNELING) {
ipsecstat_dec(ipsec_tunnels);
ipsecstat_inc(ipsec_prevtunnels);
}
#endif /* IPSEC */
if (ISSET(tdbp->tdb_flags, TDBF_IFACE)) {
#if NSEC > 0
sec_tdb_remove(tdbp);
#endif
return;
}
hashval = tdb_hash(0, &tdbp->tdb_dst, tdbp->tdb_sproto);
if (tdbdst[hashval] == tdbp) {
tdbdst[hashval] = tdbp->tdb_dnext;
} else {
for (tdbpp = tdbdst[hashval]; tdbpp != NULL;
tdbpp = tdbpp->tdb_dnext) {
if (tdbpp->tdb_dnext == tdbp) {
tdbpp->tdb_dnext = tdbp->tdb_dnext;
break;
}
}
}
tdbp->tdb_dnext = NULL;
hashval = tdb_hash(0, &tdbp->tdb_src, tdbp->tdb_sproto);
if (tdbsrc[hashval] == tdbp) {
tdbsrc[hashval] = tdbp->tdb_snext;
} else {
for (tdbpp = tdbsrc[hashval]; tdbpp != NULL;
tdbpp = tdbpp->tdb_snext) {
if (tdbpp->tdb_snext == tdbp) {
tdbpp->tdb_snext = tdbp->tdb_snext;
break;
}
}
}
tdbp->tdb_snext = NULL;
}
void
tdb_cleanspd(struct tdb *tdbp)
{
struct ipsec_policy *ipo;
mtx_enter(&ipo_tdb_mtx);
while ((ipo = TAILQ_FIRST(&tdbp->tdb_policy_head)) != NULL) {
TAILQ_REMOVE(&tdbp->tdb_policy_head, ipo, ipo_tdb_next);
tdb_unref(ipo->ipo_tdb);
ipo->ipo_tdb = NULL;
ipo->ipo_last_searched = 0; /* Force a re-search. */
}
mtx_leave(&ipo_tdb_mtx);
}
void
tdb_unbundle(struct tdb *tdbp)
{
if (tdbp->tdb_onext != NULL) {
if (tdbp->tdb_onext->tdb_inext == tdbp) {
tdb_unref(tdbp); /* to us */
tdbp->tdb_onext->tdb_inext = NULL;
}
tdb_unref(tdbp->tdb_onext); /* to other */
tdbp->tdb_onext = NULL;
}
if (tdbp->tdb_inext != NULL) {
if (tdbp->tdb_inext->tdb_onext == tdbp) {
tdb_unref(tdbp); /* to us */
tdbp->tdb_inext->tdb_onext = NULL;
}
tdb_unref(tdbp->tdb_inext); /* to other */
tdbp->tdb_inext = NULL;
}
}
void
tdb_deltimeouts(struct tdb *tdbp)
{
mtx_enter(&tdbp->tdb_mtx);
tdbp->tdb_flags &= ~(TDBF_FIRSTUSE | TDBF_SOFT_FIRSTUSE | TDBF_TIMER |
TDBF_SOFT_TIMER);
if (timeout_del(&tdbp->tdb_timer_tmo))
tdb_unref(tdbp);
if (timeout_del(&tdbp->tdb_first_tmo))
tdb_unref(tdbp);
if (timeout_del(&tdbp->tdb_stimer_tmo))
tdb_unref(tdbp);
if (timeout_del(&tdbp->tdb_sfirst_tmo))
tdb_unref(tdbp);
mtx_leave(&tdbp->tdb_mtx);
}
struct tdb *
tdb_ref(struct tdb *tdb)
{
if (tdb == NULL)
return NULL;
refcnt_take(&tdb->tdb_refcnt);
return tdb;
}
void
tdb_unref(struct tdb *tdb)
{
if (tdb == NULL)
return;
if (refcnt_rele(&tdb->tdb_refcnt) == 0)
return;
tdb_free(tdb);
}
void
tdb_delete(struct tdb *tdbp)
{
NET_ASSERT_LOCKED();
mtx_enter(&tdbp->tdb_mtx);
if (tdbp->tdb_flags & TDBF_DELETED) {
mtx_leave(&tdbp->tdb_mtx);
return;
}
tdbp->tdb_flags |= TDBF_DELETED;
mtx_leave(&tdbp->tdb_mtx);
tdb_unlink(tdbp);
/* cleanup SPD references */
tdb_cleanspd(tdbp);
/* release tdb_onext/tdb_inext references */
tdb_unbundle(tdbp);
/* delete timeouts and release references */
tdb_deltimeouts(tdbp);
/* release the reference for tdb_unlink() */
tdb_unref(tdbp);
}
/*
* Allocate a TDB and initialize a few basic fields.
*/
struct tdb *
tdb_alloc(u_int rdomain)
{
struct tdb *tdbp;
tdbp = pool_get(&tdb_pool, PR_WAITOK | PR_ZERO);
refcnt_init_trace(&tdbp->tdb_refcnt, DT_REFCNT_IDX_TDB);
mtx_init(&tdbp->tdb_mtx, IPL_SOFTNET);
TAILQ_INIT(&tdbp->tdb_policy_head);
/* Record establishment time. */
tdbp->tdb_established = gettime();
/* Save routing domain */
tdbp->tdb_rdomain = rdomain;
tdbp->tdb_rdomain_post = rdomain;
/* Initialize counters. */
tdbp->tdb_counters = counters_alloc(tdb_ncounters);
/* Initialize timeouts. */
timeout_set_proc(&tdbp->tdb_timer_tmo, tdb_timeout, tdbp);
timeout_set_proc(&tdbp->tdb_first_tmo, tdb_firstuse, tdbp);
timeout_set_proc(&tdbp->tdb_stimer_tmo, tdb_soft_timeout, tdbp);
timeout_set_proc(&tdbp->tdb_sfirst_tmo, tdb_soft_firstuse, tdbp);
return tdbp;
}
void
tdb_free(struct tdb *tdbp)
{
NET_ASSERT_LOCKED();
if (tdbp->tdb_xform) {
(*(tdbp->tdb_xform->xf_zeroize))(tdbp);
tdbp->tdb_xform = NULL;
}
#if NPFSYNC > 0 && defined(IPSEC)
/* Cleanup pfsync references */
pfsync_delete_tdb(tdbp);
#endif
KASSERT(TAILQ_EMPTY(&tdbp->tdb_policy_head));
if (tdbp->tdb_ids) {
ipsp_ids_free(tdbp->tdb_ids);
tdbp->tdb_ids = NULL;
}
#if NPF > 0
if (tdbp->tdb_tag) {
pf_tag_unref(tdbp->tdb_tag);
tdbp->tdb_tag = 0;
}
#endif
counters_free(tdbp->tdb_counters, tdb_ncounters);
KASSERT(tdbp->tdb_onext == NULL);
KASSERT(tdbp->tdb_inext == NULL);
/* Remove expiration timeouts. */
KASSERT(timeout_pending(&tdbp->tdb_timer_tmo) == 0);
KASSERT(timeout_pending(&tdbp->tdb_first_tmo) == 0);
KASSERT(timeout_pending(&tdbp->tdb_stimer_tmo) == 0);
KASSERT(timeout_pending(&tdbp->tdb_sfirst_tmo) == 0);
pool_put(&tdb_pool, tdbp);
}
/*
* Do further initializations of a TDB.
*/
int
tdb_init(struct tdb *tdbp, u_int16_t alg, struct ipsecinit *ii)
{
const struct xformsw *xsp;
int err;
#ifdef ENCDEBUG
char buf[INET6_ADDRSTRLEN];
#endif
for (xsp = xformsw; xsp < xformswNXFORMSW; xsp++) {
if (xsp->xf_type == alg) {
err = (*(xsp->xf_init))(tdbp, xsp, ii);
return err;
}
}
DPRINTF("no alg %d for spi %08x, addr %s, proto %d",
alg, ntohl(tdbp->tdb_spi),
ipsp_address(&tdbp->tdb_dst, buf, sizeof(buf)),
tdbp->tdb_sproto);
return EINVAL;
}
#if defined(DDB) || defined(ENCDEBUG)
/* Return a printable string for the address. */
const char *
ipsp_address(union sockaddr_union *sa, char *buf, socklen_t size)
{
switch (sa->sa.sa_family) {
case AF_INET:
return inet_ntop(AF_INET, &sa->sin.sin_addr,
buf, (size_t)size);
#ifdef INET6
case AF_INET6:
return inet_ntop(AF_INET6, &sa->sin6.sin6_addr,
buf, (size_t)size);
#endif /* INET6 */
default:
return "(unknown address family)";
}
}
#endif /* DDB || ENCDEBUG */
/* Check whether an IP{4,6} address is unspecified. */
int
ipsp_is_unspecified(union sockaddr_union addr)
{
switch (addr.sa.sa_family) {
case AF_INET:
if (addr.sin.sin_addr.s_addr == INADDR_ANY)
return 1;
else
return 0;
#ifdef INET6
case AF_INET6:
if (IN6_IS_ADDR_UNSPECIFIED(&addr.sin6.sin6_addr))
return 1;
else
return 0;
#endif /* INET6 */
case 0: /* No family set. */
default:
return 1;
}
}
int
ipsp_ids_match(struct ipsec_ids *a, struct ipsec_ids *b)
{
return a == b;
}
struct ipsec_ids *
ipsp_ids_insert(struct ipsec_ids *ids)
{
struct ipsec_ids *found;
u_int32_t start_flow;
mtx_enter(&ipsec_flows_mtx);
found = RBT_INSERT(ipsec_ids_tree, &ipsec_ids_tree, ids);
if (found) {
/* if refcount was zero, then timeout is running */
if ((++found->id_refcount) == 1) {
LIST_REMOVE(found, id_gc_list);
if (LIST_EMPTY(&ipsp_ids_gc_list))
timeout_del(&ipsp_ids_gc_timeout);
}
mtx_leave (&ipsec_flows_mtx);
DPRINTF("ids %p count %d", found, found->id_refcount);
return found;
}
ids->id_refcount = 1;
ids->id_flow = start_flow = ipsec_ids_next_flow;
if (++ipsec_ids_next_flow == 0)
ipsec_ids_next_flow = 1;
while (RBT_INSERT(ipsec_ids_flows, &ipsec_ids_flows, ids) != NULL) {
ids->id_flow = ipsec_ids_next_flow;
if (++ipsec_ids_next_flow == 0)
ipsec_ids_next_flow = 1;
if (ipsec_ids_next_flow == start_flow) {
RBT_REMOVE(ipsec_ids_tree, &ipsec_ids_tree, ids);
mtx_leave(&ipsec_flows_mtx);
DPRINTF("ipsec_ids_next_flow exhausted %u",
start_flow);
return NULL;
}
}
mtx_leave(&ipsec_flows_mtx);
DPRINTF("new ids %p flow %u", ids, ids->id_flow);
return ids;
}
struct ipsec_ids *
ipsp_ids_lookup(u_int32_t ipsecflowinfo)
{
struct ipsec_ids key;
struct ipsec_ids *ids;
key.id_flow = ipsecflowinfo;
mtx_enter(&ipsec_flows_mtx);
ids = RBT_FIND(ipsec_ids_flows, &ipsec_ids_flows, &key);
if (ids != NULL) {
if (ids->id_refcount != 0)
ids->id_refcount++;
else
ids = NULL;
}
mtx_leave(&ipsec_flows_mtx);
return ids;
}
/* free ids only from delayed timeout */
void
ipsp_ids_gc(void *arg)
{
struct ipsec_ids *ids, *tids;
mtx_enter(&ipsec_flows_mtx);
LIST_FOREACH_SAFE(ids, &ipsp_ids_gc_list, id_gc_list, tids) {
KASSERT(ids->id_refcount == 0);
DPRINTF("ids %p count %d", ids, ids->id_refcount);
if ((--ids->id_gc_ttl) > 0)
continue;
LIST_REMOVE(ids, id_gc_list);
RBT_REMOVE(ipsec_ids_tree, &ipsec_ids_tree, ids);
RBT_REMOVE(ipsec_ids_flows, &ipsec_ids_flows, ids);
free(ids->id_local, M_CREDENTIALS, 0);
free(ids->id_remote, M_CREDENTIALS, 0);
free(ids, M_CREDENTIALS, 0);
}
if (!LIST_EMPTY(&ipsp_ids_gc_list))
timeout_add_sec(&ipsp_ids_gc_timeout, 1);
mtx_leave(&ipsec_flows_mtx);
}
/* decrements refcount, actual free happens in gc */
void
ipsp_ids_free(struct ipsec_ids *ids)
{
if (ids == NULL)
return;
mtx_enter(&ipsec_flows_mtx);
/*
* If the refcount becomes zero, then a timeout is started. This
* timeout must be cancelled if refcount is increased from zero.
*/
DPRINTF("ids %p count %d", ids, ids->id_refcount);
KASSERT(ids->id_refcount > 0);
if ((--ids->id_refcount) > 0) {
mtx_leave(&ipsec_flows_mtx);
return;
}
/*
* Add second for the case ipsp_ids_gc() is already running and
* awaits netlock to be released.
*/
ids->id_gc_ttl = ipsec_ids_idle + 1;
if (LIST_EMPTY(&ipsp_ids_gc_list))
timeout_add_sec(&ipsp_ids_gc_timeout, 1);
LIST_INSERT_HEAD(&ipsp_ids_gc_list, ids, id_gc_list);
mtx_leave(&ipsec_flows_mtx);
}
static int
ipsp_id_cmp(struct ipsec_id *a, struct ipsec_id *b)
{
if (a->type > b->type)
return 1;
if (a->type < b->type)
return -1;
if (a->len > b->len)
return 1;
if (a->len < b->len)
return -1;
return memcmp(a + 1, b + 1, a->len);
}
static inline int
ipsp_ids_cmp(const struct ipsec_ids *a, const struct ipsec_ids *b)
{
int ret;
ret = ipsp_id_cmp(a->id_remote, b->id_remote);
if (ret != 0)
return ret;
return ipsp_id_cmp(a->id_local, b->id_local);
}
static inline int
ipsp_ids_flow_cmp(const struct ipsec_ids *a, const struct ipsec_ids *b)
{
if (a->id_flow > b->id_flow)
return 1;
if (a->id_flow < b->id_flow)
return -1;
return 0;
}