src/sys/nfs/nfs_socket.c

1877 lines
46 KiB
C

/* $OpenBSD: nfs_socket.c,v 1.150 2024/04/30 17:05:20 miod Exp $ */
/* $NetBSD: nfs_socket.c,v 1.27 1996/04/15 20:20:00 thorpej Exp $ */
/*
* Copyright (c) 1989, 1991, 1993, 1995
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Rick Macklem at The University of Guelph.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
*/
/*
* Socket operations for use by nfs
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/mount.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/vnode.h>
#include <sys/protosw.h>
#include <sys/signalvar.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/syslog.h>
#include <sys/tprintf.h>
#include <sys/namei.h>
#include <sys/pool.h>
#include <sys/queue.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <nfs/rpcv2.h>
#include <nfs/nfsproto.h>
#include <nfs/nfs.h>
#include <nfs/xdr_subs.h>
#include <nfs/nfsmount.h>
#include <nfs/nfs_var.h>
#include <nfs/nfsm_subs.h>
/* External data, mostly RPC constants in XDR form. */
extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers,
rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr;
extern u_int32_t nfs_prog;
extern struct nfsstats nfsstats;
extern const int nfsv3_procid[NFS_NPROCS];
extern int nfs_ticks;
extern struct pool nfsrv_descript_pl;
/*
* There is a congestion window for outstanding rpcs maintained per mount
* point. The cwnd size is adjusted in roughly the way that:
* Van Jacobson, Congestion avoidance and Control, In "Proceedings of
* SIGCOMM '88". ACM, August 1988.
* describes for TCP. The cwnd size is chopped in half on a retransmit timeout
* and incremented by 1/cwnd when each rpc reply is received and a full cwnd
* of rpcs is in progress.
* (The sent count and cwnd are scaled for integer arith.)
* Variants of "slow start" were tried and were found to be too much of a
* performance hit (ave. rtt 3 times larger),
* I suspect due to the large rtt that nfs rpcs have.
*/
#define NFS_CWNDSCALE 256
#define NFS_MAXCWND (NFS_CWNDSCALE * 32)
static const int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256 };
/* RTT estimator */
static const enum nfs_rto_timers nfs_ptimers[NFS_NPROCS] = {
NFS_DEFAULT_TIMER, /* NULL */
NFS_GETATTR_TIMER, /* GETATTR */
NFS_DEFAULT_TIMER, /* SETATTR */
NFS_LOOKUP_TIMER, /* LOOKUP */
NFS_GETATTR_TIMER, /* ACCESS */
NFS_READ_TIMER, /* READLINK */
NFS_READ_TIMER, /* READ */
NFS_WRITE_TIMER, /* WRITE */
NFS_DEFAULT_TIMER, /* CREATE */
NFS_DEFAULT_TIMER, /* MKDIR */
NFS_DEFAULT_TIMER, /* SYMLINK */
NFS_DEFAULT_TIMER, /* MKNOD */
NFS_DEFAULT_TIMER, /* REMOVE */
NFS_DEFAULT_TIMER, /* RMDIR */
NFS_DEFAULT_TIMER, /* RENAME */
NFS_DEFAULT_TIMER, /* LINK */
NFS_READ_TIMER, /* READDIR */
NFS_READ_TIMER, /* READDIRPLUS */
NFS_DEFAULT_TIMER, /* FSSTAT */
NFS_DEFAULT_TIMER, /* FSINFO */
NFS_DEFAULT_TIMER, /* PATHCONF */
NFS_DEFAULT_TIMER, /* COMMIT */
NFS_DEFAULT_TIMER, /* NOOP */
};
void nfs_init_rtt(struct nfsmount *);
void nfs_update_rtt(struct nfsreq *);
int nfs_estimate_rto(struct nfsmount *, u_int32_t procnum);
void nfs_realign(struct mbuf **, int);
void nfs_realign_fixup(struct mbuf *, struct mbuf *, unsigned int *);
int nfs_rcvlock(struct nfsreq *);
int nfs_receive(struct nfsreq *, struct mbuf **, struct mbuf **);
int nfs_reconnect(struct nfsreq *);
int nfs_reply(struct nfsreq *);
void nfs_msg(struct nfsreq *, char *);
void nfs_rcvunlock(int *);
int nfsrv_getstream(struct nfssvc_sock *, int);
unsigned int nfs_realign_test = 0;
unsigned int nfs_realign_count = 0;
/* Initialize the RTT estimator state for a new mount point. */
void
nfs_init_rtt(struct nfsmount *nmp)
{
int i;
for (i = 0; i < NFS_MAX_TIMER; i++)
nmp->nm_srtt[i] = NFS_INITRTT;
for (i = 0; i < NFS_MAX_TIMER; i++)
nmp->nm_sdrtt[i] = 0;
}
/*
* Update a mount point's RTT estimator state using data from the
* passed-in request.
*
* Use a gain of 0.125 on the mean and a gain of 0.25 on the deviation.
*
* NB: Since the timer resolution of NFS_HZ is so coarse, it can often
* result in r_rtt == 0. Since r_rtt == N means that the actual RTT is
* between N + dt and N + 2 - dt ticks, add 1 before calculating the
* update values.
*/
void
nfs_update_rtt(struct nfsreq *rep)
{
int t1 = rep->r_rtt + 1;
int index = nfs_ptimers[rep->r_procnum] - 1;
int *srtt = &rep->r_nmp->nm_srtt[index];
int *sdrtt = &rep->r_nmp->nm_sdrtt[index];
t1 -= *srtt >> 3;
*srtt += t1;
if (t1 < 0)
t1 = -t1;
t1 -= *sdrtt >> 2;
*sdrtt += t1;
}
/*
* Estimate RTO for an NFS RPC sent via an unreliable datagram.
*
* Use the mean and mean deviation of RTT for the appropriate type
* of RPC for the frequent RPCs and a default for the others.
* The justification for doing "other" this way is that these RPCs
* happen so infrequently that timer est. would probably be stale.
* Also, since many of these RPCs are non-idempotent, a conservative
* timeout is desired.
*
* getattr, lookup - A+2D
* read, write - A+4D
* other - nm_timeo
*/
int
nfs_estimate_rto(struct nfsmount *nmp, u_int32_t procnum)
{
enum nfs_rto_timers timer = nfs_ptimers[procnum];
int index = timer - 1;
int rto;
switch (timer) {
case NFS_GETATTR_TIMER:
case NFS_LOOKUP_TIMER:
rto = ((nmp->nm_srtt[index] + 3) >> 2) +
((nmp->nm_sdrtt[index] + 1) >> 1);
break;
case NFS_READ_TIMER:
case NFS_WRITE_TIMER:
rto = ((nmp->nm_srtt[index] + 7) >> 3) +
(nmp->nm_sdrtt[index] + 1);
break;
default:
rto = nmp->nm_timeo;
return (rto);
}
if (rto < NFS_MINRTO)
rto = NFS_MINRTO;
else if (rto > NFS_MAXRTO)
rto = NFS_MAXRTO;
return (rto);
}
/*
* Initialize sockets and congestion for a new NFS connection.
* We do not free the sockaddr if error.
*/
int
nfs_connect(struct nfsmount *nmp, struct nfsreq *rep)
{
struct socket *so;
int error, rcvreserve, sndreserve;
struct sockaddr *saddr;
struct sockaddr_in *sin;
struct mbuf *nam = NULL, *mopt = NULL;
if (!(nmp->nm_sotype == SOCK_DGRAM || nmp->nm_sotype == SOCK_STREAM))
return (EINVAL);
nmp->nm_so = NULL;
saddr = mtod(nmp->nm_nam, struct sockaddr *);
error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype,
nmp->nm_soproto);
if (error) {
nfs_disconnect(nmp);
return (error);
}
/* Allocate mbufs possibly waiting before grabbing the socket lock. */
if (nmp->nm_sotype == SOCK_STREAM || saddr->sa_family == AF_INET)
MGET(mopt, M_WAIT, MT_SOOPTS);
if (saddr->sa_family == AF_INET)
MGET(nam, M_WAIT, MT_SONAME);
so = nmp->nm_so;
nmp->nm_soflags = so->so_proto->pr_flags;
/*
* Some servers require that the client port be a reserved port number.
* We always allocate a reserved port, as this prevents filehandle
* disclosure through UDP port capture.
*/
if (saddr->sa_family == AF_INET) {
int *ip;
mopt->m_len = sizeof(int);
ip = mtod(mopt, int *);
*ip = IP_PORTRANGE_LOW;
error = sosetopt(so, IPPROTO_IP, IP_PORTRANGE, mopt);
if (error)
goto bad;
sin = mtod(nam, struct sockaddr_in *);
memset(sin, 0, sizeof(*sin));
sin->sin_len = nam->m_len = sizeof(struct sockaddr_in);
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = INADDR_ANY;
sin->sin_port = htons(0);
solock(so);
error = sobind(so, nam, &proc0);
sounlock(so);
if (error)
goto bad;
mopt->m_len = sizeof(int);
ip = mtod(mopt, int *);
*ip = IP_PORTRANGE_DEFAULT;
error = sosetopt(so, IPPROTO_IP, IP_PORTRANGE, mopt);
if (error)
goto bad;
}
/*
* Protocols that do not require connections may be optionally left
* unconnected for servers that reply from a port other than NFS_PORT.
*/
if (nmp->nm_flag & NFSMNT_NOCONN) {
if (nmp->nm_soflags & PR_CONNREQUIRED) {
error = ENOTCONN;
goto bad;
}
} else {
solock(so);
error = soconnect(so, nmp->nm_nam);
if (error)
goto bad_locked;
/*
* Wait for the connection to complete. Cribbed from the
* connect system call but with the wait timing out so
* that interruptible mounts don't hang here for a long time.
*/
while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
sosleep_nsec(so, &so->so_timeo, PSOCK, "nfscon",
SEC_TO_NSEC(2));
if ((so->so_state & SS_ISCONNECTING) &&
so->so_error == 0 && rep &&
(error = nfs_sigintr(nmp, rep, rep->r_procp)) != 0){
so->so_state &= ~SS_ISCONNECTING;
goto bad_locked;
}
}
if (so->so_error) {
error = so->so_error;
so->so_error = 0;
goto bad_locked;
}
sounlock(so);
}
/*
* Always set receive timeout to detect server crash and reconnect.
* Otherwise, we can get stuck in soreceive forever.
*/
mtx_enter(&so->so_rcv.sb_mtx);
so->so_rcv.sb_timeo_nsecs = SEC_TO_NSEC(5);
mtx_leave(&so->so_rcv.sb_mtx);
mtx_enter(&so->so_snd.sb_mtx);
if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT))
so->so_snd.sb_timeo_nsecs = SEC_TO_NSEC(5);
else
so->so_snd.sb_timeo_nsecs = INFSLP;
mtx_leave(&so->so_snd.sb_mtx);
if (nmp->nm_sotype == SOCK_DGRAM) {
sndreserve = nmp->nm_wsize + NFS_MAXPKTHDR;
rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
NFS_MAXPKTHDR) * 2;
} else if (nmp->nm_sotype == SOCK_STREAM) {
if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
*mtod(mopt, int32_t *) = 1;
mopt->m_len = sizeof(int32_t);
sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, mopt);
}
if (so->so_proto->pr_protocol == IPPROTO_TCP) {
*mtod(mopt, int32_t *) = 1;
mopt->m_len = sizeof(int32_t);
sosetopt(so, IPPROTO_TCP, TCP_NODELAY, mopt);
}
sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
sizeof (u_int32_t)) * 2;
rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
sizeof (u_int32_t)) * 2;
} else {
panic("%s: nm_sotype %d", __func__, nmp->nm_sotype);
}
solock(so);
error = soreserve(so, sndreserve, rcvreserve);
if (error)
goto bad_locked;
mtx_enter(&so->so_rcv.sb_mtx);
so->so_rcv.sb_flags |= SB_NOINTR;
mtx_leave(&so->so_rcv.sb_mtx);
so->so_snd.sb_flags |= SB_NOINTR;
sounlock(so);
m_freem(mopt);
m_freem(nam);
/* Initialize other non-zero congestion variables */
nfs_init_rtt(nmp);
nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */
nmp->nm_sent = 0;
nmp->nm_timeouts = 0;
return (0);
bad_locked:
sounlock(so);
bad:
m_freem(mopt);
m_freem(nam);
nfs_disconnect(nmp);
return (error);
}
/*
* Reconnect routine:
* Called when a connection is broken on a reliable protocol.
* - clean up the old socket
* - nfs_connect() again
* - set R_MUSTRESEND for all outstanding requests on mount point
* If this fails the mount point is DEAD!
* nb: Must be called with the nfs_sndlock() set on the mount point.
*/
int
nfs_reconnect(struct nfsreq *rep)
{
struct nfsreq *rp;
struct nfsmount *nmp = rep->r_nmp;
int error;
nfs_disconnect(nmp);
while ((error = nfs_connect(nmp, rep)) != 0) {
if (error == EINTR || error == ERESTART)
return (EINTR);
tsleep_nsec(&nowake, PSOCK, "nfsrecon", SEC_TO_NSEC(1));
}
/*
* Loop through outstanding request list and fix up all requests
* on old socket.
*/
TAILQ_FOREACH(rp, &nmp->nm_reqsq, r_chain) {
rp->r_flags |= R_MUSTRESEND;
rp->r_rexmit = 0;
}
return (0);
}
/*
* NFS disconnect. Clean up and unlink.
*/
void
nfs_disconnect(struct nfsmount *nmp)
{
struct socket *so;
if (nmp->nm_so) {
so = nmp->nm_so;
nmp->nm_so = NULL;
soshutdown(so, SHUT_RDWR);
soclose(so, 0);
}
}
/*
* This is the nfs send routine. For connection based socket types, it
* must be called with an nfs_sndlock() on the socket.
* "rep == NULL" indicates that it has been called from a server.
* For the client side:
* - return EINTR if the RPC is terminated, 0 otherwise
* - set R_MUSTRESEND if the send fails for any reason
* - do any cleanup required by recoverable socket errors (???)
* For the server side:
* - return EINTR or ERESTART if interrupted by a signal
* - return EPIPE if a connection is lost for connection based sockets (TCP...)
* - do any cleanup required by recoverable socket errors (???)
*/
int
nfs_send(struct socket *so, struct mbuf *nam, struct mbuf *top,
struct nfsreq *rep)
{
struct mbuf *sendnam;
int error, soflags, flags;
if (rep) {
if (rep->r_flags & R_SOFTTERM) {
m_freem(top);
return (EINTR);
}
if ((so = rep->r_nmp->nm_so) == NULL) {
rep->r_flags |= R_MUSTRESEND;
m_freem(top);
return (0);
}
rep->r_flags &= ~R_MUSTRESEND;
soflags = rep->r_nmp->nm_soflags;
} else
soflags = so->so_proto->pr_flags;
if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
sendnam = NULL;
else
sendnam = nam;
flags = 0;
error = sosend(so, sendnam, NULL, top, NULL, flags);
if (error) {
if (rep) {
/*
* Deal with errors for the client side.
*/
if (rep->r_flags & R_SOFTTERM)
error = EINTR;
else
rep->r_flags |= R_MUSTRESEND;
}
/*
* Handle any recoverable (soft) socket errors here. (???)
*/
if (error != EINTR && error != ERESTART &&
error != EWOULDBLOCK && error != EPIPE)
error = 0;
}
return (error);
}
#ifdef NFSCLIENT
/*
* Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
* done by soreceive(), but for SOCK_STREAM we must deal with the Record
* Mark and consolidate the data into a new mbuf list.
* nb: Sometimes TCP passes the data up to soreceive() in long lists of
* small mbufs.
* For SOCK_STREAM we must be very careful to read an entire record once
* we have read any of it, even if the system call has been interrupted.
*/
int
nfs_receive(struct nfsreq *rep, struct mbuf **aname, struct mbuf **mp)
{
struct socket *so;
struct uio auio;
struct iovec aio;
struct mbuf *m;
struct mbuf *control;
u_int32_t len;
struct mbuf **getnam;
int error, sotype, rcvflg;
struct proc *p = curproc; /* XXX */
/*
* Set up arguments for soreceive()
*/
*mp = NULL;
*aname = NULL;
sotype = rep->r_nmp->nm_sotype;
/*
* For reliable protocols, lock against other senders/receivers
* in case a reconnect is necessary.
* For SOCK_STREAM, first get the Record Mark to find out how much
* more there is to get.
* We must lock the socket against other receivers
* until we have an entire rpc request/reply.
*/
if (sotype != SOCK_DGRAM) {
error = nfs_sndlock(&rep->r_nmp->nm_flag, rep);
if (error)
return (error);
tryagain:
/*
* Check for fatal errors and resending request.
*/
/*
* Ugh: If a reconnect attempt just happened, nm_so
* would have changed. NULL indicates a failed
* attempt that has essentially shut down this
* mount point.
*/
if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
nfs_sndunlock(&rep->r_nmp->nm_flag);
return (EINTR);
}
so = rep->r_nmp->nm_so;
if (!so) {
error = nfs_reconnect(rep);
if (error) {
nfs_sndunlock(&rep->r_nmp->nm_flag);
return (error);
}
goto tryagain;
}
while (rep->r_flags & R_MUSTRESEND) {
m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
nfsstats.rpcretries++;
rep->r_rtt = 0;
rep->r_flags &= ~R_TIMING;
error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
if (error) {
if (error == EINTR || error == ERESTART ||
(error = nfs_reconnect(rep)) != 0) {
nfs_sndunlock(&rep->r_nmp->nm_flag);
return (error);
}
goto tryagain;
}
}
nfs_sndunlock(&rep->r_nmp->nm_flag);
if (sotype == SOCK_STREAM) {
aio.iov_base = (caddr_t) &len;
aio.iov_len = sizeof(u_int32_t);
auio.uio_iov = &aio;
auio.uio_iovcnt = 1;
auio.uio_segflg = UIO_SYSSPACE;
auio.uio_rw = UIO_READ;
auio.uio_offset = 0;
auio.uio_resid = sizeof(u_int32_t);
auio.uio_procp = p;
do {
rcvflg = MSG_WAITALL;
error = soreceive(so, NULL, &auio, NULL, NULL,
&rcvflg, 0);
if (error == EWOULDBLOCK && rep) {
if (rep->r_flags & R_SOFTTERM)
return (EINTR);
/*
* looks like the server died after it
* received the request, make sure
* that we will retransmit and we
* don't get stuck here forever.
*/
if (rep->r_rexmit >=
rep->r_nmp->nm_retry) {
nfsstats.rpctimeouts++;
error = EPIPE;
}
}
} while (error == EWOULDBLOCK);
if (!error && auio.uio_resid > 0) {
log(LOG_INFO,
"short receive (%zu/%zu) from nfs server %s\n",
sizeof(u_int32_t) - auio.uio_resid,
sizeof(u_int32_t),
rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
error = EPIPE;
}
if (error)
goto errout;
len = ntohl(len) & ~0x80000000;
/*
* This is SERIOUS! We are out of sync with the sender
* and forcing a disconnect/reconnect is all I can do.
*/
if (len > NFS_MAXPACKET) {
log(LOG_ERR, "%s (%u) from nfs server %s\n",
"impossible packet length",
len,
rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
error = EFBIG;
goto errout;
}
auio.uio_resid = len;
do {
rcvflg = MSG_WAITALL;
error = soreceive(so, NULL, &auio, mp, NULL,
&rcvflg, 0);
} while (error == EWOULDBLOCK || error == EINTR ||
error == ERESTART);
if (!error && auio.uio_resid > 0) {
log(LOG_INFO, "short receive (%zu/%u) from "
"nfs server %s\n", len - auio.uio_resid,
len, rep->r_nmp->nm_mountp->
mnt_stat.f_mntfromname);
error = EPIPE;
}
} else {
/*
* NB: Since uio_resid is big, MSG_WAITALL is ignored
* and soreceive() will return when it has either a
* control msg or a data msg.
* We have no use for control msg., but must grab them
* and then throw them away so we know what is going
* on.
*/
auio.uio_resid = len = 100000000; /* Anything Big */
auio.uio_procp = p;
do {
rcvflg = 0;
error = soreceive(so, NULL, &auio, mp, &control,
&rcvflg, 0);
m_freem(control);
if (error == EWOULDBLOCK && rep) {
if (rep->r_flags & R_SOFTTERM)
return (EINTR);
}
} while (error == EWOULDBLOCK ||
(!error && *mp == NULL && control));
if ((rcvflg & MSG_EOR) == 0)
printf("Egad!!\n");
if (!error && *mp == NULL)
error = EPIPE;
len -= auio.uio_resid;
}
errout:
if (error && error != EINTR && error != ERESTART) {
m_freemp(mp);
if (error != EPIPE)
log(LOG_INFO,
"receive error %d from nfs server %s\n",
error,
rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
error = nfs_sndlock(&rep->r_nmp->nm_flag, rep);
if (!error) {
error = nfs_reconnect(rep);
if (!error)
goto tryagain;
nfs_sndunlock(&rep->r_nmp->nm_flag);
}
}
} else {
if ((so = rep->r_nmp->nm_so) == NULL)
return (EACCES);
if (so->so_state & SS_ISCONNECTED)
getnam = NULL;
else
getnam = aname;
auio.uio_resid = len = 1000000;
auio.uio_procp = p;
do {
rcvflg = 0;
error = soreceive(so, getnam, &auio, mp, NULL,
&rcvflg, 0);
if (error == EWOULDBLOCK &&
(rep->r_flags & R_SOFTTERM))
return (EINTR);
} while (error == EWOULDBLOCK);
len -= auio.uio_resid;
}
if (error)
m_freemp(mp);
/*
* Search for any mbufs that are not a multiple of 4 bytes long
* or with m_data not longword aligned.
* These could cause pointer alignment problems, so copy them to
* well aligned mbufs.
*/
nfs_realign(mp, 5 * NFSX_UNSIGNED);
return (error);
}
/*
* Implement receipt of reply on a socket.
* We must search through the list of received datagrams matching them
* with outstanding requests using the xid, until ours is found.
*/
int
nfs_reply(struct nfsreq *myrep)
{
struct nfsreq *rep;
struct nfsmount *nmp = myrep->r_nmp;
struct nfsm_info info;
struct mbuf *nam;
u_int32_t rxid, *tl;
int error;
/*
* Loop around until we get our own reply
*/
for (;;) {
/*
* Lock against other receivers so that I don't get stuck in
* sbwait() after someone else has received my reply for me.
* Also necessary for connection based protocols to avoid
* race conditions during a reconnect.
*/
error = nfs_rcvlock(myrep);
if (error)
return (error == EALREADY ? 0 : error);
/*
* Get the next Rpc reply off the socket
*/
error = nfs_receive(myrep, &nam, &info.nmi_mrep);
nfs_rcvunlock(&nmp->nm_flag);
if (error) {
/*
* Ignore routing errors on connectionless protocols??
*/
if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
if (nmp->nm_so)
nmp->nm_so->so_error = 0;
continue;
}
return (error);
}
m_freem(nam);
/*
* Get the xid and check that it is an rpc reply
*/
info.nmi_md = info.nmi_mrep;
info.nmi_dpos = mtod(info.nmi_md, caddr_t);
info.nmi_errorp = &error;
tl = (uint32_t *)nfsm_dissect(&info, 2 * NFSX_UNSIGNED);
if (tl == NULL)
goto nfsmout;
rxid = *tl++;
if (*tl != rpc_reply) {
nfsstats.rpcinvalid++;
m_freem(info.nmi_mrep);
nfsmout:
continue;
}
/*
* Loop through the request list to match up the reply
* Iff no match, just drop the datagram
*/
TAILQ_FOREACH(rep, &nmp->nm_reqsq, r_chain) {
if (rep->r_mrep == NULL && rxid == rep->r_xid) {
/* Found it.. */
rep->r_mrep = info.nmi_mrep;
rep->r_md = info.nmi_md;
rep->r_dpos = info.nmi_dpos;
/*
* Update congestion window.
* Do the additive increase of
* one rpc/rtt.
*/
if (nmp->nm_cwnd <= nmp->nm_sent) {
nmp->nm_cwnd +=
(NFS_CWNDSCALE * NFS_CWNDSCALE +
(nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
if (nmp->nm_cwnd > NFS_MAXCWND)
nmp->nm_cwnd = NFS_MAXCWND;
}
rep->r_flags &= ~R_SENT;
nmp->nm_sent -= NFS_CWNDSCALE;
if (rep->r_flags & R_TIMING)
nfs_update_rtt(rep);
nmp->nm_timeouts = 0;
break;
}
}
/*
* If not matched to a request, drop it.
* If it's mine, get out.
*/
if (rep == 0) {
nfsstats.rpcunexpected++;
m_freem(info.nmi_mrep);
} else if (rep == myrep) {
if (rep->r_mrep == NULL)
panic("nfsreply nil");
return (0);
}
}
}
/*
* nfs_request - goes something like this
* - fill in request struct
* - links it into list
* - calls nfs_send() for first transmit
* - calls nfs_receive() to get reply
* - break down rpc header and return with nfs reply pointed to
* by mrep or error
* nb: always frees up mreq mbuf list
*/
int
nfs_request(struct vnode *vp, int procnum, struct nfsm_info *infop)
{
struct mbuf *m;
u_int32_t *tl;
struct nfsmount *nmp;
int i, error = 0;
int trylater_delay;
struct nfsreq *rep;
struct nfsm_info info;
rep = pool_get(&nfsreqpl, PR_WAITOK);
rep->r_nmp = VFSTONFS(vp->v_mount);
rep->r_vp = vp;
rep->r_procp = infop->nmi_procp;
rep->r_procnum = procnum;
/* empty mbuf for AUTH_UNIX header */
rep->r_mreq = m_gethdr(M_WAIT, MT_DATA);
rep->r_mreq->m_next = infop->nmi_mreq;
rep->r_mreq->m_len = 0;
m_calchdrlen(rep->r_mreq);
trylater_delay = NFS_MINTIMEO;
nmp = rep->r_nmp;
/* Get the RPC header with authorization. */
nfsm_rpchead(rep, infop->nmi_cred, RPCAUTH_UNIX);
m = rep->r_mreq;
/*
* For stream protocols, insert a Sun RPC Record Mark.
*/
if (nmp->nm_sotype == SOCK_STREAM) {
M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
*mtod(m, u_int32_t *) = htonl(0x80000000 |
(m->m_pkthdr.len - NFSX_UNSIGNED));
}
tryagain:
rep->r_rtt = rep->r_rexmit = 0;
if (nfs_ptimers[rep->r_procnum] != NFS_DEFAULT_TIMER)
rep->r_flags = R_TIMING;
else
rep->r_flags = 0;
rep->r_mrep = NULL;
/*
* Do the client side RPC.
*/
nfsstats.rpcrequests++;
/*
* Chain request into list of outstanding requests. Be sure
* to put it LAST so timer finds oldest requests first.
*/
if (TAILQ_EMPTY(&nmp->nm_reqsq))
timeout_add(&nmp->nm_rtimeout, nfs_ticks);
TAILQ_INSERT_TAIL(&nmp->nm_reqsq, rep, r_chain);
/*
* If backing off another request or avoiding congestion, don't
* send this one now but let timer do it. If not timing a request,
* do it now.
*/
if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
(nmp->nm_flag & NFSMNT_DUMBTIMR) ||
nmp->nm_sent < nmp->nm_cwnd)) {
if (nmp->nm_soflags & PR_CONNREQUIRED)
error = nfs_sndlock(&nmp->nm_flag, rep);
if (!error) {
error = nfs_send(nmp->nm_so, nmp->nm_nam,
m_copym(m, 0, M_COPYALL, M_WAIT), rep);
if (nmp->nm_soflags & PR_CONNREQUIRED)
nfs_sndunlock(&nmp->nm_flag);
}
if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
nmp->nm_sent += NFS_CWNDSCALE;
rep->r_flags |= R_SENT;
}
} else {
rep->r_rtt = -1;
}
/*
* Wait for the reply from our send or the timer's.
*/
if (!error || error == EPIPE)
error = nfs_reply(rep);
/*
* RPC done, unlink the request.
*/
TAILQ_REMOVE(&nmp->nm_reqsq, rep, r_chain);
if (TAILQ_EMPTY(&nmp->nm_reqsq))
timeout_del(&nmp->nm_rtimeout);
/*
* Decrement the outstanding request count.
*/
if (rep->r_flags & R_SENT) {
rep->r_flags &= ~R_SENT; /* paranoia */
nmp->nm_sent -= NFS_CWNDSCALE;
}
/*
* If there was a successful reply and a tprintf msg.
* tprintf a response.
*/
if (!error && (rep->r_flags & R_TPRINTFMSG))
nfs_msg(rep, "is alive again");
info.nmi_mrep = rep->r_mrep;
info.nmi_md = rep->r_md;
info.nmi_dpos = rep->r_dpos;
info.nmi_errorp = &error;
if (error) {
infop->nmi_mrep = NULL;
goto nfsmout1;
}
/*
* break down the rpc header and check if ok
*/
tl = (uint32_t *)nfsm_dissect(&info, 3 * NFSX_UNSIGNED);
if (tl == NULL)
goto nfsmout;
if (*tl++ == rpc_msgdenied) {
if (*tl == rpc_mismatch)
error = EOPNOTSUPP;
else
error = EACCES; /* Should be EAUTH. */
infop->nmi_mrep = NULL;
goto nfsmout1;
}
/*
* Since we only support RPCAUTH_UNIX atm we step over the
* reply verifer type, and in the (error) case that there really
* is any data in it, we advance over it.
*/
tl++; /* Step over verifer type */
i = fxdr_unsigned(int32_t, *tl);
if (i > 0) {
/* Should not happen */
if (nfsm_adv(&info, nfsm_rndup(i)) != 0)
goto nfsmout;
}
tl = (uint32_t *)nfsm_dissect(&info, NFSX_UNSIGNED);
if (tl == NULL)
goto nfsmout;
/* 0 == ok */
if (*tl == 0) {
tl = (uint32_t *)nfsm_dissect(&info, NFSX_UNSIGNED);
if (tl == NULL)
goto nfsmout;
if (*tl != 0) {
error = fxdr_unsigned(int, *tl);
if ((nmp->nm_flag & NFSMNT_NFSV3) &&
error == NFSERR_TRYLATER) {
m_freem(info.nmi_mrep);
error = 0;
tsleep_nsec(&nowake, PSOCK, "nfsretry",
SEC_TO_NSEC(trylater_delay));
trylater_delay *= NFS_TIMEOUTMUL;
if (trylater_delay > NFS_MAXTIMEO)
trylater_delay = NFS_MAXTIMEO;
goto tryagain;
}
/*
* If the File Handle was stale, invalidate the
* lookup cache, just in case.
*/
if (error == ESTALE)
cache_purge(rep->r_vp);
}
goto nfsmout;
}
error = EPROTONOSUPPORT;
nfsmout:
infop->nmi_mrep = info.nmi_mrep;
infop->nmi_md = info.nmi_md;
infop->nmi_dpos = info.nmi_dpos;
nfsmout1:
m_freem(rep->r_mreq);
pool_put(&nfsreqpl, rep);
return (error);
}
#endif /* NFSCLIENT */
/*
* Generate the rpc reply header
* siz arg. is used to decide if adding a cluster is worthwhile
*/
int
nfs_rephead(int siz, struct nfsrv_descript *nd, struct nfssvc_sock *slp,
int err, struct mbuf **mrq, struct mbuf **mbp)
{
u_int32_t *tl;
struct mbuf *mreq;
struct mbuf *mb;
MGETHDR(mreq, M_WAIT, MT_DATA);
mb = mreq;
/*
* If this is a big reply, use a cluster else
* try and leave leading space for the lower level headers.
*/
siz += RPC_REPLYSIZ;
if (siz >= MHLEN - max_hdr) {
MCLGET(mreq, M_WAIT);
} else
mreq->m_data += max_hdr;
tl = mtod(mreq, u_int32_t *);
mreq->m_len = 6 * NFSX_UNSIGNED;
*tl++ = txdr_unsigned(nd->nd_retxid);
*tl++ = rpc_reply;
if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
*tl++ = rpc_msgdenied;
if (err & NFSERR_AUTHERR) {
*tl++ = rpc_autherr;
*tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
mreq->m_len -= NFSX_UNSIGNED;
} else {
*tl++ = rpc_mismatch;
*tl++ = txdr_unsigned(RPC_VER2);
*tl = txdr_unsigned(RPC_VER2);
}
} else {
*tl++ = rpc_msgaccepted;
/* AUTH_UNIX requires RPCAUTH_NULL. */
*tl++ = 0;
*tl++ = 0;
switch (err) {
case EPROGUNAVAIL:
*tl = txdr_unsigned(RPC_PROGUNAVAIL);
break;
case EPROGMISMATCH:
*tl = txdr_unsigned(RPC_PROGMISMATCH);
tl = nfsm_build(&mb, 2 * NFSX_UNSIGNED);
*tl++ = txdr_unsigned(NFS_VER2);
*tl = txdr_unsigned(NFS_VER3);
break;
case EPROCUNAVAIL:
*tl = txdr_unsigned(RPC_PROCUNAVAIL);
break;
case EBADRPC:
*tl = txdr_unsigned(RPC_GARBAGE);
break;
default:
*tl = 0;
if (err != NFSERR_RETVOID) {
tl = nfsm_build(&mb, NFSX_UNSIGNED);
if (err)
*tl = txdr_unsigned(nfsrv_errmap(nd, err));
else
*tl = 0;
}
break;
};
}
*mrq = mreq;
if (mbp != NULL)
*mbp = mb;
if (err != 0 && err != NFSERR_RETVOID)
nfsstats.srvrpc_errs++;
return (0);
}
/*
* nfs timer routine
* Scan the nfsreq list and retransmit any requests that have timed out.
*/
void
nfs_timer(void *arg)
{
struct nfsmount *nmp = arg;
struct nfsreq *rep;
struct mbuf *m;
struct socket *so;
int timeo, error;
NET_LOCK();
TAILQ_FOREACH(rep, &nmp->nm_reqsq, r_chain) {
if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
continue;
if (nfs_sigintr(nmp, rep, rep->r_procp)) {
rep->r_flags |= R_SOFTTERM;
continue;
}
if (rep->r_rtt >= 0) {
rep->r_rtt++;
if (nmp->nm_flag & NFSMNT_DUMBTIMR)
timeo = nmp->nm_timeo;
else
timeo = nfs_estimate_rto(nmp, rep->r_procnum);
if (nmp->nm_timeouts > 0)
timeo *= nfs_backoff[nmp->nm_timeouts - 1];
if (rep->r_rtt <= timeo)
continue;
if (nmp->nm_timeouts < nitems(nfs_backoff))
nmp->nm_timeouts++;
}
/* Check for server not responding. */
if ((rep->r_flags & R_TPRINTFMSG) == 0 && rep->r_rexmit > 4) {
nfs_msg(rep, "not responding");
rep->r_flags |= R_TPRINTFMSG;
}
if (rep->r_rexmit >= nmp->nm_retry) { /* too many */
nfsstats.rpctimeouts++;
rep->r_flags |= R_SOFTTERM;
continue;
}
if (nmp->nm_sotype != SOCK_DGRAM) {
if (++rep->r_rexmit > NFS_MAXREXMIT)
rep->r_rexmit = NFS_MAXREXMIT;
continue;
}
if ((so = nmp->nm_so) == NULL)
continue;
/*
* If there is enough space and the window allows..
* Resend it
* Set r_rtt to -1 in case we fail to send it now.
*/
rep->r_rtt = -1;
if (sbspace(so, &so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
(rep->r_flags & R_SENT) ||
nmp->nm_sent < nmp->nm_cwnd) &&
(m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
if ((nmp->nm_flag & NFSMNT_NOCONN) == 0)
error = pru_send(so, m, NULL, NULL);
else
error = pru_send(so, m, nmp->nm_nam, NULL);
if (error) {
if (NFSIGNORE_SOERROR(nmp->nm_soflags, error))
so->so_error = 0;
} else {
/*
* Iff first send, start timing
* else turn timing off, backoff timer
* and divide congestion window by 2.
*/
if (rep->r_flags & R_SENT) {
rep->r_flags &= ~R_TIMING;
if (++rep->r_rexmit > NFS_MAXREXMIT)
rep->r_rexmit = NFS_MAXREXMIT;
nmp->nm_cwnd >>= 1;
if (nmp->nm_cwnd < NFS_CWNDSCALE)
nmp->nm_cwnd = NFS_CWNDSCALE;
nfsstats.rpcretries++;
} else {
rep->r_flags |= R_SENT;
nmp->nm_sent += NFS_CWNDSCALE;
}
rep->r_rtt = 0;
}
}
}
NET_UNLOCK();
timeout_add(&nmp->nm_rtimeout, nfs_ticks);
}
/*
* Test for a termination condition pending on the process.
* This is used for NFSMNT_INT mounts.
*/
int
nfs_sigintr(struct nfsmount *nmp, struct nfsreq *rep, struct proc *p)
{
if (rep && (rep->r_flags & R_SOFTTERM))
return (EINTR);
if (!(nmp->nm_flag & NFSMNT_INT))
return (0);
if (p && (SIGPENDING(p) & ~p->p_p->ps_sigacts->ps_sigignore &
NFSINT_SIGMASK))
return (EINTR);
return (0);
}
/*
* Lock a socket against others.
* Necessary for STREAM sockets to ensure you get an entire rpc request/reply
* and also to avoid race conditions between the processes with nfs requests
* in progress when a reconnect is necessary.
*/
int
nfs_sndlock(int *flagp, struct nfsreq *rep)
{
uint64_t slptimeo = INFSLP;
struct proc *p;
int slpflag = 0;
if (rep) {
p = rep->r_procp;
if (rep->r_nmp->nm_flag & NFSMNT_INT)
slpflag = PCATCH;
} else
p = NULL;
while (*flagp & NFSMNT_SNDLOCK) {
if (rep && nfs_sigintr(rep->r_nmp, rep, p))
return (EINTR);
*flagp |= NFSMNT_WANTSND;
tsleep_nsec(flagp, slpflag | (PZERO - 1), "nfsndlck", slptimeo);
if (slpflag == PCATCH) {
slpflag = 0;
slptimeo = SEC_TO_NSEC(2);
}
}
*flagp |= NFSMNT_SNDLOCK;
return (0);
}
/*
* Unlock the stream socket for others.
*/
void
nfs_sndunlock(int *flagp)
{
if ((*flagp & NFSMNT_SNDLOCK) == 0)
panic("nfs sndunlock");
*flagp &= ~NFSMNT_SNDLOCK;
if (*flagp & NFSMNT_WANTSND) {
*flagp &= ~NFSMNT_WANTSND;
wakeup((caddr_t)flagp);
}
}
int
nfs_rcvlock(struct nfsreq *rep)
{
uint64_t slptimeo = INFSLP;
int *flagp = &rep->r_nmp->nm_flag;
int slpflag;
if (*flagp & NFSMNT_INT)
slpflag = PCATCH;
else
slpflag = 0;
while (*flagp & NFSMNT_RCVLOCK) {
if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp))
return (EINTR);
*flagp |= NFSMNT_WANTRCV;
tsleep_nsec(flagp, slpflag | (PZERO - 1), "nfsrcvlk", slptimeo);
if (rep->r_mrep != NULL) {
/*
* Don't take the lock if our reply has been received
* while we where sleeping.
*/
return (EALREADY);
}
if (slpflag == PCATCH) {
slpflag = 0;
slptimeo = SEC_TO_NSEC(2);
}
}
*flagp |= NFSMNT_RCVLOCK;
return (0);
}
/*
* Unlock the stream socket for others.
*/
void
nfs_rcvunlock(int *flagp)
{
if ((*flagp & NFSMNT_RCVLOCK) == 0)
panic("nfs rcvunlock");
*flagp &= ~NFSMNT_RCVLOCK;
if (*flagp & NFSMNT_WANTRCV) {
*flagp &= ~NFSMNT_WANTRCV;
wakeup(flagp);
}
}
/*
* Auxiliary routine to align the length of mbuf copies made with m_copyback().
*/
void
nfs_realign_fixup(struct mbuf *m, struct mbuf *n, unsigned int *off)
{
size_t padding;
/*
* The maximum number of bytes that m_copyback() places in a mbuf is
* always an aligned quantity, so realign happens at the chain's tail.
*/
while (n->m_next != NULL)
n = n->m_next;
/*
* Pad from the next elements in the source chain. Loop until the
* destination chain is aligned, or the end of the source is reached.
*/
do {
m = m->m_next;
if (m == NULL)
return;
padding = min(ALIGN(n->m_len) - n->m_len, m->m_len);
if (padding > m_trailingspace(n))
panic("nfs_realign_fixup: no memory to pad to");
bcopy(mtod(m, void *), mtod(n, char *) + n->m_len, padding);
n->m_len += padding;
m_adj(m, padding);
*off += padding;
} while (!ALIGNED_POINTER(n->m_len, void *));
}
/*
* The NFS RPC parsing code uses the data address and the length of mbuf
* structures to calculate on-memory addresses. This function makes sure these
* parameters are correctly aligned.
*/
void
nfs_realign(struct mbuf **pm, int hsiz)
{
struct mbuf *m;
struct mbuf *n = NULL;
unsigned int off = 0;
++nfs_realign_test;
while ((m = *pm) != NULL) {
if (!ALIGNED_POINTER(m->m_data, void *) ||
!ALIGNED_POINTER(m->m_len, void *)) {
MGET(n, M_WAIT, MT_DATA);
#define ALIGN_POINTER(n) ((u_int)(((n) + sizeof(void *)) & ~sizeof(void *)))
if (ALIGN_POINTER(m->m_len) >= MINCLSIZE) {
MCLGET(n, M_WAIT);
}
n->m_len = 0;
break;
}
pm = &m->m_next;
}
/*
* If n is non-NULL, loop on m copying data, then replace the
* portion of the chain that had to be realigned.
*/
if (n != NULL) {
++nfs_realign_count;
while (m) {
m_copyback(n, off, m->m_len, mtod(m, caddr_t), M_WAIT);
/*
* If an unaligned amount of memory was copied, fix up
* the last mbuf created by m_copyback().
*/
if (!ALIGNED_POINTER(m->m_len, void *))
nfs_realign_fixup(m, n, &off);
off += m->m_len;
m = m->m_next;
}
m_freemp(pm);
*pm = n;
}
}
/*
* Parse an RPC request
* - verify it
* - fill in the cred struct.
*/
int
nfs_getreq(struct nfsrv_descript *nd, struct nfsd *nfsd, int has_header)
{
int len, i;
u_int32_t *tl;
u_int32_t nfsvers, auth_type;
int error = 0;
struct nfsm_info info;
info.nmi_mrep = nd->nd_mrep;
info.nmi_md = nd->nd_md;
info.nmi_dpos = nd->nd_dpos;
info.nmi_errorp = &error;
if (has_header) {
tl = (uint32_t *)nfsm_dissect(&info, 10 * NFSX_UNSIGNED);
if (tl == NULL)
goto nfsmout;
nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
if (*tl++ != rpc_call) {
m_freem(info.nmi_mrep);
return (EBADRPC);
}
} else {
tl = (uint32_t *)nfsm_dissect(&info, 8 * NFSX_UNSIGNED);
if (tl == NULL)
goto nfsmout;
}
nd->nd_repstat = 0;
nd->nd_flag = 0;
if (*tl++ != rpc_vers) {
nd->nd_repstat = ERPCMISMATCH;
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
if (*tl != nfs_prog) {
nd->nd_repstat = EPROGUNAVAIL;
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
tl++;
nfsvers = fxdr_unsigned(u_int32_t, *tl++);
if (nfsvers != NFS_VER2 && nfsvers != NFS_VER3) {
nd->nd_repstat = EPROGMISMATCH;
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
if (nfsvers == NFS_VER3)
nd->nd_flag = ND_NFSV3;
nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
if (nd->nd_procnum == NFSPROC_NULL)
return (0);
if (nd->nd_procnum >= NFS_NPROCS ||
(nd->nd_procnum > NFSPROC_COMMIT) ||
(!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
nd->nd_repstat = EPROCUNAVAIL;
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
if ((nd->nd_flag & ND_NFSV3) == 0)
nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
auth_type = *tl++;
len = fxdr_unsigned(int, *tl++);
if (len < 0 || len > RPCAUTH_MAXSIZ) {
m_freem(info.nmi_mrep);
return (EBADRPC);
}
/* Handle auth_unix */
if (auth_type == rpc_auth_unix) {
len = fxdr_unsigned(int, *++tl);
if (len < 0 || len > NFS_MAXNAMLEN) {
m_freem(info.nmi_mrep);
return (EBADRPC);
}
if (nfsm_adv(&info, nfsm_rndup(len)) != 0)
goto nfsmout;
tl = (uint32_t *)nfsm_dissect(&info, 3 * NFSX_UNSIGNED);
if (tl == NULL)
goto nfsmout;
memset(&nd->nd_cr, 0, sizeof (struct ucred));
refcnt_init(&nd->nd_cr.cr_refcnt);
nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
len = fxdr_unsigned(int, *tl);
if (len < 0 || len > RPCAUTH_UNIXGIDS) {
m_freem(info.nmi_mrep);
return (EBADRPC);
}
tl = (uint32_t *)
nfsm_dissect(&info, (len + 2) * NFSX_UNSIGNED);
if (tl == NULL)
goto nfsmout;
for (i = 0; i < len; i++) {
if (i < NGROUPS_MAX)
nd->nd_cr.cr_groups[i] =
fxdr_unsigned(gid_t, *tl++);
else
tl++;
}
nd->nd_cr.cr_ngroups = (len > NGROUPS_MAX) ? NGROUPS_MAX : len;
len = fxdr_unsigned(int, *++tl);
if (len < 0 || len > RPCAUTH_MAXSIZ) {
m_freem(info.nmi_mrep);
return (EBADRPC);
}
if (len > 0) {
if (nfsm_adv(&info, nfsm_rndup(len)) != 0)
goto nfsmout;
}
} else {
nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
nd->nd_md = info.nmi_md;
nd->nd_dpos = info.nmi_dpos;
return (0);
nfsmout:
return (error);
}
void
nfs_msg(struct nfsreq *rep, char *msg)
{
tpr_t tpr;
if (rep->r_procp)
tpr = tprintf_open(rep->r_procp);
else
tpr = NULL;
tprintf(tpr, "nfs server %s: %s\n",
rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname, msg);
tprintf_close(tpr);
}
#ifdef NFSSERVER
/*
* Socket upcall routine for the nfsd sockets.
* The caddr_t arg is a pointer to the "struct nfssvc_sock".
* Essentially do as much as possible non-blocking, else punt and it will
* be called with M_WAIT from an nfsd.
*/
void
nfsrv_rcv(struct socket *so, caddr_t arg, int waitflag)
{
struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
struct mbuf *m;
struct mbuf *mp, *nam;
struct uio auio;
int flags, error;
KERNEL_LOCK();
if ((slp->ns_flag & SLP_VALID) == 0)
goto out;
/* Defer soreceive() to an nfsd. */
if (waitflag == M_DONTWAIT) {
slp->ns_flag |= SLP_NEEDQ;
goto dorecs;
}
auio.uio_procp = NULL;
if (so->so_type == SOCK_STREAM) {
/*
* Do soreceive().
*/
auio.uio_resid = 1000000000;
flags = MSG_DONTWAIT;
error = soreceive(so, NULL, &auio, &mp, NULL,
&flags, 0);
if (error || mp == NULL) {
if (error == EWOULDBLOCK)
slp->ns_flag |= SLP_NEEDQ;
else
slp->ns_flag |= SLP_DISCONN;
goto dorecs;
}
m = mp;
if (slp->ns_rawend) {
slp->ns_rawend->m_next = m;
slp->ns_cc += 1000000000 - auio.uio_resid;
} else {
slp->ns_raw = m;
slp->ns_cc = 1000000000 - auio.uio_resid;
}
while (m->m_next)
m = m->m_next;
slp->ns_rawend = m;
/*
* Now try and parse record(s) out of the raw stream data.
*/
error = nfsrv_getstream(slp, waitflag);
if (error) {
if (error == EPERM)
slp->ns_flag |= SLP_DISCONN;
else
slp->ns_flag |= SLP_NEEDQ;
}
} else {
do {
auio.uio_resid = 1000000000;
flags = MSG_DONTWAIT;
error = soreceive(so, &nam, &auio, &mp,
NULL, &flags, 0);
if (mp) {
m = nam;
m->m_next = mp;
if (slp->ns_recend)
slp->ns_recend->m_nextpkt = m;
else
slp->ns_rec = m;
slp->ns_recend = m;
m->m_nextpkt = NULL;
}
if (error) {
if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
&& error != EWOULDBLOCK) {
slp->ns_flag |= SLP_DISCONN;
goto dorecs;
}
}
} while (mp);
}
/*
* Now try and process the request records, non-blocking.
*/
dorecs:
if (waitflag == M_DONTWAIT &&
(slp->ns_rec || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN))))
nfsrv_wakenfsd(slp);
out:
KERNEL_UNLOCK();
}
/*
* Try and extract an RPC request from the mbuf data list received on a
* stream socket. The "waitflag" argument indicates whether or not it
* can sleep.
*/
int
nfsrv_getstream(struct nfssvc_sock *slp, int waitflag)
{
struct mbuf *m, **mpp;
char *cp1, *cp2;
int len;
struct mbuf *om, *m2, *recm;
u_int32_t recmark;
if (slp->ns_flag & SLP_GETSTREAM)
return (0);
slp->ns_flag |= SLP_GETSTREAM;
for (;;) {
if (slp->ns_reclen == 0) {
if (slp->ns_cc < NFSX_UNSIGNED) {
slp->ns_flag &= ~SLP_GETSTREAM;
return (0);
}
m = slp->ns_raw;
if (m->m_len >= NFSX_UNSIGNED) {
bcopy(mtod(m, caddr_t), &recmark,
NFSX_UNSIGNED);
m->m_data += NFSX_UNSIGNED;
m->m_len -= NFSX_UNSIGNED;
} else {
cp1 = (caddr_t)&recmark;
cp2 = mtod(m, caddr_t);
while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
while (m->m_len == 0) {
m = m->m_next;
cp2 = mtod(m, caddr_t);
}
*cp1++ = *cp2++;
m->m_data++;
m->m_len--;
}
}
slp->ns_cc -= NFSX_UNSIGNED;
recmark = ntohl(recmark);
slp->ns_reclen = recmark & ~0x80000000;
if (recmark & 0x80000000)
slp->ns_flag |= SLP_LASTFRAG;
else
slp->ns_flag &= ~SLP_LASTFRAG;
if (slp->ns_reclen > NFS_MAXPACKET) {
slp->ns_flag &= ~SLP_GETSTREAM;
return (EPERM);
}
}
/*
* Now get the record part.
*/
recm = NULL;
if (slp->ns_cc == slp->ns_reclen) {
recm = slp->ns_raw;
slp->ns_raw = slp->ns_rawend = NULL;
slp->ns_cc = slp->ns_reclen = 0;
} else if (slp->ns_cc > slp->ns_reclen) {
len = 0;
m = slp->ns_raw;
om = NULL;
while (len < slp->ns_reclen) {
if ((len + m->m_len) > slp->ns_reclen) {
m2 = m_copym(m, 0, slp->ns_reclen - len,
waitflag);
if (m2) {
if (om) {
om->m_next = m2;
recm = slp->ns_raw;
} else
recm = m2;
m->m_data += slp->ns_reclen-len;
m->m_len -= slp->ns_reclen-len;
len = slp->ns_reclen;
} else {
slp->ns_flag &= ~SLP_GETSTREAM;
return (EWOULDBLOCK);
}
} else if ((len + m->m_len) == slp->ns_reclen) {
om = m;
len += m->m_len;
m = m->m_next;
recm = slp->ns_raw;
om->m_next = NULL;
} else {
om = m;
len += m->m_len;
m = m->m_next;
}
}
slp->ns_raw = m;
slp->ns_cc -= len;
slp->ns_reclen = 0;
} else {
slp->ns_flag &= ~SLP_GETSTREAM;
return (0);
}
/*
* Accumulate the fragments into a record.
*/
mpp = &slp->ns_frag;
while (*mpp)
mpp = &((*mpp)->m_next);
*mpp = recm;
if (slp->ns_flag & SLP_LASTFRAG) {
if (slp->ns_recend)
slp->ns_recend->m_nextpkt = slp->ns_frag;
else
slp->ns_rec = slp->ns_frag;
slp->ns_recend = slp->ns_frag;
slp->ns_frag = NULL;
}
}
}
/*
* Parse an RPC header.
*/
int
nfsrv_dorec(struct nfssvc_sock *slp, struct nfsd *nfsd,
struct nfsrv_descript **ndp)
{
struct mbuf *m, *nam;
struct nfsrv_descript *nd;
int error;
*ndp = NULL;
if ((slp->ns_flag & SLP_VALID) == 0 ||
(m = slp->ns_rec) == NULL)
return (ENOBUFS);
slp->ns_rec = m->m_nextpkt;
if (slp->ns_rec)
m->m_nextpkt = NULL;
else
slp->ns_recend = NULL;
if (m->m_type == MT_SONAME) {
nam = m;
m = m->m_next;
nam->m_next = NULL;
} else
nam = NULL;
nd = pool_get(&nfsrv_descript_pl, PR_WAITOK);
nfs_realign(&m, 10 * NFSX_UNSIGNED);
nd->nd_md = nd->nd_mrep = m;
nd->nd_nam2 = nam;
nd->nd_dpos = mtod(m, caddr_t);
error = nfs_getreq(nd, nfsd, 1);
if (error) {
m_freem(nam);
pool_put(&nfsrv_descript_pl, nd);
return (error);
}
*ndp = nd;
nfsd->nfsd_nd = nd;
return (0);
}
/*
* Search for a sleeping nfsd and wake it up.
* SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
* running nfsds will go look for the work in the nfssvc_sock list.
*/
void
nfsrv_wakenfsd(struct nfssvc_sock *slp)
{
struct nfsd *nfsd;
if ((slp->ns_flag & SLP_VALID) == 0)
return;
TAILQ_FOREACH(nfsd, &nfsd_head, nfsd_chain) {
if (nfsd->nfsd_flag & NFSD_WAITING) {
nfsd->nfsd_flag &= ~NFSD_WAITING;
if (nfsd->nfsd_slp)
panic("nfsd wakeup");
slp->ns_sref++;
nfsd->nfsd_slp = slp;
wakeup_one(nfsd);
return;
}
}
slp->ns_flag |= SLP_DOREC;
nfsd_head_flag |= NFSD_CHECKSLP;
}
#endif /* NFSSERVER */