src/sys/uvm/uvm_km.c

974 lines
27 KiB
C

/* $OpenBSD: uvm_km.c,v 1.152 2024/03/27 15:41:40 kurt Exp $ */
/* $NetBSD: uvm_km.c,v 1.42 2001/01/14 02:10:01 thorpej Exp $ */
/*
* Copyright (c) 1997 Charles D. Cranor and Washington University.
* Copyright (c) 1991, 1993, The Regents of the University of California.
*
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
* from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* uvm_km.c: handle kernel memory allocation and management
*/
/*
* overview of kernel memory management:
*
* the kernel virtual address space is mapped by "kernel_map." kernel_map
* starts at a machine-dependent address and is VM_KERNEL_SPACE_SIZE bytes
* large.
*
* the kernel_map has several "submaps." submaps can only appear in
* the kernel_map (user processes can't use them). submaps "take over"
* the management of a sub-range of the kernel's address space. submaps
* are typically allocated at boot time and are never released. kernel
* virtual address space that is mapped by a submap is locked by the
* submap's lock -- not the kernel_map's lock.
*
* thus, the useful feature of submaps is that they allow us to break
* up the locking and protection of the kernel address space into smaller
* chunks.
*
* The VM system has several standard kernel submaps:
* kmem_map: Contains only wired kernel memory for malloc(9).
* Note: All access to this map must be protected by splvm as
* calls to malloc(9) are allowed in interrupt handlers.
* exec_map: Memory to hold arguments to system calls are allocated from
* this map.
* XXX: This is primeraly used to artificially limit the number
* of concurrent processes doing an exec.
* phys_map: Buffers for vmapbuf (physio) are allocated from this map.
*
* the kernel allocates its private memory out of special uvm_objects whose
* reference count is set to UVM_OBJ_KERN (thus indicating that the objects
* are "special" and never die). all kernel objects should be thought of
* as large, fixed-sized, sparsely populated uvm_objects. each kernel
* object is equal to the size of kernel virtual address space (i.e.
* VM_KERNEL_SPACE_SIZE).
*
* most kernel private memory lives in kernel_object. the only exception
* to this is for memory that belongs to submaps that must be protected
* by splvm(). each of these submaps manages their own pages.
*
* note that just because a kernel object spans the entire kernel virtual
* address space doesn't mean that it has to be mapped into the entire space.
* large chunks of a kernel object's space go unused either because
* that area of kernel VM is unmapped, or there is some other type of
* object mapped into that range (e.g. a vnode). for submap's kernel
* objects, the only part of the object that can ever be populated is the
* offsets that are managed by the submap.
*
* note that the "offset" in a kernel object is always the kernel virtual
* address minus the vm_map_min(kernel_map).
* example:
* suppose kernel_map starts at 0xf8000000 and the kernel does a
* uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
* kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
* then that means that the page at offset 0x235000 in kernel_object is
* mapped at 0xf8235000.
*
* kernel objects have one other special property: when the kernel virtual
* memory mapping them is unmapped, the backing memory in the object is
* freed right away. this is done with the uvm_km_pgremove() function.
* this has to be done because there is no backing store for kernel pages
* and no need to save them after they are no longer referenced.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/kthread.h>
#include <uvm/uvm.h>
/*
* global data structures
*/
struct vm_map *kernel_map = NULL;
/* Unconstraint range. */
struct uvm_constraint_range no_constraint = { 0x0, (paddr_t)-1 };
/*
* local data structures
*/
static struct vm_map kernel_map_store;
/*
* uvm_km_init: init kernel maps and objects to reflect reality (i.e.
* KVM already allocated for text, data, bss, and static data structures).
*
* => KVM is defined by [base.. base + VM_KERNEL_SPACE_SIZE].
* we assume that [base -> start] has already been allocated and that
* "end" is the end of the kernel image span.
*/
void
uvm_km_init(vaddr_t base, vaddr_t start, vaddr_t end)
{
/* kernel_object: for pageable anonymous kernel memory */
uao_init();
uvm.kernel_object = uao_create(VM_KERNEL_SPACE_SIZE, UAO_FLAG_KERNOBJ);
/*
* init the map and reserve already allocated kernel space
* before installing.
*/
uvm_map_setup(&kernel_map_store, pmap_kernel(), base, end,
#ifdef KVA_GUARDPAGES
VM_MAP_PAGEABLE | VM_MAP_GUARDPAGES
#else
VM_MAP_PAGEABLE
#endif
);
if (base != start && uvm_map(&kernel_map_store, &base, start - base,
NULL, UVM_UNKNOWN_OFFSET, 0,
UVM_MAPFLAG(PROT_READ | PROT_WRITE, PROT_READ | PROT_WRITE,
MAP_INHERIT_NONE, MADV_RANDOM, UVM_FLAG_FIXED)) != 0)
panic("uvm_km_init: could not reserve space for kernel");
kernel_map = &kernel_map_store;
#ifndef __HAVE_PMAP_DIRECT
/* allow km_alloc calls before uvm_km_thread starts */
mtx_init(&uvm_km_pages.mtx, IPL_VM);
#endif
}
/*
* uvm_km_suballoc: allocate a submap in the kernel map. once a submap
* is allocated all references to that area of VM must go through it. this
* allows the locking of VAs in kernel_map to be broken up into regions.
*
* => if `fixed' is true, *min specifies where the region described
* by the submap must start
* => if submap is non NULL we use that as the submap, otherwise we
* alloc a new map
*/
struct vm_map *
uvm_km_suballoc(struct vm_map *map, vaddr_t *min, vaddr_t *max, vsize_t size,
int flags, boolean_t fixed, struct vm_map *submap)
{
int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
size = round_page(size); /* round up to pagesize */
/* first allocate a blank spot in the parent map */
if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
UVM_MAPFLAG(PROT_READ | PROT_WRITE, PROT_READ | PROT_WRITE,
MAP_INHERIT_NONE, MADV_RANDOM, mapflags)) != 0) {
panic("uvm_km_suballoc: unable to allocate space in parent map");
}
/* set VM bounds (min is filled in by uvm_map) */
*max = *min + size;
/* add references to pmap and create or init the submap */
pmap_reference(vm_map_pmap(map));
if (submap == NULL) {
submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
if (submap == NULL)
panic("uvm_km_suballoc: unable to create submap");
} else {
uvm_map_setup(submap, vm_map_pmap(map), *min, *max, flags);
}
/*
* now let uvm_map_submap plug in it...
*/
if (uvm_map_submap(map, *min, *max, submap) != 0)
panic("uvm_km_suballoc: submap allocation failed");
return(submap);
}
/*
* uvm_km_pgremove: remove pages from a kernel uvm_object.
*
* => when you unmap a part of anonymous kernel memory you want to toss
* the pages right away. (this gets called from uvm_unmap_...).
*/
void
uvm_km_pgremove(struct uvm_object *uobj, vaddr_t startva, vaddr_t endva)
{
const voff_t start = startva - vm_map_min(kernel_map);
const voff_t end = endva - vm_map_min(kernel_map);
struct vm_page *pp;
voff_t curoff;
int slot;
int swpgonlydelta = 0;
KASSERT(UVM_OBJ_IS_AOBJ(uobj));
KASSERT(rw_write_held(uobj->vmobjlock));
pmap_remove(pmap_kernel(), startva, endva);
for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
pp = uvm_pagelookup(uobj, curoff);
if (pp && pp->pg_flags & PG_BUSY) {
uvm_pagewait(pp, uobj->vmobjlock, "km_pgrm");
rw_enter(uobj->vmobjlock, RW_WRITE);
curoff -= PAGE_SIZE; /* loop back to us */
continue;
}
/* free the swap slot, then the page */
slot = uao_dropswap(uobj, curoff >> PAGE_SHIFT);
if (pp != NULL) {
uvm_lock_pageq();
uvm_pagefree(pp);
uvm_unlock_pageq();
} else if (slot != 0) {
swpgonlydelta++;
}
}
if (swpgonlydelta > 0) {
KASSERT(uvmexp.swpgonly >= swpgonlydelta);
atomic_add_int(&uvmexp.swpgonly, -swpgonlydelta);
}
}
/*
* uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
* objects
*
* => when you unmap a part of anonymous kernel memory you want to toss
* the pages right away. (this gets called from uvm_unmap_...).
* => none of the pages will ever be busy, and none of them will ever
* be on the active or inactive queues (because these objects are
* never allowed to "page").
*/
void
uvm_km_pgremove_intrsafe(vaddr_t start, vaddr_t end)
{
struct vm_page *pg;
vaddr_t va;
paddr_t pa;
for (va = start; va < end; va += PAGE_SIZE) {
if (!pmap_extract(pmap_kernel(), va, &pa))
continue;
pg = PHYS_TO_VM_PAGE(pa);
if (pg == NULL)
panic("uvm_km_pgremove_intrsafe: no page");
uvm_pagefree(pg);
}
pmap_kremove(start, end - start);
}
/*
* uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
*
* => we map wired memory into the specified map using the obj passed in
* => NOTE: we can return NULL even if we can wait if there is not enough
* free VM space in the map... caller should be prepared to handle
* this case.
* => we return KVA of memory allocated
* => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
* lock the map
* => low, high, alignment, boundary, nsegs are the corresponding parameters
* to uvm_pglistalloc
* => flags: ZERO - correspond to uvm_pglistalloc flags
*/
vaddr_t
uvm_km_kmemalloc_pla(struct vm_map *map, struct uvm_object *obj, vsize_t size,
vsize_t valign, int flags, paddr_t low, paddr_t high, paddr_t alignment,
paddr_t boundary, int nsegs)
{
vaddr_t kva, loopva;
voff_t offset;
struct vm_page *pg;
struct pglist pgl;
int pla_flags;
KASSERT(vm_map_pmap(map) == pmap_kernel());
/* UVM_KMF_VALLOC => !UVM_KMF_ZERO */
KASSERT(!(flags & UVM_KMF_VALLOC) ||
!(flags & UVM_KMF_ZERO));
/* setup for call */
size = round_page(size);
kva = vm_map_min(map); /* hint */
if (nsegs == 0)
nsegs = atop(size);
/* allocate some virtual space */
if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
valign, UVM_MAPFLAG(PROT_READ | PROT_WRITE, PROT_READ | PROT_WRITE,
MAP_INHERIT_NONE, MADV_RANDOM, (flags & UVM_KMF_TRYLOCK))) != 0)) {
return 0;
}
/* if all we wanted was VA, return now */
if (flags & UVM_KMF_VALLOC) {
return kva;
}
/* recover object offset from virtual address */
if (obj != NULL)
offset = kva - vm_map_min(kernel_map);
else
offset = 0;
/*
* now allocate and map in the memory... note that we are the only ones
* whom should ever get a handle on this area of VM.
*/
TAILQ_INIT(&pgl);
pla_flags = 0;
KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
if ((flags & UVM_KMF_NOWAIT) ||
((flags & UVM_KMF_CANFAIL) &&
uvmexp.swpages - uvmexp.swpgonly <= atop(size)))
pla_flags |= UVM_PLA_NOWAIT;
else
pla_flags |= UVM_PLA_WAITOK;
if (flags & UVM_KMF_ZERO)
pla_flags |= UVM_PLA_ZERO;
if (uvm_pglistalloc(size, low, high, alignment, boundary, &pgl, nsegs,
pla_flags) != 0) {
/* Failed. */
uvm_unmap(map, kva, kva + size);
return (0);
}
if (obj != NULL)
rw_enter(obj->vmobjlock, RW_WRITE);
loopva = kva;
while (loopva != kva + size) {
pg = TAILQ_FIRST(&pgl);
TAILQ_REMOVE(&pgl, pg, pageq);
uvm_pagealloc_pg(pg, obj, offset, NULL);
atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
UVM_PAGE_OWN(pg, NULL);
/*
* map it in: note that we call pmap_enter with the map and
* object unlocked in case we are kmem_map.
*/
if (obj == NULL) {
pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
PROT_READ | PROT_WRITE);
} else {
pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
PROT_READ | PROT_WRITE,
PROT_READ | PROT_WRITE | PMAP_WIRED);
}
loopva += PAGE_SIZE;
offset += PAGE_SIZE;
}
KASSERT(TAILQ_EMPTY(&pgl));
pmap_update(pmap_kernel());
if (obj != NULL)
rw_exit(obj->vmobjlock);
return kva;
}
/*
* uvm_km_free: free an area of kernel memory
*/
void
uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size)
{
uvm_unmap(map, trunc_page(addr), round_page(addr+size));
}
/*
* uvm_km_alloc1: allocate wired down memory in the kernel map.
*
* => we can sleep if needed
*/
vaddr_t
uvm_km_alloc1(struct vm_map *map, vsize_t size, vsize_t align, boolean_t zeroit)
{
vaddr_t kva, loopva;
voff_t offset;
struct vm_page *pg;
KASSERT(vm_map_pmap(map) == pmap_kernel());
size = round_page(size);
kva = vm_map_min(map); /* hint */
/* allocate some virtual space */
if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
UVM_UNKNOWN_OFFSET, align,
UVM_MAPFLAG(PROT_READ | PROT_WRITE,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_INHERIT_NONE, MADV_RANDOM, 0)) != 0)) {
return 0;
}
/* recover object offset from virtual address */
offset = kva - vm_map_min(kernel_map);
/* now allocate the memory. we must be careful about released pages. */
loopva = kva;
while (size) {
rw_enter(uvm.kernel_object->vmobjlock, RW_WRITE);
/* allocate ram */
pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
if (pg) {
atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
UVM_PAGE_OWN(pg, NULL);
}
rw_exit(uvm.kernel_object->vmobjlock);
if (__predict_false(pg == NULL)) {
if (curproc == uvm.pagedaemon_proc) {
/*
* It is unfeasible for the page daemon to
* sleep for memory, so free what we have
* allocated and fail.
*/
uvm_unmap(map, kva, loopva - kva);
return (0);
} else {
uvm_wait("km_alloc1w"); /* wait for memory */
continue;
}
}
/*
* map it in; note we're never called with an intrsafe
* object, so we always use regular old pmap_enter().
*/
pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
PROT_READ | PROT_WRITE,
PROT_READ | PROT_WRITE | PMAP_WIRED);
loopva += PAGE_SIZE;
offset += PAGE_SIZE;
size -= PAGE_SIZE;
}
pmap_update(map->pmap);
/*
* zero on request (note that "size" is now zero due to the above loop
* so we need to subtract kva from loopva to reconstruct the size).
*/
if (zeroit)
memset((caddr_t)kva, 0, loopva - kva);
return kva;
}
#if defined(__HAVE_PMAP_DIRECT)
/*
* uvm_km_page allocator, __HAVE_PMAP_DIRECT arch
* On architectures with machine memory direct mapped into a portion
* of KVM, we have very little work to do. Just get a physical page,
* and find and return its VA.
*/
void
uvm_km_page_init(void)
{
/* nothing */
}
void
uvm_km_page_lateinit(void)
{
/* nothing */
}
#else
/*
* uvm_km_page allocator, non __HAVE_PMAP_DIRECT archs
* This is a special allocator that uses a reserve of free pages
* to fulfill requests. It is fast and interrupt safe, but can only
* return page sized regions. Its primary use is as a backend for pool.
*
* The memory returned is allocated from the larger kernel_map, sparing
* pressure on the small interrupt-safe kmem_map. It is wired, but
* not zero filled.
*/
struct uvm_km_pages uvm_km_pages;
void uvm_km_createthread(void *);
void uvm_km_thread(void *);
struct uvm_km_free_page *uvm_km_doputpage(struct uvm_km_free_page *);
/*
* Allocate the initial reserve, and create the thread which will
* keep the reserve full. For bootstrapping, we allocate more than
* the lowat amount, because it may be a while before the thread is
* running.
*/
void
uvm_km_page_init(void)
{
int lowat_min;
int i;
int len, bulk;
vaddr_t addr;
if (!uvm_km_pages.lowat) {
/* based on physmem, calculate a good value here */
uvm_km_pages.lowat = physmem / 256;
lowat_min = physmem < atop(16 * 1024 * 1024) ? 32 : 128;
if (uvm_km_pages.lowat < lowat_min)
uvm_km_pages.lowat = lowat_min;
}
if (uvm_km_pages.lowat > UVM_KM_PAGES_LOWAT_MAX)
uvm_km_pages.lowat = UVM_KM_PAGES_LOWAT_MAX;
uvm_km_pages.hiwat = 4 * uvm_km_pages.lowat;
if (uvm_km_pages.hiwat > UVM_KM_PAGES_HIWAT_MAX)
uvm_km_pages.hiwat = UVM_KM_PAGES_HIWAT_MAX;
/* Allocate all pages in as few allocations as possible. */
len = 0;
bulk = uvm_km_pages.hiwat;
while (len < uvm_km_pages.hiwat && bulk > 0) {
bulk = MIN(bulk, uvm_km_pages.hiwat - len);
addr = vm_map_min(kernel_map);
if (uvm_map(kernel_map, &addr, (vsize_t)bulk << PAGE_SHIFT,
NULL, UVM_UNKNOWN_OFFSET, 0,
UVM_MAPFLAG(PROT_READ | PROT_WRITE,
PROT_READ | PROT_WRITE, MAP_INHERIT_NONE,
MADV_RANDOM, UVM_KMF_TRYLOCK)) != 0) {
bulk /= 2;
continue;
}
for (i = len; i < len + bulk; i++, addr += PAGE_SIZE)
uvm_km_pages.page[i] = addr;
len += bulk;
}
uvm_km_pages.free = len;
for (i = len; i < UVM_KM_PAGES_HIWAT_MAX; i++)
uvm_km_pages.page[i] = 0;
/* tone down if really high */
if (uvm_km_pages.lowat > 512)
uvm_km_pages.lowat = 512;
}
void
uvm_km_page_lateinit(void)
{
kthread_create_deferred(uvm_km_createthread, NULL);
}
void
uvm_km_createthread(void *arg)
{
kthread_create(uvm_km_thread, NULL, &uvm_km_pages.km_proc, "kmthread");
}
/*
* Endless loop. We grab pages in increments of 16 pages, then
* quickly swap them into the list.
*/
void
uvm_km_thread(void *arg)
{
vaddr_t pg[16];
int i;
int allocmore = 0;
int flags;
struct uvm_km_free_page *fp = NULL;
KERNEL_UNLOCK();
for (;;) {
mtx_enter(&uvm_km_pages.mtx);
if (uvm_km_pages.free >= uvm_km_pages.lowat &&
uvm_km_pages.freelist == NULL) {
msleep_nsec(&uvm_km_pages.km_proc, &uvm_km_pages.mtx,
PVM, "kmalloc", INFSLP);
}
allocmore = uvm_km_pages.free < uvm_km_pages.lowat;
fp = uvm_km_pages.freelist;
uvm_km_pages.freelist = NULL;
uvm_km_pages.freelistlen = 0;
mtx_leave(&uvm_km_pages.mtx);
if (allocmore) {
/*
* If there was nothing on the freelist, then we
* must obtain at least one page to make progress.
* So, only use UVM_KMF_TRYLOCK for the first page
* if fp != NULL
*/
flags = UVM_MAPFLAG(PROT_READ | PROT_WRITE,
PROT_READ | PROT_WRITE, MAP_INHERIT_NONE,
MADV_RANDOM, fp != NULL ? UVM_KMF_TRYLOCK : 0);
memset(pg, 0, sizeof(pg));
for (i = 0; i < nitems(pg); i++) {
pg[i] = vm_map_min(kernel_map);
if (uvm_map(kernel_map, &pg[i], PAGE_SIZE,
NULL, UVM_UNKNOWN_OFFSET, 0, flags) != 0) {
pg[i] = 0;
break;
}
/* made progress, so don't sleep for more */
flags = UVM_MAPFLAG(PROT_READ | PROT_WRITE,
PROT_READ | PROT_WRITE, MAP_INHERIT_NONE,
MADV_RANDOM, UVM_KMF_TRYLOCK);
}
mtx_enter(&uvm_km_pages.mtx);
for (i = 0; i < nitems(pg); i++) {
if (uvm_km_pages.free ==
nitems(uvm_km_pages.page))
break;
else if (pg[i] != 0)
uvm_km_pages.page[uvm_km_pages.free++]
= pg[i];
}
wakeup(&uvm_km_pages.free);
mtx_leave(&uvm_km_pages.mtx);
/* Cleanup left-over pages (if any). */
for (; i < nitems(pg); i++) {
if (pg[i] != 0) {
uvm_unmap(kernel_map,
pg[i], pg[i] + PAGE_SIZE);
}
}
}
while (fp) {
fp = uvm_km_doputpage(fp);
}
}
}
struct uvm_km_free_page *
uvm_km_doputpage(struct uvm_km_free_page *fp)
{
vaddr_t va = (vaddr_t)fp;
struct vm_page *pg;
int freeva = 1;
struct uvm_km_free_page *nextfp = fp->next;
pg = uvm_atopg(va);
pmap_kremove(va, PAGE_SIZE);
pmap_update(kernel_map->pmap);
mtx_enter(&uvm_km_pages.mtx);
if (uvm_km_pages.free < uvm_km_pages.hiwat) {
uvm_km_pages.page[uvm_km_pages.free++] = va;
freeva = 0;
}
mtx_leave(&uvm_km_pages.mtx);
if (freeva)
uvm_unmap(kernel_map, va, va + PAGE_SIZE);
uvm_pagefree(pg);
return (nextfp);
}
#endif /* !__HAVE_PMAP_DIRECT */
void *
km_alloc(size_t sz, const struct kmem_va_mode *kv,
const struct kmem_pa_mode *kp, const struct kmem_dyn_mode *kd)
{
struct vm_map *map;
struct vm_page *pg;
struct pglist pgl;
int mapflags = 0;
vm_prot_t prot;
paddr_t pla_align;
int pla_flags;
int pla_maxseg;
vaddr_t va, sva = 0;
KASSERT(sz == round_page(sz));
TAILQ_INIT(&pgl);
if (kp->kp_nomem || kp->kp_pageable)
goto alloc_va;
pla_flags = kd->kd_waitok ? UVM_PLA_WAITOK : UVM_PLA_NOWAIT;
pla_flags |= UVM_PLA_TRYCONTIG;
if (kp->kp_zero)
pla_flags |= UVM_PLA_ZERO;
pla_align = kp->kp_align;
#ifdef __HAVE_PMAP_DIRECT
if (pla_align < kv->kv_align)
pla_align = kv->kv_align;
#endif
pla_maxseg = kp->kp_maxseg;
if (pla_maxseg == 0)
pla_maxseg = sz / PAGE_SIZE;
if (uvm_pglistalloc(sz, kp->kp_constraint->ucr_low,
kp->kp_constraint->ucr_high, pla_align, kp->kp_boundary,
&pgl, pla_maxseg, pla_flags)) {
return (NULL);
}
#ifdef __HAVE_PMAP_DIRECT
/*
* Only use direct mappings for single page or single segment
* allocations.
*/
if (kv->kv_singlepage || kp->kp_maxseg == 1) {
TAILQ_FOREACH(pg, &pgl, pageq) {
va = pmap_map_direct(pg);
if (pg == TAILQ_FIRST(&pgl))
sva = va;
}
return ((void *)sva);
}
#endif
alloc_va:
prot = PROT_READ | PROT_WRITE;
if (kp->kp_pageable) {
KASSERT(kp->kp_object);
KASSERT(!kv->kv_singlepage);
} else {
KASSERT(kp->kp_object == NULL);
}
if (kv->kv_singlepage) {
KASSERT(sz == PAGE_SIZE);
#ifdef __HAVE_PMAP_DIRECT
panic("km_alloc: DIRECT single page");
#else
mtx_enter(&uvm_km_pages.mtx);
while (uvm_km_pages.free == 0) {
if (kd->kd_waitok == 0) {
mtx_leave(&uvm_km_pages.mtx);
uvm_pglistfree(&pgl);
return NULL;
}
msleep_nsec(&uvm_km_pages.free, &uvm_km_pages.mtx,
PVM, "getpage", INFSLP);
}
va = uvm_km_pages.page[--uvm_km_pages.free];
if (uvm_km_pages.free < uvm_km_pages.lowat &&
curproc != uvm_km_pages.km_proc) {
if (kd->kd_slowdown)
*kd->kd_slowdown = 1;
wakeup(&uvm_km_pages.km_proc);
}
mtx_leave(&uvm_km_pages.mtx);
#endif
} else {
struct uvm_object *uobj = NULL;
if (kd->kd_trylock)
mapflags |= UVM_KMF_TRYLOCK;
if (kp->kp_object)
uobj = *kp->kp_object;
try_map:
map = *kv->kv_map;
va = vm_map_min(map);
if (uvm_map(map, &va, sz, uobj, kd->kd_prefer,
kv->kv_align, UVM_MAPFLAG(prot, prot, MAP_INHERIT_NONE,
MADV_RANDOM, mapflags))) {
if (kv->kv_wait && kd->kd_waitok) {
tsleep_nsec(map, PVM, "km_allocva", INFSLP);
goto try_map;
}
uvm_pglistfree(&pgl);
return (NULL);
}
}
sva = va;
TAILQ_FOREACH(pg, &pgl, pageq) {
if (kp->kp_pageable)
pmap_enter(pmap_kernel(), va, VM_PAGE_TO_PHYS(pg),
prot, prot | PMAP_WIRED);
else
pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), prot);
va += PAGE_SIZE;
}
pmap_update(pmap_kernel());
return ((void *)sva);
}
void
km_free(void *v, size_t sz, const struct kmem_va_mode *kv,
const struct kmem_pa_mode *kp)
{
vaddr_t sva, eva, va;
struct vm_page *pg;
struct pglist pgl;
sva = (vaddr_t)v;
eva = sva + sz;
if (kp->kp_nomem)
goto free_va;
#ifdef __HAVE_PMAP_DIRECT
if (kv->kv_singlepage || kp->kp_maxseg == 1) {
TAILQ_INIT(&pgl);
for (va = sva; va < eva; va += PAGE_SIZE) {
pg = pmap_unmap_direct(va);
TAILQ_INSERT_TAIL(&pgl, pg, pageq);
}
uvm_pglistfree(&pgl);
return;
}
#else
if (kv->kv_singlepage) {
struct uvm_km_free_page *fp = v;
mtx_enter(&uvm_km_pages.mtx);
fp->next = uvm_km_pages.freelist;
uvm_km_pages.freelist = fp;
if (uvm_km_pages.freelistlen++ > 16)
wakeup(&uvm_km_pages.km_proc);
mtx_leave(&uvm_km_pages.mtx);
return;
}
#endif
if (kp->kp_pageable) {
pmap_remove(pmap_kernel(), sva, eva);
pmap_update(pmap_kernel());
} else {
TAILQ_INIT(&pgl);
for (va = sva; va < eva; va += PAGE_SIZE) {
paddr_t pa;
if (!pmap_extract(pmap_kernel(), va, &pa))
continue;
pg = PHYS_TO_VM_PAGE(pa);
if (pg == NULL) {
panic("km_free: unmanaged page 0x%lx", pa);
}
TAILQ_INSERT_TAIL(&pgl, pg, pageq);
}
pmap_kremove(sva, sz);
pmap_update(pmap_kernel());
uvm_pglistfree(&pgl);
}
free_va:
uvm_unmap(*kv->kv_map, sva, eva);
if (kv->kv_wait)
wakeup(*kv->kv_map);
}
const struct kmem_va_mode kv_any = {
.kv_map = &kernel_map,
};
const struct kmem_va_mode kv_intrsafe = {
.kv_map = &kmem_map,
};
const struct kmem_va_mode kv_page = {
.kv_singlepage = 1
};
const struct kmem_pa_mode kp_dirty = {
.kp_constraint = &no_constraint
};
const struct kmem_pa_mode kp_dma = {
.kp_constraint = &dma_constraint
};
const struct kmem_pa_mode kp_dma_contig = {
.kp_constraint = &dma_constraint,
.kp_maxseg = 1
};
const struct kmem_pa_mode kp_dma_zero = {
.kp_constraint = &dma_constraint,
.kp_zero = 1
};
const struct kmem_pa_mode kp_zero = {
.kp_constraint = &no_constraint,
.kp_zero = 1
};
const struct kmem_pa_mode kp_pageable = {
.kp_object = &uvm.kernel_object,
.kp_pageable = 1
/* XXX - kp_nomem, maybe, but we'll need to fix km_free. */
};
const struct kmem_pa_mode kp_none = {
.kp_nomem = 1
};
const struct kmem_dyn_mode kd_waitok = {
.kd_waitok = 1,
.kd_prefer = UVM_UNKNOWN_OFFSET
};
const struct kmem_dyn_mode kd_nowait = {
.kd_prefer = UVM_UNKNOWN_OFFSET
};
const struct kmem_dyn_mode kd_trylock = {
.kd_trylock = 1,
.kd_prefer = UVM_UNKNOWN_OFFSET
};