src/sys/uvm/uvm_page.c

1393 lines
36 KiB
C

/* $OpenBSD: uvm_page.c,v 1.177 2024/05/01 12:54:27 mpi Exp $ */
/* $NetBSD: uvm_page.c,v 1.44 2000/11/27 08:40:04 chs Exp $ */
/*
* Copyright (c) 1997 Charles D. Cranor and Washington University.
* Copyright (c) 1991, 1993, The Regents of the University of California.
*
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)vm_page.c 8.3 (Berkeley) 3/21/94
* from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* uvm_page.c: page ops.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sched.h>
#include <sys/vnode.h>
#include <sys/mount.h>
#include <sys/proc.h>
#include <sys/smr.h>
#include <uvm/uvm.h>
/*
* for object trees
*/
RBT_GENERATE(uvm_objtree, vm_page, objt, uvm_pagecmp);
int
uvm_pagecmp(const struct vm_page *a, const struct vm_page *b)
{
return a->offset < b->offset ? -1 : a->offset > b->offset;
}
/*
* global vars... XXXCDC: move to uvm. structure.
*/
/*
* physical memory config is stored in vm_physmem.
*/
struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
/*
* Some supported CPUs in a given architecture don't support all
* of the things necessary to do idle page zero'ing efficiently.
* We therefore provide a way to disable it from machdep code here.
*/
/*
* local variables
*/
/*
* these variables record the values returned by vm_page_bootstrap,
* for debugging purposes. The implementation of uvm_pageboot_alloc
* and pmap_startup here also uses them internally.
*/
static vaddr_t virtual_space_start;
static vaddr_t virtual_space_end;
/*
* local prototypes
*/
static void uvm_pageinsert(struct vm_page *);
static void uvm_pageremove(struct vm_page *);
int uvm_page_owner_locked_p(struct vm_page *);
/*
* inline functions
*/
/*
* uvm_pageinsert: insert a page in the object
*
* => caller must lock object
* => call should have already set pg's object and offset pointers
* and bumped the version counter
*/
static inline void
uvm_pageinsert(struct vm_page *pg)
{
struct vm_page *dupe;
KASSERT(UVM_OBJ_IS_DUMMY(pg->uobject) ||
rw_write_held(pg->uobject->vmobjlock));
KASSERT((pg->pg_flags & PG_TABLED) == 0);
dupe = RBT_INSERT(uvm_objtree, &pg->uobject->memt, pg);
/* not allowed to insert over another page */
KASSERT(dupe == NULL);
atomic_setbits_int(&pg->pg_flags, PG_TABLED);
pg->uobject->uo_npages++;
}
/*
* uvm_page_remove: remove page from object
*
* => caller must lock object
*/
static inline void
uvm_pageremove(struct vm_page *pg)
{
KASSERT(UVM_OBJ_IS_DUMMY(pg->uobject) ||
rw_write_held(pg->uobject->vmobjlock));
KASSERT(pg->pg_flags & PG_TABLED);
RBT_REMOVE(uvm_objtree, &pg->uobject->memt, pg);
atomic_clearbits_int(&pg->pg_flags, PG_TABLED);
pg->uobject->uo_npages--;
pg->uobject = NULL;
pg->pg_version++;
}
/*
* uvm_page_init: init the page system. called from uvm_init().
*
* => we return the range of kernel virtual memory in kvm_startp/kvm_endp
*/
void
uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
{
vsize_t freepages, pagecount, n;
vm_page_t pagearray, curpg;
int lcv, i;
paddr_t paddr, pgno;
struct vm_physseg *seg;
/*
* init the page queues and page queue locks
*/
TAILQ_INIT(&uvm.page_active);
TAILQ_INIT(&uvm.page_inactive);
mtx_init(&uvm.pageqlock, IPL_VM);
mtx_init(&uvm.fpageqlock, IPL_VM);
uvm_pmr_init();
/*
* allocate vm_page structures.
*/
/*
* sanity check:
* before calling this function the MD code is expected to register
* some free RAM with the uvm_page_physload() function. our job
* now is to allocate vm_page structures for this memory.
*/
if (vm_nphysseg == 0)
panic("uvm_page_bootstrap: no memory pre-allocated");
/*
* first calculate the number of free pages...
*
* note that we use start/end rather than avail_start/avail_end.
* this allows us to allocate extra vm_page structures in case we
* want to return some memory to the pool after booting.
*/
freepages = 0;
for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
freepages += (seg->end - seg->start);
/*
* we now know we have (PAGE_SIZE * freepages) bytes of memory we can
* use. for each page of memory we use we need a vm_page structure.
* thus, the total number of pages we can use is the total size of
* the memory divided by the PAGE_SIZE plus the size of the vm_page
* structure. we add one to freepages as a fudge factor to avoid
* truncation errors (since we can only allocate in terms of whole
* pages).
*/
pagecount = (((paddr_t)freepages + 1) << PAGE_SHIFT) /
(PAGE_SIZE + sizeof(struct vm_page));
pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
sizeof(struct vm_page));
memset(pagearray, 0, pagecount * sizeof(struct vm_page));
/* init the vm_page structures and put them in the correct place. */
for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++) {
n = seg->end - seg->start;
if (n > pagecount) {
panic("uvm_page_init: lost %ld page(s) in init",
(long)(n - pagecount));
/* XXXCDC: shouldn't happen? */
/* n = pagecount; */
}
/* set up page array pointers */
seg->pgs = pagearray;
pagearray += n;
pagecount -= n;
seg->lastpg = seg->pgs + (n - 1);
/* init and free vm_pages (we've already zeroed them) */
pgno = seg->start;
paddr = ptoa(pgno);
for (i = 0, curpg = seg->pgs; i < n;
i++, curpg++, pgno++, paddr += PAGE_SIZE) {
curpg->phys_addr = paddr;
VM_MDPAGE_INIT(curpg);
if (pgno >= seg->avail_start &&
pgno < seg->avail_end) {
uvmexp.npages++;
}
}
/* Add pages to free pool. */
uvm_pmr_freepages(&seg->pgs[seg->avail_start - seg->start],
seg->avail_end - seg->avail_start);
}
/*
* pass up the values of virtual_space_start and
* virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
* layers of the VM.
*/
*kvm_startp = round_page(virtual_space_start);
*kvm_endp = trunc_page(virtual_space_end);
/* init locks for kernel threads */
mtx_init(&uvm.aiodoned_lock, IPL_BIO);
/*
* init reserve thresholds
* XXXCDC - values may need adjusting
*/
uvmexp.reserve_pagedaemon = 4;
uvmexp.reserve_kernel = 8;
uvmexp.anonminpct = 10;
uvmexp.vnodeminpct = 10;
uvmexp.vtextminpct = 5;
uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
uvm.page_init_done = TRUE;
}
/*
* uvm_setpagesize: set the page size
*
* => sets page_shift and page_mask from uvmexp.pagesize.
*/
void
uvm_setpagesize(void)
{
if (uvmexp.pagesize == 0)
uvmexp.pagesize = DEFAULT_PAGE_SIZE;
uvmexp.pagemask = uvmexp.pagesize - 1;
if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
panic("uvm_setpagesize: page size not a power of two");
for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
break;
}
/*
* uvm_pageboot_alloc: steal memory from physmem for bootstrapping
*/
vaddr_t
uvm_pageboot_alloc(vsize_t size)
{
#if defined(PMAP_STEAL_MEMORY)
vaddr_t addr;
/*
* defer bootstrap allocation to MD code (it may want to allocate
* from a direct-mapped segment). pmap_steal_memory should round
* off virtual_space_start/virtual_space_end.
*/
addr = pmap_steal_memory(size, &virtual_space_start,
&virtual_space_end);
return addr;
#else /* !PMAP_STEAL_MEMORY */
static boolean_t initialized = FALSE;
vaddr_t addr, vaddr;
paddr_t paddr;
/* round to page size */
size = round_page(size);
/* on first call to this function, initialize ourselves. */
if (initialized == FALSE) {
pmap_virtual_space(&virtual_space_start, &virtual_space_end);
/* round it the way we like it */
virtual_space_start = round_page(virtual_space_start);
virtual_space_end = trunc_page(virtual_space_end);
initialized = TRUE;
}
/* allocate virtual memory for this request */
if (virtual_space_start == virtual_space_end ||
(virtual_space_end - virtual_space_start) < size)
panic("uvm_pageboot_alloc: out of virtual space");
addr = virtual_space_start;
#ifdef PMAP_GROWKERNEL
/*
* If the kernel pmap can't map the requested space,
* then allocate more resources for it.
*/
if (uvm_maxkaddr < (addr + size)) {
uvm_maxkaddr = pmap_growkernel(addr + size);
if (uvm_maxkaddr < (addr + size))
panic("uvm_pageboot_alloc: pmap_growkernel() failed");
}
#endif
virtual_space_start += size;
/* allocate and mapin physical pages to back new virtual pages */
for (vaddr = round_page(addr) ; vaddr < addr + size ;
vaddr += PAGE_SIZE) {
if (!uvm_page_physget(&paddr))
panic("uvm_pageboot_alloc: out of memory");
/*
* Note this memory is no longer managed, so using
* pmap_kenter is safe.
*/
pmap_kenter_pa(vaddr, paddr, PROT_READ | PROT_WRITE);
}
pmap_update(pmap_kernel());
return addr;
#endif /* PMAP_STEAL_MEMORY */
}
#if !defined(PMAP_STEAL_MEMORY)
/*
* uvm_page_physget: "steal" one page from the vm_physmem structure.
*
* => attempt to allocate it off the end of a segment in which the "avail"
* values match the start/end values. if we can't do that, then we
* will advance both values (making them equal, and removing some
* vm_page structures from the non-avail area).
* => return false if out of memory.
*/
boolean_t
uvm_page_physget(paddr_t *paddrp)
{
int lcv;
struct vm_physseg *seg;
/* pass 1: try allocating from a matching end */
#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
for (lcv = vm_nphysseg - 1, seg = vm_physmem + lcv; lcv >= 0;
lcv--, seg--)
#else
for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
#endif
{
if (uvm.page_init_done == TRUE)
panic("uvm_page_physget: called _after_ bootstrap");
/* try from front */
if (seg->avail_start == seg->start &&
seg->avail_start < seg->avail_end) {
*paddrp = ptoa(seg->avail_start);
seg->avail_start++;
seg->start++;
/* nothing left? nuke it */
if (seg->avail_start == seg->end) {
if (vm_nphysseg == 1)
panic("uvm_page_physget: out of memory!");
vm_nphysseg--;
for (; lcv < vm_nphysseg; lcv++, seg++)
/* structure copy */
seg[0] = seg[1];
}
return TRUE;
}
/* try from rear */
if (seg->avail_end == seg->end &&
seg->avail_start < seg->avail_end) {
*paddrp = ptoa(seg->avail_end - 1);
seg->avail_end--;
seg->end--;
/* nothing left? nuke it */
if (seg->avail_end == seg->start) {
if (vm_nphysseg == 1)
panic("uvm_page_physget: out of memory!");
vm_nphysseg--;
for (; lcv < vm_nphysseg ; lcv++, seg++)
/* structure copy */
seg[0] = seg[1];
}
return TRUE;
}
}
/* pass2: forget about matching ends, just allocate something */
#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
for (lcv = vm_nphysseg - 1, seg = vm_physmem + lcv; lcv >= 0;
lcv--, seg--)
#else
for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
#endif
{
/* any room in this bank? */
if (seg->avail_start >= seg->avail_end)
continue; /* nope */
*paddrp = ptoa(seg->avail_start);
seg->avail_start++;
/* truncate! */
seg->start = seg->avail_start;
/* nothing left? nuke it */
if (seg->avail_start == seg->end) {
if (vm_nphysseg == 1)
panic("uvm_page_physget: out of memory!");
vm_nphysseg--;
for (; lcv < vm_nphysseg ; lcv++, seg++)
/* structure copy */
seg[0] = seg[1];
}
return TRUE;
}
return FALSE; /* whoops! */
}
#endif /* PMAP_STEAL_MEMORY */
/*
* uvm_page_physload: load physical memory into VM system
*
* => all args are PFs
* => all pages in start/end get vm_page structures
* => areas marked by avail_start/avail_end get added to the free page pool
* => we are limited to VM_PHYSSEG_MAX physical memory segments
*/
void
uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
paddr_t avail_end, int flags)
{
int preload, lcv;
psize_t npages;
struct vm_page *pgs;
struct vm_physseg *ps, *seg;
#ifdef DIAGNOSTIC
if (uvmexp.pagesize == 0)
panic("uvm_page_physload: page size not set!");
if (start >= end)
panic("uvm_page_physload: start >= end");
#endif
/* do we have room? */
if (vm_nphysseg == VM_PHYSSEG_MAX) {
printf("uvm_page_physload: unable to load physical memory "
"segment\n");
printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
VM_PHYSSEG_MAX, (long long)start, (long long)end);
printf("\tincrease VM_PHYSSEG_MAX\n");
return;
}
/*
* check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
* called yet, so malloc is not available).
*/
for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg; lcv++, seg++) {
if (seg->pgs)
break;
}
preload = (lcv == vm_nphysseg);
/* if VM is already running, attempt to malloc() vm_page structures */
if (!preload) {
/*
* XXXCDC: need some sort of lockout for this case
* right now it is only used by devices so it should be alright.
*/
paddr_t paddr;
npages = end - start; /* # of pages */
pgs = km_alloc(round_page(npages * sizeof(*pgs)),
&kv_any, &kp_zero, &kd_waitok);
if (pgs == NULL) {
printf("uvm_page_physload: can not malloc vm_page "
"structs for segment\n");
printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
return;
}
/* init phys_addr and free pages, XXX uvmexp.npages */
for (lcv = 0, paddr = ptoa(start); lcv < npages;
lcv++, paddr += PAGE_SIZE) {
pgs[lcv].phys_addr = paddr;
VM_MDPAGE_INIT(&pgs[lcv]);
if (atop(paddr) >= avail_start &&
atop(paddr) < avail_end) {
if (flags & PHYSLOAD_DEVICE) {
atomic_setbits_int(&pgs[lcv].pg_flags,
PG_DEV);
pgs[lcv].wire_count = 1;
} else {
#if defined(VM_PHYSSEG_NOADD)
panic("uvm_page_physload: tried to add RAM after vm_mem_init");
#endif
}
}
}
/* Add pages to free pool. */
if ((flags & PHYSLOAD_DEVICE) == 0) {
uvm_pmr_freepages(&pgs[avail_start - start],
avail_end - avail_start);
}
/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
} else {
/* gcc complains if these don't get init'd */
pgs = NULL;
npages = 0;
}
/* now insert us in the proper place in vm_physmem[] */
#if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
/* random: put it at the end (easy!) */
ps = &vm_physmem[vm_nphysseg];
#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
{
int x;
/* sort by address for binary search */
for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg; lcv++, seg++)
if (start < seg->start)
break;
ps = seg;
/* move back other entries, if necessary ... */
for (x = vm_nphysseg, seg = vm_physmem + x - 1; x > lcv;
x--, seg--)
/* structure copy */
seg[1] = seg[0];
}
#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
{
int x;
/* sort by largest segment first */
for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg; lcv++, seg++)
if ((end - start) >
(seg->end - seg->start))
break;
ps = &vm_physmem[lcv];
/* move back other entries, if necessary ... */
for (x = vm_nphysseg, seg = vm_physmem + x - 1; x > lcv;
x--, seg--)
/* structure copy */
seg[1] = seg[0];
}
#else
panic("uvm_page_physload: unknown physseg strategy selected!");
#endif
ps->start = start;
ps->end = end;
ps->avail_start = avail_start;
ps->avail_end = avail_end;
if (preload) {
ps->pgs = NULL;
} else {
ps->pgs = pgs;
ps->lastpg = pgs + npages - 1;
}
vm_nphysseg++;
return;
}
#ifdef DDB /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
void uvm_page_physdump(void); /* SHUT UP GCC */
/* call from DDB */
void
uvm_page_physdump(void)
{
int lcv;
struct vm_physseg *seg;
printf("uvm_page_physdump: physical memory config [segs=%d of %d]:\n",
vm_nphysseg, VM_PHYSSEG_MAX);
for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
(long long)seg->start,
(long long)seg->end,
(long long)seg->avail_start,
(long long)seg->avail_end);
printf("STRATEGY = ");
switch (VM_PHYSSEG_STRAT) {
case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
default: printf("<<UNKNOWN>>!!!!\n");
}
}
#endif
void
uvm_shutdown(void)
{
#ifdef UVM_SWAP_ENCRYPT
uvm_swap_finicrypt_all();
#endif
smr_flush();
}
/*
* Perform insert of a given page in the specified anon of obj.
* This is basically, uvm_pagealloc, but with the page already given.
*/
void
uvm_pagealloc_pg(struct vm_page *pg, struct uvm_object *obj, voff_t off,
struct vm_anon *anon)
{
int flags;
KASSERT(obj == NULL || anon == NULL);
KASSERT(anon == NULL || off == 0);
KASSERT(off == trunc_page(off));
KASSERT(obj == NULL || UVM_OBJ_IS_DUMMY(obj) ||
rw_write_held(obj->vmobjlock));
KASSERT(anon == NULL || anon->an_lock == NULL ||
rw_write_held(anon->an_lock));
flags = PG_BUSY | PG_FAKE;
pg->offset = off;
pg->uobject = obj;
pg->uanon = anon;
KASSERT(uvm_page_owner_locked_p(pg));
if (anon) {
anon->an_page = pg;
flags |= PQ_ANON;
} else if (obj)
uvm_pageinsert(pg);
atomic_setbits_int(&pg->pg_flags, flags);
#if defined(UVM_PAGE_TRKOWN)
pg->owner_tag = NULL;
#endif
UVM_PAGE_OWN(pg, "new alloc");
}
/*
* uvm_pglistalloc: allocate a list of pages
*
* => allocated pages are placed at the tail of rlist. rlist is
* assumed to be properly initialized by caller.
* => returns 0 on success or errno on failure
* => doesn't take into account clean non-busy pages on inactive list
* that could be used(?)
* => params:
* size the size of the allocation, rounded to page size.
* low the low address of the allowed allocation range.
* high the high address of the allowed allocation range.
* alignment memory must be aligned to this power-of-two boundary.
* boundary no segment in the allocation may cross this
* power-of-two boundary (relative to zero).
* => flags:
* UVM_PLA_NOWAIT fail if allocation fails
* UVM_PLA_WAITOK wait for memory to become avail
* UVM_PLA_ZERO return zeroed memory
*/
int
uvm_pglistalloc(psize_t size, paddr_t low, paddr_t high, paddr_t alignment,
paddr_t boundary, struct pglist *rlist, int nsegs, int flags)
{
KASSERT((alignment & (alignment - 1)) == 0);
KASSERT((boundary & (boundary - 1)) == 0);
KASSERT(!(flags & UVM_PLA_WAITOK) ^ !(flags & UVM_PLA_NOWAIT));
if (size == 0)
return EINVAL;
size = atop(round_page(size));
/*
* XXX uvm_pglistalloc is currently only used for kernel
* objects. Unlike the checks in uvm_pagealloc, below, here
* we are always allowed to use the kernel reserve.
*/
flags |= UVM_PLA_USERESERVE;
if ((high & PAGE_MASK) != PAGE_MASK) {
printf("uvm_pglistalloc: Upper boundary 0x%lx "
"not on pagemask.\n", (unsigned long)high);
}
/*
* Our allocations are always page granularity, so our alignment
* must be, too.
*/
if (alignment < PAGE_SIZE)
alignment = PAGE_SIZE;
low = atop(roundup(low, alignment));
/*
* high + 1 may result in overflow, in which case high becomes 0x0,
* which is the 'don't care' value.
* The only requirement in that case is that low is also 0x0, or the
* low<high assert will fail.
*/
high = atop(high + 1);
alignment = atop(alignment);
if (boundary < PAGE_SIZE && boundary != 0)
boundary = PAGE_SIZE;
boundary = atop(boundary);
return uvm_pmr_getpages(size, low, high, alignment, boundary, nsegs,
flags, rlist);
}
/*
* uvm_pglistfree: free a list of pages
*
* => pages should already be unmapped
*/
void
uvm_pglistfree(struct pglist *list)
{
uvm_pmr_freepageq(list);
}
/*
* interface used by the buffer cache to allocate a buffer at a time.
* The pages are allocated wired in DMA accessible memory
*/
int
uvm_pagealloc_multi(struct uvm_object *obj, voff_t off, vsize_t size,
int flags)
{
struct pglist plist;
struct vm_page *pg;
int i, r;
KASSERT(UVM_OBJ_IS_BUFCACHE(obj));
KERNEL_ASSERT_LOCKED();
TAILQ_INIT(&plist);
r = uvm_pglistalloc(size, dma_constraint.ucr_low,
dma_constraint.ucr_high, 0, 0, &plist, atop(round_page(size)),
flags);
if (r == 0) {
i = 0;
while ((pg = TAILQ_FIRST(&plist)) != NULL) {
pg->wire_count = 1;
atomic_setbits_int(&pg->pg_flags, PG_CLEAN | PG_FAKE);
KASSERT((pg->pg_flags & PG_DEV) == 0);
TAILQ_REMOVE(&plist, pg, pageq);
uvm_pagealloc_pg(pg, obj, off + ptoa(i++), NULL);
}
}
return r;
}
/*
* interface used by the buffer cache to reallocate a buffer at a time.
* The pages are reallocated wired outside the DMA accessible region.
*
*/
int
uvm_pagerealloc_multi(struct uvm_object *obj, voff_t off, vsize_t size,
int flags, struct uvm_constraint_range *where)
{
struct pglist plist;
struct vm_page *pg, *tpg;
int i, r;
voff_t offset;
KASSERT(UVM_OBJ_IS_BUFCACHE(obj));
KERNEL_ASSERT_LOCKED();
TAILQ_INIT(&plist);
if (size == 0)
panic("size 0 uvm_pagerealloc");
r = uvm_pglistalloc(size, where->ucr_low, where->ucr_high, 0,
0, &plist, atop(round_page(size)), flags);
if (r == 0) {
i = 0;
while((pg = TAILQ_FIRST(&plist)) != NULL) {
offset = off + ptoa(i++);
tpg = uvm_pagelookup(obj, offset);
KASSERT(tpg != NULL);
pg->wire_count = 1;
atomic_setbits_int(&pg->pg_flags, PG_CLEAN | PG_FAKE);
KASSERT((pg->pg_flags & PG_DEV) == 0);
TAILQ_REMOVE(&plist, pg, pageq);
uvm_pagecopy(tpg, pg);
KASSERT(tpg->wire_count == 1);
tpg->wire_count = 0;
uvm_lock_pageq();
uvm_pagefree(tpg);
uvm_unlock_pageq();
uvm_pagealloc_pg(pg, obj, offset, NULL);
}
}
return r;
}
/*
* uvm_pagealloc: allocate vm_page from a particular free list.
*
* => return null if no pages free
* => wake up pagedaemon if number of free pages drops below low water mark
* => only one of obj or anon can be non-null
* => caller must activate/deactivate page if it is not wired.
*/
struct vm_page *
uvm_pagealloc(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
int flags)
{
struct vm_page *pg = NULL;
int pmr_flags;
KASSERT(obj == NULL || anon == NULL);
KASSERT(anon == NULL || off == 0);
KASSERT(off == trunc_page(off));
KASSERT(obj == NULL || UVM_OBJ_IS_DUMMY(obj) ||
rw_write_held(obj->vmobjlock));
KASSERT(anon == NULL || anon->an_lock == NULL ||
rw_write_held(anon->an_lock));
pmr_flags = UVM_PLA_NOWAIT;
/*
* We're allowed to use the kernel reserve if the page is
* being allocated to a kernel object.
*/
if ((flags & UVM_PGA_USERESERVE) ||
(obj != NULL && UVM_OBJ_IS_KERN_OBJECT(obj)))
pmr_flags |= UVM_PLA_USERESERVE;
if (flags & UVM_PGA_ZERO)
pmr_flags |= UVM_PLA_ZERO;
pg = uvm_pmr_cache_get(pmr_flags);
if (pg == NULL)
return NULL;
uvm_pagealloc_pg(pg, obj, off, anon);
KASSERT((pg->pg_flags & PG_DEV) == 0);
if (flags & UVM_PGA_ZERO)
atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
else
atomic_setbits_int(&pg->pg_flags, PG_CLEAN);
return pg;
}
/*
* uvm_pagerealloc: reallocate a page from one object to another
*/
void
uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
{
/* remove it from the old object */
if (pg->uobject) {
uvm_pageremove(pg);
}
/* put it in the new object */
if (newobj) {
pg->uobject = newobj;
pg->offset = newoff;
pg->pg_version++;
uvm_pageinsert(pg);
}
}
/*
* uvm_pageclean: clean page
*
* => erase page's identity (i.e. remove from object)
* => caller must lock page queues if `pg' is managed
* => assumes all valid mappings of pg are gone
*/
void
uvm_pageclean(struct vm_page *pg)
{
u_int flags_to_clear = 0;
if ((pg->pg_flags & (PG_TABLED|PQ_ACTIVE|PQ_INACTIVE)) &&
(pg->uobject == NULL || !UVM_OBJ_IS_PMAP(pg->uobject)))
MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
#ifdef DEBUG
if (pg->uobject == (void *)0xdeadbeef &&
pg->uanon == (void *)0xdeadbeef) {
panic("uvm_pagefree: freeing free page %p", pg);
}
#endif
KASSERT((pg->pg_flags & PG_DEV) == 0);
KASSERT(pg->uobject == NULL || UVM_OBJ_IS_DUMMY(pg->uobject) ||
rw_write_held(pg->uobject->vmobjlock));
KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
rw_write_held(pg->uanon->an_lock));
/*
* if the page was an object page (and thus "TABLED"), remove it
* from the object.
*/
if (pg->pg_flags & PG_TABLED)
uvm_pageremove(pg);
/*
* now remove the page from the queues
*/
uvm_pagedequeue(pg);
/*
* if the page was wired, unwire it now.
*/
if (pg->wire_count) {
pg->wire_count = 0;
uvmexp.wired--;
}
if (pg->uanon) {
pg->uanon->an_page = NULL;
pg->uanon = NULL;
}
/* Clean page state bits. */
flags_to_clear |= PQ_ANON|PQ_AOBJ|PQ_ENCRYPT|PG_ZERO|PG_FAKE|PG_BUSY|
PG_RELEASED|PG_CLEAN|PG_CLEANCHK;
atomic_clearbits_int(&pg->pg_flags, flags_to_clear);
#ifdef DEBUG
pg->uobject = (void *)0xdeadbeef;
pg->offset = 0xdeadbeef;
pg->uanon = (void *)0xdeadbeef;
#endif
}
/*
* uvm_pagefree: free page
*
* => erase page's identity (i.e. remove from object)
* => put page on free list
* => caller must lock page queues if `pg' is managed
* => assumes all valid mappings of pg are gone
*/
void
uvm_pagefree(struct vm_page *pg)
{
uvm_pageclean(pg);
uvm_pmr_cache_put(pg);
}
/*
* uvm_page_unbusy: unbusy an array of pages.
*
* => pages must either all belong to the same object, or all belong to anons.
* => if pages are object-owned, object must be locked.
* => if pages are anon-owned, anons must have 0 refcount.
* => caller must make sure that anon-owned pages are not PG_RELEASED.
*/
void
uvm_page_unbusy(struct vm_page **pgs, int npgs)
{
struct vm_page *pg;
int i;
for (i = 0; i < npgs; i++) {
pg = pgs[i];
if (pg == NULL || pg == PGO_DONTCARE) {
continue;
}
KASSERT(uvm_page_owner_locked_p(pg));
KASSERT(pg->pg_flags & PG_BUSY);
if (pg->pg_flags & PG_WANTED) {
wakeup(pg);
}
if (pg->pg_flags & PG_RELEASED) {
KASSERT(pg->uobject != NULL ||
(pg->uanon != NULL && pg->uanon->an_ref > 0));
atomic_clearbits_int(&pg->pg_flags, PG_RELEASED);
pmap_page_protect(pg, PROT_NONE);
uvm_pagefree(pg);
} else {
KASSERT((pg->pg_flags & PG_FAKE) == 0);
atomic_clearbits_int(&pg->pg_flags, PG_WANTED|PG_BUSY);
UVM_PAGE_OWN(pg, NULL);
}
}
}
/*
* uvm_pagewait: wait for a busy page
*
* => page must be known PG_BUSY
* => object must be locked
* => object will be unlocked on return
*/
void
uvm_pagewait(struct vm_page *pg, struct rwlock *lock, const char *wmesg)
{
KASSERT(rw_lock_held(lock));
KASSERT((pg->pg_flags & PG_BUSY) != 0);
atomic_setbits_int(&pg->pg_flags, PG_WANTED);
rwsleep_nsec(pg, lock, PVM | PNORELOCK, wmesg, INFSLP);
}
#if defined(UVM_PAGE_TRKOWN)
/*
* uvm_page_own: set or release page ownership
*
* => this is a debugging function that keeps track of who sets PG_BUSY
* and where they do it. it can be used to track down problems
* such a thread setting "PG_BUSY" and never releasing it.
* => if "tag" is NULL then we are releasing page ownership
*/
void
uvm_page_own(struct vm_page *pg, char *tag)
{
/* gain ownership? */
if (tag) {
if (pg->owner_tag) {
printf("uvm_page_own: page %p already owned "
"by thread %d [%s]\n", pg,
pg->owner, pg->owner_tag);
panic("uvm_page_own");
}
pg->owner = (curproc) ? curproc->p_tid : (pid_t) -1;
pg->owner_tag = tag;
return;
}
/* drop ownership */
if (pg->owner_tag == NULL) {
printf("uvm_page_own: dropping ownership of an non-owned "
"page (%p)\n", pg);
panic("uvm_page_own");
}
pg->owner_tag = NULL;
return;
}
#endif
/*
* when VM_PHYSSEG_MAX is 1, we can simplify these functions
*/
#if VM_PHYSSEG_MAX > 1
/*
* vm_physseg_find: find vm_physseg structure that belongs to a PA
*/
int
vm_physseg_find(paddr_t pframe, int *offp)
{
struct vm_physseg *seg;
#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
/* binary search for it */
int start, len, try;
/*
* if try is too large (thus target is less than try) we reduce
* the length to trunc(len/2) [i.e. everything smaller than "try"]
*
* if the try is too small (thus target is greater than try) then
* we set the new start to be (try + 1). this means we need to
* reduce the length to (round(len/2) - 1).
*
* note "adjust" below which takes advantage of the fact that
* (round(len/2) - 1) == trunc((len - 1) / 2)
* for any value of len we may have
*/
for (start = 0, len = vm_nphysseg ; len != 0 ; len = len / 2) {
try = start + (len / 2); /* try in the middle */
seg = vm_physmem + try;
/* start past our try? */
if (pframe >= seg->start) {
/* was try correct? */
if (pframe < seg->end) {
if (offp)
*offp = pframe - seg->start;
return try; /* got it */
}
start = try + 1; /* next time, start here */
len--; /* "adjust" */
} else {
/*
* pframe before try, just reduce length of
* region, done in "for" loop
*/
}
}
return -1;
#else
/* linear search for it */
int lcv;
for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++) {
if (pframe >= seg->start && pframe < seg->end) {
if (offp)
*offp = pframe - seg->start;
return lcv; /* got it */
}
}
return -1;
#endif
}
/*
* PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages
* back from an I/O mapping (ugh!). used in some MD code as well.
*/
struct vm_page *
PHYS_TO_VM_PAGE(paddr_t pa)
{
paddr_t pf = atop(pa);
int off;
int psi;
psi = vm_physseg_find(pf, &off);
return (psi == -1) ? NULL : &vm_physmem[psi].pgs[off];
}
#endif /* VM_PHYSSEG_MAX > 1 */
/*
* uvm_pagelookup: look up a page
*/
struct vm_page *
uvm_pagelookup(struct uvm_object *obj, voff_t off)
{
/* XXX if stack is too much, handroll */
struct vm_page p, *pg;
p.offset = off;
pg = RBT_FIND(uvm_objtree, &obj->memt, &p);
KASSERT(pg == NULL || obj->uo_npages != 0);
KASSERT(pg == NULL || (pg->pg_flags & PG_RELEASED) == 0 ||
(pg->pg_flags & PG_BUSY) != 0);
return (pg);
}
/*
* uvm_pagewire: wire the page, thus removing it from the daemon's grasp
*
* => caller must lock page queues
*/
void
uvm_pagewire(struct vm_page *pg)
{
KASSERT(uvm_page_owner_locked_p(pg));
MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
if (pg->wire_count == 0) {
uvm_pagedequeue(pg);
uvmexp.wired++;
}
pg->wire_count++;
}
/*
* uvm_pageunwire: unwire the page.
*
* => activate if wire count goes to zero.
* => caller must lock page queues
*/
void
uvm_pageunwire(struct vm_page *pg)
{
KASSERT(uvm_page_owner_locked_p(pg));
MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
pg->wire_count--;
if (pg->wire_count == 0) {
uvm_pageactivate(pg);
uvmexp.wired--;
}
}
/*
* uvm_pagedeactivate: deactivate page -- no pmaps have access to page
*
* => caller must lock page queues
* => caller must check to make sure page is not wired
* => object that page belongs to must be locked (so we can adjust pg->flags)
*/
void
uvm_pagedeactivate(struct vm_page *pg)
{
KASSERT(uvm_page_owner_locked_p(pg));
MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
if (pg->pg_flags & PQ_ACTIVE) {
TAILQ_REMOVE(&uvm.page_active, pg, pageq);
atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
uvmexp.active--;
}
if ((pg->pg_flags & PQ_INACTIVE) == 0) {
KASSERT(pg->wire_count == 0);
TAILQ_INSERT_TAIL(&uvm.page_inactive, pg, pageq);
atomic_setbits_int(&pg->pg_flags, PQ_INACTIVE);
uvmexp.inactive++;
pmap_clear_reference(pg);
/*
* update the "clean" bit. this isn't 100%
* accurate, and doesn't have to be. we'll
* re-sync it after we zap all mappings when
* scanning the inactive list.
*/
if ((pg->pg_flags & PG_CLEAN) != 0 &&
pmap_is_modified(pg))
atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
}
}
/*
* uvm_pageactivate: activate page
*
* => caller must lock page queues
*/
void
uvm_pageactivate(struct vm_page *pg)
{
KASSERT(uvm_page_owner_locked_p(pg));
MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
uvm_pagedequeue(pg);
if (pg->wire_count == 0) {
TAILQ_INSERT_TAIL(&uvm.page_active, pg, pageq);
atomic_setbits_int(&pg->pg_flags, PQ_ACTIVE);
uvmexp.active++;
}
}
/*
* uvm_pagedequeue: remove a page from any paging queue
*/
void
uvm_pagedequeue(struct vm_page *pg)
{
if (pg->pg_flags & PQ_ACTIVE) {
TAILQ_REMOVE(&uvm.page_active, pg, pageq);
atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
uvmexp.active--;
}
if (pg->pg_flags & PQ_INACTIVE) {
TAILQ_REMOVE(&uvm.page_inactive, pg, pageq);
atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
uvmexp.inactive--;
}
}
/*
* uvm_pagezero: zero fill a page
*/
void
uvm_pagezero(struct vm_page *pg)
{
atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
pmap_zero_page(pg);
}
/*
* uvm_pagecopy: copy a page
*/
void
uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
{
atomic_clearbits_int(&dst->pg_flags, PG_CLEAN);
pmap_copy_page(src, dst);
}
/*
* uvm_page_owner_locked_p: return true if object associated with page is
* locked. this is a weak check for runtime assertions only.
*/
int
uvm_page_owner_locked_p(struct vm_page *pg)
{
if (pg->uobject != NULL) {
if (UVM_OBJ_IS_DUMMY(pg->uobject))
return 1;
return rw_write_held(pg->uobject->vmobjlock);
}
if (pg->uanon != NULL) {
return rw_write_held(pg->uanon->an_lock);
}
return 1;
}
/*
* uvm_pagecount: count the number of physical pages in the address range.
*/
psize_t
uvm_pagecount(struct uvm_constraint_range* constraint)
{
int lcv;
psize_t sz;
paddr_t low, high;
paddr_t ps_low, ps_high;
/* Algorithm uses page numbers. */
low = atop(constraint->ucr_low);
high = atop(constraint->ucr_high);
sz = 0;
for (lcv = 0; lcv < vm_nphysseg; lcv++) {
ps_low = MAX(low, vm_physmem[lcv].avail_start);
ps_high = MIN(high, vm_physmem[lcv].avail_end);
if (ps_low < ps_high)
sz += ps_high - ps_low;
}
return sz;
}