src/sys/uvm/uvm_page.h

300 lines
10 KiB
C

/* $OpenBSD: uvm_page.h,v 1.71 2024/05/13 01:15:53 jsg Exp $ */
/* $NetBSD: uvm_page.h,v 1.19 2000/12/28 08:24:55 chs Exp $ */
/*
* Copyright (c) 1997 Charles D. Cranor and Washington University.
* Copyright (c) 1991, 1993, The Regents of the University of California.
*
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)vm_page.h 7.3 (Berkeley) 4/21/91
* from: Id: uvm_page.h,v 1.1.2.6 1998/02/04 02:31:42 chuck Exp
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
#ifndef _UVM_UVM_PAGE_H_
#define _UVM_UVM_PAGE_H_
/*
* uvm_page.h
*/
/*
* Resident memory system definitions.
*/
/*
* Management of resident (logical) pages.
*
* A small structure is kept for each resident
* page, indexed by page number. Each structure
* contains a list used for manipulating pages, and
* a tree structure for in object/offset lookups
*
* In addition, the structure contains the object
* and offset to which this page belongs (for pageout),
* and sundry status bits.
*
* Fields in this structure are possibly locked by the lock on the page
* queues (P).
*/
TAILQ_HEAD(pglist, vm_page);
struct vm_page {
TAILQ_ENTRY(vm_page) pageq; /* queue info for FIFO
* queue or free list (P) */
RBT_ENTRY(vm_page) objt; /* object tree */
struct vm_anon *uanon; /* anon (P) */
struct uvm_object *uobject; /* object (P) */
voff_t offset; /* offset into object (P) */
u_int pg_flags; /* object flags [P] */
u_int pg_version; /* version count */
u_int wire_count; /* wired down map refs [P] */
paddr_t phys_addr; /* physical address of page */
psize_t fpgsz; /* free page range size */
struct vm_page_md mdpage; /* pmap-specific data */
#if defined(UVM_PAGE_TRKOWN)
/* debugging fields to track page ownership */
pid_t owner; /* thread that set PG_BUSY */
char *owner_tag; /* why it was set busy */
#endif
};
/*
* These are the flags defined for vm_page.
*
* Note: PG_FILLED and PG_DIRTY are added for the filesystems.
*/
/*
* locking rules:
* PQ_ ==> lock by page queue lock
* PQ_FREE is locked by free queue lock and is mutex with all other PQs
* pg_flags may only be changed using the atomic operations.
*
* PG_ZERO is used to indicate that a page has been pre-zero'd. This flag
* is only set when the page is on no queues, and is cleared when the page
* is placed on the free list.
*/
#define PG_BUSY 0x00000001 /* page is locked */
#define PG_WANTED 0x00000002 /* someone is waiting for page */
#define PG_TABLED 0x00000004 /* page is in VP table */
#define PG_CLEAN 0x00000008 /* page has not been modified */
#define PG_CLEANCHK 0x00000010 /* clean bit has been checked */
#define PG_RELEASED 0x00000020 /* page released while paging */
#define PG_FAKE 0x00000040 /* page is not yet initialized */
#define PG_RDONLY 0x00000080 /* page must be mapped read-only */
#define PG_ZERO 0x00000100 /* page is pre-zero'd */
#define PG_DEV 0x00000200 /* page is in device space, lay off */
#define PG_PAGER1 0x00001000 /* pager-specific flag */
#define PG_MASK 0x0000ffff
#define PQ_FREE 0x00010000 /* page is on free list */
#define PQ_INACTIVE 0x00020000 /* page is in inactive list */
#define PQ_ACTIVE 0x00040000 /* page is in active list */
#define PQ_ANON 0x00100000 /* page is part of an anon, rather
than an uvm_object */
#define PQ_AOBJ 0x00200000 /* page is part of an anonymous
uvm_object */
#define PQ_SWAPBACKED (PQ_ANON|PQ_AOBJ)
#define PQ_ENCRYPT 0x00400000 /* page needs {en,de}cryption */
#define PQ_MASK 0x00ff0000
#define PG_PMAP0 0x01000000 /* Used by some pmaps. */
#define PG_PMAP1 0x02000000 /* Used by some pmaps. */
#define PG_PMAP2 0x04000000 /* Used by some pmaps. */
#define PG_PMAP3 0x08000000 /* Used by some pmaps. */
#define PG_PMAP4 0x10000000 /* Used by some pmaps. */
#define PG_PMAP5 0x20000000 /* Used by some pmaps. */
#define PG_PMAPMASK 0x3f000000
/*
* physical memory layout structure
*
* MD vmparam.h must #define:
* VM_PHYSSEG_MAX = max number of physical memory segments we support
* (if this is "1" then we revert to a "contig" case)
* VM_PHYSSEG_STRAT: memory sort/search options (for VM_PHYSSEG_MAX > 1)
* - VM_PSTRAT_RANDOM: linear search (random order)
* - VM_PSTRAT_BSEARCH: binary search (sorted by address)
* - VM_PSTRAT_BIGFIRST: linear search (sorted by largest segment first)
* - others?
* XXXCDC: eventually we should purge all left-over global variables...
*/
#define VM_PSTRAT_RANDOM 1
#define VM_PSTRAT_BSEARCH 2
#define VM_PSTRAT_BIGFIRST 3
/*
* vm_physmemseg: describes one segment of physical memory
*/
struct vm_physseg {
paddr_t start; /* PF# of first page in segment */
paddr_t end; /* (PF# of last page in segment) + 1 */
paddr_t avail_start; /* PF# of first free page in segment */
paddr_t avail_end; /* (PF# of last free page in segment) +1 */
struct vm_page *pgs; /* vm_page structures (from start) */
struct vm_page *lastpg; /* vm_page structure for end */
};
#ifdef _KERNEL
/*
* physical memory config is stored in vm_physmem.
*/
extern struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];
extern int vm_nphysseg;
/*
* prototypes: the following prototypes define the interface to pages
*/
void uvm_page_init(vaddr_t *, vaddr_t *);
#if defined(UVM_PAGE_TRKOWN)
void uvm_page_own(struct vm_page *, char *);
#endif
#if !defined(PMAP_STEAL_MEMORY)
boolean_t uvm_page_physget(paddr_t *);
#endif
void uvm_pageactivate(struct vm_page *);
void uvm_pagedequeue(struct vm_page *);
vaddr_t uvm_pageboot_alloc(vsize_t);
void uvm_pagecopy(struct vm_page *, struct vm_page *);
void uvm_pagedeactivate(struct vm_page *);
void uvm_pageclean(struct vm_page *);
void uvm_pagefree(struct vm_page *);
void uvm_page_unbusy(struct vm_page **, int);
struct vm_page *uvm_pagelookup(struct uvm_object *, voff_t);
void uvm_pageunwire(struct vm_page *);
void uvm_pagewait(struct vm_page *, struct rwlock *, const char *);
void uvm_pagewire(struct vm_page *);
void uvm_pagezero(struct vm_page *);
void uvm_pagealloc_pg(struct vm_page *, struct uvm_object *,
voff_t, struct vm_anon *);
struct uvm_constraint_range; /* XXX move to uvm_extern.h? */
psize_t uvm_pagecount(struct uvm_constraint_range*);
#if VM_PHYSSEG_MAX == 1
/*
* Inline functions for archs where function calls are expensive.
*/
/*
* vm_physseg_find: find vm_physseg structure that belongs to a PA
*/
static inline int
vm_physseg_find(paddr_t pframe, int *offp)
{
/* 'contig' case */
if (pframe >= vm_physmem[0].start && pframe < vm_physmem[0].end) {
if (offp)
*offp = pframe - vm_physmem[0].start;
return 0;
}
return -1;
}
/*
* PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages
* back from an I/O mapping (ugh!). used in some MD code as well.
*/
static inline struct vm_page *
PHYS_TO_VM_PAGE(paddr_t pa)
{
paddr_t pf = atop(pa);
int off;
int psi;
psi = vm_physseg_find(pf, &off);
return ((psi == -1) ? NULL : &vm_physmem[psi].pgs[off]);
}
#else
/* if VM_PHYSSEG_MAX > 1 they're not inline, they're in uvm_page.c. */
struct vm_page *PHYS_TO_VM_PAGE(paddr_t);
int vm_physseg_find(paddr_t, int *);
#endif
/*
* macros
*/
#define uvm_lock_pageq() mtx_enter(&uvm.pageqlock)
#define uvm_unlock_pageq() mtx_leave(&uvm.pageqlock)
#define uvm_lock_fpageq() mtx_enter(&uvm.fpageqlock)
#define uvm_unlock_fpageq() mtx_leave(&uvm.fpageqlock)
#define UVM_PAGEZERO_TARGET (uvmexp.free / 8)
#define VM_PAGE_TO_PHYS(entry) ((entry)->phys_addr)
#define VM_PAGE_IS_FREE(entry) ((entry)->pg_flags & PQ_FREE)
#define PADDR_IS_DMA_REACHABLE(paddr) \
(dma_constraint.ucr_low <= paddr && dma_constraint.ucr_high > paddr)
#endif /* _KERNEL */
#endif /* _UVM_UVM_PAGE_H_ */