src/sys/uvm/uvm_pager.c

869 lines
23 KiB
C

/* $OpenBSD: uvm_pager.c,v 1.91 2023/08/11 17:53:22 mpi Exp $ */
/* $NetBSD: uvm_pager.c,v 1.36 2000/11/27 18:26:41 chs Exp $ */
/*
* Copyright (c) 1997 Charles D. Cranor and Washington University.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* from: Id: uvm_pager.c,v 1.1.2.23 1998/02/02 20:38:06 chuck Exp
*/
/*
* uvm_pager.c: generic functions used to assist the pagers.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/pool.h>
#include <sys/buf.h>
#include <sys/atomic.h>
#include <uvm/uvm.h>
const struct uvm_pagerops *uvmpagerops[] = {
&aobj_pager,
&uvm_deviceops,
&uvm_vnodeops,
};
/*
* the pager map: provides KVA for I/O
*
* Each uvm_pseg has room for MAX_PAGERMAP_SEGS pager io space of
* MAXBSIZE bytes.
*
* The number of uvm_pseg instances is dynamic using an array segs.
* At most UVM_PSEG_COUNT instances can exist.
*
* psegs[0/1] always exist (so that the pager can always map in pages).
* psegs[0/1] element 0 are always reserved for the pagedaemon.
*
* Any other pseg is automatically created when no space is available
* and automatically destroyed when it is no longer in use.
*/
#define MAX_PAGER_SEGS 16
#define PSEG_NUMSEGS (PAGER_MAP_SIZE / MAX_PAGER_SEGS / MAXBSIZE)
struct uvm_pseg {
/* Start of virtual space; 0 if not inited. */
vaddr_t start;
/* Bitmap of the segments in use in this pseg. */
int use;
};
struct mutex uvm_pseg_lck;
struct uvm_pseg psegs[PSEG_NUMSEGS];
#define UVM_PSEG_FULL(pseg) ((pseg)->use == (1 << MAX_PAGER_SEGS) - 1)
#define UVM_PSEG_EMPTY(pseg) ((pseg)->use == 0)
#define UVM_PSEG_INUSE(pseg,id) (((pseg)->use & (1 << (id))) != 0)
void uvm_pseg_init(struct uvm_pseg *);
vaddr_t uvm_pseg_get(int);
void uvm_pseg_release(vaddr_t);
/*
* uvm_pager_init: init pagers (at boot time)
*/
void
uvm_pager_init(void)
{
int lcv;
/* init pager map */
uvm_pseg_init(&psegs[0]);
uvm_pseg_init(&psegs[1]);
mtx_init(&uvm_pseg_lck, IPL_VM);
/* init ASYNC I/O queue */
TAILQ_INIT(&uvm.aio_done);
/* call pager init functions */
for (lcv = 0 ; lcv < sizeof(uvmpagerops)/sizeof(struct uvm_pagerops *);
lcv++) {
if (uvmpagerops[lcv]->pgo_init)
uvmpagerops[lcv]->pgo_init();
}
}
/*
* Initialize a uvm_pseg.
*
* May fail, in which case seg->start == 0.
*
* Caller locks uvm_pseg_lck.
*/
void
uvm_pseg_init(struct uvm_pseg *pseg)
{
KASSERT(pseg->start == 0);
KASSERT(pseg->use == 0);
pseg->start = (vaddr_t)km_alloc(MAX_PAGER_SEGS * MAXBSIZE,
&kv_any, &kp_none, &kd_trylock);
}
/*
* Acquire a pager map segment.
*
* Returns a vaddr for paging. 0 on failure.
*
* Caller does not lock.
*/
vaddr_t
uvm_pseg_get(int flags)
{
int i;
struct uvm_pseg *pseg;
/*
* XXX Prevent lock ordering issue in uvm_unmap_detach(). A real
* fix would be to move the KERNEL_LOCK() out of uvm_unmap_detach().
*
* witness_checkorder() at witness_checkorder+0xba0
* __mp_lock() at __mp_lock+0x5f
* uvm_unmap_detach() at uvm_unmap_detach+0xc5
* uvm_map() at uvm_map+0x857
* uvm_km_valloc_try() at uvm_km_valloc_try+0x65
* uvm_pseg_get() at uvm_pseg_get+0x6f
* uvm_pagermapin() at uvm_pagermapin+0x45
* uvn_io() at uvn_io+0xcf
* uvn_get() at uvn_get+0x156
* uvm_fault_lower() at uvm_fault_lower+0x28a
* uvm_fault() at uvm_fault+0x1b3
* upageflttrap() at upageflttrap+0x62
*/
KERNEL_LOCK();
mtx_enter(&uvm_pseg_lck);
pager_seg_restart:
/* Find first pseg that has room. */
for (pseg = &psegs[0]; pseg != &psegs[PSEG_NUMSEGS]; pseg++) {
if (UVM_PSEG_FULL(pseg))
continue;
if (pseg->start == 0) {
/* Need initialization. */
uvm_pseg_init(pseg);
if (pseg->start == 0)
goto pager_seg_fail;
}
/* Keep indexes 0,1 reserved for pagedaemon. */
if ((pseg == &psegs[0] || pseg == &psegs[1]) &&
(curproc != uvm.pagedaemon_proc))
i = 2;
else
i = 0;
for (; i < MAX_PAGER_SEGS; i++) {
if (!UVM_PSEG_INUSE(pseg, i)) {
pseg->use |= 1 << i;
mtx_leave(&uvm_pseg_lck);
KERNEL_UNLOCK();
return pseg->start + i * MAXBSIZE;
}
}
}
pager_seg_fail:
if ((flags & UVMPAGER_MAPIN_WAITOK) != 0) {
msleep_nsec(&psegs, &uvm_pseg_lck, PVM, "pagerseg", INFSLP);
goto pager_seg_restart;
}
mtx_leave(&uvm_pseg_lck);
KERNEL_UNLOCK();
return 0;
}
/*
* Release a pager map segment.
*
* Caller does not lock.
*
* Deallocates pseg if it is no longer in use.
*/
void
uvm_pseg_release(vaddr_t segaddr)
{
int id;
struct uvm_pseg *pseg;
vaddr_t va = 0;
mtx_enter(&uvm_pseg_lck);
for (pseg = &psegs[0]; pseg != &psegs[PSEG_NUMSEGS]; pseg++) {
if (pseg->start <= segaddr &&
segaddr < pseg->start + MAX_PAGER_SEGS * MAXBSIZE)
break;
}
KASSERT(pseg != &psegs[PSEG_NUMSEGS]);
id = (segaddr - pseg->start) / MAXBSIZE;
KASSERT(id >= 0 && id < MAX_PAGER_SEGS);
/* test for no remainder */
KDASSERT(segaddr == pseg->start + id * MAXBSIZE);
KASSERT(UVM_PSEG_INUSE(pseg, id));
pseg->use &= ~(1 << id);
wakeup(&psegs);
if ((pseg != &psegs[0] && pseg != &psegs[1]) && UVM_PSEG_EMPTY(pseg)) {
va = pseg->start;
pseg->start = 0;
}
mtx_leave(&uvm_pseg_lck);
if (va) {
km_free((void *)va, MAX_PAGER_SEGS * MAXBSIZE,
&kv_any, &kp_none);
}
}
/*
* uvm_pagermapin: map pages into KVA for I/O that needs mappings
*
* We basically just km_valloc a blank map entry to reserve the space in the
* kernel map and then use pmap_enter() to put the mappings in by hand.
*/
vaddr_t
uvm_pagermapin(struct vm_page **pps, int npages, int flags)
{
vaddr_t kva, cva;
vm_prot_t prot;
vsize_t size;
struct vm_page *pp;
#if defined(__HAVE_PMAP_DIRECT)
/*
* Use direct mappings for single page, unless there is a risk
* of aliasing.
*/
if (npages == 1 && PMAP_PREFER_ALIGN() == 0) {
KASSERT(pps[0]);
KASSERT(pps[0]->pg_flags & PG_BUSY);
return pmap_map_direct(pps[0]);
}
#endif
prot = PROT_READ;
if (flags & UVMPAGER_MAPIN_READ)
prot |= PROT_WRITE;
size = ptoa(npages);
KASSERT(size <= MAXBSIZE);
kva = uvm_pseg_get(flags);
if (kva == 0)
return 0;
for (cva = kva ; size != 0 ; size -= PAGE_SIZE, cva += PAGE_SIZE) {
pp = *pps++;
KASSERT(pp);
KASSERT(pp->pg_flags & PG_BUSY);
/* Allow pmap_enter to fail. */
if (pmap_enter(pmap_kernel(), cva, VM_PAGE_TO_PHYS(pp),
prot, PMAP_WIRED | PMAP_CANFAIL | prot) != 0) {
pmap_remove(pmap_kernel(), kva, cva);
pmap_update(pmap_kernel());
uvm_pseg_release(kva);
return 0;
}
}
pmap_update(pmap_kernel());
return kva;
}
/*
* uvm_pagermapout: remove KVA mapping
*
* We remove our mappings by hand and then remove the mapping.
*/
void
uvm_pagermapout(vaddr_t kva, int npages)
{
#if defined(__HAVE_PMAP_DIRECT)
/*
* Use direct mappings for single page, unless there is a risk
* of aliasing.
*/
if (npages == 1 && PMAP_PREFER_ALIGN() == 0) {
pmap_unmap_direct(kva);
return;
}
#endif
pmap_remove(pmap_kernel(), kva, kva + ((vsize_t)npages << PAGE_SHIFT));
pmap_update(pmap_kernel());
uvm_pseg_release(kva);
}
/*
* uvm_mk_pcluster
*
* generic "make 'pager put' cluster" function. a pager can either
* [1] set pgo_mk_pcluster to NULL (never cluster), [2] set it to this
* generic function, or [3] set it to a pager specific function.
*
* => caller must lock object _and_ pagequeues (since we need to look
* at active vs. inactive bits, etc.)
* => caller must make center page busy and write-protect it
* => we mark all cluster pages busy for the caller
* => the caller must unbusy all pages (and check wanted/released
* status if it drops the object lock)
* => flags:
* PGO_ALLPAGES: all pages in object are valid targets
* !PGO_ALLPAGES: use "lo" and "hi" to limit range of cluster
* PGO_DOACTCLUST: include active pages in cluster.
* PGO_FREE: set the PG_RELEASED bits on the cluster so they'll be freed
* in async io (caller must clean on error).
* NOTE: the caller should clear PG_CLEANCHK bits if PGO_DOACTCLUST.
* PG_CLEANCHK is only a hint, but clearing will help reduce
* the number of calls we make to the pmap layer.
*/
struct vm_page **
uvm_mk_pcluster(struct uvm_object *uobj, struct vm_page **pps, int *npages,
struct vm_page *center, int flags, voff_t mlo, voff_t mhi)
{
struct vm_page **ppsp, *pclust;
voff_t lo, hi, curoff;
int center_idx, forward, incr;
/*
* center page should already be busy and write protected. XXX:
* suppose page is wired? if we lock, then a process could
* fault/block on it. if we don't lock, a process could write the
* pages in the middle of an I/O. (consider an msync()). let's
* lock it for now (better to delay than corrupt data?).
*/
/* get cluster boundaries, check sanity, and apply our limits as well.*/
uobj->pgops->pgo_cluster(uobj, center->offset, &lo, &hi);
if ((flags & PGO_ALLPAGES) == 0) {
if (lo < mlo)
lo = mlo;
if (hi > mhi)
hi = mhi;
}
if ((hi - lo) >> PAGE_SHIFT > *npages) { /* pps too small, bail out! */
pps[0] = center;
*npages = 1;
return pps;
}
/* now determine the center and attempt to cluster around the edges */
center_idx = (center->offset - lo) >> PAGE_SHIFT;
pps[center_idx] = center; /* plug in the center page */
ppsp = &pps[center_idx];
*npages = 1;
/*
* attempt to cluster around the left [backward], and then
* the right side [forward].
*
* note that for inactive pages (pages that have been deactivated)
* there are no valid mappings and PG_CLEAN should be up to date.
* [i.e. there is no need to query the pmap with pmap_is_modified
* since there are no mappings].
*/
for (forward = 0 ; forward <= 1 ; forward++) {
incr = forward ? PAGE_SIZE : -PAGE_SIZE;
curoff = center->offset + incr;
for ( ;(forward == 0 && curoff >= lo) ||
(forward && curoff < hi);
curoff += incr) {
pclust = uvm_pagelookup(uobj, curoff); /* lookup page */
if (pclust == NULL) {
break; /* no page */
}
/* handle active pages */
/* NOTE: inactive pages don't have pmap mappings */
if ((pclust->pg_flags & PQ_INACTIVE) == 0) {
if ((flags & PGO_DOACTCLUST) == 0) {
/* dont want mapped pages at all */
break;
}
/* make sure "clean" bit is sync'd */
if ((pclust->pg_flags & PG_CLEANCHK) == 0) {
if ((pclust->pg_flags & (PG_CLEAN|PG_BUSY))
== PG_CLEAN &&
pmap_is_modified(pclust))
atomic_clearbits_int(
&pclust->pg_flags,
PG_CLEAN);
/* now checked */
atomic_setbits_int(&pclust->pg_flags,
PG_CLEANCHK);
}
}
/* is page available for cleaning and does it need it */
if ((pclust->pg_flags & (PG_CLEAN|PG_BUSY)) != 0) {
break; /* page is already clean or is busy */
}
/* yes! enroll the page in our array */
atomic_setbits_int(&pclust->pg_flags, PG_BUSY);
UVM_PAGE_OWN(pclust, "uvm_mk_pcluster");
/*
* If we want to free after io is done, and we're
* async, set the released flag
*/
if ((flags & (PGO_FREE|PGO_SYNCIO)) == PGO_FREE)
atomic_setbits_int(&pclust->pg_flags,
PG_RELEASED);
/* XXX: protect wired page? see above comment. */
pmap_page_protect(pclust, PROT_READ);
if (!forward) {
ppsp--; /* back up one page */
*ppsp = pclust;
} else {
/* move forward one page */
ppsp[*npages] = pclust;
}
(*npages)++;
}
}
/*
* done! return the cluster array to the caller!!!
*/
return ppsp;
}
/*
* uvm_pager_put: high level pageout routine
*
* we want to pageout page "pg" to backing store, clustering if
* possible.
*
* => page queues must be locked by caller
* => if page is not swap-backed, then "uobj" points to the object
* backing it.
* => if page is swap-backed, then "uobj" should be NULL.
* => "pg" should be PG_BUSY (by caller), and !PG_CLEAN
* for swap-backed memory, "pg" can be NULL if there is no page
* of interest [sometimes the case for the pagedaemon]
* => "ppsp_ptr" should point to an array of npages vm_page pointers
* for possible cluster building
* => flags (first two for non-swap-backed pages)
* PGO_ALLPAGES: all pages in uobj are valid targets
* PGO_DOACTCLUST: include "PQ_ACTIVE" pages as valid targets
* PGO_SYNCIO: do SYNC I/O (no async)
* PGO_PDFREECLUST: pagedaemon: drop cluster on successful I/O
* PGO_FREE: tell the aio daemon to free pages in the async case.
* => start/stop: if (uobj && !PGO_ALLPAGES) limit targets to this range
* if (!uobj) start is the (daddr_t) of the starting swapblk
* => return state:
* 1. we return the VM_PAGER status code of the pageout
* 2. we return with the page queues unlocked
* 3. on errors we always drop the cluster. thus, if we return
* !PEND, !OK, then the caller only has to worry about
* un-busying the main page (not the cluster pages).
* 4. on success, if !PGO_PDFREECLUST, we return the cluster
* with all pages busy (caller must un-busy and check
* wanted/released flags).
*/
int
uvm_pager_put(struct uvm_object *uobj, struct vm_page *pg,
struct vm_page ***ppsp_ptr, int *npages, int flags,
voff_t start, voff_t stop)
{
int result;
daddr_t swblk;
struct vm_page **ppsp = *ppsp_ptr;
/*
* note that uobj is null if we are doing a swap-backed pageout.
* note that uobj is !null if we are doing normal object pageout.
* note that the page queues must be locked to cluster.
*/
if (uobj) { /* if !swap-backed */
/*
* attempt to build a cluster for pageout using its
* make-put-cluster function (if it has one).
*/
if (uobj->pgops->pgo_mk_pcluster) {
ppsp = uobj->pgops->pgo_mk_pcluster(uobj, ppsp,
npages, pg, flags, start, stop);
*ppsp_ptr = ppsp; /* update caller's pointer */
} else {
ppsp[0] = pg;
*npages = 1;
}
swblk = 0; /* XXX: keep gcc happy */
} else {
/*
* for swap-backed pageout, the caller (the pagedaemon) has
* already built the cluster for us. the starting swap
* block we are writing to has been passed in as "start."
* "pg" could be NULL if there is no page we are especially
* interested in (in which case the whole cluster gets dropped
* in the event of an error or a sync "done").
*/
swblk = start;
/* ppsp and npages should be ok */
}
/* now that we've clustered we can unlock the page queues */
uvm_unlock_pageq();
/*
* now attempt the I/O. if we have a failure and we are
* clustered, we will drop the cluster and try again.
*/
ReTry:
if (uobj) {
result = uobj->pgops->pgo_put(uobj, ppsp, *npages, flags);
} else {
/* XXX daddr_t -> int */
result = uvm_swap_put(swblk, ppsp, *npages, flags);
}
/*
* we have attempted the I/O.
*
* if the I/O was a success then:
* if !PGO_PDFREECLUST, we return the cluster to the
* caller (who must un-busy all pages)
* else we un-busy cluster pages for the pagedaemon
*
* if I/O is pending (async i/o) then we return the pending code.
* [in this case the async i/o done function must clean up when
* i/o is done...]
*/
if (result == VM_PAGER_PEND || result == VM_PAGER_OK) {
if (result == VM_PAGER_OK && (flags & PGO_PDFREECLUST)) {
/* drop cluster */
if (*npages > 1 || pg == NULL)
uvm_pager_dropcluster(uobj, pg, ppsp, npages,
PGO_PDFREECLUST);
}
return (result);
}
/*
* a pager error occurred (even after dropping the cluster, if there
* was one). give up! the caller only has one page ("pg")
* to worry about.
*/
if (*npages > 1 || pg == NULL) {
uvm_pager_dropcluster(uobj, pg, ppsp, npages, PGO_REALLOCSWAP);
/*
* for failed swap-backed pageouts with a "pg",
* we need to reset pg's swslot to either:
* "swblk" (for transient errors, so we can retry),
* or 0 (for hard errors).
*/
if (uobj == NULL && pg != NULL) {
/* XXX daddr_t -> int */
int nswblk = (result == VM_PAGER_AGAIN) ? swblk : 0;
if (pg->pg_flags & PQ_ANON) {
rw_enter(pg->uanon->an_lock, RW_WRITE);
pg->uanon->an_swslot = nswblk;
rw_exit(pg->uanon->an_lock);
} else {
rw_enter(pg->uobject->vmobjlock, RW_WRITE);
uao_set_swslot(pg->uobject,
pg->offset >> PAGE_SHIFT,
nswblk);
rw_exit(pg->uobject->vmobjlock);
}
}
if (result == VM_PAGER_AGAIN) {
/*
* for transient failures, free all the swslots that
* we're not going to retry with.
*/
if (uobj == NULL) {
if (pg) {
/* XXX daddr_t -> int */
uvm_swap_free(swblk + 1, *npages - 1);
} else {
/* XXX daddr_t -> int */
uvm_swap_free(swblk, *npages);
}
}
if (pg) {
ppsp[0] = pg;
*npages = 1;
goto ReTry;
}
} else if (uobj == NULL) {
/*
* for hard errors on swap-backed pageouts,
* mark the swslots as bad. note that we do not
* free swslots that we mark bad.
*/
/* XXX daddr_t -> int */
uvm_swap_markbad(swblk, *npages);
}
}
/*
* a pager error occurred (even after dropping the cluster, if there
* was one). give up! the caller only has one page ("pg")
* to worry about.
*/
return result;
}
/*
* uvm_pager_dropcluster: drop a cluster we have built (because we
* got an error, or, if PGO_PDFREECLUST we are un-busying the
* cluster pages on behalf of the pagedaemon).
*
* => uobj, if non-null, is a non-swap-backed object
* => page queues are not locked
* => pg is our page of interest (the one we clustered around, can be null)
* => ppsp/npages is our current cluster
* => flags: PGO_PDFREECLUST: pageout was a success: un-busy cluster
* pages on behalf of the pagedaemon.
* PGO_REALLOCSWAP: drop previously allocated swap slots for
* clustered swap-backed pages (except for "pg" if !NULL)
* "swblk" is the start of swap alloc (e.g. for ppsp[0])
* [only meaningful if swap-backed (uobj == NULL)]
*/
void
uvm_pager_dropcluster(struct uvm_object *uobj, struct vm_page *pg,
struct vm_page **ppsp, int *npages, int flags)
{
int lcv;
KASSERT(uobj == NULL || rw_write_held(uobj->vmobjlock));
/* drop all pages but "pg" */
for (lcv = 0 ; lcv < *npages ; lcv++) {
/* skip "pg" or empty slot */
if (ppsp[lcv] == pg || ppsp[lcv] == NULL)
continue;
/*
* Note that PQ_ANON bit can't change as long as we are holding
* the PG_BUSY bit (so there is no need to lock the page
* queues to test it).
*/
if (!uobj) {
if (ppsp[lcv]->pg_flags & PQ_ANON) {
rw_enter(ppsp[lcv]->uanon->an_lock, RW_WRITE);
if (flags & PGO_REALLOCSWAP)
/* zap swap block */
ppsp[lcv]->uanon->an_swslot = 0;
} else {
rw_enter(ppsp[lcv]->uobject->vmobjlock,
RW_WRITE);
if (flags & PGO_REALLOCSWAP)
uao_set_swslot(ppsp[lcv]->uobject,
ppsp[lcv]->offset >> PAGE_SHIFT, 0);
}
}
/* did someone want the page while we had it busy-locked? */
if (ppsp[lcv]->pg_flags & PG_WANTED) {
wakeup(ppsp[lcv]);
}
/* if page was released, release it. otherwise un-busy it */
if (ppsp[lcv]->pg_flags & PG_RELEASED &&
ppsp[lcv]->pg_flags & PQ_ANON) {
/* kills anon and frees pg */
uvm_anon_release(ppsp[lcv]->uanon);
continue;
} else {
/*
* if we were planning on async io then we would
* have PG_RELEASED set, clear that with the others.
*/
atomic_clearbits_int(&ppsp[lcv]->pg_flags,
PG_BUSY|PG_WANTED|PG_FAKE|PG_RELEASED);
UVM_PAGE_OWN(ppsp[lcv], NULL);
}
/*
* if we are operating on behalf of the pagedaemon and we
* had a successful pageout update the page!
*/
if (flags & PGO_PDFREECLUST) {
pmap_clear_reference(ppsp[lcv]);
pmap_clear_modify(ppsp[lcv]);
atomic_setbits_int(&ppsp[lcv]->pg_flags, PG_CLEAN);
}
/* if anonymous cluster, unlock object and move on */
if (!uobj) {
if (ppsp[lcv]->pg_flags & PQ_ANON)
rw_exit(ppsp[lcv]->uanon->an_lock);
else
rw_exit(ppsp[lcv]->uobject->vmobjlock);
}
}
}
/*
* interrupt-context iodone handler for single-buf i/os
* or the top-level buf of a nested-buf i/o.
*
* => must be at splbio().
*/
void
uvm_aio_biodone(struct buf *bp)
{
splassert(IPL_BIO);
/* reset b_iodone for when this is a single-buf i/o. */
bp->b_iodone = uvm_aio_aiodone;
mtx_enter(&uvm.aiodoned_lock);
TAILQ_INSERT_TAIL(&uvm.aio_done, bp, b_freelist);
wakeup(&uvm.aiodoned);
mtx_leave(&uvm.aiodoned_lock);
}
void
uvm_aio_aiodone_pages(struct vm_page **pgs, int npages, boolean_t write,
int error)
{
struct vm_page *pg;
struct rwlock *slock;
boolean_t swap;
int i, swslot;
slock = NULL;
pg = pgs[0];
swap = (pg->uanon != NULL && pg->uobject == NULL) ||
(pg->pg_flags & PQ_AOBJ) != 0;
KASSERT(swap);
KASSERT(write);
if (error) {
if (pg->uobject != NULL) {
swslot = uao_find_swslot(pg->uobject,
pg->offset >> PAGE_SHIFT);
} else {
swslot = pg->uanon->an_swslot;
}
KASSERT(swslot);
}
for (i = 0; i < npages; i++) {
int anon_disposed = 0;
pg = pgs[i];
KASSERT((pg->pg_flags & PG_FAKE) == 0);
/*
* lock each page's object (or anon) individually since
* each page may need a different lock.
*/
if (pg->uobject != NULL) {
slock = pg->uobject->vmobjlock;
} else {
slock = pg->uanon->an_lock;
}
rw_enter(slock, RW_WRITE);
anon_disposed = (pg->pg_flags & PG_RELEASED) != 0;
KASSERT(!anon_disposed || pg->uobject != NULL ||
pg->uanon->an_ref == 0);
uvm_lock_pageq();
/*
* if this was a successful write,
* mark the page PG_CLEAN.
*/
if (!error) {
pmap_clear_reference(pg);
pmap_clear_modify(pg);
atomic_setbits_int(&pg->pg_flags, PG_CLEAN);
}
/*
* unlock everything for this page now.
*/
if (pg->uobject == NULL && anon_disposed) {
uvm_unlock_pageq();
uvm_anon_release(pg->uanon);
} else {
uvm_page_unbusy(&pg, 1);
uvm_unlock_pageq();
rw_exit(slock);
}
}
if (error) {
uvm_swap_markbad(swslot, npages);
}
}
/*
* uvm_aio_aiodone: do iodone processing for async i/os.
* this should be called in thread context, not interrupt context.
*/
void
uvm_aio_aiodone(struct buf *bp)
{
int npages = bp->b_bufsize >> PAGE_SHIFT;
struct vm_page *pgs[MAXPHYS >> PAGE_SHIFT];
int i, error;
boolean_t write;
KASSERT(npages <= MAXPHYS >> PAGE_SHIFT);
splassert(IPL_BIO);
error = (bp->b_flags & B_ERROR) ? (bp->b_error ? bp->b_error : EIO) : 0;
write = (bp->b_flags & B_READ) == 0;
for (i = 0; i < npages; i++)
pgs[i] = uvm_atopg((vaddr_t)bp->b_data +
((vsize_t)i << PAGE_SHIFT));
uvm_pagermapout((vaddr_t)bp->b_data, npages);
#ifdef UVM_SWAP_ENCRYPT
/*
* XXX - assumes that we only get ASYNC writes. used to be above.
*/
if (pgs[0]->pg_flags & PQ_ENCRYPT) {
uvm_swap_freepages(pgs, npages);
goto freed;
}
#endif /* UVM_SWAP_ENCRYPT */
uvm_aio_aiodone_pages(pgs, npages, write, error);
#ifdef UVM_SWAP_ENCRYPT
freed:
#endif
pool_put(&bufpool, bp);
}