src/sys/net/pf_ioctl.c

3375 lines
79 KiB
C

/* $OpenBSD: pf_ioctl.c,v 1.416 2024/04/22 13:30:22 bluhm Exp $ */
/*
* Copyright (c) 2001 Daniel Hartmeier
* Copyright (c) 2002 - 2018 Henning Brauer <henning@openbsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Effort sponsored in part by the Defense Advanced Research Projects
* Agency (DARPA) and Air Force Research Laboratory, Air Force
* Materiel Command, USAF, under agreement number F30602-01-2-0537.
*
*/
#include "pfsync.h"
#include "pflog.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/filio.h>
#include <sys/fcntl.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/kernel.h>
#include <sys/time.h>
#include <sys/timeout.h>
#include <sys/pool.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/syslog.h>
#include <sys/specdev.h>
#include <uvm/uvm_extern.h>
#include <crypto/md5.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/route.h>
#include <net/hfsc.h>
#include <net/fq_codel.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/in_pcb.h>
#include <netinet/ip_var.h>
#include <netinet/ip_icmp.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#ifdef INET6
#include <netinet/ip6.h>
#include <netinet/icmp6.h>
#endif /* INET6 */
#include <net/pfvar.h>
#include <net/pfvar_priv.h>
#if NPFSYNC > 0
#include <netinet/ip_ipsp.h>
#include <net/if_pfsync.h>
#endif /* NPFSYNC > 0 */
struct pool pf_tag_pl;
void pfattach(int);
void pf_thread_create(void *);
int pfopen(dev_t, int, int, struct proc *);
int pfclose(dev_t, int, int, struct proc *);
int pfioctl(dev_t, u_long, caddr_t, int, struct proc *);
int pf_begin_rules(u_int32_t *, const char *);
void pf_rollback_rules(u_int32_t, char *);
void pf_remove_queues(void);
int pf_commit_queues(void);
void pf_free_queues(struct pf_queuehead *);
void pf_calc_chksum(struct pf_ruleset *);
void pf_hash_rule(MD5_CTX *, struct pf_rule *);
void pf_hash_rule_addr(MD5_CTX *, struct pf_rule_addr *);
int pf_commit_rules(u_int32_t, char *);
int pf_addr_setup(struct pf_ruleset *,
struct pf_addr_wrap *, sa_family_t);
struct pfi_kif *pf_kif_setup(struct pfi_kif *);
void pf_addr_copyout(struct pf_addr_wrap *);
void pf_trans_set_commit(void);
void pf_pool_copyin(struct pf_pool *, struct pf_pool *);
int pf_validate_range(u_int8_t, u_int16_t[2], int);
int pf_rule_copyin(struct pf_rule *, struct pf_rule *);
int pf_rule_checkaf(struct pf_rule *);
u_int16_t pf_qname2qid(char *, int);
void pf_qid2qname(u_int16_t, char *);
void pf_qid_unref(u_int16_t);
int pf_states_clr(struct pfioc_state_kill *);
int pf_states_get(struct pfioc_states *);
struct pf_trans *pf_open_trans(uint32_t);
struct pf_trans *pf_find_trans(uint32_t, uint64_t);
void pf_free_trans(struct pf_trans *);
void pf_rollback_trans(struct pf_trans *);
void pf_init_tgetrule(struct pf_trans *,
struct pf_anchor *, uint32_t, struct pf_rule *);
void pf_cleanup_tgetrule(struct pf_trans *t);
struct pf_rule pf_default_rule, pf_default_rule_new;
struct {
char statusif[IFNAMSIZ];
u_int32_t debug;
u_int32_t hostid;
u_int32_t reass;
u_int32_t mask;
} pf_trans_set;
#define PF_ORDER_HOST 0
#define PF_ORDER_NET 1
#define PF_TSET_STATUSIF 0x01
#define PF_TSET_DEBUG 0x02
#define PF_TSET_HOSTID 0x04
#define PF_TSET_REASS 0x08
#define TAGID_MAX 50000
TAILQ_HEAD(pf_tags, pf_tagname) pf_tags = TAILQ_HEAD_INITIALIZER(pf_tags),
pf_qids = TAILQ_HEAD_INITIALIZER(pf_qids);
/*
* pf_lock protects consistency of PF data structures, which don't have
* their dedicated lock yet. The pf_lock currently protects:
* - rules,
* - radix tables,
* - source nodes
* All callers must grab pf_lock exclusively.
*
* pf_state_lock protects consistency of state table. Packets, which do state
* look up grab the lock as readers. If packet must create state, then it must
* grab the lock as writer. Whenever packet creates state it grabs pf_lock
* first then it locks pf_state_lock as the writer.
*/
struct rwlock pf_lock = RWLOCK_INITIALIZER("pf_lock");
struct rwlock pf_state_lock = RWLOCK_INITIALIZER("pf_state_lock");
struct rwlock pfioctl_rw = RWLOCK_INITIALIZER("pfioctl_rw");
struct cpumem *pf_anchor_stack;
#if (PF_QNAME_SIZE != PF_TAG_NAME_SIZE)
#error PF_QNAME_SIZE must be equal to PF_TAG_NAME_SIZE
#endif
u_int16_t tagname2tag(struct pf_tags *, char *, int);
void tag2tagname(struct pf_tags *, u_int16_t, char *);
void tag_unref(struct pf_tags *, u_int16_t);
int pf_rtlabel_add(struct pf_addr_wrap *);
void pf_rtlabel_remove(struct pf_addr_wrap *);
void pf_rtlabel_copyout(struct pf_addr_wrap *);
LIST_HEAD(, pf_trans) pf_ioctl_trans = LIST_HEAD_INITIALIZER(pf_trans);
/* counts transactions opened by a device */
unsigned int pf_tcount[CLONE_MAPSZ * NBBY];
#define pf_unit2idx(_unit_) ((_unit_) >> CLONE_SHIFT)
void
pfattach(int num)
{
u_int32_t *timeout = pf_default_rule.timeout;
struct pf_anchor_stackframe *sf;
struct cpumem_iter cmi;
pool_init(&pf_rule_pl, sizeof(struct pf_rule), 0,
IPL_SOFTNET, 0, "pfrule", NULL);
pool_init(&pf_src_tree_pl, sizeof(struct pf_src_node), 0,
IPL_SOFTNET, 0, "pfsrctr", NULL);
pool_init(&pf_sn_item_pl, sizeof(struct pf_sn_item), 0,
IPL_SOFTNET, 0, "pfsnitem", NULL);
pool_init(&pf_state_pl, sizeof(struct pf_state), 0,
IPL_SOFTNET, 0, "pfstate", NULL);
pool_init(&pf_state_key_pl, sizeof(struct pf_state_key), 0,
IPL_SOFTNET, 0, "pfstkey", NULL);
pool_init(&pf_state_item_pl, sizeof(struct pf_state_item), 0,
IPL_SOFTNET, 0, "pfstitem", NULL);
pool_init(&pf_rule_item_pl, sizeof(struct pf_rule_item), 0,
IPL_SOFTNET, 0, "pfruleitem", NULL);
pool_init(&pf_queue_pl, sizeof(struct pf_queuespec), 0,
IPL_SOFTNET, 0, "pfqueue", NULL);
pool_init(&pf_tag_pl, sizeof(struct pf_tagname), 0,
IPL_SOFTNET, 0, "pftag", NULL);
pool_init(&pf_pktdelay_pl, sizeof(struct pf_pktdelay), 0,
IPL_SOFTNET, 0, "pfpktdelay", NULL);
pool_init(&pf_anchor_pl, sizeof(struct pf_anchor), 0,
IPL_SOFTNET, 0, "pfanchor", NULL);
hfsc_initialize();
pfr_initialize();
pfi_initialize();
pf_osfp_initialize();
pf_syncookies_init();
pool_sethardlimit(pf_pool_limits[PF_LIMIT_STATES].pp,
pf_pool_limits[PF_LIMIT_STATES].limit, NULL, 0);
pool_sethardlimit(pf_pool_limits[PF_LIMIT_ANCHORS].pp,
pf_pool_limits[PF_LIMIT_ANCHORS].limit, NULL, 0);
if (physmem <= atop(100*1024*1024))
pf_pool_limits[PF_LIMIT_TABLE_ENTRIES].limit =
PFR_KENTRY_HIWAT_SMALL;
RB_INIT(&tree_src_tracking);
RB_INIT(&pf_anchors);
pf_init_ruleset(&pf_main_ruleset);
TAILQ_INIT(&pf_queues[0]);
TAILQ_INIT(&pf_queues[1]);
pf_queues_active = &pf_queues[0];
pf_queues_inactive = &pf_queues[1];
/* default rule should never be garbage collected */
pf_default_rule.entries.tqe_prev = &pf_default_rule.entries.tqe_next;
pf_default_rule.action = PF_PASS;
pf_default_rule.nr = (u_int32_t)-1;
pf_default_rule.rtableid = -1;
/* initialize default timeouts */
timeout[PFTM_TCP_FIRST_PACKET] = PFTM_TCP_FIRST_PACKET_VAL;
timeout[PFTM_TCP_OPENING] = PFTM_TCP_OPENING_VAL;
timeout[PFTM_TCP_ESTABLISHED] = PFTM_TCP_ESTABLISHED_VAL;
timeout[PFTM_TCP_CLOSING] = PFTM_TCP_CLOSING_VAL;
timeout[PFTM_TCP_FIN_WAIT] = PFTM_TCP_FIN_WAIT_VAL;
timeout[PFTM_TCP_CLOSED] = PFTM_TCP_CLOSED_VAL;
timeout[PFTM_UDP_FIRST_PACKET] = PFTM_UDP_FIRST_PACKET_VAL;
timeout[PFTM_UDP_SINGLE] = PFTM_UDP_SINGLE_VAL;
timeout[PFTM_UDP_MULTIPLE] = PFTM_UDP_MULTIPLE_VAL;
timeout[PFTM_ICMP_FIRST_PACKET] = PFTM_ICMP_FIRST_PACKET_VAL;
timeout[PFTM_ICMP_ERROR_REPLY] = PFTM_ICMP_ERROR_REPLY_VAL;
timeout[PFTM_OTHER_FIRST_PACKET] = PFTM_OTHER_FIRST_PACKET_VAL;
timeout[PFTM_OTHER_SINGLE] = PFTM_OTHER_SINGLE_VAL;
timeout[PFTM_OTHER_MULTIPLE] = PFTM_OTHER_MULTIPLE_VAL;
timeout[PFTM_FRAG] = PFTM_FRAG_VAL;
timeout[PFTM_INTERVAL] = PFTM_INTERVAL_VAL;
timeout[PFTM_SRC_NODE] = PFTM_SRC_NODE_VAL;
timeout[PFTM_TS_DIFF] = PFTM_TS_DIFF_VAL;
timeout[PFTM_ADAPTIVE_START] = PFSTATE_ADAPT_START;
timeout[PFTM_ADAPTIVE_END] = PFSTATE_ADAPT_END;
pf_default_rule.src.addr.type = PF_ADDR_ADDRMASK;
pf_default_rule.dst.addr.type = PF_ADDR_ADDRMASK;
pf_default_rule.rdr.addr.type = PF_ADDR_NONE;
pf_default_rule.nat.addr.type = PF_ADDR_NONE;
pf_default_rule.route.addr.type = PF_ADDR_NONE;
pf_normalize_init();
memset(&pf_status, 0, sizeof(pf_status));
pf_status.debug = LOG_ERR;
pf_status.reass = PF_REASS_ENABLED;
/* XXX do our best to avoid a conflict */
pf_status.hostid = arc4random();
pf_default_rule_new = pf_default_rule;
/*
* we waste two stack frames as meta-data.
* frame[0] always presents a top, which can not be used for data
* frame[PF_ANCHOR_STACK_MAX] denotes a bottom of the stack and keeps
* the pointer to currently used stack frame.
*/
pf_anchor_stack = cpumem_malloc(
sizeof(struct pf_anchor_stackframe) * (PF_ANCHOR_STACK_MAX + 2),
M_WAITOK|M_ZERO);
CPUMEM_FOREACH(sf, &cmi, pf_anchor_stack)
sf[PF_ANCHOR_STACK_MAX].sf_stack_top = &sf[0];
}
int
pfopen(dev_t dev, int flags, int fmt, struct proc *p)
{
int unit = minor(dev);
if (unit & ((1 << CLONE_SHIFT) - 1))
return (ENXIO);
return (0);
}
int
pfclose(dev_t dev, int flags, int fmt, struct proc *p)
{
struct pf_trans *w, *s;
LIST_HEAD(, pf_trans) tmp_list;
uint32_t unit = minor(dev);
LIST_INIT(&tmp_list);
rw_enter_write(&pfioctl_rw);
LIST_FOREACH_SAFE(w, &pf_ioctl_trans, pft_entry, s) {
if (w->pft_unit == unit) {
LIST_REMOVE(w, pft_entry);
LIST_INSERT_HEAD(&tmp_list, w, pft_entry);
}
}
rw_exit_write(&pfioctl_rw);
while ((w = LIST_FIRST(&tmp_list)) != NULL) {
LIST_REMOVE(w, pft_entry);
pf_free_trans(w);
}
return (0);
}
void
pf_rule_free(struct pf_rule *rule)
{
if (rule == NULL)
return;
pfi_kif_free(rule->kif);
pfi_kif_free(rule->rcv_kif);
pfi_kif_free(rule->rdr.kif);
pfi_kif_free(rule->nat.kif);
pfi_kif_free(rule->route.kif);
pool_put(&pf_rule_pl, rule);
}
void
pf_rm_rule(struct pf_rulequeue *rulequeue, struct pf_rule *rule)
{
if (rulequeue != NULL) {
if (rule->states_cur == 0 && rule->src_nodes == 0) {
/*
* XXX - we need to remove the table *before* detaching
* the rule to make sure the table code does not delete
* the anchor under our feet.
*/
pf_tbladdr_remove(&rule->src.addr);
pf_tbladdr_remove(&rule->dst.addr);
pf_tbladdr_remove(&rule->rdr.addr);
pf_tbladdr_remove(&rule->nat.addr);
pf_tbladdr_remove(&rule->route.addr);
if (rule->overload_tbl)
pfr_detach_table(rule->overload_tbl);
}
TAILQ_REMOVE(rulequeue, rule, entries);
rule->entries.tqe_prev = NULL;
rule->nr = (u_int32_t)-1;
}
if (rule->states_cur > 0 || rule->src_nodes > 0 ||
rule->entries.tqe_prev != NULL)
return;
pf_tag_unref(rule->tag);
pf_tag_unref(rule->match_tag);
pf_rtlabel_remove(&rule->src.addr);
pf_rtlabel_remove(&rule->dst.addr);
pfi_dynaddr_remove(&rule->src.addr);
pfi_dynaddr_remove(&rule->dst.addr);
pfi_dynaddr_remove(&rule->rdr.addr);
pfi_dynaddr_remove(&rule->nat.addr);
pfi_dynaddr_remove(&rule->route.addr);
if (rulequeue == NULL) {
pf_tbladdr_remove(&rule->src.addr);
pf_tbladdr_remove(&rule->dst.addr);
pf_tbladdr_remove(&rule->rdr.addr);
pf_tbladdr_remove(&rule->nat.addr);
pf_tbladdr_remove(&rule->route.addr);
if (rule->overload_tbl)
pfr_detach_table(rule->overload_tbl);
}
pfi_kif_unref(rule->rcv_kif, PFI_KIF_REF_RULE);
pfi_kif_unref(rule->kif, PFI_KIF_REF_RULE);
pfi_kif_unref(rule->rdr.kif, PFI_KIF_REF_RULE);
pfi_kif_unref(rule->nat.kif, PFI_KIF_REF_RULE);
pfi_kif_unref(rule->route.kif, PFI_KIF_REF_RULE);
pf_remove_anchor(rule);
pool_put(&pf_rule_pl, rule);
}
u_int16_t
tagname2tag(struct pf_tags *head, char *tagname, int create)
{
struct pf_tagname *tag, *p = NULL;
u_int16_t new_tagid = 1;
TAILQ_FOREACH(tag, head, entries)
if (strcmp(tagname, tag->name) == 0) {
tag->ref++;
return (tag->tag);
}
if (!create)
return (0);
/*
* to avoid fragmentation, we do a linear search from the beginning
* and take the first free slot we find. if there is none or the list
* is empty, append a new entry at the end.
*/
/* new entry */
TAILQ_FOREACH(p, head, entries) {
if (p->tag != new_tagid)
break;
new_tagid = p->tag + 1;
}
if (new_tagid > TAGID_MAX)
return (0);
/* allocate and fill new struct pf_tagname */
tag = pool_get(&pf_tag_pl, PR_NOWAIT | PR_ZERO);
if (tag == NULL)
return (0);
strlcpy(tag->name, tagname, sizeof(tag->name));
tag->tag = new_tagid;
tag->ref++;
if (p != NULL) /* insert new entry before p */
TAILQ_INSERT_BEFORE(p, tag, entries);
else /* either list empty or no free slot in between */
TAILQ_INSERT_TAIL(head, tag, entries);
return (tag->tag);
}
void
tag2tagname(struct pf_tags *head, u_int16_t tagid, char *p)
{
struct pf_tagname *tag;
TAILQ_FOREACH(tag, head, entries)
if (tag->tag == tagid) {
strlcpy(p, tag->name, PF_TAG_NAME_SIZE);
return;
}
}
void
tag_unref(struct pf_tags *head, u_int16_t tag)
{
struct pf_tagname *p, *next;
if (tag == 0)
return;
TAILQ_FOREACH_SAFE(p, head, entries, next) {
if (tag == p->tag) {
if (--p->ref == 0) {
TAILQ_REMOVE(head, p, entries);
pool_put(&pf_tag_pl, p);
}
break;
}
}
}
u_int16_t
pf_tagname2tag(char *tagname, int create)
{
return (tagname2tag(&pf_tags, tagname, create));
}
void
pf_tag2tagname(u_int16_t tagid, char *p)
{
tag2tagname(&pf_tags, tagid, p);
}
void
pf_tag_ref(u_int16_t tag)
{
struct pf_tagname *t;
TAILQ_FOREACH(t, &pf_tags, entries)
if (t->tag == tag)
break;
if (t != NULL)
t->ref++;
}
void
pf_tag_unref(u_int16_t tag)
{
tag_unref(&pf_tags, tag);
}
int
pf_rtlabel_add(struct pf_addr_wrap *a)
{
if (a->type == PF_ADDR_RTLABEL &&
(a->v.rtlabel = rtlabel_name2id(a->v.rtlabelname)) == 0)
return (-1);
return (0);
}
void
pf_rtlabel_remove(struct pf_addr_wrap *a)
{
if (a->type == PF_ADDR_RTLABEL)
rtlabel_unref(a->v.rtlabel);
}
void
pf_rtlabel_copyout(struct pf_addr_wrap *a)
{
if (a->type == PF_ADDR_RTLABEL && a->v.rtlabel) {
if (rtlabel_id2name(a->v.rtlabel, a->v.rtlabelname,
sizeof(a->v.rtlabelname)) == NULL)
strlcpy(a->v.rtlabelname, "?",
sizeof(a->v.rtlabelname));
}
}
u_int16_t
pf_qname2qid(char *qname, int create)
{
return (tagname2tag(&pf_qids, qname, create));
}
void
pf_qid2qname(u_int16_t qid, char *p)
{
tag2tagname(&pf_qids, qid, p);
}
void
pf_qid_unref(u_int16_t qid)
{
tag_unref(&pf_qids, (u_int16_t)qid);
}
int
pf_begin_rules(u_int32_t *version, const char *anchor)
{
struct pf_ruleset *rs;
struct pf_rule *rule;
if ((rs = pf_find_or_create_ruleset(anchor)) == NULL)
return (EINVAL);
while ((rule = TAILQ_FIRST(rs->rules.inactive.ptr)) != NULL) {
pf_rm_rule(rs->rules.inactive.ptr, rule);
rs->rules.inactive.rcount--;
}
*version = ++rs->rules.inactive.version;
rs->rules.inactive.open = 1;
return (0);
}
void
pf_rollback_rules(u_int32_t version, char *anchor)
{
struct pf_ruleset *rs;
struct pf_rule *rule;
rs = pf_find_ruleset(anchor);
if (rs == NULL || !rs->rules.inactive.open ||
rs->rules.inactive.version != version)
return;
while ((rule = TAILQ_FIRST(rs->rules.inactive.ptr)) != NULL) {
pf_rm_rule(rs->rules.inactive.ptr, rule);
rs->rules.inactive.rcount--;
}
rs->rules.inactive.open = 0;
/* queue defs only in the main ruleset */
if (anchor[0])
return;
pf_free_queues(pf_queues_inactive);
}
void
pf_free_queues(struct pf_queuehead *where)
{
struct pf_queuespec *q, *qtmp;
TAILQ_FOREACH_SAFE(q, where, entries, qtmp) {
TAILQ_REMOVE(where, q, entries);
pfi_kif_unref(q->kif, PFI_KIF_REF_RULE);
pool_put(&pf_queue_pl, q);
}
}
void
pf_remove_queues(void)
{
struct pf_queuespec *q;
struct ifnet *ifp;
/* put back interfaces in normal queueing mode */
TAILQ_FOREACH(q, pf_queues_active, entries) {
if (q->parent_qid != 0)
continue;
ifp = q->kif->pfik_ifp;
if (ifp == NULL)
continue;
ifq_attach(&ifp->if_snd, ifq_priq_ops, NULL);
}
}
struct pf_queue_if {
struct ifnet *ifp;
const struct ifq_ops *ifqops;
const struct pfq_ops *pfqops;
void *disc;
struct pf_queue_if *next;
};
static inline struct pf_queue_if *
pf_ifp2q(struct pf_queue_if *list, struct ifnet *ifp)
{
struct pf_queue_if *qif = list;
while (qif != NULL) {
if (qif->ifp == ifp)
return (qif);
qif = qif->next;
}
return (qif);
}
int
pf_create_queues(void)
{
struct pf_queuespec *q;
struct ifnet *ifp;
struct pf_queue_if *list = NULL, *qif;
int error;
/*
* Find root queues and allocate traffic conditioner
* private data for these interfaces
*/
TAILQ_FOREACH(q, pf_queues_active, entries) {
if (q->parent_qid != 0)
continue;
ifp = q->kif->pfik_ifp;
if (ifp == NULL)
continue;
qif = malloc(sizeof(*qif), M_PF, M_WAITOK);
qif->ifp = ifp;
if (q->flags & PFQS_ROOTCLASS) {
qif->ifqops = ifq_hfsc_ops;
qif->pfqops = pfq_hfsc_ops;
} else {
qif->ifqops = ifq_fqcodel_ops;
qif->pfqops = pfq_fqcodel_ops;
}
qif->disc = qif->pfqops->pfq_alloc(ifp);
qif->next = list;
list = qif;
}
/* and now everything */
TAILQ_FOREACH(q, pf_queues_active, entries) {
ifp = q->kif->pfik_ifp;
if (ifp == NULL)
continue;
qif = pf_ifp2q(list, ifp);
KASSERT(qif != NULL);
error = qif->pfqops->pfq_addqueue(qif->disc, q);
if (error != 0)
goto error;
}
/* find root queues in old list to disable them if necessary */
TAILQ_FOREACH(q, pf_queues_inactive, entries) {
if (q->parent_qid != 0)
continue;
ifp = q->kif->pfik_ifp;
if (ifp == NULL)
continue;
qif = pf_ifp2q(list, ifp);
if (qif != NULL)
continue;
ifq_attach(&ifp->if_snd, ifq_priq_ops, NULL);
}
/* commit the new queues */
while (list != NULL) {
qif = list;
list = qif->next;
ifp = qif->ifp;
ifq_attach(&ifp->if_snd, qif->ifqops, qif->disc);
free(qif, M_PF, sizeof(*qif));
}
return (0);
error:
while (list != NULL) {
qif = list;
list = qif->next;
qif->pfqops->pfq_free(qif->disc);
free(qif, M_PF, sizeof(*qif));
}
return (error);
}
int
pf_commit_queues(void)
{
struct pf_queuehead *qswap;
int error;
/* swap */
qswap = pf_queues_active;
pf_queues_active = pf_queues_inactive;
pf_queues_inactive = qswap;
error = pf_create_queues();
if (error != 0) {
pf_queues_inactive = pf_queues_active;
pf_queues_active = qswap;
return (error);
}
pf_free_queues(pf_queues_inactive);
return (0);
}
const struct pfq_ops *
pf_queue_manager(struct pf_queuespec *q)
{
if (q->flags & PFQS_FLOWQUEUE)
return pfq_fqcodel_ops;
return (/* pfq_default_ops */ NULL);
}
#define PF_MD5_UPD(st, elm) \
MD5Update(ctx, (u_int8_t *) &(st)->elm, sizeof((st)->elm))
#define PF_MD5_UPD_STR(st, elm) \
MD5Update(ctx, (u_int8_t *) (st)->elm, strlen((st)->elm))
#define PF_MD5_UPD_HTONL(st, elm, stor) do { \
(stor) = htonl((st)->elm); \
MD5Update(ctx, (u_int8_t *) &(stor), sizeof(u_int32_t));\
} while (0)
#define PF_MD5_UPD_HTONS(st, elm, stor) do { \
(stor) = htons((st)->elm); \
MD5Update(ctx, (u_int8_t *) &(stor), sizeof(u_int16_t));\
} while (0)
void
pf_hash_rule_addr(MD5_CTX *ctx, struct pf_rule_addr *pfr)
{
PF_MD5_UPD(pfr, addr.type);
switch (pfr->addr.type) {
case PF_ADDR_DYNIFTL:
PF_MD5_UPD(pfr, addr.v.ifname);
PF_MD5_UPD(pfr, addr.iflags);
break;
case PF_ADDR_TABLE:
if (strncmp(pfr->addr.v.tblname, PF_OPTIMIZER_TABLE_PFX,
strlen(PF_OPTIMIZER_TABLE_PFX)))
PF_MD5_UPD(pfr, addr.v.tblname);
break;
case PF_ADDR_ADDRMASK:
/* XXX ignore af? */
PF_MD5_UPD(pfr, addr.v.a.addr.addr32);
PF_MD5_UPD(pfr, addr.v.a.mask.addr32);
break;
case PF_ADDR_RTLABEL:
PF_MD5_UPD(pfr, addr.v.rtlabelname);
break;
}
PF_MD5_UPD(pfr, port[0]);
PF_MD5_UPD(pfr, port[1]);
PF_MD5_UPD(pfr, neg);
PF_MD5_UPD(pfr, port_op);
}
void
pf_hash_rule(MD5_CTX *ctx, struct pf_rule *rule)
{
u_int16_t x;
u_int32_t y;
pf_hash_rule_addr(ctx, &rule->src);
pf_hash_rule_addr(ctx, &rule->dst);
PF_MD5_UPD_STR(rule, label);
PF_MD5_UPD_STR(rule, ifname);
PF_MD5_UPD_STR(rule, rcv_ifname);
PF_MD5_UPD_STR(rule, match_tagname);
PF_MD5_UPD_HTONS(rule, match_tag, x); /* dup? */
PF_MD5_UPD_HTONL(rule, os_fingerprint, y);
PF_MD5_UPD_HTONL(rule, prob, y);
PF_MD5_UPD_HTONL(rule, uid.uid[0], y);
PF_MD5_UPD_HTONL(rule, uid.uid[1], y);
PF_MD5_UPD(rule, uid.op);
PF_MD5_UPD_HTONL(rule, gid.gid[0], y);
PF_MD5_UPD_HTONL(rule, gid.gid[1], y);
PF_MD5_UPD(rule, gid.op);
PF_MD5_UPD_HTONL(rule, rule_flag, y);
PF_MD5_UPD(rule, action);
PF_MD5_UPD(rule, direction);
PF_MD5_UPD(rule, af);
PF_MD5_UPD(rule, quick);
PF_MD5_UPD(rule, ifnot);
PF_MD5_UPD(rule, rcvifnot);
PF_MD5_UPD(rule, match_tag_not);
PF_MD5_UPD(rule, keep_state);
PF_MD5_UPD(rule, proto);
PF_MD5_UPD(rule, type);
PF_MD5_UPD(rule, code);
PF_MD5_UPD(rule, flags);
PF_MD5_UPD(rule, flagset);
PF_MD5_UPD(rule, allow_opts);
PF_MD5_UPD(rule, rt);
PF_MD5_UPD(rule, tos);
}
int
pf_commit_rules(u_int32_t version, char *anchor)
{
struct pf_ruleset *rs;
struct pf_rule *rule;
struct pf_rulequeue *old_rules;
u_int32_t old_rcount;
PF_ASSERT_LOCKED();
rs = pf_find_ruleset(anchor);
if (rs == NULL || !rs->rules.inactive.open ||
version != rs->rules.inactive.version)
return (EBUSY);
if (rs == &pf_main_ruleset)
pf_calc_chksum(rs);
/* Swap rules, keep the old. */
old_rules = rs->rules.active.ptr;
old_rcount = rs->rules.active.rcount;
rs->rules.active.ptr = rs->rules.inactive.ptr;
rs->rules.active.rcount = rs->rules.inactive.rcount;
rs->rules.inactive.ptr = old_rules;
rs->rules.inactive.rcount = old_rcount;
rs->rules.active.version = rs->rules.inactive.version;
pf_calc_skip_steps(rs->rules.active.ptr);
/* Purge the old rule list. */
while ((rule = TAILQ_FIRST(old_rules)) != NULL)
pf_rm_rule(old_rules, rule);
rs->rules.inactive.rcount = 0;
rs->rules.inactive.open = 0;
pf_remove_if_empty_ruleset(rs);
/* queue defs only in the main ruleset */
if (anchor[0])
return (0);
return (pf_commit_queues());
}
void
pf_calc_chksum(struct pf_ruleset *rs)
{
MD5_CTX ctx;
struct pf_rule *rule;
u_int8_t digest[PF_MD5_DIGEST_LENGTH];
MD5Init(&ctx);
if (rs->rules.inactive.rcount) {
TAILQ_FOREACH(rule, rs->rules.inactive.ptr, entries) {
pf_hash_rule(&ctx, rule);
}
}
MD5Final(digest, &ctx);
memcpy(pf_status.pf_chksum, digest, sizeof(pf_status.pf_chksum));
}
int
pf_addr_setup(struct pf_ruleset *ruleset, struct pf_addr_wrap *addr,
sa_family_t af)
{
if (pfi_dynaddr_setup(addr, af, PR_WAITOK) ||
pf_tbladdr_setup(ruleset, addr, PR_WAITOK) ||
pf_rtlabel_add(addr))
return (EINVAL);
return (0);
}
struct pfi_kif *
pf_kif_setup(struct pfi_kif *kif_buf)
{
struct pfi_kif *kif;
if (kif_buf == NULL)
return (NULL);
KASSERT(kif_buf->pfik_name[0] != '\0');
kif = pfi_kif_get(kif_buf->pfik_name, &kif_buf);
if (kif_buf != NULL)
pfi_kif_free(kif_buf);
pfi_kif_ref(kif, PFI_KIF_REF_RULE);
return (kif);
}
void
pf_addr_copyout(struct pf_addr_wrap *addr)
{
pfi_dynaddr_copyout(addr);
pf_tbladdr_copyout(addr);
pf_rtlabel_copyout(addr);
}
int
pf_states_clr(struct pfioc_state_kill *psk)
{
struct pf_state *st, *nextst;
struct pf_state *head, *tail;
u_int killed = 0;
int error;
NET_LOCK();
/* lock against the gc removing an item from the list */
error = rw_enter(&pf_state_list.pfs_rwl, RW_READ|RW_INTR);
if (error != 0)
goto unlock;
/* get a snapshot view of the ends of the list to traverse between */
mtx_enter(&pf_state_list.pfs_mtx);
head = TAILQ_FIRST(&pf_state_list.pfs_list);
tail = TAILQ_LAST(&pf_state_list.pfs_list, pf_state_queue);
mtx_leave(&pf_state_list.pfs_mtx);
st = NULL;
nextst = head;
PF_LOCK();
PF_STATE_ENTER_WRITE();
while (st != tail) {
st = nextst;
nextst = TAILQ_NEXT(st, entry_list);
if (st->timeout == PFTM_UNLINKED)
continue;
if (!psk->psk_ifname[0] || !strcmp(psk->psk_ifname,
st->kif->pfik_name)) {
#if NPFSYNC > 0
/* don't send out individual delete messages */
SET(st->state_flags, PFSTATE_NOSYNC);
#endif /* NPFSYNC > 0 */
pf_remove_state(st);
killed++;
}
}
PF_STATE_EXIT_WRITE();
PF_UNLOCK();
rw_exit(&pf_state_list.pfs_rwl);
psk->psk_killed = killed;
#if NPFSYNC > 0
pfsync_clear_states(pf_status.hostid, psk->psk_ifname);
#endif /* NPFSYNC > 0 */
unlock:
NET_UNLOCK();
return (error);
}
int
pf_states_get(struct pfioc_states *ps)
{
struct pf_state *st, *nextst;
struct pf_state *head, *tail;
struct pfsync_state *p, pstore;
u_int32_t nr = 0;
int error;
if (ps->ps_len == 0) {
nr = pf_status.states;
ps->ps_len = sizeof(struct pfsync_state) * nr;
return (0);
}
p = ps->ps_states;
/* lock against the gc removing an item from the list */
error = rw_enter(&pf_state_list.pfs_rwl, RW_READ|RW_INTR);
if (error != 0)
return (error);
/* get a snapshot view of the ends of the list to traverse between */
mtx_enter(&pf_state_list.pfs_mtx);
head = TAILQ_FIRST(&pf_state_list.pfs_list);
tail = TAILQ_LAST(&pf_state_list.pfs_list, pf_state_queue);
mtx_leave(&pf_state_list.pfs_mtx);
st = NULL;
nextst = head;
while (st != tail) {
st = nextst;
nextst = TAILQ_NEXT(st, entry_list);
if (st->timeout == PFTM_UNLINKED)
continue;
if ((nr+1) * sizeof(*p) > ps->ps_len)
break;
pf_state_export(&pstore, st);
error = copyout(&pstore, p, sizeof(*p));
if (error)
goto fail;
p++;
nr++;
}
ps->ps_len = sizeof(struct pfsync_state) * nr;
fail:
rw_exit(&pf_state_list.pfs_rwl);
return (error);
}
int
pfioctl(dev_t dev, u_long cmd, caddr_t addr, int flags, struct proc *p)
{
int error = 0;
/* XXX keep in sync with switch() below */
if (securelevel > 1)
switch (cmd) {
case DIOCGETRULES:
case DIOCGETRULE:
case DIOCGETSTATE:
case DIOCSETSTATUSIF:
case DIOCGETSTATUS:
case DIOCCLRSTATUS:
case DIOCNATLOOK:
case DIOCSETDEBUG:
case DIOCGETSTATES:
case DIOCGETTIMEOUT:
case DIOCGETLIMIT:
case DIOCGETRULESETS:
case DIOCGETRULESET:
case DIOCGETQUEUES:
case DIOCGETQUEUE:
case DIOCGETQSTATS:
case DIOCRGETTABLES:
case DIOCRGETTSTATS:
case DIOCRCLRTSTATS:
case DIOCRCLRADDRS:
case DIOCRADDADDRS:
case DIOCRDELADDRS:
case DIOCRSETADDRS:
case DIOCRGETADDRS:
case DIOCRGETASTATS:
case DIOCRCLRASTATS:
case DIOCRTSTADDRS:
case DIOCOSFPGET:
case DIOCGETSRCNODES:
case DIOCCLRSRCNODES:
case DIOCIGETIFACES:
case DIOCSETIFFLAG:
case DIOCCLRIFFLAG:
case DIOCGETSYNFLWATS:
break;
case DIOCRCLRTABLES:
case DIOCRADDTABLES:
case DIOCRDELTABLES:
case DIOCRSETTFLAGS:
if (((struct pfioc_table *)addr)->pfrio_flags &
PFR_FLAG_DUMMY)
break; /* dummy operation ok */
return (EPERM);
default:
return (EPERM);
}
if (!(flags & FWRITE))
switch (cmd) {
case DIOCGETRULES:
case DIOCGETSTATE:
case DIOCGETSTATUS:
case DIOCGETSTATES:
case DIOCGETTIMEOUT:
case DIOCGETLIMIT:
case DIOCGETRULESETS:
case DIOCGETRULESET:
case DIOCGETQUEUES:
case DIOCGETQUEUE:
case DIOCGETQSTATS:
case DIOCNATLOOK:
case DIOCRGETTABLES:
case DIOCRGETTSTATS:
case DIOCRGETADDRS:
case DIOCRGETASTATS:
case DIOCRTSTADDRS:
case DIOCOSFPGET:
case DIOCGETSRCNODES:
case DIOCIGETIFACES:
case DIOCGETSYNFLWATS:
case DIOCXEND:
break;
case DIOCRCLRTABLES:
case DIOCRADDTABLES:
case DIOCRDELTABLES:
case DIOCRCLRTSTATS:
case DIOCRCLRADDRS:
case DIOCRADDADDRS:
case DIOCRDELADDRS:
case DIOCRSETADDRS:
case DIOCRSETTFLAGS:
if (((struct pfioc_table *)addr)->pfrio_flags &
PFR_FLAG_DUMMY) {
flags |= FWRITE; /* need write lock for dummy */
break; /* dummy operation ok */
}
return (EACCES);
case DIOCGETRULE:
if (((struct pfioc_rule *)addr)->action ==
PF_GET_CLR_CNTR)
return (EACCES);
break;
default:
return (EACCES);
}
rw_enter_write(&pfioctl_rw);
switch (cmd) {
case DIOCSTART:
NET_LOCK();
PF_LOCK();
if (pf_status.running)
error = EEXIST;
else {
pf_status.running = 1;
pf_status.since = getuptime();
if (pf_status.stateid == 0) {
pf_status.stateid = gettime();
pf_status.stateid = pf_status.stateid << 32;
}
timeout_add_sec(&pf_purge_states_to, 1);
timeout_add_sec(&pf_purge_to, 1);
pf_create_queues();
DPFPRINTF(LOG_NOTICE, "pf: started");
}
PF_UNLOCK();
NET_UNLOCK();
break;
case DIOCSTOP:
NET_LOCK();
PF_LOCK();
if (!pf_status.running)
error = ENOENT;
else {
pf_status.running = 0;
pf_status.since = getuptime();
pf_remove_queues();
DPFPRINTF(LOG_NOTICE, "pf: stopped");
}
PF_UNLOCK();
NET_UNLOCK();
break;
case DIOCGETQUEUES: {
struct pfioc_queue *pq = (struct pfioc_queue *)addr;
struct pf_queuespec *qs;
u_int32_t nr = 0;
PF_LOCK();
pq->ticket = pf_main_ruleset.rules.active.version;
/* save state to not run over them all each time? */
qs = TAILQ_FIRST(pf_queues_active);
while (qs != NULL) {
qs = TAILQ_NEXT(qs, entries);
nr++;
}
pq->nr = nr;
PF_UNLOCK();
break;
}
case DIOCGETQUEUE: {
struct pfioc_queue *pq = (struct pfioc_queue *)addr;
struct pf_queuespec *qs;
u_int32_t nr = 0;
PF_LOCK();
if (pq->ticket != pf_main_ruleset.rules.active.version) {
error = EBUSY;
PF_UNLOCK();
goto fail;
}
/* save state to not run over them all each time? */
qs = TAILQ_FIRST(pf_queues_active);
while ((qs != NULL) && (nr++ < pq->nr))
qs = TAILQ_NEXT(qs, entries);
if (qs == NULL) {
error = EBUSY;
PF_UNLOCK();
goto fail;
}
memcpy(&pq->queue, qs, sizeof(pq->queue));
PF_UNLOCK();
break;
}
case DIOCGETQSTATS: {
struct pfioc_qstats *pq = (struct pfioc_qstats *)addr;
struct pf_queuespec *qs;
u_int32_t nr;
int nbytes;
NET_LOCK();
PF_LOCK();
if (pq->ticket != pf_main_ruleset.rules.active.version) {
error = EBUSY;
PF_UNLOCK();
NET_UNLOCK();
goto fail;
}
nbytes = pq->nbytes;
nr = 0;
/* save state to not run over them all each time? */
qs = TAILQ_FIRST(pf_queues_active);
while ((qs != NULL) && (nr++ < pq->nr))
qs = TAILQ_NEXT(qs, entries);
if (qs == NULL) {
error = EBUSY;
PF_UNLOCK();
NET_UNLOCK();
goto fail;
}
memcpy(&pq->queue, qs, sizeof(pq->queue));
/* It's a root flow queue but is not an HFSC root class */
if ((qs->flags & PFQS_FLOWQUEUE) && qs->parent_qid == 0 &&
!(qs->flags & PFQS_ROOTCLASS))
error = pfq_fqcodel_ops->pfq_qstats(qs, pq->buf,
&nbytes);
else
error = pfq_hfsc_ops->pfq_qstats(qs, pq->buf,
&nbytes);
if (error == 0)
pq->nbytes = nbytes;
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCADDQUEUE: {
struct pfioc_queue *q = (struct pfioc_queue *)addr;
struct pf_queuespec *qs;
qs = pool_get(&pf_queue_pl, PR_WAITOK|PR_LIMITFAIL|PR_ZERO);
if (qs == NULL) {
error = ENOMEM;
goto fail;
}
NET_LOCK();
PF_LOCK();
if (q->ticket != pf_main_ruleset.rules.inactive.version) {
error = EBUSY;
PF_UNLOCK();
NET_UNLOCK();
pool_put(&pf_queue_pl, qs);
goto fail;
}
memcpy(qs, &q->queue, sizeof(*qs));
qs->qid = pf_qname2qid(qs->qname, 1);
if (qs->qid == 0) {
error = EBUSY;
PF_UNLOCK();
NET_UNLOCK();
pool_put(&pf_queue_pl, qs);
goto fail;
}
if (qs->parent[0] && (qs->parent_qid =
pf_qname2qid(qs->parent, 0)) == 0) {
error = ESRCH;
PF_UNLOCK();
NET_UNLOCK();
pool_put(&pf_queue_pl, qs);
goto fail;
}
qs->kif = pfi_kif_get(qs->ifname, NULL);
if (qs->kif == NULL) {
error = ESRCH;
PF_UNLOCK();
NET_UNLOCK();
pool_put(&pf_queue_pl, qs);
goto fail;
}
/* XXX resolve bw percentage specs */
pfi_kif_ref(qs->kif, PFI_KIF_REF_RULE);
TAILQ_INSERT_TAIL(pf_queues_inactive, qs, entries);
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCADDRULE: {
struct pfioc_rule *pr = (struct pfioc_rule *)addr;
struct pf_ruleset *ruleset;
struct pf_rule *rule, *tail;
rule = pool_get(&pf_rule_pl, PR_WAITOK|PR_LIMITFAIL|PR_ZERO);
if (rule == NULL) {
error = ENOMEM;
goto fail;
}
if ((error = pf_rule_copyin(&pr->rule, rule))) {
pf_rule_free(rule);
rule = NULL;
goto fail;
}
if (pr->rule.return_icmp >> 8 > ICMP_MAXTYPE) {
error = EINVAL;
pf_rule_free(rule);
rule = NULL;
goto fail;
}
if ((error = pf_rule_checkaf(rule))) {
pf_rule_free(rule);
rule = NULL;
goto fail;
}
if (rule->src.addr.type == PF_ADDR_NONE ||
rule->dst.addr.type == PF_ADDR_NONE) {
error = EINVAL;
pf_rule_free(rule);
rule = NULL;
goto fail;
}
if (rule->rt && !rule->direction) {
error = EINVAL;
pf_rule_free(rule);
rule = NULL;
goto fail;
}
NET_LOCK();
PF_LOCK();
pr->anchor[sizeof(pr->anchor) - 1] = '\0';
ruleset = pf_find_ruleset(pr->anchor);
if (ruleset == NULL) {
error = EINVAL;
PF_UNLOCK();
NET_UNLOCK();
pf_rule_free(rule);
goto fail;
}
if (pr->ticket != ruleset->rules.inactive.version) {
error = EBUSY;
PF_UNLOCK();
NET_UNLOCK();
pf_rule_free(rule);
goto fail;
}
rule->cuid = p->p_ucred->cr_ruid;
rule->cpid = p->p_p->ps_pid;
tail = TAILQ_LAST(ruleset->rules.inactive.ptr,
pf_rulequeue);
if (tail)
rule->nr = tail->nr + 1;
else
rule->nr = 0;
rule->kif = pf_kif_setup(rule->kif);
rule->rcv_kif = pf_kif_setup(rule->rcv_kif);
rule->rdr.kif = pf_kif_setup(rule->rdr.kif);
rule->nat.kif = pf_kif_setup(rule->nat.kif);
rule->route.kif = pf_kif_setup(rule->route.kif);
if (rule->overload_tblname[0]) {
if ((rule->overload_tbl = pfr_attach_table(ruleset,
rule->overload_tblname, PR_WAITOK)) == NULL)
error = EINVAL;
else
rule->overload_tbl->pfrkt_flags |= PFR_TFLAG_ACTIVE;
}
if (pf_addr_setup(ruleset, &rule->src.addr, rule->af))
error = EINVAL;
if (pf_addr_setup(ruleset, &rule->dst.addr, rule->af))
error = EINVAL;
if (pf_addr_setup(ruleset, &rule->rdr.addr, rule->af))
error = EINVAL;
if (pf_addr_setup(ruleset, &rule->nat.addr, rule->af))
error = EINVAL;
if (pf_addr_setup(ruleset, &rule->route.addr, rule->af))
error = EINVAL;
if (pf_anchor_setup(rule, ruleset, pr->anchor_call))
error = EINVAL;
if (error) {
pf_rm_rule(NULL, rule);
PF_UNLOCK();
NET_UNLOCK();
goto fail;
}
TAILQ_INSERT_TAIL(ruleset->rules.inactive.ptr,
rule, entries);
ruleset->rules.inactive.rcount++;
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCGETRULES: {
struct pfioc_rule *pr = (struct pfioc_rule *)addr;
struct pf_ruleset *ruleset;
struct pf_rule *rule;
struct pf_trans *t;
u_int32_t ruleset_version;
NET_LOCK();
PF_LOCK();
pr->anchor[sizeof(pr->anchor) - 1] = '\0';
ruleset = pf_find_ruleset(pr->anchor);
if (ruleset == NULL) {
error = EINVAL;
PF_UNLOCK();
NET_UNLOCK();
goto fail;
}
rule = TAILQ_LAST(ruleset->rules.active.ptr, pf_rulequeue);
if (rule)
pr->nr = rule->nr + 1;
else
pr->nr = 0;
ruleset_version = ruleset->rules.active.version;
pf_anchor_take(ruleset->anchor);
rule = TAILQ_FIRST(ruleset->rules.active.ptr);
PF_UNLOCK();
NET_UNLOCK();
t = pf_open_trans(minor(dev));
if (t == NULL) {
error = EBUSY;
goto fail;
}
pf_init_tgetrule(t, ruleset->anchor, ruleset_version, rule);
pr->ticket = t->pft_ticket;
break;
}
case DIOCGETRULE: {
struct pfioc_rule *pr = (struct pfioc_rule *)addr;
struct pf_ruleset *ruleset;
struct pf_rule *rule;
struct pf_trans *t;
int i;
t = pf_find_trans(minor(dev), pr->ticket);
if (t == NULL) {
error = ENXIO;
goto fail;
}
KASSERT(t->pft_unit == minor(dev));
if (t->pft_type != PF_TRANS_GETRULE) {
error = EINVAL;
goto fail;
}
NET_LOCK();
PF_LOCK();
KASSERT(t->pftgr_anchor != NULL);
ruleset = &t->pftgr_anchor->ruleset;
if (t->pftgr_version != ruleset->rules.active.version) {
error = EBUSY;
PF_UNLOCK();
NET_UNLOCK();
goto fail;
}
rule = t->pftgr_rule;
if (rule == NULL) {
error = ENOENT;
PF_UNLOCK();
NET_UNLOCK();
goto fail;
}
memcpy(&pr->rule, rule, sizeof(struct pf_rule));
memset(&pr->rule.entries, 0, sizeof(pr->rule.entries));
pr->rule.kif = NULL;
pr->rule.nat.kif = NULL;
pr->rule.rdr.kif = NULL;
pr->rule.route.kif = NULL;
pr->rule.rcv_kif = NULL;
pr->rule.anchor = NULL;
pr->rule.overload_tbl = NULL;
pr->rule.pktrate.limit /= PF_THRESHOLD_MULT;
if (pf_anchor_copyout(ruleset, rule, pr)) {
error = EBUSY;
PF_UNLOCK();
NET_UNLOCK();
goto fail;
}
pf_addr_copyout(&pr->rule.src.addr);
pf_addr_copyout(&pr->rule.dst.addr);
pf_addr_copyout(&pr->rule.rdr.addr);
pf_addr_copyout(&pr->rule.nat.addr);
pf_addr_copyout(&pr->rule.route.addr);
for (i = 0; i < PF_SKIP_COUNT; ++i)
if (rule->skip[i].ptr == NULL)
pr->rule.skip[i].nr = (u_int32_t)-1;
else
pr->rule.skip[i].nr =
rule->skip[i].ptr->nr;
if (pr->action == PF_GET_CLR_CNTR) {
rule->evaluations = 0;
rule->packets[0] = rule->packets[1] = 0;
rule->bytes[0] = rule->bytes[1] = 0;
rule->states_tot = 0;
}
pr->nr = rule->nr;
t->pftgr_rule = TAILQ_NEXT(rule, entries);
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCCHANGERULE: {
struct pfioc_rule *pcr = (struct pfioc_rule *)addr;
struct pf_ruleset *ruleset;
struct pf_rule *oldrule = NULL, *newrule = NULL;
u_int32_t nr = 0;
if (pcr->action < PF_CHANGE_ADD_HEAD ||
pcr->action > PF_CHANGE_GET_TICKET) {
error = EINVAL;
goto fail;
}
if (pcr->action == PF_CHANGE_GET_TICKET) {
NET_LOCK();
PF_LOCK();
ruleset = pf_find_ruleset(pcr->anchor);
if (ruleset == NULL)
error = EINVAL;
else
pcr->ticket = ++ruleset->rules.active.version;
PF_UNLOCK();
NET_UNLOCK();
goto fail;
}
if (pcr->action != PF_CHANGE_REMOVE) {
newrule = pool_get(&pf_rule_pl,
PR_WAITOK|PR_LIMITFAIL|PR_ZERO);
if (newrule == NULL) {
error = ENOMEM;
goto fail;
}
if (pcr->rule.return_icmp >> 8 > ICMP_MAXTYPE) {
error = EINVAL;
pool_put(&pf_rule_pl, newrule);
goto fail;
}
error = pf_rule_copyin(&pcr->rule, newrule);
if (error != 0) {
pf_rule_free(newrule);
newrule = NULL;
goto fail;
}
if ((error = pf_rule_checkaf(newrule))) {
pf_rule_free(newrule);
newrule = NULL;
goto fail;
}
if (newrule->rt && !newrule->direction) {
pf_rule_free(newrule);
error = EINVAL;
newrule = NULL;
goto fail;
}
}
NET_LOCK();
PF_LOCK();
ruleset = pf_find_ruleset(pcr->anchor);
if (ruleset == NULL) {
error = EINVAL;
PF_UNLOCK();
NET_UNLOCK();
pf_rule_free(newrule);
goto fail;
}
if (pcr->ticket != ruleset->rules.active.version) {
error = EINVAL;
PF_UNLOCK();
NET_UNLOCK();
pf_rule_free(newrule);
goto fail;
}
if (pcr->action != PF_CHANGE_REMOVE) {
KASSERT(newrule != NULL);
newrule->cuid = p->p_ucred->cr_ruid;
newrule->cpid = p->p_p->ps_pid;
newrule->kif = pf_kif_setup(newrule->kif);
newrule->rcv_kif = pf_kif_setup(newrule->rcv_kif);
newrule->rdr.kif = pf_kif_setup(newrule->rdr.kif);
newrule->nat.kif = pf_kif_setup(newrule->nat.kif);
newrule->route.kif = pf_kif_setup(newrule->route.kif);
if (newrule->overload_tblname[0]) {
newrule->overload_tbl = pfr_attach_table(
ruleset, newrule->overload_tblname,
PR_WAITOK);
if (newrule->overload_tbl == NULL)
error = EINVAL;
else
newrule->overload_tbl->pfrkt_flags |=
PFR_TFLAG_ACTIVE;
}
if (pf_addr_setup(ruleset, &newrule->src.addr,
newrule->af))
error = EINVAL;
if (pf_addr_setup(ruleset, &newrule->dst.addr,
newrule->af))
error = EINVAL;
if (pf_addr_setup(ruleset, &newrule->rdr.addr,
newrule->af))
error = EINVAL;
if (pf_addr_setup(ruleset, &newrule->nat.addr,
newrule->af))
error = EINVAL;
if (pf_addr_setup(ruleset, &newrule->route.addr,
newrule->af))
error = EINVAL;
if (pf_anchor_setup(newrule, ruleset, pcr->anchor_call))
error = EINVAL;
if (error) {
pf_rm_rule(NULL, newrule);
PF_UNLOCK();
NET_UNLOCK();
goto fail;
}
}
if (pcr->action == PF_CHANGE_ADD_HEAD)
oldrule = TAILQ_FIRST(ruleset->rules.active.ptr);
else if (pcr->action == PF_CHANGE_ADD_TAIL)
oldrule = TAILQ_LAST(ruleset->rules.active.ptr,
pf_rulequeue);
else {
oldrule = TAILQ_FIRST(ruleset->rules.active.ptr);
while ((oldrule != NULL) && (oldrule->nr != pcr->nr))
oldrule = TAILQ_NEXT(oldrule, entries);
if (oldrule == NULL) {
if (newrule != NULL)
pf_rm_rule(NULL, newrule);
error = EINVAL;
PF_UNLOCK();
NET_UNLOCK();
goto fail;
}
}
if (pcr->action == PF_CHANGE_REMOVE) {
pf_rm_rule(ruleset->rules.active.ptr, oldrule);
ruleset->rules.active.rcount--;
} else {
if (oldrule == NULL)
TAILQ_INSERT_TAIL(
ruleset->rules.active.ptr,
newrule, entries);
else if (pcr->action == PF_CHANGE_ADD_HEAD ||
pcr->action == PF_CHANGE_ADD_BEFORE)
TAILQ_INSERT_BEFORE(oldrule, newrule, entries);
else
TAILQ_INSERT_AFTER(
ruleset->rules.active.ptr,
oldrule, newrule, entries);
ruleset->rules.active.rcount++;
}
nr = 0;
TAILQ_FOREACH(oldrule, ruleset->rules.active.ptr, entries)
oldrule->nr = nr++;
ruleset->rules.active.version++;
pf_calc_skip_steps(ruleset->rules.active.ptr);
pf_remove_if_empty_ruleset(ruleset);
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCCLRSTATES:
error = pf_states_clr((struct pfioc_state_kill *)addr);
break;
case DIOCKILLSTATES: {
struct pf_state *st, *nextst;
struct pf_state_item *si, *sit;
struct pf_state_key *sk, key;
struct pf_addr *srcaddr, *dstaddr;
u_int16_t srcport, dstport;
struct pfioc_state_kill *psk = (struct pfioc_state_kill *)addr;
u_int i, killed = 0;
const int dirs[] = { PF_IN, PF_OUT };
int sidx, didx;
if (psk->psk_pfcmp.id) {
if (psk->psk_pfcmp.creatorid == 0)
psk->psk_pfcmp.creatorid = pf_status.hostid;
NET_LOCK();
PF_LOCK();
PF_STATE_ENTER_WRITE();
if ((st = pf_find_state_byid(&psk->psk_pfcmp))) {
pf_remove_state(st);
psk->psk_killed = 1;
}
PF_STATE_EXIT_WRITE();
PF_UNLOCK();
NET_UNLOCK();
goto fail;
}
if (psk->psk_af && psk->psk_proto &&
psk->psk_src.port_op == PF_OP_EQ &&
psk->psk_dst.port_op == PF_OP_EQ) {
key.af = psk->psk_af;
key.proto = psk->psk_proto;
key.rdomain = psk->psk_rdomain;
NET_LOCK();
PF_LOCK();
PF_STATE_ENTER_WRITE();
for (i = 0; i < nitems(dirs); i++) {
if (dirs[i] == PF_IN) {
sidx = 0;
didx = 1;
} else {
sidx = 1;
didx = 0;
}
pf_addrcpy(&key.addr[sidx],
&psk->psk_src.addr.v.a.addr, key.af);
pf_addrcpy(&key.addr[didx],
&psk->psk_dst.addr.v.a.addr, key.af);
key.port[sidx] = psk->psk_src.port[0];
key.port[didx] = psk->psk_dst.port[0];
sk = RBT_FIND(pf_state_tree, &pf_statetbl,
&key);
if (sk == NULL)
continue;
TAILQ_FOREACH_SAFE(si, &sk->sk_states,
si_entry, sit) {
struct pf_state *sist = si->si_st;
if (((sist->key[PF_SK_WIRE]->af ==
sist->key[PF_SK_STACK]->af &&
sk == (dirs[i] == PF_IN ?
sist->key[PF_SK_WIRE] :
sist->key[PF_SK_STACK])) ||
(sist->key[PF_SK_WIRE]->af !=
sist->key[PF_SK_STACK]->af &&
dirs[i] == PF_IN &&
(sk == sist->key[PF_SK_STACK] ||
sk == sist->key[PF_SK_WIRE]))) &&
(!psk->psk_ifname[0] ||
(sist->kif != pfi_all &&
!strcmp(psk->psk_ifname,
sist->kif->pfik_name)))) {
pf_remove_state(sist);
killed++;
}
}
}
if (killed)
psk->psk_killed = killed;
PF_STATE_EXIT_WRITE();
PF_UNLOCK();
NET_UNLOCK();
goto fail;
}
NET_LOCK();
PF_LOCK();
PF_STATE_ENTER_WRITE();
RBT_FOREACH_SAFE(st, pf_state_tree_id, &tree_id, nextst) {
if (st->direction == PF_OUT) {
sk = st->key[PF_SK_STACK];
srcaddr = &sk->addr[1];
dstaddr = &sk->addr[0];
srcport = sk->port[1];
dstport = sk->port[0];
} else {
sk = st->key[PF_SK_WIRE];
srcaddr = &sk->addr[0];
dstaddr = &sk->addr[1];
srcport = sk->port[0];
dstport = sk->port[1];
}
if ((!psk->psk_af || sk->af == psk->psk_af)
&& (!psk->psk_proto || psk->psk_proto ==
sk->proto) && psk->psk_rdomain == sk->rdomain &&
pf_match_addr(psk->psk_src.neg,
&psk->psk_src.addr.v.a.addr,
&psk->psk_src.addr.v.a.mask,
srcaddr, sk->af) &&
pf_match_addr(psk->psk_dst.neg,
&psk->psk_dst.addr.v.a.addr,
&psk->psk_dst.addr.v.a.mask,
dstaddr, sk->af) &&
(psk->psk_src.port_op == 0 ||
pf_match_port(psk->psk_src.port_op,
psk->psk_src.port[0], psk->psk_src.port[1],
srcport)) &&
(psk->psk_dst.port_op == 0 ||
pf_match_port(psk->psk_dst.port_op,
psk->psk_dst.port[0], psk->psk_dst.port[1],
dstport)) &&
(!psk->psk_label[0] || (st->rule.ptr->label[0] &&
!strcmp(psk->psk_label, st->rule.ptr->label))) &&
(!psk->psk_ifname[0] || !strcmp(psk->psk_ifname,
st->kif->pfik_name))) {
pf_remove_state(st);
killed++;
}
}
psk->psk_killed = killed;
PF_STATE_EXIT_WRITE();
PF_UNLOCK();
NET_UNLOCK();
break;
}
#if NPFSYNC > 0
case DIOCADDSTATE: {
struct pfioc_state *ps = (struct pfioc_state *)addr;
struct pfsync_state *sp = &ps->state;
if (sp->timeout >= PFTM_MAX) {
error = EINVAL;
goto fail;
}
NET_LOCK();
PF_LOCK();
error = pf_state_import(sp, PFSYNC_SI_IOCTL);
PF_UNLOCK();
NET_UNLOCK();
break;
}
#endif /* NPFSYNC > 0 */
case DIOCGETSTATE: {
struct pfioc_state *ps = (struct pfioc_state *)addr;
struct pf_state *st;
struct pf_state_cmp id_key;
memset(&id_key, 0, sizeof(id_key));
id_key.id = ps->state.id;
id_key.creatorid = ps->state.creatorid;
NET_LOCK();
PF_STATE_ENTER_READ();
st = pf_find_state_byid(&id_key);
st = pf_state_ref(st);
PF_STATE_EXIT_READ();
NET_UNLOCK();
if (st == NULL) {
error = ENOENT;
goto fail;
}
pf_state_export(&ps->state, st);
pf_state_unref(st);
break;
}
case DIOCGETSTATES:
error = pf_states_get((struct pfioc_states *)addr);
break;
case DIOCGETSTATUS: {
struct pf_status *s = (struct pf_status *)addr;
NET_LOCK();
PF_LOCK();
PF_FRAG_LOCK();
memcpy(s, &pf_status, sizeof(struct pf_status));
PF_FRAG_UNLOCK();
pfi_update_status(s->ifname, s);
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCSETSTATUSIF: {
struct pfioc_iface *pi = (struct pfioc_iface *)addr;
NET_LOCK();
PF_LOCK();
if (pi->pfiio_name[0] == 0) {
memset(pf_status.ifname, 0, IFNAMSIZ);
PF_UNLOCK();
NET_UNLOCK();
goto fail;
}
strlcpy(pf_trans_set.statusif, pi->pfiio_name, IFNAMSIZ);
pf_trans_set.mask |= PF_TSET_STATUSIF;
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCCLRSTATUS: {
struct pfioc_iface *pi = (struct pfioc_iface *)addr;
NET_LOCK();
PF_LOCK();
/* if ifname is specified, clear counters there only */
if (pi->pfiio_name[0]) {
pfi_update_status(pi->pfiio_name, NULL);
PF_UNLOCK();
NET_UNLOCK();
goto fail;
}
memset(pf_status.counters, 0, sizeof(pf_status.counters));
memset(pf_status.fcounters, 0, sizeof(pf_status.fcounters));
memset(pf_status.scounters, 0, sizeof(pf_status.scounters));
PF_FRAG_LOCK();
memset(pf_status.ncounters, 0, sizeof(pf_status.ncounters));
PF_FRAG_UNLOCK();
pf_status.since = getuptime();
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCNATLOOK: {
struct pfioc_natlook *pnl = (struct pfioc_natlook *)addr;
struct pf_state_key *sk;
struct pf_state *st;
struct pf_state_key_cmp key;
int m = 0, direction = pnl->direction;
int sidx, didx;
switch (pnl->af) {
case AF_INET:
break;
#ifdef INET6
case AF_INET6:
break;
#endif /* INET6 */
default:
error = EAFNOSUPPORT;
goto fail;
}
/* NATLOOK src and dst are reversed, so reverse sidx/didx */
sidx = (direction == PF_IN) ? 1 : 0;
didx = (direction == PF_IN) ? 0 : 1;
if (!pnl->proto ||
PF_AZERO(&pnl->saddr, pnl->af) ||
PF_AZERO(&pnl->daddr, pnl->af) ||
((pnl->proto == IPPROTO_TCP ||
pnl->proto == IPPROTO_UDP) &&
(!pnl->dport || !pnl->sport)) ||
pnl->rdomain > RT_TABLEID_MAX)
error = EINVAL;
else {
key.af = pnl->af;
key.proto = pnl->proto;
key.rdomain = pnl->rdomain;
pf_addrcpy(&key.addr[sidx], &pnl->saddr, pnl->af);
key.port[sidx] = pnl->sport;
pf_addrcpy(&key.addr[didx], &pnl->daddr, pnl->af);
key.port[didx] = pnl->dport;
NET_LOCK();
PF_STATE_ENTER_READ();
st = pf_find_state_all(&key, direction, &m);
st = pf_state_ref(st);
PF_STATE_EXIT_READ();
NET_UNLOCK();
if (m > 1)
error = E2BIG; /* more than one state */
else if (st != NULL) {
sk = st->key[sidx];
pf_addrcpy(&pnl->rsaddr, &sk->addr[sidx],
sk->af);
pnl->rsport = sk->port[sidx];
pf_addrcpy(&pnl->rdaddr, &sk->addr[didx],
sk->af);
pnl->rdport = sk->port[didx];
pnl->rrdomain = sk->rdomain;
} else
error = ENOENT;
pf_state_unref(st);
}
break;
}
case DIOCSETTIMEOUT: {
struct pfioc_tm *pt = (struct pfioc_tm *)addr;
if (pt->timeout < 0 || pt->timeout >= PFTM_MAX ||
pt->seconds < 0) {
error = EINVAL;
goto fail;
}
NET_LOCK();
PF_LOCK();
if (pt->timeout == PFTM_INTERVAL && pt->seconds == 0)
pt->seconds = 1;
pf_default_rule_new.timeout[pt->timeout] = pt->seconds;
pt->seconds = pf_default_rule.timeout[pt->timeout];
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCGETTIMEOUT: {
struct pfioc_tm *pt = (struct pfioc_tm *)addr;
if (pt->timeout < 0 || pt->timeout >= PFTM_MAX) {
error = EINVAL;
goto fail;
}
PF_LOCK();
pt->seconds = pf_default_rule.timeout[pt->timeout];
PF_UNLOCK();
break;
}
case DIOCGETLIMIT: {
struct pfioc_limit *pl = (struct pfioc_limit *)addr;
if (pl->index < 0 || pl->index >= PF_LIMIT_MAX) {
error = EINVAL;
goto fail;
}
PF_LOCK();
pl->limit = pf_pool_limits[pl->index].limit;
PF_UNLOCK();
break;
}
case DIOCSETLIMIT: {
struct pfioc_limit *pl = (struct pfioc_limit *)addr;
PF_LOCK();
if (pl->index < 0 || pl->index >= PF_LIMIT_MAX) {
error = EINVAL;
PF_UNLOCK();
goto fail;
}
if (((struct pool *)pf_pool_limits[pl->index].pp)->pr_nout >
pl->limit) {
error = EBUSY;
PF_UNLOCK();
goto fail;
}
/* Fragments reference mbuf clusters. */
if (pl->index == PF_LIMIT_FRAGS && pl->limit > nmbclust) {
error = EINVAL;
PF_UNLOCK();
goto fail;
}
pf_pool_limits[pl->index].limit_new = pl->limit;
pl->limit = pf_pool_limits[pl->index].limit;
PF_UNLOCK();
break;
}
case DIOCSETDEBUG: {
u_int32_t *level = (u_int32_t *)addr;
NET_LOCK();
PF_LOCK();
pf_trans_set.debug = *level;
pf_trans_set.mask |= PF_TSET_DEBUG;
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCGETRULESETS: {
struct pfioc_ruleset *pr = (struct pfioc_ruleset *)addr;
struct pf_ruleset *ruleset;
struct pf_anchor *anchor;
PF_LOCK();
pr->path[sizeof(pr->path) - 1] = '\0';
if ((ruleset = pf_find_ruleset(pr->path)) == NULL) {
error = EINVAL;
PF_UNLOCK();
goto fail;
}
pr->nr = 0;
if (ruleset == &pf_main_ruleset) {
/* XXX kludge for pf_main_ruleset */
RB_FOREACH(anchor, pf_anchor_global, &pf_anchors)
if (anchor->parent == NULL)
pr->nr++;
} else {
RB_FOREACH(anchor, pf_anchor_node,
&ruleset->anchor->children)
pr->nr++;
}
PF_UNLOCK();
break;
}
case DIOCGETRULESET: {
struct pfioc_ruleset *pr = (struct pfioc_ruleset *)addr;
struct pf_ruleset *ruleset;
struct pf_anchor *anchor;
u_int32_t nr = 0;
PF_LOCK();
pr->path[sizeof(pr->path) - 1] = '\0';
if ((ruleset = pf_find_ruleset(pr->path)) == NULL) {
error = EINVAL;
PF_UNLOCK();
goto fail;
}
pr->name[0] = '\0';
if (ruleset == &pf_main_ruleset) {
/* XXX kludge for pf_main_ruleset */
RB_FOREACH(anchor, pf_anchor_global, &pf_anchors)
if (anchor->parent == NULL && nr++ == pr->nr) {
strlcpy(pr->name, anchor->name,
sizeof(pr->name));
break;
}
} else {
RB_FOREACH(anchor, pf_anchor_node,
&ruleset->anchor->children)
if (nr++ == pr->nr) {
strlcpy(pr->name, anchor->name,
sizeof(pr->name));
break;
}
}
PF_UNLOCK();
if (!pr->name[0])
error = EBUSY;
break;
}
case DIOCRCLRTABLES: {
struct pfioc_table *io = (struct pfioc_table *)addr;
if (io->pfrio_esize != 0) {
error = ENODEV;
goto fail;
}
NET_LOCK();
PF_LOCK();
error = pfr_clr_tables(&io->pfrio_table, &io->pfrio_ndel,
io->pfrio_flags | PFR_FLAG_USERIOCTL);
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCRADDTABLES: {
struct pfioc_table *io = (struct pfioc_table *)addr;
if (io->pfrio_esize != sizeof(struct pfr_table)) {
error = ENODEV;
goto fail;
}
error = pfr_add_tables(io->pfrio_buffer, io->pfrio_size,
&io->pfrio_nadd, io->pfrio_flags | PFR_FLAG_USERIOCTL);
break;
}
case DIOCRDELTABLES: {
struct pfioc_table *io = (struct pfioc_table *)addr;
if (io->pfrio_esize != sizeof(struct pfr_table)) {
error = ENODEV;
goto fail;
}
NET_LOCK();
PF_LOCK();
error = pfr_del_tables(io->pfrio_buffer, io->pfrio_size,
&io->pfrio_ndel, io->pfrio_flags | PFR_FLAG_USERIOCTL);
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCRGETTABLES: {
struct pfioc_table *io = (struct pfioc_table *)addr;
if (io->pfrio_esize != sizeof(struct pfr_table)) {
error = ENODEV;
goto fail;
}
NET_LOCK();
PF_LOCK();
error = pfr_get_tables(&io->pfrio_table, io->pfrio_buffer,
&io->pfrio_size, io->pfrio_flags | PFR_FLAG_USERIOCTL);
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCRGETTSTATS: {
struct pfioc_table *io = (struct pfioc_table *)addr;
if (io->pfrio_esize != sizeof(struct pfr_tstats)) {
error = ENODEV;
goto fail;
}
NET_LOCK();
PF_LOCK();
error = pfr_get_tstats(&io->pfrio_table, io->pfrio_buffer,
&io->pfrio_size, io->pfrio_flags | PFR_FLAG_USERIOCTL);
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCRCLRTSTATS: {
struct pfioc_table *io = (struct pfioc_table *)addr;
if (io->pfrio_esize != sizeof(struct pfr_table)) {
error = ENODEV;
goto fail;
}
NET_LOCK();
PF_LOCK();
error = pfr_clr_tstats(io->pfrio_buffer, io->pfrio_size,
&io->pfrio_nzero, io->pfrio_flags | PFR_FLAG_USERIOCTL);
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCRSETTFLAGS: {
struct pfioc_table *io = (struct pfioc_table *)addr;
if (io->pfrio_esize != sizeof(struct pfr_table)) {
error = ENODEV;
goto fail;
}
NET_LOCK();
PF_LOCK();
error = pfr_set_tflags(io->pfrio_buffer, io->pfrio_size,
io->pfrio_setflag, io->pfrio_clrflag, &io->pfrio_nchange,
&io->pfrio_ndel, io->pfrio_flags | PFR_FLAG_USERIOCTL);
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCRCLRADDRS: {
struct pfioc_table *io = (struct pfioc_table *)addr;
if (io->pfrio_esize != 0) {
error = ENODEV;
goto fail;
}
NET_LOCK();
PF_LOCK();
error = pfr_clr_addrs(&io->pfrio_table, &io->pfrio_ndel,
io->pfrio_flags | PFR_FLAG_USERIOCTL);
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCRADDADDRS: {
struct pfioc_table *io = (struct pfioc_table *)addr;
if (io->pfrio_esize != sizeof(struct pfr_addr)) {
error = ENODEV;
goto fail;
}
error = pfr_add_addrs(&io->pfrio_table, io->pfrio_buffer,
io->pfrio_size, &io->pfrio_nadd, io->pfrio_flags |
PFR_FLAG_USERIOCTL);
break;
}
case DIOCRDELADDRS: {
struct pfioc_table *io = (struct pfioc_table *)addr;
if (io->pfrio_esize != sizeof(struct pfr_addr)) {
error = ENODEV;
goto fail;
}
NET_LOCK();
PF_LOCK();
error = pfr_del_addrs(&io->pfrio_table, io->pfrio_buffer,
io->pfrio_size, &io->pfrio_ndel, io->pfrio_flags |
PFR_FLAG_USERIOCTL);
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCRSETADDRS: {
struct pfioc_table *io = (struct pfioc_table *)addr;
if (io->pfrio_esize != sizeof(struct pfr_addr)) {
error = ENODEV;
goto fail;
}
NET_LOCK();
PF_LOCK();
error = pfr_set_addrs(&io->pfrio_table, io->pfrio_buffer,
io->pfrio_size, &io->pfrio_size2, &io->pfrio_nadd,
&io->pfrio_ndel, &io->pfrio_nchange, io->pfrio_flags |
PFR_FLAG_USERIOCTL, 0);
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCRGETADDRS: {
struct pfioc_table *io = (struct pfioc_table *)addr;
if (io->pfrio_esize != sizeof(struct pfr_addr)) {
error = ENODEV;
goto fail;
}
NET_LOCK();
PF_LOCK();
error = pfr_get_addrs(&io->pfrio_table, io->pfrio_buffer,
&io->pfrio_size, io->pfrio_flags | PFR_FLAG_USERIOCTL);
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCRGETASTATS: {
struct pfioc_table *io = (struct pfioc_table *)addr;
if (io->pfrio_esize != sizeof(struct pfr_astats)) {
error = ENODEV;
goto fail;
}
NET_LOCK();
PF_LOCK();
error = pfr_get_astats(&io->pfrio_table, io->pfrio_buffer,
&io->pfrio_size, io->pfrio_flags | PFR_FLAG_USERIOCTL);
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCRCLRASTATS: {
struct pfioc_table *io = (struct pfioc_table *)addr;
if (io->pfrio_esize != sizeof(struct pfr_addr)) {
error = ENODEV;
goto fail;
}
NET_LOCK();
PF_LOCK();
error = pfr_clr_astats(&io->pfrio_table, io->pfrio_buffer,
io->pfrio_size, &io->pfrio_nzero, io->pfrio_flags |
PFR_FLAG_USERIOCTL);
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCRTSTADDRS: {
struct pfioc_table *io = (struct pfioc_table *)addr;
if (io->pfrio_esize != sizeof(struct pfr_addr)) {
error = ENODEV;
goto fail;
}
NET_LOCK();
PF_LOCK();
error = pfr_tst_addrs(&io->pfrio_table, io->pfrio_buffer,
io->pfrio_size, &io->pfrio_nmatch, io->pfrio_flags |
PFR_FLAG_USERIOCTL);
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCRINADEFINE: {
struct pfioc_table *io = (struct pfioc_table *)addr;
if (io->pfrio_esize != sizeof(struct pfr_addr)) {
error = ENODEV;
goto fail;
}
NET_LOCK();
PF_LOCK();
error = pfr_ina_define(&io->pfrio_table, io->pfrio_buffer,
io->pfrio_size, &io->pfrio_nadd, &io->pfrio_naddr,
io->pfrio_ticket, io->pfrio_flags | PFR_FLAG_USERIOCTL);
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCOSFPADD: {
struct pf_osfp_ioctl *io = (struct pf_osfp_ioctl *)addr;
error = pf_osfp_add(io);
break;
}
case DIOCOSFPGET: {
struct pf_osfp_ioctl *io = (struct pf_osfp_ioctl *)addr;
error = pf_osfp_get(io);
break;
}
case DIOCXBEGIN: {
struct pfioc_trans *io = (struct pfioc_trans *)addr;
struct pfioc_trans_e *ioe;
struct pfr_table *table;
int i;
if (io->esize != sizeof(*ioe)) {
error = ENODEV;
goto fail;
}
ioe = malloc(sizeof(*ioe), M_PF, M_WAITOK);
table = malloc(sizeof(*table), M_PF, M_WAITOK);
NET_LOCK();
PF_LOCK();
pf_default_rule_new = pf_default_rule;
PF_UNLOCK();
NET_UNLOCK();
memset(&pf_trans_set, 0, sizeof(pf_trans_set));
for (i = 0; i < io->size; i++) {
if (copyin(io->array+i, ioe, sizeof(*ioe))) {
free(table, M_PF, sizeof(*table));
free(ioe, M_PF, sizeof(*ioe));
error = EFAULT;
goto fail;
}
if (strnlen(ioe->anchor, sizeof(ioe->anchor)) ==
sizeof(ioe->anchor)) {
free(table, M_PF, sizeof(*table));
free(ioe, M_PF, sizeof(*ioe));
error = ENAMETOOLONG;
goto fail;
}
NET_LOCK();
PF_LOCK();
switch (ioe->type) {
case PF_TRANS_TABLE:
memset(table, 0, sizeof(*table));
strlcpy(table->pfrt_anchor, ioe->anchor,
sizeof(table->pfrt_anchor));
if ((error = pfr_ina_begin(table,
&ioe->ticket, NULL, 0))) {
PF_UNLOCK();
NET_UNLOCK();
free(table, M_PF, sizeof(*table));
free(ioe, M_PF, sizeof(*ioe));
goto fail;
}
break;
case PF_TRANS_RULESET:
if ((error = pf_begin_rules(&ioe->ticket,
ioe->anchor))) {
PF_UNLOCK();
NET_UNLOCK();
free(table, M_PF, sizeof(*table));
free(ioe, M_PF, sizeof(*ioe));
goto fail;
}
break;
default:
PF_UNLOCK();
NET_UNLOCK();
free(table, M_PF, sizeof(*table));
free(ioe, M_PF, sizeof(*ioe));
error = EINVAL;
goto fail;
}
PF_UNLOCK();
NET_UNLOCK();
if (copyout(ioe, io->array+i, sizeof(io->array[i]))) {
free(table, M_PF, sizeof(*table));
free(ioe, M_PF, sizeof(*ioe));
error = EFAULT;
goto fail;
}
}
free(table, M_PF, sizeof(*table));
free(ioe, M_PF, sizeof(*ioe));
break;
}
case DIOCXROLLBACK: {
struct pfioc_trans *io = (struct pfioc_trans *)addr;
struct pfioc_trans_e *ioe;
struct pfr_table *table;
int i;
if (io->esize != sizeof(*ioe)) {
error = ENODEV;
goto fail;
}
ioe = malloc(sizeof(*ioe), M_PF, M_WAITOK);
table = malloc(sizeof(*table), M_PF, M_WAITOK);
for (i = 0; i < io->size; i++) {
if (copyin(io->array+i, ioe, sizeof(*ioe))) {
free(table, M_PF, sizeof(*table));
free(ioe, M_PF, sizeof(*ioe));
error = EFAULT;
goto fail;
}
if (strnlen(ioe->anchor, sizeof(ioe->anchor)) ==
sizeof(ioe->anchor)) {
free(table, M_PF, sizeof(*table));
free(ioe, M_PF, sizeof(*ioe));
error = ENAMETOOLONG;
goto fail;
}
NET_LOCK();
PF_LOCK();
switch (ioe->type) {
case PF_TRANS_TABLE:
memset(table, 0, sizeof(*table));
strlcpy(table->pfrt_anchor, ioe->anchor,
sizeof(table->pfrt_anchor));
if ((error = pfr_ina_rollback(table,
ioe->ticket, NULL, 0))) {
PF_UNLOCK();
NET_UNLOCK();
free(table, M_PF, sizeof(*table));
free(ioe, M_PF, sizeof(*ioe));
goto fail; /* really bad */
}
break;
case PF_TRANS_RULESET:
pf_rollback_rules(ioe->ticket, ioe->anchor);
break;
default:
PF_UNLOCK();
NET_UNLOCK();
free(table, M_PF, sizeof(*table));
free(ioe, M_PF, sizeof(*ioe));
error = EINVAL;
goto fail; /* really bad */
}
PF_UNLOCK();
NET_UNLOCK();
}
free(table, M_PF, sizeof(*table));
free(ioe, M_PF, sizeof(*ioe));
break;
}
case DIOCXCOMMIT: {
struct pfioc_trans *io = (struct pfioc_trans *)addr;
struct pfioc_trans_e *ioe;
struct pfr_table *table;
struct pf_ruleset *rs;
int i;
if (io->esize != sizeof(*ioe)) {
error = ENODEV;
goto fail;
}
ioe = malloc(sizeof(*ioe), M_PF, M_WAITOK);
table = malloc(sizeof(*table), M_PF, M_WAITOK);
/* first makes sure everything will succeed */
for (i = 0; i < io->size; i++) {
if (copyin(io->array+i, ioe, sizeof(*ioe))) {
free(table, M_PF, sizeof(*table));
free(ioe, M_PF, sizeof(*ioe));
error = EFAULT;
goto fail;
}
if (strnlen(ioe->anchor, sizeof(ioe->anchor)) ==
sizeof(ioe->anchor)) {
free(table, M_PF, sizeof(*table));
free(ioe, M_PF, sizeof(*ioe));
error = ENAMETOOLONG;
goto fail;
}
NET_LOCK();
PF_LOCK();
switch (ioe->type) {
case PF_TRANS_TABLE:
rs = pf_find_ruleset(ioe->anchor);
if (rs == NULL || !rs->topen || ioe->ticket !=
rs->tticket) {
PF_UNLOCK();
NET_UNLOCK();
free(table, M_PF, sizeof(*table));
free(ioe, M_PF, sizeof(*ioe));
error = EBUSY;
goto fail;
}
break;
case PF_TRANS_RULESET:
rs = pf_find_ruleset(ioe->anchor);
if (rs == NULL ||
!rs->rules.inactive.open ||
rs->rules.inactive.version !=
ioe->ticket) {
PF_UNLOCK();
NET_UNLOCK();
free(table, M_PF, sizeof(*table));
free(ioe, M_PF, sizeof(*ioe));
error = EBUSY;
goto fail;
}
break;
default:
PF_UNLOCK();
NET_UNLOCK();
free(table, M_PF, sizeof(*table));
free(ioe, M_PF, sizeof(*ioe));
error = EINVAL;
goto fail;
}
PF_UNLOCK();
NET_UNLOCK();
}
NET_LOCK();
PF_LOCK();
/*
* Checked already in DIOCSETLIMIT, but check again as the
* situation might have changed.
*/
for (i = 0; i < PF_LIMIT_MAX; i++) {
if (((struct pool *)pf_pool_limits[i].pp)->pr_nout >
pf_pool_limits[i].limit_new) {
PF_UNLOCK();
NET_UNLOCK();
free(table, M_PF, sizeof(*table));
free(ioe, M_PF, sizeof(*ioe));
error = EBUSY;
goto fail;
}
}
/* now do the commit - no errors should happen here */
for (i = 0; i < io->size; i++) {
PF_UNLOCK();
NET_UNLOCK();
if (copyin(io->array+i, ioe, sizeof(*ioe))) {
free(table, M_PF, sizeof(*table));
free(ioe, M_PF, sizeof(*ioe));
error = EFAULT;
goto fail;
}
if (strnlen(ioe->anchor, sizeof(ioe->anchor)) ==
sizeof(ioe->anchor)) {
free(table, M_PF, sizeof(*table));
free(ioe, M_PF, sizeof(*ioe));
error = ENAMETOOLONG;
goto fail;
}
NET_LOCK();
PF_LOCK();
switch (ioe->type) {
case PF_TRANS_TABLE:
memset(table, 0, sizeof(*table));
strlcpy(table->pfrt_anchor, ioe->anchor,
sizeof(table->pfrt_anchor));
if ((error = pfr_ina_commit(table, ioe->ticket,
NULL, NULL, 0))) {
PF_UNLOCK();
NET_UNLOCK();
free(table, M_PF, sizeof(*table));
free(ioe, M_PF, sizeof(*ioe));
goto fail; /* really bad */
}
break;
case PF_TRANS_RULESET:
if ((error = pf_commit_rules(ioe->ticket,
ioe->anchor))) {
PF_UNLOCK();
NET_UNLOCK();
free(table, M_PF, sizeof(*table));
free(ioe, M_PF, sizeof(*ioe));
goto fail; /* really bad */
}
break;
default:
PF_UNLOCK();
NET_UNLOCK();
free(table, M_PF, sizeof(*table));
free(ioe, M_PF, sizeof(*ioe));
error = EINVAL;
goto fail; /* really bad */
}
}
for (i = 0; i < PF_LIMIT_MAX; i++) {
if (pf_pool_limits[i].limit_new !=
pf_pool_limits[i].limit &&
pool_sethardlimit(pf_pool_limits[i].pp,
pf_pool_limits[i].limit_new, NULL, 0) != 0) {
PF_UNLOCK();
NET_UNLOCK();
free(table, M_PF, sizeof(*table));
free(ioe, M_PF, sizeof(*ioe));
error = EBUSY;
goto fail; /* really bad */
}
pf_pool_limits[i].limit = pf_pool_limits[i].limit_new;
}
for (i = 0; i < PFTM_MAX; i++) {
int old = pf_default_rule.timeout[i];
pf_default_rule.timeout[i] =
pf_default_rule_new.timeout[i];
if (pf_default_rule.timeout[i] == PFTM_INTERVAL &&
pf_default_rule.timeout[i] < old &&
timeout_del(&pf_purge_to))
task_add(systqmp, &pf_purge_task);
}
pfi_xcommit();
pf_trans_set_commit();
PF_UNLOCK();
NET_UNLOCK();
free(table, M_PF, sizeof(*table));
free(ioe, M_PF, sizeof(*ioe));
break;
}
case DIOCXEND: {
u_int32_t *ticket = (u_int32_t *)addr;
struct pf_trans *t;
t = pf_find_trans(minor(dev), *ticket);
if (t != NULL)
pf_rollback_trans(t);
else
error = ENXIO;
break;
}
case DIOCGETSRCNODES: {
struct pfioc_src_nodes *psn = (struct pfioc_src_nodes *)addr;
struct pf_src_node *n, *p, *pstore;
u_int32_t nr = 0;
size_t space = psn->psn_len;
pstore = malloc(sizeof(*pstore), M_PF, M_WAITOK);
NET_LOCK();
PF_LOCK();
if (space == 0) {
RB_FOREACH(n, pf_src_tree, &tree_src_tracking)
nr++;
psn->psn_len = sizeof(struct pf_src_node) * nr;
PF_UNLOCK();
NET_UNLOCK();
free(pstore, M_PF, sizeof(*pstore));
goto fail;
}
p = psn->psn_src_nodes;
RB_FOREACH(n, pf_src_tree, &tree_src_tracking) {
int secs = getuptime(), diff;
if ((nr + 1) * sizeof(*p) > psn->psn_len)
break;
memcpy(pstore, n, sizeof(*pstore));
memset(&pstore->entry, 0, sizeof(pstore->entry));
pstore->rule.ptr = NULL;
pstore->kif = NULL;
pstore->rule.nr = n->rule.ptr->nr;
pstore->creation = secs - pstore->creation;
if (pstore->expire > secs)
pstore->expire -= secs;
else
pstore->expire = 0;
/* adjust the connection rate estimate */
diff = secs - n->conn_rate.last;
if (diff >= n->conn_rate.seconds)
pstore->conn_rate.count = 0;
else
pstore->conn_rate.count -=
n->conn_rate.count * diff /
n->conn_rate.seconds;
error = copyout(pstore, p, sizeof(*p));
if (error) {
PF_UNLOCK();
NET_UNLOCK();
free(pstore, M_PF, sizeof(*pstore));
goto fail;
}
p++;
nr++;
}
psn->psn_len = sizeof(struct pf_src_node) * nr;
PF_UNLOCK();
NET_UNLOCK();
free(pstore, M_PF, sizeof(*pstore));
break;
}
case DIOCCLRSRCNODES: {
struct pf_src_node *n;
struct pf_state *st;
NET_LOCK();
PF_LOCK();
PF_STATE_ENTER_WRITE();
RBT_FOREACH(st, pf_state_tree_id, &tree_id)
pf_src_tree_remove_state(st);
PF_STATE_EXIT_WRITE();
RB_FOREACH(n, pf_src_tree, &tree_src_tracking)
n->expire = 1;
pf_purge_expired_src_nodes();
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCKILLSRCNODES: {
struct pf_src_node *sn;
struct pf_state *st;
struct pfioc_src_node_kill *psnk =
(struct pfioc_src_node_kill *)addr;
u_int killed = 0;
NET_LOCK();
PF_LOCK();
RB_FOREACH(sn, pf_src_tree, &tree_src_tracking) {
if (pf_match_addr(psnk->psnk_src.neg,
&psnk->psnk_src.addr.v.a.addr,
&psnk->psnk_src.addr.v.a.mask,
&sn->addr, sn->af) &&
pf_match_addr(psnk->psnk_dst.neg,
&psnk->psnk_dst.addr.v.a.addr,
&psnk->psnk_dst.addr.v.a.mask,
&sn->raddr, sn->af)) {
/* Handle state to src_node linkage */
if (sn->states != 0) {
PF_ASSERT_LOCKED();
PF_STATE_ENTER_WRITE();
RBT_FOREACH(st, pf_state_tree_id,
&tree_id)
pf_state_rm_src_node(st, sn);
PF_STATE_EXIT_WRITE();
}
sn->expire = 1;
killed++;
}
}
if (killed > 0)
pf_purge_expired_src_nodes();
psnk->psnk_killed = killed;
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCSETHOSTID: {
u_int32_t *hostid = (u_int32_t *)addr;
NET_LOCK();
PF_LOCK();
if (*hostid == 0)
pf_trans_set.hostid = arc4random();
else
pf_trans_set.hostid = *hostid;
pf_trans_set.mask |= PF_TSET_HOSTID;
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCOSFPFLUSH:
pf_osfp_flush();
break;
case DIOCIGETIFACES: {
struct pfioc_iface *io = (struct pfioc_iface *)addr;
struct pfi_kif *kif_buf;
int apfiio_size = io->pfiio_size;
if (io->pfiio_esize != sizeof(struct pfi_kif)) {
error = ENODEV;
goto fail;
}
if ((kif_buf = mallocarray(sizeof(*kif_buf), apfiio_size,
M_PF, M_WAITOK|M_CANFAIL)) == NULL) {
error = EINVAL;
goto fail;
}
NET_LOCK_SHARED();
PF_LOCK();
pfi_get_ifaces(io->pfiio_name, kif_buf, &io->pfiio_size);
PF_UNLOCK();
NET_UNLOCK_SHARED();
if (copyout(kif_buf, io->pfiio_buffer, sizeof(*kif_buf) *
io->pfiio_size))
error = EFAULT;
free(kif_buf, M_PF, sizeof(*kif_buf) * apfiio_size);
break;
}
case DIOCSETIFFLAG: {
struct pfioc_iface *io = (struct pfioc_iface *)addr;
if (io == NULL) {
error = EINVAL;
goto fail;
}
PF_LOCK();
error = pfi_set_flags(io->pfiio_name, io->pfiio_flags);
PF_UNLOCK();
break;
}
case DIOCCLRIFFLAG: {
struct pfioc_iface *io = (struct pfioc_iface *)addr;
if (io == NULL) {
error = EINVAL;
goto fail;
}
PF_LOCK();
error = pfi_clear_flags(io->pfiio_name, io->pfiio_flags);
PF_UNLOCK();
break;
}
case DIOCSETREASS: {
u_int32_t *reass = (u_int32_t *)addr;
NET_LOCK();
PF_LOCK();
pf_trans_set.reass = *reass;
pf_trans_set.mask |= PF_TSET_REASS;
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCSETSYNFLWATS: {
struct pfioc_synflwats *io = (struct pfioc_synflwats *)addr;
NET_LOCK();
PF_LOCK();
error = pf_syncookies_setwats(io->hiwat, io->lowat);
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCGETSYNFLWATS: {
struct pfioc_synflwats *io = (struct pfioc_synflwats *)addr;
NET_LOCK();
PF_LOCK();
error = pf_syncookies_getwats(io);
PF_UNLOCK();
NET_UNLOCK();
break;
}
case DIOCSETSYNCOOKIES: {
u_int8_t *mode = (u_int8_t *)addr;
NET_LOCK();
PF_LOCK();
error = pf_syncookies_setmode(*mode);
PF_UNLOCK();
NET_UNLOCK();
break;
}
default:
error = ENODEV;
break;
}
fail:
rw_exit_write(&pfioctl_rw);
return (error);
}
void
pf_trans_set_commit(void)
{
if (pf_trans_set.mask & PF_TSET_STATUSIF)
strlcpy(pf_status.ifname, pf_trans_set.statusif, IFNAMSIZ);
if (pf_trans_set.mask & PF_TSET_DEBUG)
pf_status.debug = pf_trans_set.debug;
if (pf_trans_set.mask & PF_TSET_HOSTID)
pf_status.hostid = pf_trans_set.hostid;
if (pf_trans_set.mask & PF_TSET_REASS)
pf_status.reass = pf_trans_set.reass;
}
void
pf_pool_copyin(struct pf_pool *from, struct pf_pool *to)
{
memmove(to, from, sizeof(*to));
to->kif = NULL;
to->addr.p.tbl = NULL;
}
int
pf_validate_range(u_int8_t op, u_int16_t port[2], int order)
{
u_int16_t a = (order == PF_ORDER_NET) ? ntohs(port[0]) : port[0];
u_int16_t b = (order == PF_ORDER_NET) ? ntohs(port[1]) : port[1];
if ((op == PF_OP_RRG && a > b) || /* 34:12, i.e. none */
(op == PF_OP_IRG && a >= b) || /* 34><12, i.e. none */
(op == PF_OP_XRG && a > b)) /* 34<>22, i.e. all */
return 1;
return 0;
}
int
pf_rule_copyin(struct pf_rule *from, struct pf_rule *to)
{
int i;
if (from->scrub_flags & PFSTATE_SETPRIO &&
(from->set_prio[0] > IFQ_MAXPRIO ||
from->set_prio[1] > IFQ_MAXPRIO))
return (EINVAL);
to->src = from->src;
to->src.addr.p.tbl = NULL;
to->dst = from->dst;
to->dst.addr.p.tbl = NULL;
if (pf_validate_range(to->src.port_op, to->src.port, PF_ORDER_NET))
return (EINVAL);
if (pf_validate_range(to->dst.port_op, to->dst.port, PF_ORDER_NET))
return (EINVAL);
/* XXX union skip[] */
strlcpy(to->label, from->label, sizeof(to->label));
strlcpy(to->ifname, from->ifname, sizeof(to->ifname));
strlcpy(to->rcv_ifname, from->rcv_ifname, sizeof(to->rcv_ifname));
strlcpy(to->qname, from->qname, sizeof(to->qname));
strlcpy(to->pqname, from->pqname, sizeof(to->pqname));
strlcpy(to->tagname, from->tagname, sizeof(to->tagname));
strlcpy(to->match_tagname, from->match_tagname,
sizeof(to->match_tagname));
strlcpy(to->overload_tblname, from->overload_tblname,
sizeof(to->overload_tblname));
pf_pool_copyin(&from->nat, &to->nat);
pf_pool_copyin(&from->rdr, &to->rdr);
pf_pool_copyin(&from->route, &to->route);
if (pf_validate_range(to->rdr.port_op, to->rdr.proxy_port,
PF_ORDER_HOST))
return (EINVAL);
to->kif = (to->ifname[0]) ?
pfi_kif_alloc(to->ifname, M_WAITOK) : NULL;
to->rcv_kif = (to->rcv_ifname[0]) ?
pfi_kif_alloc(to->rcv_ifname, M_WAITOK) : NULL;
to->rdr.kif = (to->rdr.ifname[0]) ?
pfi_kif_alloc(to->rdr.ifname, M_WAITOK) : NULL;
to->nat.kif = (to->nat.ifname[0]) ?
pfi_kif_alloc(to->nat.ifname, M_WAITOK) : NULL;
to->route.kif = (to->route.ifname[0]) ?
pfi_kif_alloc(to->route.ifname, M_WAITOK) : NULL;
to->os_fingerprint = from->os_fingerprint;
to->rtableid = from->rtableid;
if (to->rtableid >= 0 && !rtable_exists(to->rtableid))
return (EBUSY);
to->onrdomain = from->onrdomain;
if (to->onrdomain != -1 && (to->onrdomain < 0 ||
to->onrdomain > RT_TABLEID_MAX))
return (EINVAL);
for (i = 0; i < PFTM_MAX; i++)
to->timeout[i] = from->timeout[i];
to->states_tot = from->states_tot;
to->max_states = from->max_states;
to->max_src_nodes = from->max_src_nodes;
to->max_src_states = from->max_src_states;
to->max_src_conn = from->max_src_conn;
to->max_src_conn_rate.limit = from->max_src_conn_rate.limit;
to->max_src_conn_rate.seconds = from->max_src_conn_rate.seconds;
pf_init_threshold(&to->pktrate, from->pktrate.limit,
from->pktrate.seconds);
if (to->qname[0] != 0) {
if ((to->qid = pf_qname2qid(to->qname, 0)) == 0)
return (EBUSY);
if (to->pqname[0] != 0) {
if ((to->pqid = pf_qname2qid(to->pqname, 0)) == 0)
return (EBUSY);
} else
to->pqid = to->qid;
}
to->rt_listid = from->rt_listid;
to->prob = from->prob;
to->return_icmp = from->return_icmp;
to->return_icmp6 = from->return_icmp6;
to->max_mss = from->max_mss;
if (to->tagname[0])
if ((to->tag = pf_tagname2tag(to->tagname, 1)) == 0)
return (EBUSY);
if (to->match_tagname[0])
if ((to->match_tag = pf_tagname2tag(to->match_tagname, 1)) == 0)
return (EBUSY);
to->scrub_flags = from->scrub_flags;
to->delay = from->delay;
to->uid = from->uid;
to->gid = from->gid;
to->rule_flag = from->rule_flag;
to->action = from->action;
to->direction = from->direction;
to->log = from->log;
to->logif = from->logif;
#if NPFLOG > 0
if (!to->log)
to->logif = 0;
#endif /* NPFLOG > 0 */
to->quick = from->quick;
to->ifnot = from->ifnot;
to->rcvifnot = from->rcvifnot;
to->match_tag_not = from->match_tag_not;
to->keep_state = from->keep_state;
to->af = from->af;
to->naf = from->naf;
to->proto = from->proto;
to->type = from->type;
to->code = from->code;
to->flags = from->flags;
to->flagset = from->flagset;
to->min_ttl = from->min_ttl;
to->allow_opts = from->allow_opts;
to->rt = from->rt;
to->return_ttl = from->return_ttl;
to->tos = from->tos;
to->set_tos = from->set_tos;
to->anchor_relative = from->anchor_relative; /* XXX */
to->anchor_wildcard = from->anchor_wildcard; /* XXX */
to->flush = from->flush;
to->divert.addr = from->divert.addr;
to->divert.port = from->divert.port;
to->divert.type = from->divert.type;
to->prio = from->prio;
to->set_prio[0] = from->set_prio[0];
to->set_prio[1] = from->set_prio[1];
return (0);
}
int
pf_rule_checkaf(struct pf_rule *r)
{
switch (r->af) {
case 0:
if (r->rule_flag & PFRULE_AFTO)
return (EPFNOSUPPORT);
break;
case AF_INET:
if ((r->rule_flag & PFRULE_AFTO) && r->naf != AF_INET6)
return (EPFNOSUPPORT);
break;
#ifdef INET6
case AF_INET6:
if ((r->rule_flag & PFRULE_AFTO) && r->naf != AF_INET)
return (EPFNOSUPPORT);
break;
#endif /* INET6 */
default:
return (EPFNOSUPPORT);
}
if ((r->rule_flag & PFRULE_AFTO) == 0 && r->naf != 0)
return (EPFNOSUPPORT);
return (0);
}
int
pf_sysctl(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
{
struct pf_status pfs;
NET_LOCK_SHARED();
PF_LOCK();
PF_FRAG_LOCK();
memcpy(&pfs, &pf_status, sizeof(struct pf_status));
PF_FRAG_UNLOCK();
pfi_update_status(pfs.ifname, &pfs);
PF_UNLOCK();
NET_UNLOCK_SHARED();
return sysctl_rdstruct(oldp, oldlenp, newp, &pfs, sizeof(pfs));
}
struct pf_trans *
pf_open_trans(uint32_t unit)
{
static uint64_t ticket = 1;
struct pf_trans *t;
rw_assert_wrlock(&pfioctl_rw);
KASSERT(pf_unit2idx(unit) < nitems(pf_tcount));
if (pf_tcount[pf_unit2idx(unit)] >= (PF_ANCHOR_STACK_MAX * 8))
return (NULL);
t = malloc(sizeof(*t), M_PF, M_WAITOK|M_ZERO);
t->pft_unit = unit;
t->pft_ticket = ticket++;
pf_tcount[pf_unit2idx(unit)]++;
LIST_INSERT_HEAD(&pf_ioctl_trans, t, pft_entry);
return (t);
}
struct pf_trans *
pf_find_trans(uint32_t unit, uint64_t ticket)
{
struct pf_trans *t;
rw_assert_anylock(&pfioctl_rw);
LIST_FOREACH(t, &pf_ioctl_trans, pft_entry) {
if (t->pft_ticket == ticket && t->pft_unit == unit)
break;
}
return (t);
}
void
pf_init_tgetrule(struct pf_trans *t, struct pf_anchor *a,
uint32_t rs_version, struct pf_rule *r)
{
t->pft_type = PF_TRANS_GETRULE;
if (a == NULL)
t->pftgr_anchor = &pf_main_anchor;
else
t->pftgr_anchor = a;
t->pftgr_version = rs_version;
t->pftgr_rule = r;
}
void
pf_cleanup_tgetrule(struct pf_trans *t)
{
KASSERT(t->pft_type == PF_TRANS_GETRULE);
pf_anchor_rele(t->pftgr_anchor);
}
void
pf_free_trans(struct pf_trans *t)
{
switch (t->pft_type) {
case PF_TRANS_GETRULE:
pf_cleanup_tgetrule(t);
break;
default:
log(LOG_ERR, "%s unknown transaction type: %d\n",
__func__, t->pft_type);
}
KASSERT(pf_unit2idx(t->pft_unit) < nitems(pf_tcount));
KASSERT(pf_tcount[pf_unit2idx(t->pft_unit)] >= 1);
pf_tcount[pf_unit2idx(t->pft_unit)]--;
free(t, M_PF, sizeof(*t));
}
void
pf_rollback_trans(struct pf_trans *t)
{
if (t != NULL) {
rw_assert_wrlock(&pfioctl_rw);
LIST_REMOVE(t, pft_entry);
pf_free_trans(t);
}
}