src/sys/arch/amd64/amd64/cpu.c

1377 lines
35 KiB
C

/* $OpenBSD: cpu.c,v 1.169 2023/06/15 22:18:06 cheloha Exp $ */
/* $NetBSD: cpu.c,v 1.1 2003/04/26 18:39:26 fvdl Exp $ */
/*-
* Copyright (c) 2000 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by RedBack Networks Inc.
*
* Author: Bill Sommerfeld
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1999 Stefan Grefen
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "lapic.h"
#include "ioapic.h"
#include "vmm.h"
#include "pctr.h"
#include "pvbus.h"
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/timeout.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/memrange.h>
#include <sys/atomic.h>
#include <sys/user.h>
#include <uvm/uvm_extern.h>
#include <machine/codepatch.h>
#include <machine/cpu_full.h>
#include <machine/cpufunc.h>
#include <machine/cpuvar.h>
#include <machine/pmap.h>
#include <machine/vmparam.h>
#include <machine/mpbiosvar.h>
#include <machine/pcb.h>
#include <machine/specialreg.h>
#include <machine/segments.h>
#include <machine/gdt.h>
#include <machine/pio.h>
#include <machine/vmmvar.h>
#if NLAPIC > 0
#include <machine/i82489reg.h>
#include <machine/i82489var.h>
#endif
#if NIOAPIC > 0
#include <machine/i82093var.h>
#endif
#if NPCTR > 0
#include <machine/pctr.h>
#endif
#if NPVBUS > 0
#include <dev/pv/pvvar.h>
#endif
#include <dev/ic/mc146818reg.h>
#include <amd64/isa/nvram.h>
#include <dev/isa/isareg.h>
#ifdef HIBERNATE
#include <sys/hibernate.h>
#include <machine/hibernate.h>
#endif /* HIBERNATE */
/* #define CPU_DEBUG */
#ifdef CPU_DEBUG
#define DPRINTF(x...) do { printf(x); } while(0)
#else
#define DPRINTF(x...)
#endif /* CPU_DEBUG */
int cpu_match(struct device *, void *, void *);
void cpu_attach(struct device *, struct device *, void *);
int cpu_activate(struct device *, int);
void patinit(struct cpu_info *ci);
#if NVMM > 0
void cpu_init_vmm(struct cpu_info *ci);
#endif /* NVMM > 0 */
struct cpu_softc {
struct device sc_dev; /* device tree glue */
struct cpu_info *sc_info; /* pointer to CPU info */
};
void replacesmap(void);
void replacemeltdown(void);
void replacemds(void);
extern long _stac;
extern long _clac;
int cpuid_level = 0; /* cpuid(0).eax */
char cpu_vendor[16] = { 0 }; /* cpuid(0).e[bdc]x, \0 */
int cpu_id = 0; /* cpuid(1).eax */
int cpu_ebxfeature = 0; /* cpuid(1).ebx */
int cpu_ecxfeature = 0; /* cpuid(1).ecx */
int cpu_feature = 0; /* cpuid(1).edx */
int cpu_perf_eax = 0; /* cpuid(0xa).eax */
int cpu_perf_ebx = 0; /* cpuid(0xa).ebx */
int cpu_perf_edx = 0; /* cpuid(0xa).edx */
int cpu_apmi_edx = 0; /* cpuid(0x80000007).edx */
int ecpu_ecxfeature = 0; /* cpuid(0x80000001).ecx */
int cpu_meltdown = 0;
void
replacesmap(void)
{
static int replacedone = 0;
int s;
if (replacedone)
return;
replacedone = 1;
s = splhigh();
codepatch_replace(CPTAG_STAC, &_stac, 3);
codepatch_replace(CPTAG_CLAC, &_clac, 3);
splx(s);
}
void
replacemeltdown(void)
{
static int replacedone = 0;
struct cpu_info *ci = &cpu_info_primary;
int swapgs_vuln = 0, s;
if (replacedone)
return;
replacedone = 1;
if (strcmp(cpu_vendor, "GenuineIntel") == 0) {
int family = ci->ci_family;
int model = ci->ci_model;
swapgs_vuln = 1;
if (family == 0x6 &&
(model == 0x37 || model == 0x4a || model == 0x4c ||
model == 0x4d || model == 0x5a || model == 0x5d ||
model == 0x6e || model == 0x65 || model == 0x75)) {
/* Silvermont, Airmont */
swapgs_vuln = 0;
} else if (family == 0x6 && (model == 0x85 || model == 0x57)) {
/* KnightsLanding */
swapgs_vuln = 0;
}
}
s = splhigh();
if (!cpu_meltdown)
codepatch_nop(CPTAG_MELTDOWN_NOP);
else {
extern long alltraps_kern_meltdown;
/* eliminate conditional branch in alltraps */
codepatch_jmp(CPTAG_MELTDOWN_ALLTRAPS, &alltraps_kern_meltdown);
/* enable reuse of PCID for U-K page tables */
if (pmap_use_pcid) {
extern long _pcid_set_reuse;
DPRINTF("%s: codepatching PCID use", __func__);
codepatch_replace(CPTAG_PCID_SET_REUSE,
&_pcid_set_reuse, PCID_SET_REUSE_SIZE);
}
}
/*
* CVE-2019-1125: if the CPU has SMAP and it's not vulnerable to
* Meltdown, then it's protected both from speculatively mis-skipping
* the swapgs during interrupts of userspace and from speculatively
* mis-taking a swapgs during interrupts while already in the kernel
* as the speculative path will fault from SMAP. Warning: enabling
* WRGSBASE would break this 'protection'.
*
* Otherwise, if the CPU's swapgs can't be speculated over and it
* _is_ vulnerable to Meltdown then the %cr3 change will serialize
* user->kern transitions, but we still need to mitigate the
* already-in-kernel cases.
*/
if (!cpu_meltdown && (ci->ci_feature_sefflags_ebx & SEFF0EBX_SMAP)) {
codepatch_nop(CPTAG_FENCE_SWAPGS_MIS_TAKEN);
codepatch_nop(CPTAG_FENCE_NO_SAFE_SMAP);
} else if (!swapgs_vuln && cpu_meltdown) {
codepatch_nop(CPTAG_FENCE_SWAPGS_MIS_TAKEN);
}
splx(s);
}
void
replacemds(void)
{
static int replacedone = 0;
extern long mds_handler_bdw, mds_handler_ivb, mds_handler_skl;
extern long mds_handler_skl_sse, mds_handler_skl_avx;
extern long mds_handler_silvermont, mds_handler_knights;
struct cpu_info *ci = &cpu_info_primary;
CPU_INFO_ITERATOR cii;
void *handler = NULL, *vmm_handler = NULL;
const char *type;
int has_verw, s;
/* ci_mds_tmp must be 32byte aligned for AVX instructions */
CTASSERT((offsetof(struct cpu_info, ci_mds_tmp) -
offsetof(struct cpu_info, ci_PAGEALIGN)) % 32 == 0);
if (replacedone)
return;
replacedone = 1;
if (strcmp(cpu_vendor, "GenuineIntel") != 0 ||
((ci->ci_feature_sefflags_edx & SEFF0EDX_ARCH_CAP) &&
(rdmsr(MSR_ARCH_CAPABILITIES) & ARCH_CAPABILITIES_MDS_NO))) {
/* Unaffected, nop out the handling code */
has_verw = 0;
} else if (ci->ci_feature_sefflags_edx & SEFF0EDX_MD_CLEAR) {
/* new firmware, use VERW */
has_verw = 1;
} else {
int family = ci->ci_family;
int model = ci->ci_model;
int stepping = CPUID2STEPPING(ci->ci_signature);
has_verw = 0;
if (family == 0x6 &&
(model == 0x2e || model == 0x1e || model == 0x1f ||
model == 0x1a || model == 0x2f || model == 0x25 ||
model == 0x2c || model == 0x2d || model == 0x2a ||
model == 0x3e || model == 0x3a)) {
/* Nehalem, SandyBridge, IvyBridge */
handler = vmm_handler = &mds_handler_ivb;
type = "IvyBridge";
CPU_INFO_FOREACH(cii, ci) {
ci->ci_mds_buf = malloc(672, M_DEVBUF,
M_WAITOK);
memset(ci->ci_mds_buf, 0, 16);
}
} else if (family == 0x6 &&
(model == 0x3f || model == 0x3c || model == 0x45 ||
model == 0x46 || model == 0x56 || model == 0x4f ||
model == 0x47 || model == 0x3d)) {
/* Haswell and Broadwell */
handler = vmm_handler = &mds_handler_bdw;
type = "Broadwell";
CPU_INFO_FOREACH(cii, ci) {
ci->ci_mds_buf = malloc(1536, M_DEVBUF,
M_WAITOK);
}
} else if (family == 0x6 &&
((model == 0x55 && stepping <= 5) || model == 0x4e ||
model == 0x5e || (model == 0x8e && stepping <= 0xb) ||
(model == 0x9e && stepping <= 0xc))) {
/*
* Skylake, KabyLake, CoffeeLake, WhiskeyLake,
* CascadeLake
*/
/* XXX mds_handler_skl_avx512 */
if (xgetbv(0) & XFEATURE_AVX) {
handler = &mds_handler_skl_avx;
type = "Skylake AVX";
} else {
handler = &mds_handler_skl_sse;
type = "Skylake SSE";
}
vmm_handler = &mds_handler_skl;
CPU_INFO_FOREACH(cii, ci) {
vaddr_t b64;
b64 = (vaddr_t)malloc(6 * 1024 + 64 + 63,
M_DEVBUF, M_WAITOK);
ci->ci_mds_buf = (void *)((b64 + 63) & ~63);
memset(ci->ci_mds_buf, 0, 64);
}
} else if (family == 0x6 &&
(model == 0x37 || model == 0x4a || model == 0x4c ||
model == 0x4d || model == 0x5a || model == 0x5d ||
model == 0x6e || model == 0x65 || model == 0x75)) {
/* Silvermont, Airmont */
handler = vmm_handler = &mds_handler_silvermont;
type = "Silvermont";
CPU_INFO_FOREACH(cii, ci) {
ci->ci_mds_buf = malloc(256, M_DEVBUF,
M_WAITOK);
memset(ci->ci_mds_buf, 0, 16);
}
} else if (family == 0x6 && (model == 0x85 || model == 0x57)) {
handler = vmm_handler = &mds_handler_knights;
type = "KnightsLanding";
CPU_INFO_FOREACH(cii, ci) {
vaddr_t b64;
b64 = (vaddr_t)malloc(1152 + 63, M_DEVBUF,
M_WAITOK);
ci->ci_mds_buf = (void *)((b64 + 63) & ~63);
}
}
}
if (handler != NULL) {
printf("cpu0: using %s MDS workaround%s\n", type, "");
s = splhigh();
codepatch_call(CPTAG_MDS, handler);
codepatch_call(CPTAG_MDS_VMM, vmm_handler);
splx(s);
} else if (has_verw) {
/* The new firmware enhances L1D_FLUSH MSR to flush MDS too */
if (cpu_info_primary.ci_vmm_cap.vcc_vmx.vmx_has_l1_flush_msr == 1) {
s = splhigh();
codepatch_nop(CPTAG_MDS_VMM);
splx(s);
type = " (except on vmm entry)";
} else {
type = "";
}
printf("cpu0: using %s MDS workaround%s\n", "VERW", type);
} else {
s = splhigh();
codepatch_nop(CPTAG_MDS);
codepatch_nop(CPTAG_MDS_VMM);
splx(s);
}
}
#ifdef MULTIPROCESSOR
int mp_cpu_start(struct cpu_info *);
void mp_cpu_start_cleanup(struct cpu_info *);
struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
mp_cpu_start_cleanup };
#endif /* MULTIPROCESSOR */
const struct cfattach cpu_ca = {
sizeof(struct cpu_softc), cpu_match, cpu_attach, NULL, cpu_activate
};
struct cfdriver cpu_cd = {
NULL, "cpu", DV_DULL
};
/*
* Statically-allocated CPU info for the primary CPU (or the only
* CPU, on uniprocessors). The CPU info list is initialized to
* point at it.
*/
struct cpu_info_full cpu_info_full_primary = { .cif_cpu = { .ci_self = &cpu_info_primary } };
struct cpu_info *cpu_info_list = &cpu_info_primary;
#ifdef MULTIPROCESSOR
/*
* Array of CPU info structures. Must be statically-allocated because
* curproc, etc. are used early.
*/
struct cpu_info *cpu_info[MAXCPUS] = { &cpu_info_primary };
void cpu_hatch(void *);
void cpu_boot_secondary(struct cpu_info *ci);
void cpu_start_secondary(struct cpu_info *ci);
#endif
int
cpu_match(struct device *parent, void *match, void *aux)
{
struct cfdata *cf = match;
struct cpu_attach_args *caa = aux;
if (strcmp(caa->caa_name, cf->cf_driver->cd_name) != 0)
return 0;
if (cf->cf_unit >= MAXCPUS)
return 0;
return 1;
}
void cpu_idle_mwait_cycle(void);
void cpu_init_mwait(struct cpu_softc *, struct cpu_info *);
u_int cpu_mwait_size, cpu_mwait_states;
void
cpu_idle_mwait_cycle(void)
{
struct cpu_info *ci = curcpu();
if ((read_rflags() & PSL_I) == 0)
panic("idle with interrupts blocked!");
/* something already queued? */
if (!cpu_is_idle(ci))
return;
/*
* About to idle; setting the MWAIT_IN_IDLE bit tells
* cpu_unidle() that it can't be a no-op and tells cpu_kick()
* that it doesn't need to use an IPI. We also set the
* MWAIT_KEEP_IDLING bit: those routines clear it to stop
* the mwait. Once they're set, we do a final check of the
* queue, in case another cpu called setrunqueue() and added
* something to the queue and called cpu_unidle() between
* the check in sched_idle() and here.
*/
atomic_setbits_int(&ci->ci_mwait, MWAIT_IDLING | MWAIT_ONLY);
if (cpu_is_idle(ci)) {
monitor(&ci->ci_mwait, 0, 0);
if ((ci->ci_mwait & MWAIT_IDLING) == MWAIT_IDLING)
mwait(0, 0);
}
/* done idling; let cpu_kick() know that an IPI is required */
atomic_clearbits_int(&ci->ci_mwait, MWAIT_IDLING);
}
void
cpu_init_mwait(struct cpu_softc *sc, struct cpu_info *ci)
{
unsigned int smallest, largest, extensions, c_substates;
if ((cpu_ecxfeature & CPUIDECX_MWAIT) == 0 || cpuid_level < 0x5)
return;
/* get the monitor granularity */
CPUID(0x5, smallest, largest, extensions, cpu_mwait_states);
smallest &= 0xffff;
largest &= 0xffff;
/* mask out states C6/C7 in 31:24 for CHT45 errata */
if (strcmp(cpu_vendor, "GenuineIntel") == 0 &&
ci->ci_family == 0x06 && ci->ci_model == 0x4c)
cpu_mwait_states &= 0x00ffffff;
printf("%s: mwait min=%u, max=%u", sc->sc_dev.dv_xname,
smallest, largest);
if (extensions & 0x1) {
if (cpu_mwait_states > 0) {
c_substates = cpu_mwait_states;
printf(", C-substates=%u", 0xf & c_substates);
while ((c_substates >>= 4) > 0)
printf(".%u", 0xf & c_substates);
}
if (extensions & 0x2)
printf(", IBE");
} else {
/* substates not supported, forge the default: just C1 */
cpu_mwait_states = 1 << 4;
}
/* paranoia: check the values */
if (smallest < sizeof(int) || largest < smallest ||
(largest & (sizeof(int)-1)))
printf(" (bogus)");
else
cpu_mwait_size = largest;
printf("\n");
/* enable use of mwait; may be overridden by acpicpu later */
if (cpu_mwait_size > 0)
cpu_idle_cycle_fcn = &cpu_idle_mwait_cycle;
}
void
cpu_attach(struct device *parent, struct device *self, void *aux)
{
struct cpu_softc *sc = (void *) self;
struct cpu_attach_args *caa = aux;
struct cpu_info *ci;
#if defined(MULTIPROCESSOR)
int cpunum = sc->sc_dev.dv_unit;
vaddr_t kstack;
struct pcb *pcb;
#endif
/*
* If we're an Application Processor, allocate a cpu_info
* structure, otherwise use the primary's.
*/
if (caa->cpu_role == CPU_ROLE_AP) {
struct cpu_info_full *cif;
cif = km_alloc(sizeof *cif, &kv_any, &kp_zero, &kd_waitok);
ci = &cif->cif_cpu;
#if defined(MULTIPROCESSOR)
ci->ci_tss = &cif->cif_tss;
ci->ci_gdt = &cif->cif_gdt;
memcpy(ci->ci_gdt, cpu_info_primary.ci_gdt, GDT_SIZE);
cpu_enter_pages(cif);
if (cpu_info[cpunum] != NULL)
panic("cpu at apic id %d already attached?", cpunum);
cpu_info[cpunum] = ci;
#endif
#ifdef TRAPLOG
ci->ci_tlog_base = malloc(sizeof(struct tlog),
M_DEVBUF, M_WAITOK);
#endif
} else {
ci = &cpu_info_primary;
#if defined(MULTIPROCESSOR)
if (caa->cpu_apicid != lapic_cpu_number()) {
panic("%s: running cpu is at apic %d"
" instead of at expected %d",
sc->sc_dev.dv_xname, lapic_cpu_number(), caa->cpu_apicid);
}
#endif
}
ci->ci_self = ci;
sc->sc_info = ci;
ci->ci_dev = self;
ci->ci_apicid = caa->cpu_apicid;
ci->ci_acpi_proc_id = caa->cpu_acpi_proc_id;
#ifdef MULTIPROCESSOR
ci->ci_cpuid = cpunum;
#else
ci->ci_cpuid = 0; /* False for APs, but they're not used anyway */
#endif
ci->ci_func = caa->cpu_func;
ci->ci_handled_intr_level = IPL_NONE;
#ifndef SMALL_KERNEL
strlcpy(ci->ci_sensordev.xname, ci->ci_dev->dv_xname,
sizeof(ci->ci_sensordev.xname));
#endif
#if defined(MULTIPROCESSOR)
/*
* Allocate UPAGES contiguous pages for the idle PCB and stack.
*/
kstack = (vaddr_t)km_alloc(USPACE, &kv_any, &kp_dirty, &kd_nowait);
if (kstack == 0) {
if (caa->cpu_role != CPU_ROLE_AP) {
panic("cpu_attach: unable to allocate idle stack for"
" primary");
}
printf("%s: unable to allocate idle stack\n",
sc->sc_dev.dv_xname);
return;
}
pcb = ci->ci_idle_pcb = (struct pcb *) kstack;
memset(pcb, 0, USPACE);
pcb->pcb_kstack = kstack + USPACE - 16;
pcb->pcb_rbp = pcb->pcb_rsp = kstack + USPACE - 16;
pcb->pcb_pmap = pmap_kernel();
pcb->pcb_cr3 = pcb->pcb_pmap->pm_pdirpa;
#endif
/* further PCB init done later. */
printf(": ");
switch (caa->cpu_role) {
case CPU_ROLE_SP:
printf("(uniprocessor)\n");
atomic_setbits_int(&ci->ci_flags,
CPUF_PRESENT | CPUF_SP | CPUF_PRIMARY);
cpu_intr_init(ci);
#ifndef SMALL_KERNEL
cpu_ucode_apply(ci);
#endif
cpu_tsx_disable(ci);
identifycpu(ci);
cpu_fix_msrs(ci);
#ifdef MTRR
mem_range_attach();
#endif /* MTRR */
/* XXX SP fpuinit(ci) is done earlier */
cpu_init(ci);
cpu_init_mwait(sc, ci);
break;
case CPU_ROLE_BP:
printf("apid %d (boot processor)\n", caa->cpu_apicid);
atomic_setbits_int(&ci->ci_flags,
CPUF_PRESENT | CPUF_BSP | CPUF_PRIMARY);
cpu_intr_init(ci);
identifycpu(ci);
cpu_fix_msrs(ci);
#ifdef MTRR
mem_range_attach();
#endif /* MTRR */
#if NLAPIC > 0
/*
* Enable local apic
*/
lapic_enable();
lapic_calibrate_timer(ci);
#endif
/* XXX BP fpuinit(ci) is done earlier */
cpu_init(ci);
#if NIOAPIC > 0
ioapic_bsp_id = caa->cpu_apicid;
#endif
cpu_init_mwait(sc, ci);
break;
case CPU_ROLE_AP:
/*
* report on an AP
*/
printf("apid %d (application processor)\n", caa->cpu_apicid);
#if defined(MULTIPROCESSOR)
cpu_intr_init(ci);
cpu_start_secondary(ci);
clockqueue_init(&ci->ci_queue);
sched_init_cpu(ci);
ncpus++;
if (ci->ci_flags & CPUF_PRESENT) {
ci->ci_next = cpu_info_list->ci_next;
cpu_info_list->ci_next = ci;
}
#else
printf("%s: not started\n", sc->sc_dev.dv_xname);
#endif
break;
default:
panic("unknown processor type??");
}
#if defined(MULTIPROCESSOR)
if (mp_verbose) {
printf("%s: kstack at 0x%lx for %d bytes\n",
sc->sc_dev.dv_xname, kstack, USPACE);
printf("%s: idle pcb at %p, idle sp at 0x%llx\n",
sc->sc_dev.dv_xname, pcb, pcb->pcb_rsp);
}
#endif
#if NVMM > 0
cpu_init_vmm(ci);
#endif /* NVMM > 0 */
#ifndef SMALL_KERNEL
if (ci->ci_sensordev.sensors_count > 0)
sensordev_install(&ci->ci_sensordev);
#endif
}
static void
replacexsave(void)
{
extern long _xrstor, _xsave, _xsaveopt;
u_int32_t eax, ebx, ecx, edx;
static int replacedone = 0;
int s;
if (replacedone)
return;
replacedone = 1;
/* find out whether xsaveopt is supported */
CPUID_LEAF(0xd, 1, eax, ebx, ecx, edx);
s = splhigh();
codepatch_replace(CPTAG_XRSTOR, &_xrstor, 4);
codepatch_replace(CPTAG_XSAVE,
(eax & XSAVE_XSAVEOPT) ? &_xsaveopt : &_xsave, 4);
splx(s);
}
/*
* Initialize the processor appropriately.
*/
void
cpu_init(struct cpu_info *ci)
{
struct savefpu *sfp;
u_int cr4;
/* configure the CPU if needed */
if (ci->cpu_setup != NULL)
(*ci->cpu_setup)(ci);
cr4 = rcr4() | CR4_DEFAULT;
if (ci->ci_feature_sefflags_ebx & SEFF0EBX_SMEP)
cr4 |= CR4_SMEP;
if (ci->ci_feature_sefflags_ebx & SEFF0EBX_SMAP)
cr4 |= CR4_SMAP;
if (ci->ci_feature_sefflags_ecx & SEFF0ECX_UMIP)
cr4 |= CR4_UMIP;
if ((cpu_ecxfeature & CPUIDECX_XSAVE) && cpuid_level >= 0xd)
cr4 |= CR4_OSXSAVE;
if (pg_xo)
cr4 |= CR4_PKE;
if (pmap_use_pcid)
cr4 |= CR4_PCIDE;
lcr4(cr4);
if ((cpu_ecxfeature & CPUIDECX_XSAVE) && cpuid_level >= 0xd) {
u_int32_t eax, ebx, ecx, edx;
xsave_mask = XFEATURE_X87 | XFEATURE_SSE;
CPUID_LEAF(0xd, 0, eax, ebx, ecx, edx);
xsave_mask |= eax & XFEATURE_AVX;
xsetbv(0, xsave_mask);
CPUID_LEAF(0xd, 0, eax, ebx, ecx, edx);
if (CPU_IS_PRIMARY(ci)) {
fpu_save_len = ebx;
KASSERT(fpu_save_len <= sizeof(struct savefpu));
} else {
KASSERT(ebx == fpu_save_len);
}
replacexsave();
}
/* Give proc0 a clean FPU save area */
sfp = &proc0.p_addr->u_pcb.pcb_savefpu;
memset(sfp, 0, fpu_save_len);
sfp->fp_fxsave.fx_fcw = __INITIAL_NPXCW__;
sfp->fp_fxsave.fx_mxcsr = __INITIAL_MXCSR__;
fpureset();
if (xsave_mask) {
/* must not use xsaveopt here */
xsave(sfp, xsave_mask);
} else
fxsave(sfp);
#if NVMM > 0
/* Re-enable VMM if needed */
if (ci->ci_flags & CPUF_VMM)
start_vmm_on_cpu(ci);
#endif /* NVMM > 0 */
#ifdef MULTIPROCESSOR
atomic_setbits_int(&ci->ci_flags, CPUF_RUNNING);
/*
* Big hammer: flush all TLB entries, including ones from PTEs
* with the G bit set. This should only be necessary if TLB
* shootdown falls far behind.
*/
cr4 = rcr4();
lcr4(cr4 & ~CR4_PGE);
lcr4(cr4);
/* Check if TSC is synchronized. */
if (cold && !CPU_IS_PRIMARY(ci))
tsc_test_sync_ap(ci);
#endif
}
#if NVMM > 0
/*
* cpu_init_vmm
*
* Initializes per-cpu VMM state
*
* Parameters:
* ci: the cpu for which state is being initialized
*/
void
cpu_init_vmm(struct cpu_info *ci)
{
/*
* Allocate a per-cpu VMXON region for VMX CPUs
*/
if (ci->ci_vmm_flags & CI_VMM_VMX) {
ci->ci_vmxon_region = (struct vmxon_region *)malloc(PAGE_SIZE,
M_DEVBUF, M_WAITOK | M_ZERO);
if (!pmap_extract(pmap_kernel(), (vaddr_t)ci->ci_vmxon_region,
&ci->ci_vmxon_region_pa))
panic("Can't locate VMXON region in phys mem");
ci->ci_vmcs_pa = VMX_VMCS_PA_CLEAR;
rw_init(&ci->ci_vmcs_lock, "vmcslock");
}
}
#endif /* NVMM > 0 */
#ifdef MULTIPROCESSOR
void
cpu_boot_secondary_processors(void)
{
struct cpu_info *ci;
u_long i;
for (i=0; i < MAXCPUS; i++) {
ci = cpu_info[i];
if (ci == NULL)
continue;
if (ci->ci_idle_pcb == NULL)
continue;
if ((ci->ci_flags & CPUF_PRESENT) == 0)
continue;
if (ci->ci_flags & (CPUF_BSP | CPUF_SP | CPUF_PRIMARY))
continue;
ci->ci_randseed = (arc4random() & 0x7fffffff) + 1;
cpu_boot_secondary(ci);
}
}
void
cpu_start_secondary(struct cpu_info *ci)
{
int i;
u_long s;
atomic_setbits_int(&ci->ci_flags, CPUF_AP);
pmap_kenter_pa(MP_TRAMPOLINE, MP_TRAMPOLINE, PROT_READ | PROT_EXEC);
pmap_kenter_pa(MP_TRAMP_DATA, MP_TRAMP_DATA, PROT_READ | PROT_WRITE);
CPU_STARTUP(ci);
/*
* wait for it to become ready
*/
for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i>0;i--) {
delay(10);
}
if (! (ci->ci_flags & CPUF_PRESENT)) {
printf("%s: failed to become ready\n", ci->ci_dev->dv_xname);
#if defined(MPDEBUG) && defined(DDB)
printf("dropping into debugger; continue from here to resume boot\n");
db_enter();
#endif
}
if ((ci->ci_flags & CPUF_IDENTIFIED) == 0) {
atomic_setbits_int(&ci->ci_flags, CPUF_IDENTIFY);
/* wait for it to identify */
for (i = 2000000; (ci->ci_flags & CPUF_IDENTIFY) && i > 0; i--)
delay(10);
if (ci->ci_flags & CPUF_IDENTIFY)
printf("%s: failed to identify\n",
ci->ci_dev->dv_xname);
}
if (ci->ci_flags & CPUF_IDENTIFIED) {
/*
* Test if TSCs are synchronized. Invalidate cache to
* minimize possible cache effects. Disable interrupts to
* try to rule out external interference.
*/
s = intr_disable();
wbinvd();
tsc_test_sync_bp(curcpu());
intr_restore(s);
}
CPU_START_CLEANUP(ci);
pmap_kremove(MP_TRAMPOLINE, PAGE_SIZE);
pmap_kremove(MP_TRAMP_DATA, PAGE_SIZE);
}
void
cpu_boot_secondary(struct cpu_info *ci)
{
int i;
u_long s;
atomic_setbits_int(&ci->ci_flags, CPUF_GO);
for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i>0;i--) {
delay(10);
}
if (! (ci->ci_flags & CPUF_RUNNING)) {
printf("cpu failed to start\n");
#if defined(MPDEBUG) && defined(DDB)
printf("dropping into debugger; continue from here to resume boot\n");
db_enter();
#endif
} else if (cold) {
/* Test if TSCs are synchronized again. */
s = intr_disable();
wbinvd();
tsc_test_sync_bp(curcpu());
intr_restore(s);
}
}
/*
* The CPU ends up here when it's ready to run
* This is called from code in mptramp.s; at this point, we are running
* in the idle pcb/idle stack of the new cpu. When this function returns,
* this processor will enter the idle loop and start looking for work.
*
* XXX should share some of this with init386 in machdep.c
*/
void
cpu_hatch(void *v)
{
struct cpu_info *ci = (struct cpu_info *)v;
int s;
cpu_init_msrs(ci);
#ifdef DEBUG
if (ci->ci_flags & CPUF_PRESENT)
panic("%s: already running!?", ci->ci_dev->dv_xname);
#endif
atomic_setbits_int(&ci->ci_flags, CPUF_PRESENT);
lapic_enable();
cpu_ucode_apply(ci);
cpu_tsx_disable(ci);
if ((ci->ci_flags & CPUF_IDENTIFIED) == 0) {
/*
* We need to wait until we can identify, otherwise dmesg
* output will be messy.
*/
while ((ci->ci_flags & CPUF_IDENTIFY) == 0)
delay(10);
identifycpu(ci);
/* Signal we're done */
atomic_clearbits_int(&ci->ci_flags, CPUF_IDENTIFY);
/* Prevent identifycpu() from running again */
atomic_setbits_int(&ci->ci_flags, CPUF_IDENTIFIED);
}
/* These have to run after identifycpu() */
cpu_fix_msrs(ci);
/*
* Test if our TSC is synchronized for the first time.
* Note that interrupts are off at this point.
*/
wbinvd();
tsc_test_sync_ap(ci);
while ((ci->ci_flags & CPUF_GO) == 0)
delay(10);
#ifdef HIBERNATE
if ((ci->ci_flags & CPUF_PARK) != 0) {
if (ci->ci_feature_sefflags_edx & SEFF0EDX_IBT)
lcr4(rcr4() & ~CR4_CET);
atomic_clearbits_int(&ci->ci_flags, CPUF_PARK);
hibernate_drop_to_real_mode();
}
#endif /* HIBERNATE */
#ifdef DEBUG
if (ci->ci_flags & CPUF_RUNNING)
panic("%s: already running!?", ci->ci_dev->dv_xname);
#endif
cpu_init_idt();
lapic_set_lvt();
gdt_init_cpu(ci);
fpuinit(ci);
lldt(0);
cpu_init(ci);
#if NPVBUS > 0
pvbus_init_cpu();
#endif
/* Re-initialise memory range handling on AP */
if (mem_range_softc.mr_op != NULL)
mem_range_softc.mr_op->initAP(&mem_range_softc);
s = splhigh();
lcr8(0);
intr_enable();
nanouptime(&ci->ci_schedstate.spc_runtime);
splx(s);
lapic_startclock();
SCHED_LOCK(s);
cpu_switchto(NULL, sched_chooseproc());
}
#if defined(DDB)
#include <ddb/db_output.h>
#include <machine/db_machdep.h>
/*
* Dump cpu information from ddb.
*/
void
cpu_debug_dump(void)
{
struct cpu_info *ci;
CPU_INFO_ITERATOR cii;
db_printf("addr dev id flags ipis curproc\n");
CPU_INFO_FOREACH(cii, ci) {
db_printf("%p %s %u %x %x %10p\n",
ci,
ci->ci_dev == NULL ? "BOOT" : ci->ci_dev->dv_xname,
ci->ci_cpuid,
ci->ci_flags, ci->ci_ipis,
ci->ci_curproc);
}
}
#endif
int
mp_cpu_start(struct cpu_info *ci)
{
unsigned short dwordptr[2];
/*
* "The BSP must initialize CMOS shutdown code to 0Ah ..."
*/
outb(IO_RTC, NVRAM_RESET);
outb(IO_RTC+1, NVRAM_RESET_JUMP);
/*
* "and the warm reset vector (DWORD based at 40:67) to point
* to the AP startup code ..."
*/
dwordptr[0] = 0;
dwordptr[1] = MP_TRAMPOLINE >> 4;
pmap_kenter_pa(0, 0, PROT_READ | PROT_WRITE);
memcpy((u_int8_t *) 0x467, dwordptr, 4);
pmap_kremove(0, PAGE_SIZE);
#if NLAPIC > 0
/*
* ... prior to executing the following sequence:"
*/
if (ci->ci_flags & CPUF_AP) {
x86_ipi_init(ci->ci_apicid);
delay(10000);
if (cpu_feature & CPUID_APIC) {
x86_ipi(MP_TRAMPOLINE/PAGE_SIZE, ci->ci_apicid,
LAPIC_DLMODE_STARTUP);
delay(200);
x86_ipi(MP_TRAMPOLINE/PAGE_SIZE, ci->ci_apicid,
LAPIC_DLMODE_STARTUP);
delay(200);
}
}
#endif
return 0;
}
void
mp_cpu_start_cleanup(struct cpu_info *ci)
{
/*
* Ensure the NVRAM reset byte contains something vaguely sane.
*/
outb(IO_RTC, NVRAM_RESET);
outb(IO_RTC+1, NVRAM_RESET_RST);
}
#endif /* MULTIPROCESSOR */
typedef void (vector)(void);
extern vector Xsyscall_meltdown, Xsyscall, Xsyscall32;
void
cpu_init_msrs(struct cpu_info *ci)
{
wrmsr(MSR_STAR,
((uint64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
((uint64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48));
wrmsr(MSR_LSTAR, cpu_meltdown ? (uint64_t)Xsyscall_meltdown :
(uint64_t)Xsyscall);
wrmsr(MSR_CSTAR, (uint64_t)Xsyscall32);
wrmsr(MSR_SFMASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_AC);
wrmsr(MSR_FSBASE, 0);
wrmsr(MSR_GSBASE, (u_int64_t)ci);
wrmsr(MSR_KERNELGSBASE, 0);
patinit(ci);
}
void
cpu_fix_msrs(struct cpu_info *ci)
{
int family = ci->ci_family;
uint64_t msr;
if (!strcmp(cpu_vendor, "GenuineIntel")) {
if ((family > 6 || (family == 6 && ci->ci_model >= 0xd)) &&
rdmsr_safe(MSR_MISC_ENABLE, &msr) == 0 &&
(msr & MISC_ENABLE_FAST_STRINGS) == 0) {
msr |= MISC_ENABLE_FAST_STRINGS;
wrmsr(MSR_MISC_ENABLE, msr);
DPRINTF("%s: enabled fast strings\n", ci->ci_dev->dv_xname);
/*
* Attempt to disable Silicon Debug and lock the configuration
* if it's enabled and unlocked.
*/
if (cpu_ecxfeature & CPUIDECX_SDBG) {
msr = rdmsr(IA32_DEBUG_INTERFACE);
if ((msr & IA32_DEBUG_INTERFACE_ENABLE) &&
(msr & IA32_DEBUG_INTERFACE_LOCK) == 0) {
msr &= IA32_DEBUG_INTERFACE_MASK;
msr |= IA32_DEBUG_INTERFACE_LOCK;
wrmsr(IA32_DEBUG_INTERFACE, msr);
} else if (msr & IA32_DEBUG_INTERFACE_ENABLE)
printf("%s: cannot disable silicon debug\n",
ci->ci_dev->dv_xname);
}
}
}
if (!strcmp(cpu_vendor, "AuthenticAMD")) {
/* Apply AMD errata */
amd64_errata(ci);
/*
* "Mitigation G-2" per AMD's Whitepaper "Software Techniques
* for Managing Speculation on AMD Processors"
*
* By setting MSR C001_1029[1]=1, LFENCE becomes a dispatch
* serializing instruction.
*
* This MSR is available on all AMD families >= 10h, except 11h
* where LFENCE is always serializing.
*/
if (family >= 0x10 && family != 0x11) {
msr = rdmsr(MSR_DE_CFG);
if ((msr & DE_CFG_SERIALIZE_LFENCE) == 0) {
msr |= DE_CFG_SERIALIZE_LFENCE;
wrmsr(MSR_DE_CFG, msr);
}
}
}
#ifndef SMALL_KERNEL
if (ci->ci_feature_sefflags_edx & SEFF0EDX_IBT) {
msr = rdmsr(MSR_S_CET);
wrmsr(MSR_S_CET, msr | MSR_CET_ENDBR_EN);
lcr4(rcr4() | CR4_CET);
}
#endif
}
void
cpu_tsx_disable(struct cpu_info *ci)
{
uint64_t msr;
uint32_t dummy, sefflags_edx;
/* this runs before identifycpu() populates ci_feature_sefflags_edx */
if (cpuid_level < 0x07)
return;
CPUID_LEAF(0x7, 0, dummy, dummy, dummy, sefflags_edx);
if (strcmp(cpu_vendor, "GenuineIntel") == 0 &&
(sefflags_edx & SEFF0EDX_ARCH_CAP)) {
msr = rdmsr(MSR_ARCH_CAPABILITIES);
if (msr & ARCH_CAPABILITIES_TSX_CTRL) {
msr = rdmsr(MSR_TSX_CTRL);
msr |= TSX_CTRL_RTM_DISABLE | TSX_CTRL_TSX_CPUID_CLEAR;
wrmsr(MSR_TSX_CTRL, msr);
}
}
}
void
patinit(struct cpu_info *ci)
{
extern int pmap_pg_wc;
u_int64_t reg;
if ((cpu_feature & CPUID_PAT) == 0)
return;
/*
* Set up PAT bits.
* The default pat table is the following:
* WB, WT, UC-, UC, WB, WT, UC-, UC
* We change it to:
* WB, WC, UC-, UC, WB, WC, UC-, UC
* i.e change the WT bit to be WC.
*/
reg = PATENTRY(0, PAT_WB) | PATENTRY(1, PAT_WC) |
PATENTRY(2, PAT_UCMINUS) | PATENTRY(3, PAT_UC) |
PATENTRY(4, PAT_WB) | PATENTRY(5, PAT_WC) |
PATENTRY(6, PAT_UCMINUS) | PATENTRY(7, PAT_UC);
wrmsr(MSR_CR_PAT, reg);
pmap_pg_wc = PG_WC;
}
struct timeout rdrand_tmo;
void rdrand(void *);
void
rdrand(void *v)
{
struct timeout *tmo = v;
extern int has_rdrand, has_rdseed;
union {
uint64_t u64;
uint32_t u32[2];
} r, t;
uint64_t tsc;
uint8_t valid = 0;
tsc = rdtsc();
if (has_rdseed)
__asm volatile(
"rdseed %0\n\t"
"setc %1\n"
: "=r" (r.u64), "=qm" (valid) );
if (has_rdrand && (has_rdseed == 0 || valid == 0))
__asm volatile(
"rdrand %0\n\t"
"setc %1\n"
: "=r" (r.u64), "=qm" (valid) );
t.u64 = tsc;
t.u64 ^= r.u64;
t.u64 ^= valid; /* potential rdrand empty */
if (has_rdrand)
t.u64 += rdtsc(); /* potential vmexit latency */
enqueue_randomness(t.u32[0]);
enqueue_randomness(t.u32[1]);
if (tmo)
timeout_add_msec(tmo, 10);
}
int
cpu_activate(struct device *self, int act)
{
struct cpu_softc *sc = (struct cpu_softc *)self;
switch (act) {
case DVACT_RESUME:
if (sc->sc_info->ci_cpuid == 0)
rdrand(NULL);
#if NPCTR > 0
pctr_resume(sc->sc_info);
#endif
break;
}
return (0);
}
/*
* cpu_enter_pages
*
* Requests mapping of various special pages required in the Intel Meltdown
* case (to be entered into the U-K page table):
*
* 1 tss+gdt page for each CPU
* 1 trampoline stack page for each CPU
*
* The cpu_info_full struct for each CPU straddles these pages. The offset into
* 'cif' is calculated below, for each page. For more information, consult
* the definition of struct cpu_info_full in cpu_full.h
*
* On CPUs unaffected by Meltdown, this function still configures 'cif' but
* the calls to pmap_enter_special become no-ops.
*
* Parameters:
* cif : the cpu_info_full structure describing a CPU whose pages are to be
* entered into the special meltdown U-K page table.
*/
void
cpu_enter_pages(struct cpu_info_full *cif)
{
vaddr_t va;
paddr_t pa;
/* The TSS+GDT need to be readable */
va = (vaddr_t)cif;
pmap_extract(pmap_kernel(), va, &pa);
pmap_enter_special(va, pa, PROT_READ);
DPRINTF("%s: entered tss+gdt page at va 0x%llx pa 0x%llx\n", __func__,
(uint64_t)va, (uint64_t)pa);
/* The trampoline stack page needs to be read/write */
va = (vaddr_t)&cif->cif_tramp_stack;
pmap_extract(pmap_kernel(), va, &pa);
pmap_enter_special(va, pa, PROT_READ | PROT_WRITE);
DPRINTF("%s: entered t.stack page at va 0x%llx pa 0x%llx\n", __func__,
(uint64_t)va, (uint64_t)pa);
cif->cif_tss.tss_rsp0 = va + sizeof(cif->cif_tramp_stack) - 16;
DPRINTF("%s: cif_tss.tss_rsp0 = 0x%llx\n" ,__func__,
(uint64_t)cif->cif_tss.tss_rsp0);
cif->cif_cpu.ci_intr_rsp = cif->cif_tss.tss_rsp0 -
sizeof(struct iretq_frame);
#define SETUP_IST_SPECIAL_STACK(ist, cif, member) do { \
(cif)->cif_tss.tss_ist[(ist)] = (vaddr_t)&(cif)->member + \
sizeof((cif)->member) - 16; \
(cif)->member[nitems((cif)->member) - 2] = (int64_t)&(cif)->cif_cpu; \
} while (0)
SETUP_IST_SPECIAL_STACK(0, cif, cif_dblflt_stack);
SETUP_IST_SPECIAL_STACK(1, cif, cif_nmi_stack);
/* an empty iomap, by setting its offset to the TSS limit */
cif->cif_tss.tss_iobase = sizeof(cif->cif_tss);
}
#ifdef MULTIPROCESSOR
int
wbinvd_on_all_cpus(void)
{
x86_broadcast_ipi(X86_IPI_WBINVD);
wbinvd();
return 0;
}
#endif