src/lib/libcrypto/ec/ec_lib.c

1323 lines
29 KiB
C

/* $OpenBSD: ec_lib.c,v 1.67 2024/04/23 10:52:08 tb Exp $ */
/*
* Originally written by Bodo Moeller for the OpenSSL project.
*/
/* ====================================================================
* Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
* Binary polynomial ECC support in OpenSSL originally developed by
* SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
*/
#include <string.h>
#include <openssl/opensslconf.h>
#include <openssl/err.h>
#include <openssl/opensslv.h>
#include "bn_local.h"
#include "ec_local.h"
/* functions for EC_GROUP objects */
EC_GROUP *
EC_GROUP_new(const EC_METHOD *meth)
{
EC_GROUP *ret;
if (meth == NULL) {
ECerror(EC_R_SLOT_FULL);
return NULL;
}
if (meth->group_init == NULL) {
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return NULL;
}
ret = malloc(sizeof *ret);
if (ret == NULL) {
ECerror(ERR_R_MALLOC_FAILURE);
return NULL;
}
ret->meth = meth;
ret->generator = NULL;
BN_init(&ret->order);
BN_init(&ret->cofactor);
ret->curve_name = 0;
ret->asn1_flag = OPENSSL_EC_NAMED_CURVE;
ret->asn1_form = POINT_CONVERSION_UNCOMPRESSED;
ret->seed = NULL;
ret->seed_len = 0;
if (!meth->group_init(ret)) {
free(ret);
return NULL;
}
return ret;
}
LCRYPTO_ALIAS(EC_GROUP_new);
void
EC_GROUP_free(EC_GROUP *group)
{
if (group == NULL)
return;
if (group->meth->group_finish != NULL)
group->meth->group_finish(group);
EC_POINT_free(group->generator);
BN_free(&group->order);
BN_free(&group->cofactor);
freezero(group->seed, group->seed_len);
freezero(group, sizeof *group);
}
LCRYPTO_ALIAS(EC_GROUP_free);
void
EC_GROUP_clear_free(EC_GROUP *group)
{
EC_GROUP_free(group);
}
LCRYPTO_ALIAS(EC_GROUP_clear_free);
int
EC_GROUP_copy(EC_GROUP *dest, const EC_GROUP *src)
{
if (dest->meth->group_copy == NULL) {
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
if (dest->meth != src->meth) {
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
if (dest == src)
return 1;
if (src->generator != NULL) {
if (dest->generator == NULL) {
dest->generator = EC_POINT_new(dest);
if (dest->generator == NULL)
return 0;
}
if (!EC_POINT_copy(dest->generator, src->generator))
return 0;
} else {
/* src->generator == NULL */
EC_POINT_free(dest->generator);
dest->generator = NULL;
}
if (!bn_copy(&dest->order, &src->order))
return 0;
if (!bn_copy(&dest->cofactor, &src->cofactor))
return 0;
dest->curve_name = src->curve_name;
dest->asn1_flag = src->asn1_flag;
dest->asn1_form = src->asn1_form;
if (src->seed) {
free(dest->seed);
dest->seed = malloc(src->seed_len);
if (dest->seed == NULL)
return 0;
memcpy(dest->seed, src->seed, src->seed_len);
dest->seed_len = src->seed_len;
} else {
free(dest->seed);
dest->seed = NULL;
dest->seed_len = 0;
}
return dest->meth->group_copy(dest, src);
}
LCRYPTO_ALIAS(EC_GROUP_copy);
EC_GROUP *
EC_GROUP_dup(const EC_GROUP *a)
{
EC_GROUP *t = NULL;
if ((a != NULL) && ((t = EC_GROUP_new(a->meth)) != NULL) &&
(!EC_GROUP_copy(t, a))) {
EC_GROUP_free(t);
t = NULL;
}
return t;
}
LCRYPTO_ALIAS(EC_GROUP_dup);
const EC_METHOD *
EC_GROUP_method_of(const EC_GROUP *group)
{
return group->meth;
}
LCRYPTO_ALIAS(EC_GROUP_method_of);
int
EC_METHOD_get_field_type(const EC_METHOD *meth)
{
return meth->field_type;
}
LCRYPTO_ALIAS(EC_METHOD_get_field_type);
/*
* If there is a user-provided cofactor, sanity check and use it. Otherwise
* try computing the cofactor from generator order n and field cardinality q.
* This works for all curves of cryptographic interest.
*
* Hasse's theorem: | h * n - (q + 1) | <= 2 * sqrt(q)
*
* So: h_min = (q + 1 - 2*sqrt(q)) / n and h_max = (q + 1 + 2*sqrt(q)) / n and
* therefore h_max - h_min = 4*sqrt(q) / n. So if n > 4*sqrt(q) holds, there is
* only one possible value for h:
*
* h = \lfloor (h_min + h_max)/2 \rceil = \lfloor (q + 1)/n \rceil
*
* Otherwise, zero cofactor and return success.
*/
static int
ec_set_cofactor(EC_GROUP *group, const BIGNUM *in_cofactor)
{
BN_CTX *ctx = NULL;
BIGNUM *cofactor;
int ret = 0;
BN_zero(&group->cofactor);
if ((ctx = BN_CTX_new()) == NULL)
goto err;
BN_CTX_start(ctx);
if ((cofactor = BN_CTX_get(ctx)) == NULL)
goto err;
/*
* Unfortunately, the cofactor is an optional field in many standards.
* Internally, the library uses a 0 cofactor as a marker for "unknown
* cofactor". So accept in_cofactor == NULL or in_cofactor >= 0.
*/
if (in_cofactor != NULL && !BN_is_zero(in_cofactor)) {
if (BN_is_negative(in_cofactor)) {
ECerror(EC_R_UNKNOWN_COFACTOR);
goto err;
}
if (!bn_copy(cofactor, in_cofactor))
goto err;
goto done;
}
/*
* If the cofactor is too large, we cannot guess it and default to zero.
* The RHS of below is a strict overestimate of log(4 * sqrt(q)).
*/
if (BN_num_bits(&group->order) <=
(BN_num_bits(&group->field) + 1) / 2 + 3)
goto done;
/*
* Compute
* h = \lfloor (q + 1)/n \rceil = \lfloor (q + 1 + n/2) / n \rfloor.
*/
/* h = n/2 */
if (!BN_rshift1(cofactor, &group->order))
goto err;
/* h = 1 + n/2 */
if (!BN_add_word(cofactor, 1))
goto err;
/* h = q + 1 + n/2 */
if (!BN_add(cofactor, cofactor, &group->field))
goto err;
/* h = (q + 1 + n/2) / n */
if (!BN_div_ct(cofactor, NULL, cofactor, &group->order, ctx))
goto err;
done:
/* Use Hasse's theorem to bound the cofactor. */
if (BN_num_bits(cofactor) > BN_num_bits(&group->field) + 1) {
ECerror(EC_R_INVALID_GROUP_ORDER);
goto err;
}
if (!bn_copy(&group->cofactor, cofactor))
goto err;
ret = 1;
err:
BN_CTX_end(ctx);
BN_CTX_free(ctx);
return ret;
}
int
EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator,
const BIGNUM *order, const BIGNUM *cofactor)
{
if (generator == NULL) {
ECerror(ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
/* Require group->field >= 1. */
if (BN_is_zero(&group->field) || BN_is_negative(&group->field)) {
ECerror(EC_R_INVALID_FIELD);
return 0;
}
/*
* Require order > 1 and enforce an upper bound of at most one bit more
* than the field cardinality due to Hasse's theorem.
*/
if (order == NULL || BN_cmp(order, BN_value_one()) <= 0 ||
BN_num_bits(order) > BN_num_bits(&group->field) + 1) {
ECerror(EC_R_INVALID_GROUP_ORDER);
return 0;
}
if (group->generator == NULL) {
group->generator = EC_POINT_new(group);
if (group->generator == NULL)
return 0;
}
if (!EC_POINT_copy(group->generator, generator))
return 0;
if (!bn_copy(&group->order, order))
return 0;
if (!ec_set_cofactor(group, cofactor))
return 0;
return 1;
}
LCRYPTO_ALIAS(EC_GROUP_set_generator);
const EC_POINT *
EC_GROUP_get0_generator(const EC_GROUP *group)
{
return group->generator;
}
LCRYPTO_ALIAS(EC_GROUP_get0_generator);
int
EC_GROUP_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx)
{
if (!bn_copy(order, &group->order))
return 0;
return !BN_is_zero(order);
}
LCRYPTO_ALIAS(EC_GROUP_get_order);
const BIGNUM *
EC_GROUP_get0_order(const EC_GROUP *group)
{
return &group->order;
}
int
EC_GROUP_order_bits(const EC_GROUP *group)
{
return group->meth->group_order_bits(group);
}
LCRYPTO_ALIAS(EC_GROUP_order_bits);
int
EC_GROUP_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor, BN_CTX *ctx)
{
if (!bn_copy(cofactor, &group->cofactor))
return 0;
return !BN_is_zero(&group->cofactor);
}
LCRYPTO_ALIAS(EC_GROUP_get_cofactor);
void
EC_GROUP_set_curve_name(EC_GROUP *group, int nid)
{
group->curve_name = nid;
}
LCRYPTO_ALIAS(EC_GROUP_set_curve_name);
int
EC_GROUP_get_curve_name(const EC_GROUP *group)
{
return group->curve_name;
}
LCRYPTO_ALIAS(EC_GROUP_get_curve_name);
void
EC_GROUP_set_asn1_flag(EC_GROUP *group, int flag)
{
group->asn1_flag = flag;
}
LCRYPTO_ALIAS(EC_GROUP_set_asn1_flag);
int
EC_GROUP_get_asn1_flag(const EC_GROUP *group)
{
return group->asn1_flag;
}
LCRYPTO_ALIAS(EC_GROUP_get_asn1_flag);
void
EC_GROUP_set_point_conversion_form(EC_GROUP *group,
point_conversion_form_t form)
{
group->asn1_form = form;
}
LCRYPTO_ALIAS(EC_GROUP_set_point_conversion_form);
point_conversion_form_t
EC_GROUP_get_point_conversion_form(const EC_GROUP *group)
{
return group->asn1_form;
}
LCRYPTO_ALIAS(EC_GROUP_get_point_conversion_form);
size_t
EC_GROUP_set_seed(EC_GROUP *group, const unsigned char *p, size_t len)
{
if (group->seed) {
free(group->seed);
group->seed = NULL;
group->seed_len = 0;
}
if (!len || !p)
return 1;
if ((group->seed = malloc(len)) == NULL)
return 0;
memcpy(group->seed, p, len);
group->seed_len = len;
return len;
}
LCRYPTO_ALIAS(EC_GROUP_set_seed);
unsigned char *
EC_GROUP_get0_seed(const EC_GROUP *group)
{
return group->seed;
}
LCRYPTO_ALIAS(EC_GROUP_get0_seed);
size_t
EC_GROUP_get_seed_len(const EC_GROUP *group)
{
return group->seed_len;
}
LCRYPTO_ALIAS(EC_GROUP_get_seed_len);
int
EC_GROUP_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a,
const BIGNUM *b, BN_CTX *ctx_in)
{
BN_CTX *ctx;
int ret = 0;
if ((ctx = ctx_in) == NULL)
ctx = BN_CTX_new();
if (ctx == NULL)
goto err;
if (group->meth->group_set_curve == NULL) {
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
goto err;
}
ret = group->meth->group_set_curve(group, p, a, b, ctx);
err:
if (ctx != ctx_in)
BN_CTX_free(ctx);
return ret;
}
LCRYPTO_ALIAS(EC_GROUP_set_curve);
int
EC_GROUP_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b,
BN_CTX *ctx_in)
{
BN_CTX *ctx;
int ret = 0;
if ((ctx = ctx_in) == NULL)
ctx = BN_CTX_new();
if (ctx == NULL)
goto err;
if (group->meth->group_get_curve == NULL) {
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
goto err;
}
ret = group->meth->group_get_curve(group, p, a, b, ctx);
err:
if (ctx != ctx_in)
BN_CTX_free(ctx);
return ret;
}
LCRYPTO_ALIAS(EC_GROUP_get_curve);
int
EC_GROUP_set_curve_GFp(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a,
const BIGNUM *b, BN_CTX *ctx)
{
return EC_GROUP_set_curve(group, p, a, b, ctx);
}
LCRYPTO_ALIAS(EC_GROUP_set_curve_GFp);
int
EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b,
BN_CTX *ctx)
{
return EC_GROUP_get_curve(group, p, a, b, ctx);
}
LCRYPTO_ALIAS(EC_GROUP_get_curve_GFp);
int
EC_GROUP_get_degree(const EC_GROUP *group)
{
if (group->meth->group_get_degree == NULL) {
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
return group->meth->group_get_degree(group);
}
LCRYPTO_ALIAS(EC_GROUP_get_degree);
int
EC_GROUP_check_discriminant(const EC_GROUP *group, BN_CTX *ctx_in)
{
BN_CTX *ctx;
int ret = 0;
if ((ctx = ctx_in) == NULL)
ctx = BN_CTX_new();
if (ctx == NULL)
goto err;
if (group->meth->group_check_discriminant == NULL) {
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
goto err;
}
ret = group->meth->group_check_discriminant(group, ctx);
err:
if (ctx != ctx_in)
BN_CTX_free(ctx);
return ret;
}
LCRYPTO_ALIAS(EC_GROUP_check_discriminant);
int
EC_GROUP_cmp(const EC_GROUP *a, const EC_GROUP *b, BN_CTX *ctx)
{
int r = 0;
BIGNUM *a1, *a2, *a3, *b1, *b2, *b3;
BN_CTX *ctx_new = NULL;
/* compare the field types */
if (EC_METHOD_get_field_type(EC_GROUP_method_of(a)) !=
EC_METHOD_get_field_type(EC_GROUP_method_of(b)))
return 1;
/* compare the curve name (if present in both) */
if (EC_GROUP_get_curve_name(a) && EC_GROUP_get_curve_name(b) &&
EC_GROUP_get_curve_name(a) != EC_GROUP_get_curve_name(b))
return 1;
if (!ctx)
ctx_new = ctx = BN_CTX_new();
if (!ctx)
return -1;
BN_CTX_start(ctx);
if ((a1 = BN_CTX_get(ctx)) == NULL)
goto err;
if ((a2 = BN_CTX_get(ctx)) == NULL)
goto err;
if ((a3 = BN_CTX_get(ctx)) == NULL)
goto err;
if ((b1 = BN_CTX_get(ctx)) == NULL)
goto err;
if ((b2 = BN_CTX_get(ctx)) == NULL)
goto err;
if ((b3 = BN_CTX_get(ctx)) == NULL)
goto err;
/*
* XXX This approach assumes that the external representation of
* curves over the same field type is the same.
*/
if (!a->meth->group_get_curve(a, a1, a2, a3, ctx) ||
!b->meth->group_get_curve(b, b1, b2, b3, ctx))
r = 1;
if (r || BN_cmp(a1, b1) || BN_cmp(a2, b2) || BN_cmp(a3, b3))
r = 1;
/* XXX EC_POINT_cmp() assumes that the methods are equal */
if (r || EC_POINT_cmp(a, EC_GROUP_get0_generator(a),
EC_GROUP_get0_generator(b), ctx))
r = 1;
if (!r) {
/* compare the order and cofactor */
if (!EC_GROUP_get_order(a, a1, ctx) ||
!EC_GROUP_get_order(b, b1, ctx) ||
!EC_GROUP_get_cofactor(a, a2, ctx) ||
!EC_GROUP_get_cofactor(b, b2, ctx))
goto err;
if (BN_cmp(a1, b1) || BN_cmp(a2, b2))
r = 1;
}
BN_CTX_end(ctx);
if (ctx_new)
BN_CTX_free(ctx);
return r;
err:
BN_CTX_end(ctx);
if (ctx_new)
BN_CTX_free(ctx);
return -1;
}
LCRYPTO_ALIAS(EC_GROUP_cmp);
/*
* Coordinate blinding for EC_POINT.
*
* The underlying EC_METHOD can optionally implement this function:
* underlying implementations should return 0 on errors, or 1 on success.
*
* This wrapper returns 1 in case the underlying EC_METHOD does not support
* coordinate blinding.
*/
int
ec_point_blind_coordinates(const EC_GROUP *group, EC_POINT *p, BN_CTX *ctx)
{
if (group->meth->blind_coordinates == NULL)
return 1;
return group->meth->blind_coordinates(group, p, ctx);
}
EC_POINT *
EC_POINT_new(const EC_GROUP *group)
{
EC_POINT *ret;
if (group == NULL) {
ECerror(ERR_R_PASSED_NULL_PARAMETER);
return NULL;
}
if (group->meth->point_init == NULL) {
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return NULL;
}
ret = malloc(sizeof *ret);
if (ret == NULL) {
ECerror(ERR_R_MALLOC_FAILURE);
return NULL;
}
ret->meth = group->meth;
if (!ret->meth->point_init(ret)) {
free(ret);
return NULL;
}
return ret;
}
LCRYPTO_ALIAS(EC_POINT_new);
void
EC_POINT_free(EC_POINT *point)
{
if (point == NULL)
return;
if (point->meth->point_finish != NULL)
point->meth->point_finish(point);
freezero(point, sizeof *point);
}
LCRYPTO_ALIAS(EC_POINT_free);
void
EC_POINT_clear_free(EC_POINT *point)
{
EC_POINT_free(point);
}
LCRYPTO_ALIAS(EC_POINT_clear_free);
int
EC_POINT_copy(EC_POINT *dest, const EC_POINT *src)
{
if (dest->meth->point_copy == NULL) {
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
if (dest->meth != src->meth) {
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
if (dest == src)
return 1;
return dest->meth->point_copy(dest, src);
}
LCRYPTO_ALIAS(EC_POINT_copy);
EC_POINT *
EC_POINT_dup(const EC_POINT *a, const EC_GROUP *group)
{
EC_POINT *t;
int r;
if (a == NULL)
return NULL;
t = EC_POINT_new(group);
if (t == NULL)
return (NULL);
r = EC_POINT_copy(t, a);
if (!r) {
EC_POINT_free(t);
return NULL;
} else
return t;
}
LCRYPTO_ALIAS(EC_POINT_dup);
const EC_METHOD *
EC_POINT_method_of(const EC_POINT *point)
{
return point->meth;
}
LCRYPTO_ALIAS(EC_POINT_method_of);
int
EC_POINT_set_to_infinity(const EC_GROUP *group, EC_POINT *point)
{
if (group->meth->point_set_to_infinity == NULL) {
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
if (group->meth != point->meth) {
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
return group->meth->point_set_to_infinity(group, point);
}
LCRYPTO_ALIAS(EC_POINT_set_to_infinity);
int
EC_POINT_set_Jprojective_coordinates(const EC_GROUP *group, EC_POINT *point,
const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *ctx_in)
{
BN_CTX *ctx;
int ret = 0;
if ((ctx = ctx_in) == NULL)
ctx = BN_CTX_new();
if (ctx == NULL)
goto err;
if (group->meth->point_set_Jprojective_coordinates == NULL) {
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
goto err;
}
if (group->meth != point->meth) {
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
goto err;
}
if (!group->meth->point_set_Jprojective_coordinates(group, point,
x, y, z, ctx))
goto err;
if (EC_POINT_is_on_curve(group, point, ctx) <= 0) {
ECerror(EC_R_POINT_IS_NOT_ON_CURVE);
goto err;
}
ret = 1;
err:
if (ctx != ctx_in)
BN_CTX_free(ctx);
return ret;
}
int
EC_POINT_get_Jprojective_coordinates(const EC_GROUP *group,
const EC_POINT *point, BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *ctx_in)
{
BN_CTX *ctx;
int ret = 0;
if ((ctx = ctx_in) == NULL)
ctx = BN_CTX_new();
if (ctx == NULL)
goto err;
if (group->meth->point_get_Jprojective_coordinates == NULL) {
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
goto err;
}
if (group->meth != point->meth) {
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
goto err;
}
ret = group->meth->point_get_Jprojective_coordinates(group, point,
x, y, z, ctx);
err:
if (ctx != ctx_in)
BN_CTX_free(ctx);
return ret;
}
int
EC_POINT_set_Jprojective_coordinates_GFp(const EC_GROUP *group, EC_POINT *point,
const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *ctx)
{
return EC_POINT_set_Jprojective_coordinates(group, point, x, y, z, ctx);
}
LCRYPTO_ALIAS(EC_POINT_set_Jprojective_coordinates_GFp);
int
EC_POINT_get_Jprojective_coordinates_GFp(const EC_GROUP *group,
const EC_POINT *point, BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *ctx)
{
return EC_POINT_get_Jprojective_coordinates(group, point, x, y, z, ctx);
}
LCRYPTO_ALIAS(EC_POINT_get_Jprojective_coordinates_GFp);
int
EC_POINT_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point,
const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx_in)
{
BN_CTX *ctx;
int ret = 0;
if ((ctx = ctx_in) == NULL)
ctx = BN_CTX_new();
if (ctx == NULL)
goto err;
if (group->meth->point_set_affine_coordinates == NULL) {
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
goto err;
}
if (group->meth != point->meth) {
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
goto err;
}
if (!group->meth->point_set_affine_coordinates(group, point, x, y, ctx))
goto err;
if (EC_POINT_is_on_curve(group, point, ctx) <= 0) {
ECerror(EC_R_POINT_IS_NOT_ON_CURVE);
goto err;
}
ret = 1;
err:
if (ctx != ctx_in)
BN_CTX_free(ctx);
return ret;
}
LCRYPTO_ALIAS(EC_POINT_set_affine_coordinates);
int
EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group, EC_POINT *point,
const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx)
{
return EC_POINT_set_affine_coordinates(group, point, x, y, ctx);
}
LCRYPTO_ALIAS(EC_POINT_set_affine_coordinates_GFp);
int
EC_POINT_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point,
BIGNUM *x, BIGNUM *y, BN_CTX *ctx_in)
{
BN_CTX *ctx;
int ret = 0;
if ((ctx = ctx_in) == NULL)
ctx = BN_CTX_new();
if (ctx == NULL)
goto err;
if (group->meth->point_get_affine_coordinates == NULL) {
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
goto err;
}
if (group->meth != point->meth) {
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
goto err;
}
ret = group->meth->point_get_affine_coordinates(group, point, x, y, ctx);
err:
if (ctx != ctx_in)
BN_CTX_free(ctx);
return ret;
}
LCRYPTO_ALIAS(EC_POINT_get_affine_coordinates);
int
EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group, const EC_POINT *point,
BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
{
return EC_POINT_get_affine_coordinates(group, point, x, y, ctx);
}
LCRYPTO_ALIAS(EC_POINT_get_affine_coordinates_GFp);
int
EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
const EC_POINT *b, BN_CTX *ctx_in)
{
BN_CTX *ctx;
int ret = 0;
if ((ctx = ctx_in) == NULL)
ctx = BN_CTX_new();
if (ctx == NULL)
goto err;
if (group->meth->add == NULL) {
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
goto err;
}
if (group->meth != r->meth || group->meth != a->meth ||
group->meth != b->meth) {
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
goto err;
}
ret = group->meth->add(group, r, a, b, ctx);
err:
if (ctx != ctx_in)
BN_CTX_free(ctx);
return ret;
}
LCRYPTO_ALIAS(EC_POINT_add);
int
EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
BN_CTX *ctx_in)
{
BN_CTX *ctx;
int ret = 0;
if ((ctx = ctx_in) == NULL)
ctx = BN_CTX_new();
if (ctx == NULL)
goto err;
if (group->meth->dbl == NULL) {
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
goto err;
}
if (group->meth != r->meth || r->meth != a->meth) {
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
goto err;
}
ret = group->meth->dbl(group, r, a, ctx);
err:
if (ctx != ctx_in)
BN_CTX_free(ctx);
return ret;
}
LCRYPTO_ALIAS(EC_POINT_dbl);
int
EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx_in)
{
BN_CTX *ctx;
int ret = 0;
if ((ctx = ctx_in) == NULL)
ctx = BN_CTX_new();
if (ctx == NULL)
goto err;
if (group->meth->invert == NULL) {
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
goto err;
}
if (group->meth != a->meth) {
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
goto err;
}
ret = group->meth->invert(group, a, ctx);
err:
if (ctx != ctx_in)
BN_CTX_free(ctx);
return ret;
}
LCRYPTO_ALIAS(EC_POINT_invert);
int
EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
{
if (group->meth->is_at_infinity == NULL) {
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
if (group->meth != point->meth) {
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
return group->meth->is_at_infinity(group, point);
}
LCRYPTO_ALIAS(EC_POINT_is_at_infinity);
int
EC_POINT_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
BN_CTX *ctx_in)
{
BN_CTX *ctx;
int ret = -1;
if ((ctx = ctx_in) == NULL)
ctx = BN_CTX_new();
if (ctx == NULL)
goto err;
if (group->meth->is_on_curve == NULL) {
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
goto err;
}
if (group->meth != point->meth) {
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
goto err;
}
ret = group->meth->is_on_curve(group, point, ctx);
err:
if (ctx != ctx_in)
BN_CTX_free(ctx);
return ret;
}
LCRYPTO_ALIAS(EC_POINT_is_on_curve);
int
EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b,
BN_CTX *ctx_in)
{
BN_CTX *ctx;
int ret = -1;
if ((ctx = ctx_in) == NULL)
ctx = BN_CTX_new();
if (ctx == NULL)
goto err;
if (group->meth->point_cmp == NULL) {
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
goto err;
}
if (group->meth != a->meth || a->meth != b->meth) {
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
goto err;
}
ret = group->meth->point_cmp(group, a, b, ctx);
err:
if (ctx != ctx_in)
BN_CTX_free(ctx);
return ret;
}
LCRYPTO_ALIAS(EC_POINT_cmp);
int
EC_POINT_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx_in)
{
BN_CTX *ctx;
int ret = 0;
if ((ctx = ctx_in) == NULL)
ctx = BN_CTX_new();
if (ctx == NULL)
goto err;
if (group->meth->make_affine == NULL) {
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
goto err;
}
if (group->meth != point->meth) {
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
goto err;
}
ret = group->meth->make_affine(group, point, ctx);
err:
if (ctx != ctx_in)
BN_CTX_free(ctx);
return ret;
}
LCRYPTO_ALIAS(EC_POINT_make_affine);
int
EC_POINTs_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[],
BN_CTX *ctx_in)
{
BN_CTX *ctx;
size_t i;
int ret = 0;
if ((ctx = ctx_in) == NULL)
ctx = BN_CTX_new();
if (ctx == NULL)
goto err;
if (group->meth->points_make_affine == NULL) {
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
goto err;
}
for (i = 0; i < num; i++) {
if (group->meth != points[i]->meth) {
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
goto err;
}
}
ret = group->meth->points_make_affine(group, num, points, ctx);
err:
if (ctx != ctx_in)
BN_CTX_free(ctx);
return ret;
}
LCRYPTO_ALIAS(EC_POINTs_make_affine);
int
EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
BN_CTX *ctx_in)
{
BN_CTX *ctx;
int ret = 0;
if ((ctx = ctx_in) == NULL)
ctx = BN_CTX_new();
if (ctx == NULL)
goto err;
/* Only num == 0 and num == 1 is supported. */
if (group->meth->mul_generator_ct == NULL ||
group->meth->mul_single_ct == NULL ||
group->meth->mul_double_nonct == NULL ||
num > 1) {
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
goto err;
}
if (num == 1 && points != NULL && scalars != NULL) {
/* Either bP or aG + bP, this is sane. */
ret = EC_POINT_mul(group, r, scalar, points[0], scalars[0], ctx);
} else if (scalar != NULL && points == NULL && scalars == NULL) {
/* aG, this is sane */
ret = EC_POINT_mul(group, r, scalar, NULL, NULL, ctx);
} else {
/* anything else is an error */
ECerror(ERR_R_EC_LIB);
goto err;
}
err:
if (ctx != ctx_in)
BN_CTX_free(ctx);
return ret;
}
LCRYPTO_ALIAS(EC_POINTs_mul);
int
EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar,
const EC_POINT *point, const BIGNUM *p_scalar, BN_CTX *ctx_in)
{
BN_CTX *ctx;
int ret = 0;
if ((ctx = ctx_in) == NULL)
ctx = BN_CTX_new();
if (ctx == NULL)
goto err;
if (group->meth->mul_generator_ct == NULL ||
group->meth->mul_single_ct == NULL ||
group->meth->mul_double_nonct == NULL) {
ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
goto err;
}
if (g_scalar != NULL && point == NULL && p_scalar == NULL) {
/*
* In this case we want to compute g_scalar * GeneratorPoint:
* this codepath is reached most prominently by (ephemeral) key
* generation of EC cryptosystems (i.e. ECDSA keygen and sign
* setup, ECDH keygen/first half), where the scalar is always
* secret. This is why we ignore if BN_FLG_CONSTTIME is actually
* set and we always call the constant time version.
*/
ret = group->meth->mul_generator_ct(group, r, g_scalar, ctx);
} else if (g_scalar == NULL && point != NULL && p_scalar != NULL) {
/*
* In this case we want to compute p_scalar * GenericPoint:
* this codepath is reached most prominently by the second half
* of ECDH, where the secret scalar is multiplied by the peer's
* public point. To protect the secret scalar, we ignore if
* BN_FLG_CONSTTIME is actually set and we always call the
* constant time version.
*/
ret = group->meth->mul_single_ct(group, r, p_scalar, point, ctx);
} else if (g_scalar != NULL && point != NULL && p_scalar != NULL) {
/*
* In this case we want to compute
* g_scalar * GeneratorPoint + p_scalar * GenericPoint:
* this codepath is reached most prominently by ECDSA signature
* verification. So we call the non-ct version.
*/
ret = group->meth->mul_double_nonct(group, r, g_scalar,
p_scalar, point, ctx);
} else {
/* Anything else is an error. */
ECerror(ERR_R_EC_LIB);
goto err;
}
err:
if (ctx != ctx_in)
BN_CTX_free(ctx);
return ret;
}
LCRYPTO_ALIAS(EC_POINT_mul);
int
EC_GROUP_precompute_mult(EC_GROUP *group, BN_CTX *ctx_in)
{
return 1;
}
LCRYPTO_ALIAS(EC_GROUP_precompute_mult);
int
EC_GROUP_have_precompute_mult(const EC_GROUP *group)
{
return 0;
}
LCRYPTO_ALIAS(EC_GROUP_have_precompute_mult);
int
ec_group_simple_order_bits(const EC_GROUP *group)
{
/* XXX change group->order to a pointer? */
#if 0
if (group->order == NULL)
return 0;
#endif
return BN_num_bits(&group->order);
}
EC_KEY *
ECParameters_dup(EC_KEY *key)
{
const unsigned char *p;
unsigned char *der = NULL;
EC_KEY *dup = NULL;
int len;
if (key == NULL)
return NULL;
if ((len = i2d_ECParameters(key, &der)) <= 0)
return NULL;
p = der;
dup = d2i_ECParameters(NULL, &p, len);
freezero(der, len);
return dup;
}
LCRYPTO_ALIAS(ECParameters_dup);