src/sys/dev/ic/aac.c

2724 lines
71 KiB
C

/* $OpenBSD: aac.c,v 1.96 2023/09/11 12:10:47 mvs Exp $ */
/*-
* Copyright (c) 2000 Michael Smith
* Copyright (c) 2001 Scott Long
* Copyright (c) 2000 BSDi
* Copyright (c) 2001 Adaptec, Inc.
* Copyright (c) 2000 Niklas Hallqvist
* Copyright (c) 2004 Nathan Binkert
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD: /c/ncvs/src/sys/dev/aac/aac.c,v 1.1 2000/09/13 03:20:34 msmith Exp $
*/
/*
* Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
*/
/*
* This driver would not have rewritten for OpenBSD if it was not for the
* hardware donation from Nocom. I want to thank them for their support.
* Of course, credit should go to Mike Smith for the original work he did
* in the FreeBSD driver where I found lots of reusable code and inspiration.
* - Niklas Hallqvist
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/malloc.h>
#include <sys/rwlock.h>
#include <sys/time.h>
#include <machine/bus.h>
#include <uvm/uvm_extern.h>
#include <scsi/scsi_all.h>
#include <scsi/scsi_disk.h>
#include <scsi/scsiconf.h>
#include <dev/ic/aacreg.h>
#include <dev/ic/aacvar.h>
#include <dev/ic/aac_tables.h>
/* Geometry constants. */
#define AAC_MAXCYLS 1024
#define AAC_HEADS 64
#define AAC_SECS 32 /* mapping 64*32 */
#define AAC_MEDHEADS 127
#define AAC_MEDSECS 63 /* mapping 127*63 */
#define AAC_BIGHEADS 255
#define AAC_BIGSECS 63 /* mapping 255*63 */
#define AAC_SECS32 0x1f /* round capacity */
struct scsi_xfer;
char *aac_describe_code(struct aac_code_lookup *, u_int32_t);
void aac_describe_controller(struct aac_softc *);
int aac_enqueue_fib(struct aac_softc *, int, struct aac_command *);
int aac_dequeue_fib(struct aac_softc *, int, u_int32_t *,
struct aac_fib **);
int aac_enqueue_response(struct aac_softc *sc, int queue,
struct aac_fib *fib);
void aac_eval_mapping(u_int32_t, int *, int *, int *);
void aac_print_printf(struct aac_softc *);
int aac_init(struct aac_softc *);
int aac_check_firmware(struct aac_softc *);
void aac_internal_cache_cmd(struct scsi_xfer *);
/* Command Processing */
void aac_timeout(struct aac_softc *);
void aac_command_timeout(struct aac_command *);
int aac_map_command(struct aac_command *);
void aac_complete(void *);
int aac_bio_command(struct aac_softc *, struct aac_command **);
void aac_bio_complete(struct aac_command *);
int aac_wait_command(struct aac_command *, int);
void aac_create_thread(void *);
void aac_command_thread(void *);
/* Command Buffer Management */
void aac_map_command_sg(void *, bus_dma_segment_t *, int, int);
int aac_alloc_commands(struct aac_softc *);
void aac_free_commands(struct aac_softc *);
void aac_unmap_command(struct aac_command *);
int aac_wait_command(struct aac_command *, int);
void * aac_alloc_command(void *);
void aac_scrub_command(struct aac_command *);
void aac_release_command(void *, void *);
int aac_alloc_sync_fib(struct aac_softc *, struct aac_fib **, int);
void aac_release_sync_fib(struct aac_softc *);
int aac_sync_fib(struct aac_softc *, u_int32_t, u_int32_t,
struct aac_fib *, u_int16_t);
void aac_scsi_cmd(struct scsi_xfer *);
void aac_startio(struct aac_softc *);
void aac_startup(struct aac_softc *);
int aac_sync_command(struct aac_softc *, u_int32_t, u_int32_t,
u_int32_t, u_int32_t, u_int32_t, u_int32_t *);
struct cfdriver aac_cd = {
NULL, "aac", DV_DULL
};
const struct scsi_adapter aac_switch = {
aac_scsi_cmd, NULL, NULL, NULL, NULL
};
/* Falcon/PPC interface */
int aac_fa_get_fwstatus(struct aac_softc *);
void aac_fa_qnotify(struct aac_softc *, int);
int aac_fa_get_istatus(struct aac_softc *);
void aac_fa_clear_istatus(struct aac_softc *, int);
void aac_fa_set_mailbox(struct aac_softc *, u_int32_t, u_int32_t, u_int32_t,
u_int32_t, u_int32_t);
int aac_fa_get_mailbox(struct aac_softc *, int);
void aac_fa_set_interrupts(struct aac_softc *, int);
struct aac_interface aac_fa_interface = {
aac_fa_get_fwstatus,
aac_fa_qnotify,
aac_fa_get_istatus,
aac_fa_clear_istatus,
aac_fa_set_mailbox,
aac_fa_get_mailbox,
aac_fa_set_interrupts
};
/* StrongARM interface */
int aac_sa_get_fwstatus(struct aac_softc *);
void aac_sa_qnotify(struct aac_softc *, int);
int aac_sa_get_istatus(struct aac_softc *);
void aac_sa_clear_istatus(struct aac_softc *, int);
void aac_sa_set_mailbox(struct aac_softc *, u_int32_t, u_int32_t,
u_int32_t, u_int32_t, u_int32_t);
int aac_sa_get_mailbox(struct aac_softc *, int);
void aac_sa_set_interrupts(struct aac_softc *, int);
struct aac_interface aac_sa_interface = {
aac_sa_get_fwstatus,
aac_sa_qnotify,
aac_sa_get_istatus,
aac_sa_clear_istatus,
aac_sa_set_mailbox,
aac_sa_get_mailbox,
aac_sa_set_interrupts
};
/* i960Rx interface */
int aac_rx_get_fwstatus(struct aac_softc *);
void aac_rx_qnotify(struct aac_softc *, int);
int aac_rx_get_istatus(struct aac_softc *);
void aac_rx_clear_istatus(struct aac_softc *, int);
void aac_rx_set_mailbox(struct aac_softc *, u_int32_t, u_int32_t,
u_int32_t, u_int32_t, u_int32_t);
int aac_rx_get_mailbox(struct aac_softc *, int);
void aac_rx_set_interrupts(struct aac_softc *, int);
struct aac_interface aac_rx_interface = {
aac_rx_get_fwstatus,
aac_rx_qnotify,
aac_rx_get_istatus,
aac_rx_clear_istatus,
aac_rx_set_mailbox,
aac_rx_get_mailbox,
aac_rx_set_interrupts
};
/* Rocket/MIPS interface */
int aac_rkt_get_fwstatus(struct aac_softc *);
void aac_rkt_qnotify(struct aac_softc *, int);
int aac_rkt_get_istatus(struct aac_softc *);
void aac_rkt_clear_istatus(struct aac_softc *, int);
void aac_rkt_set_mailbox(struct aac_softc *, u_int32_t,
u_int32_t, u_int32_t,
u_int32_t, u_int32_t);
int aac_rkt_get_mailbox(struct aac_softc *, int);
void aac_rkt_set_interrupts(struct aac_softc *, int);
struct aac_interface aac_rkt_interface = {
aac_rkt_get_fwstatus,
aac_rkt_qnotify,
aac_rkt_get_istatus,
aac_rkt_clear_istatus,
aac_rkt_set_mailbox,
aac_rkt_get_mailbox,
aac_rkt_set_interrupts
};
#ifdef AAC_DEBUG
int aac_debug = AAC_DEBUG;
#endif
int
aac_attach(struct aac_softc *sc)
{
struct scsibus_attach_args saa;
int error;
/*
* Initialise per-controller queues.
*/
mtx_init(&sc->aac_free_mtx, IPL_BIO);
aac_initq_free(sc);
aac_initq_ready(sc);
aac_initq_busy(sc);
aac_initq_bio(sc);
/* disable interrupts before we enable anything */
AAC_MASK_INTERRUPTS(sc);
/* mark controller as suspended until we get ourselves organised */
sc->aac_state |= AAC_STATE_SUSPEND;
/*
* Check that the firmware on the card is supported.
*/
error = aac_check_firmware(sc);
if (error)
return (error);
/*
* Initialize locks
*/
AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
AAC_LOCK_INIT(&sc->aac_io_lock, "AAC I/O lock");
AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
TAILQ_INIT(&sc->aac_container_tqh);
/* Initialize the local AIF queue pointers */
sc->aac_aifq_head = sc->aac_aifq_tail = AAC_AIFQ_LENGTH;
/*
* Initialise the adapter.
*/
error = aac_init(sc);
if (error)
return (error);
saa.saa_adapter_softc = sc;
saa.saa_adapter = &aac_switch;
saa.saa_adapter_buswidth = AAC_MAX_CONTAINERS;
saa.saa_adapter_target = SDEV_NO_ADAPTER_TARGET;
saa.saa_luns = 8;
saa.saa_openings = (sc->total_fibs - 8) /
(sc->aac_container_count ? sc->aac_container_count : 1);
saa.saa_pool = &sc->aac_iopool;
saa.saa_wwpn = saa.saa_wwnn = 0;
saa.saa_quirks = saa.saa_flags = 0;
config_found(&sc->aac_dev, &saa, scsiprint);
/* Create the AIF thread */
sc->aifthread = 0;
sc->aifflags = 0;
kthread_create_deferred(aac_create_thread, sc);
return (0);
}
void
aac_create_thread(void *arg)
{
struct aac_softc *sc = arg;
if (kthread_create(aac_command_thread, sc, &sc->aifthread,
sc->aac_dev.dv_xname)) {
/* TODO disable aac */
printf("%s: failed to create kernel thread, disabled",
sc->aac_dev.dv_xname);
}
AAC_DPRINTF(AAC_D_MISC, ("%s: aac_create_thread\n",
sc->aac_dev.dv_xname));
}
/*
* Probe for containers, create disks.
*/
void
aac_startup(struct aac_softc *sc)
{
struct aac_fib *fib;
struct aac_mntinfo *mi;
struct aac_mntinforesp *mir = NULL;
int count = 0, i = 0;
aac_alloc_sync_fib(sc, &fib, 0);
mi = (struct aac_mntinfo *)&fib->data[0];
AAC_DPRINTF(AAC_D_MISC, ("%s: aac startup\n", sc->aac_dev.dv_xname));
sc->aac_container_count = 0;
/* loop over possible containers */
do {
/* request information on this container */
bzero(mi, sizeof(struct aac_mntinfo));
mi->Command = VM_NameServe;
mi->MntType = FT_FILESYS;
mi->MntCount = i;
if (aac_sync_fib(sc, ContainerCommand, 0, fib,
sizeof(struct aac_mntinfo))) {
printf("%s: error probing container %d\n",
sc->aac_dev.dv_xname, i);
continue;
}
mir = (struct aac_mntinforesp *)&fib->data[0];
/* XXX Need to check if count changed */
count = mir->MntRespCount;
/*
* Check container volume type for validity. Note
* that many of the possible types may never show up.
*/
if (mir->Status == ST_OK &&
mir->MntTable[0].VolType != CT_NONE) {
int drv_cyls, drv_hds, drv_secs;
AAC_DPRINTF(AAC_D_MISC,
("%s: %d: id %x name '%.16s' size %u type %d\n",
sc->aac_dev.dv_xname, i,
mir->MntTable[0].ObjectId,
mir->MntTable[0].FileSystemName,
mir->MntTable[0].Capacity,
mir->MntTable[0].VolType));
sc->aac_container_count++;
sc->aac_hdr[i].hd_present = 1;
sc->aac_hdr[i].hd_size = mir->MntTable[0].Capacity;
/*
* Evaluate mapping (sectors per head, heads per cyl)
*/
sc->aac_hdr[i].hd_size &= ~AAC_SECS32;
aac_eval_mapping(sc->aac_hdr[i].hd_size, &drv_cyls,
&drv_hds, &drv_secs);
sc->aac_hdr[i].hd_heads = drv_hds;
sc->aac_hdr[i].hd_secs = drv_secs;
/* Round the size */
sc->aac_hdr[i].hd_size = drv_cyls * drv_hds * drv_secs;
sc->aac_hdr[i].hd_devtype = mir->MntTable[0].VolType;
/* XXX Save the name too for use in IDENTIFY later */
}
i++;
} while ((i < count) && (i < AAC_MAX_CONTAINERS));
aac_release_sync_fib(sc);
/* mark the controller up */
sc->aac_state &= ~AAC_STATE_SUSPEND;
/* enable interrupts now */
AAC_UNMASK_INTERRUPTS(sc);
}
/*
* Take an interrupt.
*/
int
aac_intr(void *arg)
{
struct aac_softc *sc = arg;
u_int16_t reason;
/*
* Read the status register directly. This is faster than taking the
* driver lock and reading the queues directly. It also saves having
* to turn parts of the driver lock into a spin mutex, which would be
* ugly.
*/
reason = AAC_GET_ISTATUS(sc);
AAC_CLEAR_ISTATUS(sc, reason);
(void)AAC_GET_ISTATUS(sc);
if (reason == 0)
return (0);
AAC_DPRINTF(AAC_D_INTR, ("%s: intr: sc=%p: reason=%#x\n",
sc->aac_dev.dv_xname, sc, reason));
/* controller wants to talk to us */
if (reason & (AAC_DB_PRINTF | AAC_DB_COMMAND_READY |
AAC_DB_RESPONSE_READY)) {
if (reason & AAC_DB_RESPONSE_READY) {
/* handle completion processing */
if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
sc->aifflags |= AAC_AIFFLAGS_COMPLETE;
} else {
AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
aac_complete(sc);
AAC_LOCK_RELEASE(&sc->aac_io_lock);
}
}
/*
* XXX Make sure that we don't get fooled by strange messages
* that start with a NULL.
*/
if (reason & AAC_DB_PRINTF)
if (sc->aac_common->ac_printf[0] == 0)
sc->aac_common->ac_printf[0] = 32;
/*
* This might miss doing the actual wakeup. However, the
* msleep that this is waking up has a timeout, so it will
* wake up eventually. AIFs and printfs are low enough
* priority that they can handle hanging out for a few seconds
* if needed.
*/
if (sc->aifthread)
wakeup(sc->aifthread);
}
return (1);
}
/*
* Command Processing
*/
/*
* Start as much queued I/O as possible on the controller
*/
void
aac_startio(struct aac_softc *sc)
{
struct aac_command *cm;
AAC_DPRINTF(AAC_D_CMD, ("%s: start command", sc->aac_dev.dv_xname));
if (sc->flags & AAC_QUEUE_FRZN) {
AAC_DPRINTF(AAC_D_CMD, (": queue frozen"));
return;
}
AAC_DPRINTF(AAC_D_CMD, ("\n"));
for (;;) {
/*
* Try to get a command that's been put off for lack of
* resources
*/
cm = aac_dequeue_ready(sc);
/*
* Try to build a command off the bio queue (ignore error
* return)
*/
if (cm == NULL) {
AAC_DPRINTF(AAC_D_CMD, ("\n"));
aac_bio_command(sc, &cm);
AAC_DPRINTF(AAC_D_CMD, ("%s: start done bio",
sc->aac_dev.dv_xname));
}
/* nothing to do? */
if (cm == NULL)
break;
/*
* Try to give the command to the controller. Any error is
* catastrophic since it means that bus_dmamap_load() failed.
*/
if (aac_map_command(cm) != 0)
panic("aac: error mapping command %p", cm);
AAC_DPRINTF(AAC_D_CMD, ("\n%s: another command",
sc->aac_dev.dv_xname));
}
AAC_DPRINTF(AAC_D_CMD, ("\n"));
}
/*
* Deliver a command to the controller; allocate controller resources at the
* last moment when possible.
*/
int
aac_map_command(struct aac_command *cm)
{
struct aac_softc *sc = cm->cm_sc;
int error = 0;
AAC_DPRINTF(AAC_D_CMD, (": map command"));
/* don't map more than once */
if (cm->cm_flags & AAC_CMD_MAPPED)
panic("aac: command %p already mapped", cm);
if (cm->cm_datalen != 0) {
error = bus_dmamap_load(sc->aac_dmat, cm->cm_datamap,
cm->cm_data, cm->cm_datalen, NULL,
BUS_DMA_NOWAIT);
if (error)
return (error);
aac_map_command_sg(cm, cm->cm_datamap->dm_segs,
cm->cm_datamap->dm_nsegs, 0);
} else {
aac_map_command_sg(cm, NULL, 0, 0);
}
return (error);
}
/*
* Handle notification of one or more FIBs coming from the controller.
*/
void
aac_command_thread(void *arg)
{
struct aac_softc *sc = arg;
struct aac_fib *fib;
u_int32_t fib_size;
int size, retval;
AAC_DPRINTF(AAC_D_THREAD, ("%s: aac_command_thread: starting\n",
sc->aac_dev.dv_xname));
AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
sc->aifflags = AAC_AIFFLAGS_RUNNING;
while ((sc->aifflags & AAC_AIFFLAGS_EXIT) == 0) {
AAC_DPRINTF(AAC_D_THREAD,
("%s: aac_command_thread: aifflags=%#x\n",
sc->aac_dev.dv_xname, sc->aifflags));
retval = 0;
if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0) {
AAC_DPRINTF(AAC_D_THREAD,
("%s: command thread sleeping\n",
sc->aac_dev.dv_xname));
AAC_LOCK_RELEASE(&sc->aac_io_lock);
retval = tsleep_nsec(sc->aifthread, PRIBIO, "aifthd",
SEC_TO_NSEC(AAC_PERIODIC_INTERVAL));
AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
}
if ((sc->aifflags & AAC_AIFFLAGS_COMPLETE) != 0) {
aac_complete(sc);
sc->aifflags &= ~AAC_AIFFLAGS_COMPLETE;
}
/*
* While we're here, check to see if any commands are stuck.
* This is pretty low-priority, so it's ok if it doesn't
* always fire.
*/
if (retval == EWOULDBLOCK)
aac_timeout(sc);
/* Check the hardware printf message buffer */
if (sc->aac_common->ac_printf[0] != 0)
aac_print_printf(sc);
/* Also check to see if the adapter has a command for us. */
while (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
&fib_size, &fib) == 0) {
AAC_PRINT_FIB(sc, fib);
switch (fib->Header.Command) {
case AifRequest:
//aac_handle_aif(sc, fib);
break;
default:
printf("%s: unknown command from controller\n",
sc->aac_dev.dv_xname);
break;
}
if ((fib->Header.XferState == 0) ||
(fib->Header.StructType != AAC_FIBTYPE_TFIB))
break;
/* Return the AIF to the controller. */
if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
*(AAC_FSAStatus*)fib->data = ST_OK;
/* XXX Compute the Size field? */
size = fib->Header.Size;
if (size > sizeof(struct aac_fib)) {
size = sizeof(struct aac_fib);
fib->Header.Size = size;
}
/*
* Since we did not generate this command, it
* cannot go through the normal
* enqueue->startio chain.
*/
aac_enqueue_response(sc,
AAC_ADAP_NORM_RESP_QUEUE,
fib);
}
}
}
sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
AAC_LOCK_RELEASE(&sc->aac_io_lock);
AAC_DPRINTF(AAC_D_THREAD, ("%s: aac_command_thread: exiting\n",
sc->aac_dev.dv_xname));
kthread_exit(0);
}
/*
* Process completed commands.
*/
void
aac_complete(void *context)
{
struct aac_softc *sc = (struct aac_softc *)context;
struct aac_command *cm;
struct aac_fib *fib;
u_int32_t fib_size;
AAC_DPRINTF(AAC_D_CMD, ("%s: complete", sc->aac_dev.dv_xname));
/* pull completed commands off the queue */
for (;;) {
/* look for completed FIBs on our queue */
if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
&fib))
break; /* nothing to do */
/* get the command, unmap and hand off for processing */
cm = sc->aac_commands + fib->Header.SenderData;
if (cm == NULL) {
AAC_PRINT_FIB(sc, fib);
break;
}
aac_remove_busy(cm);
aac_unmap_command(cm);
cm->cm_flags |= AAC_CMD_COMPLETED;
/* is there a completion handler? */
if (cm->cm_complete != NULL) {
cm->cm_complete(cm);
} else {
/* assume that someone is sleeping on this command */
wakeup(cm);
}
}
AAC_DPRINTF(AAC_D_CMD, ("\n"));
/* see if we can start some more I/O */
sc->flags &= ~AAC_QUEUE_FRZN;
aac_startio(sc);
}
/*
* Get a bio and build a command to go with it.
*/
int
aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
{
struct aac_command *cm;
struct aac_fib *fib;
struct scsi_xfer *xs;
u_int8_t opcode = 0;
AAC_DPRINTF(AAC_D_CMD, ("%s: bio command", sc->aac_dev.dv_xname));
/* get the resources we will need */
if ((cm = aac_dequeue_bio(sc)) == NULL)
goto fail;
xs = cm->cm_private;
/* build the FIB */
fib = cm->cm_fib;
fib->Header.Size = sizeof(struct aac_fib_header);
fib->Header.XferState =
AAC_FIBSTATE_HOSTOWNED |
AAC_FIBSTATE_INITIALISED |
AAC_FIBSTATE_EMPTY |
AAC_FIBSTATE_FROMHOST |
AAC_FIBSTATE_REXPECTED |
AAC_FIBSTATE_NORM |
AAC_FIBSTATE_ASYNC |
AAC_FIBSTATE_FAST_RESPONSE;
switch(xs->cmd.opcode) {
case READ_COMMAND:
case READ_10:
opcode = READ_COMMAND;
break;
case WRITE_COMMAND:
case WRITE_10:
opcode = WRITE_COMMAND;
break;
default:
panic("%s: invalid opcode %#x", sc->aac_dev.dv_xname,
xs->cmd.opcode);
}
/* build the read/write request */
if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
fib->Header.Command = ContainerCommand;
if (opcode == READ_COMMAND) {
struct aac_blockread *br;
br = (struct aac_blockread *)&fib->data[0];
br->Command = VM_CtBlockRead;
br->ContainerId = xs->sc_link->target;
br->BlockNumber = cm->cm_blkno;
br->ByteCount = cm->cm_bcount * AAC_BLOCK_SIZE;
fib->Header.Size += sizeof(struct aac_blockread);
cm->cm_sgtable = &br->SgMap;
cm->cm_flags |= AAC_CMD_DATAIN;
} else {
struct aac_blockwrite *bw;
bw = (struct aac_blockwrite *)&fib->data[0];
bw->Command = VM_CtBlockWrite;
bw->ContainerId = xs->sc_link->target;
bw->BlockNumber = cm->cm_blkno;
bw->ByteCount = cm->cm_bcount * AAC_BLOCK_SIZE;
bw->Stable = CUNSTABLE;
fib->Header.Size += sizeof(struct aac_blockwrite);
cm->cm_flags |= AAC_CMD_DATAOUT;
cm->cm_sgtable = &bw->SgMap;
}
} else {
fib->Header.Command = ContainerCommand64;
if (opcode == READ_COMMAND) {
struct aac_blockread64 *br;
br = (struct aac_blockread64 *)&fib->data[0];
br->Command = VM_CtHostRead64;
br->ContainerId = xs->sc_link->target;
br->BlockNumber = cm->cm_blkno;
br->SectorCount = cm->cm_bcount;
br->Pad = 0;
br->Flags = 0;
fib->Header.Size += sizeof(struct aac_blockread64);
cm->cm_flags |= AAC_CMD_DATAOUT;
cm->cm_sgtable = (struct aac_sg_table *)&br->SgMap64;
} else {
struct aac_blockwrite64 *bw;
bw = (struct aac_blockwrite64 *)&fib->data[0];
bw->Command = VM_CtHostWrite64;
bw->ContainerId = xs->sc_link->target;
bw->BlockNumber = cm->cm_blkno;
bw->SectorCount = cm->cm_bcount;
bw->Pad = 0;
bw->Flags = 0;
fib->Header.Size += sizeof(struct aac_blockwrite64);
cm->cm_flags |= AAC_CMD_DATAIN;
cm->cm_sgtable = (struct aac_sg_table *)&bw->SgMap64;
}
}
*cmp = cm;
AAC_DPRINTF(AAC_D_CMD, ("\n"));
return(0);
fail:
AAC_DPRINTF(AAC_D_CMD, ("\n"));
return(ENOMEM);
}
/*
* Handle a bio-instigated command that has been completed.
*/
void
aac_bio_complete(struct aac_command *cm)
{
struct aac_blockread_response *brr;
struct aac_blockwrite_response *bwr;
struct scsi_xfer *xs = (struct scsi_xfer *)cm->cm_private;
AAC_FSAStatus status;
int s;
AAC_DPRINTF(AAC_D_CMD,
("%s: bio complete\n", cm->cm_sc->aac_dev.dv_xname));
/* fetch relevant status and then release the command */
if (xs->flags & SCSI_DATA_IN) {
brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
status = brr->Status;
} else {
bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
status = bwr->Status;
}
xs->error = status == ST_OK? XS_NOERROR : XS_DRIVER_STUFFUP;
xs->resid = 0;
s = splbio();
scsi_done(xs);
splx(s);
}
/*
* Submit a command to the controller, return when it completes.
* XXX This is very dangerous! If the card has gone out to lunch, we could
* be stuck here forever. At the same time, signals are not caught
* because there is a risk that a signal could wakeup the tsleep before
* the card has a chance to complete the command. The passed in timeout
* is ignored for the same reason. Since there is no way to cancel a
* command in progress, we should probably create a 'dead' queue where
* commands go that have been interrupted/timed-out/etc, that keeps them
* out of the free pool. That way, if the card is just slow, it won't
* spam the memory of a command that has been recycled.
*/
int
aac_wait_command(struct aac_command *cm, int msecs)
{
struct aac_softc *sc = cm->cm_sc;
int error = 0;
AAC_DPRINTF(AAC_D_CMD, (": wait for command"));
/* Put the command on the ready queue and get things going */
cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
aac_enqueue_ready(cm);
AAC_DPRINTF(AAC_D_CMD, ("\n"));
aac_startio(sc);
while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
AAC_DPRINTF(AAC_D_MISC, ("%s: sleeping until command done\n",
sc->aac_dev.dv_xname));
AAC_LOCK_RELEASE(&sc->aac_io_lock);
error = tsleep_nsec(cm, PRIBIO, "aacwait", MSEC_TO_NSEC(msecs));
AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
}
return (error);
}
/*
*Command Buffer Management
*/
/*
* Allocate a command.
*/
void *
aac_alloc_command(void *xsc)
{
struct aac_softc *sc = xsc;
struct aac_command *cm;
AAC_DPRINTF(AAC_D_CMD, (": allocate command"));
mtx_enter(&sc->aac_free_mtx);
cm = aac_dequeue_free(sc);
mtx_leave(&sc->aac_free_mtx);
return (cm);
}
void
aac_scrub_command(struct aac_command *cm)
{
cm->cm_sgtable = NULL;
cm->cm_flags = 0;
cm->cm_complete = NULL;
cm->cm_private = NULL;
cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
cm->cm_fib->Header.Flags = 0;
cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
}
/*
* Release a command back to the freelist.
*/
void
aac_release_command(void *xsc, void *xcm)
{
struct aac_softc *sc = xsc;
struct aac_command *cm = xcm;
AAC_DPRINTF(AAC_D_CMD, (": release command"));
mtx_enter(&sc->aac_free_mtx);
aac_enqueue_free(cm);
mtx_leave(&sc->aac_free_mtx);
}
/*
* Allocate and initialise commands/FIBs for this adapter.
*/
int
aac_alloc_commands(struct aac_softc *sc)
{
struct aac_command *cm;
struct aac_fibmap *fm;
int i, error = ENOMEM;
if (sc->total_fibs + AAC_FIB_COUNT > sc->aac_max_fibs)
return (ENOMEM);
fm = malloc(sizeof(*fm), M_DEVBUF, M_NOWAIT | M_ZERO);
if (fm == NULL)
goto exit;
/* allocate the FIBs in DMAable memory and load them */
if (bus_dmamem_alloc(sc->aac_dmat, AAC_FIBMAP_SIZE, PAGE_SIZE, 0,
&fm->aac_seg, 1, &fm->aac_nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO)) {
printf("%s: can't alloc FIBs\n", sc->aac_dev.dv_xname);
error = ENOBUFS;
goto exit_alloc;
}
if (bus_dmamem_map(sc->aac_dmat, &fm->aac_seg, 1,
AAC_FIBMAP_SIZE, (caddr_t *)&fm->aac_fibs, BUS_DMA_NOWAIT)) {
printf("%s: can't map FIB structure\n", sc->aac_dev.dv_xname);
error = ENOBUFS;
goto exit_map;
}
if (bus_dmamap_create(sc->aac_dmat, AAC_FIBMAP_SIZE, 1,
AAC_FIBMAP_SIZE, 0, BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
printf("%s: can't create dma map\n", sc->aac_dev.dv_xname);
error = ENOBUFS;
goto exit_create;
}
if (bus_dmamap_load(sc->aac_dmat, fm->aac_fibmap, fm->aac_fibs,
AAC_FIBMAP_SIZE, NULL, BUS_DMA_NOWAIT)) {
printf("%s: can't load dma map\n", sc->aac_dev.dv_xname);
error = ENOBUFS;
goto exit_load;
}
/* initialise constant fields in the command structure */
AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
for (i = 0; i < AAC_FIB_COUNT; i++) {
cm = sc->aac_commands + sc->total_fibs;
fm->aac_commands = cm;
cm->cm_sc = sc;
cm->cm_fib = fm->aac_fibs + i;
cm->cm_fibphys = fm->aac_fibmap->dm_segs[0].ds_addr +
(i * sizeof(struct aac_fib));
cm->cm_index = sc->total_fibs;
if (bus_dmamap_create(sc->aac_dmat, MAXPHYS, AAC_MAXSGENTRIES,
MAXPHYS, 0, BUS_DMA_NOWAIT, &cm->cm_datamap)) {
break;
}
aac_release_command(sc, cm);
sc->total_fibs++;
}
if (i > 0) {
TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
AAC_DPRINTF(AAC_D_MISC, ("%s: total_fibs= %d\n",
sc->aac_dev.dv_xname,
sc->total_fibs));
AAC_LOCK_RELEASE(&sc->aac_io_lock);
return (0);
}
exit_load:
bus_dmamap_destroy(sc->aac_dmat, fm->aac_fibmap);
exit_create:
bus_dmamem_unmap(sc->aac_dmat, (caddr_t)fm->aac_fibs, AAC_FIBMAP_SIZE);
exit_map:
bus_dmamem_free(sc->aac_dmat, &fm->aac_seg, fm->aac_nsegs);
exit_alloc:
free(fm, M_DEVBUF, sizeof *fm);
exit:
AAC_LOCK_RELEASE(&sc->aac_io_lock);
return (error);
}
/*
* Free FIBs owned by this adapter.
*/
void
aac_free_commands(struct aac_softc *sc)
{
struct aac_fibmap *fm;
struct aac_command *cm;
int i;
while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
/*
* We check against total_fibs to handle partially
* allocated blocks.
*/
for (i = 0; i < AAC_FIB_COUNT && sc->total_fibs--; i++) {
cm = fm->aac_commands + i;
bus_dmamap_destroy(sc->aac_dmat, cm->cm_datamap);
}
bus_dmamap_unload(sc->aac_dmat, fm->aac_fibmap);
bus_dmamap_destroy(sc->aac_dmat, fm->aac_fibmap);
bus_dmamem_unmap(sc->aac_dmat, (caddr_t)fm->aac_fibs,
AAC_FIBMAP_SIZE);
bus_dmamem_free(sc->aac_dmat, &fm->aac_seg, fm->aac_nsegs);
free(fm, M_DEVBUF, sizeof *fm);
}
}
/*
* Command-mapping helper function - populate this command's s/g table.
*/
void
aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct aac_command *cm = arg;
struct aac_softc *sc = cm->cm_sc;
struct aac_fib *fib = cm->cm_fib;
int i;
/* copy into the FIB */
if (cm->cm_sgtable != NULL) {
if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
struct aac_sg_table *sg = cm->cm_sgtable;
sg->SgCount = nseg;
for (i = 0; i < nseg; i++) {
sg->SgEntry[i].SgAddress = segs[i].ds_addr;
sg->SgEntry[i].SgByteCount = segs[i].ds_len;
}
/* update the FIB size for the s/g count */
fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
} else {
struct aac_sg_table64 *sg;
sg = (struct aac_sg_table64 *)cm->cm_sgtable;
sg->SgCount = nseg;
for (i = 0; i < nseg; i++) {
sg->SgEntry64[i].SgAddress = segs[i].ds_addr;
sg->SgEntry64[i].SgByteCount = segs[i].ds_len;
}
/* update the FIB size for the s/g count */
fib->Header.Size += nseg*sizeof(struct aac_sg_entry64);
}
}
/* Fix up the address values in the FIB. Use the command array index
* instead of a pointer since these fields are only 32 bits. Shift
* the SenderFibAddress over to make room for the fast response bit.
*/
cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 1);
cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
/* save a pointer to the command for speedy reverse-lookup */
cm->cm_fib->Header.SenderData = cm->cm_index;
if (cm->cm_flags & AAC_CMD_DATAIN)
bus_dmamap_sync(sc->aac_dmat, cm->cm_datamap, 0,
cm->cm_datamap->dm_mapsize,
BUS_DMASYNC_PREREAD);
if (cm->cm_flags & AAC_CMD_DATAOUT)
bus_dmamap_sync(sc->aac_dmat, cm->cm_datamap, 0,
cm->cm_datamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
cm->cm_flags |= AAC_CMD_MAPPED;
/* put the FIB on the outbound queue */
if (aac_enqueue_fib(sc, cm->cm_queue, cm) == EBUSY) {
aac_remove_busy(cm);
aac_unmap_command(cm);
aac_requeue_ready(cm);
}
}
/*
* Unmap a command from controller-visible space.
*/
void
aac_unmap_command(struct aac_command *cm)
{
struct aac_softc *sc = cm->cm_sc;
if (!(cm->cm_flags & AAC_CMD_MAPPED))
return;
if (cm->cm_datalen != 0) {
if (cm->cm_flags & AAC_CMD_DATAIN)
bus_dmamap_sync(sc->aac_dmat, cm->cm_datamap, 0,
cm->cm_datamap->dm_mapsize,
BUS_DMASYNC_POSTREAD);
if (cm->cm_flags & AAC_CMD_DATAOUT)
bus_dmamap_sync(sc->aac_dmat, cm->cm_datamap, 0,
cm->cm_datamap->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->aac_dmat, cm->cm_datamap);
}
cm->cm_flags &= ~AAC_CMD_MAPPED;
}
/*
* Hardware Interface
*/
/*
* Initialise the adapter.
*/
int
aac_check_firmware(struct aac_softc *sc)
{
u_int32_t major, minor, options;
/*
* Retrieve the firmware version numbers. Dell PERC2/QC cards with
* firmware version 1.x are not compatible with this driver.
*/
if (sc->flags & AAC_FLAGS_PERC2QC) {
if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
NULL)) {
printf("%s: Error reading firmware version\n",
sc->aac_dev.dv_xname);
return (EIO);
}
/* These numbers are stored as ASCII! */
major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
if (major == 1) {
printf("%s: Firmware version %d.%d is not supported\n",
sc->aac_dev.dv_xname, major, minor);
return (EINVAL);
}
}
/*
* Retrieve the capabilities/supported options word so we know what
* work-arounds to enable.
*/
if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
printf("%s: RequestAdapterInfo failed\n",
sc->aac_dev.dv_xname);
return (EIO);
}
options = AAC_GET_MAILBOX(sc, 1);
sc->supported_options = options;
if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
(sc->flags & AAC_FLAGS_NO4GB) == 0)
sc->flags |= AAC_FLAGS_4GB_WINDOW;
if (options & AAC_SUPPORTED_NONDASD)
sc->flags |= AAC_FLAGS_ENABLE_CAM;
if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0
&& (sizeof(bus_addr_t) > 4)) {
printf("%s: Enabling 64-bit address support\n",
sc->aac_dev.dv_xname);
sc->flags |= AAC_FLAGS_SG_64BIT;
}
/* Check for broken hardware that does a lower number of commands */
if ((sc->flags & AAC_FLAGS_256FIBS) == 0)
sc->aac_max_fibs = AAC_MAX_FIBS;
else
sc->aac_max_fibs = 256;
return (0);
}
int
aac_init(struct aac_softc *sc)
{
bus_dma_segment_t seg;
int nsegs;
int i, error;
int state = 0;
struct aac_adapter_init *ip;
time_t then;
u_int32_t code, qoffset;
/*
* First wait for the adapter to come ready.
*/
then = getuptime();
for (i = 0; i < AAC_BOOT_TIMEOUT * 1000; i++) {
code = AAC_GET_FWSTATUS(sc);
if (code & AAC_SELF_TEST_FAILED) {
printf("%s: FATAL: selftest failed\n",
sc->aac_dev.dv_xname);
return (ENXIO);
}
if (code & AAC_KERNEL_PANIC) {
printf("%s: FATAL: controller kernel panic\n",
sc->aac_dev.dv_xname);
return (ENXIO);
}
if (code & AAC_UP_AND_RUNNING)
break;
DELAY(1000);
}
if (i == AAC_BOOT_TIMEOUT * 1000) {
printf("%s: FATAL: controller not coming ready, status %x\n",
sc->aac_dev.dv_xname, code);
return (ENXIO);
}
/*
* Work around a bug in the 2120 and 2200 that cannot DMA commands
* below address 8192 in physical memory.
* XXX If the padding is not needed, can it be put to use instead
* of ignored?
*/
if (bus_dmamem_alloc(sc->aac_dmat, AAC_COMMON_ALLOCSIZE, PAGE_SIZE, 0,
&seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO)) {
printf("%s: can't allocate common structure\n",
sc->aac_dev.dv_xname);
return (ENOMEM);
}
state++;
if (bus_dmamem_map(sc->aac_dmat, &seg, nsegs, AAC_COMMON_ALLOCSIZE,
(caddr_t *)&sc->aac_common, BUS_DMA_NOWAIT)) {
printf("%s: can't map common structure\n",
sc->aac_dev.dv_xname);
error = ENOMEM;
goto bail_out;
}
state++;
if (bus_dmamap_create(sc->aac_dmat, AAC_COMMON_ALLOCSIZE, 1,
AAC_COMMON_ALLOCSIZE, 0, BUS_DMA_NOWAIT, &sc->aac_common_map)) {
printf("%s: can't create dma map\n", sc->aac_dev.dv_xname);
error = ENOBUFS;
goto bail_out;
}
state++;
if (bus_dmamap_load(sc->aac_dmat, sc->aac_common_map, sc->aac_common,
AAC_COMMON_ALLOCSIZE, NULL, BUS_DMA_NOWAIT)) {
printf("%s: can't load dma map\n", sc->aac_dev.dv_xname);
error = ENOBUFS;
goto bail_out;
}
state++;
sc->aac_common_busaddr = sc->aac_common_map->dm_segs[0].ds_addr;
if (sc->aac_common_busaddr < 8192) {
sc->aac_common = (struct aac_common *)
((uint8_t *)sc->aac_common + 8192);
sc->aac_common_busaddr += 8192;
}
/* Allocate some FIBs and associated command structs */
TAILQ_INIT(&sc->aac_fibmap_tqh);
sc->aac_commands = malloc(AAC_MAX_FIBS * sizeof(struct aac_command),
M_DEVBUF, M_WAITOK | M_ZERO);
while (sc->total_fibs < AAC_MAX_FIBS) {
if (aac_alloc_commands(sc) != 0)
break;
}
if (sc->total_fibs == 0) {
error = ENOMEM;
goto bail_out;
}
scsi_iopool_init(&sc->aac_iopool, sc,
aac_alloc_command, aac_release_command);
/*
* Fill in the init structure. This tells the adapter about the
* physical location of various important shared data structures.
*/
ip = &sc->aac_common->ac_init;
ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
offsetof(struct aac_common, ac_fibs);
ip->AdapterFibsVirtualAddress = 0;
ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
ip->AdapterFibAlign = sizeof(struct aac_fib);
ip->PrintfBufferAddress = sc->aac_common_busaddr +
offsetof(struct aac_common, ac_printf);
ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
/*
* The adapter assumes that pages are 4K in size, except on some
* broken firmware versions that do the page->byte conversion twice,
* therefore 'assuming' that this value is in 16MB units (2^24).
* Round up since the granularity is so high.
*/
ip->HostPhysMemPages = ptoa(physmem) / AAC_PAGE_SIZE;
if (sc->flags & AAC_FLAGS_BROKEN_MEMMAP) {
ip->HostPhysMemPages =
(ip->HostPhysMemPages + AAC_PAGE_SIZE) / AAC_PAGE_SIZE;
}
ip->HostElapsedSeconds = getuptime(); /* reset later if invalid */
/*
* Initialise FIB queues. Note that it appears that the layout of the
* indexes and the segmentation of the entries may be mandated by the
* adapter, which is only told about the base of the queue index fields.
*
* The initial values of the indices are assumed to inform the adapter
* of the sizes of the respective queues, and theoretically it could
* work out the entire layout of the queue structures from this. We
* take the easy route and just lay this area out like everyone else
* does.
*
* The Linux driver uses a much more complex scheme whereby several
* header records are kept for each queue. We use a couple of generic
* list manipulation functions which 'know' the size of each list by
* virtue of a table.
*/
qoffset = offsetof(struct aac_common, ac_qbuf) + AAC_QUEUE_ALIGN;
qoffset &= ~(AAC_QUEUE_ALIGN - 1);
sc->aac_queues =
(struct aac_queue_table *)((caddr_t)sc->aac_common + qoffset);
ip->CommHeaderAddress = sc->aac_common_busaddr + qoffset;
sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
AAC_HOST_NORM_CMD_ENTRIES;
sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
AAC_HOST_NORM_CMD_ENTRIES;
sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
AAC_HOST_HIGH_CMD_ENTRIES;
sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
AAC_HOST_HIGH_CMD_ENTRIES;
sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
AAC_ADAP_NORM_CMD_ENTRIES;
sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
AAC_ADAP_NORM_CMD_ENTRIES;
sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
AAC_ADAP_HIGH_CMD_ENTRIES;
sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
AAC_ADAP_HIGH_CMD_ENTRIES;
sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
AAC_HOST_NORM_RESP_ENTRIES;
sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
AAC_HOST_NORM_RESP_ENTRIES;
sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
AAC_HOST_HIGH_RESP_ENTRIES;
sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
AAC_HOST_HIGH_RESP_ENTRIES;
sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
AAC_ADAP_NORM_RESP_ENTRIES;
sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
AAC_ADAP_NORM_RESP_ENTRIES;
sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
AAC_ADAP_HIGH_RESP_ENTRIES;
sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
AAC_ADAP_HIGH_RESP_ENTRIES;
sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
&sc->aac_queues->qt_HostNormCmdQueue[0];
sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
&sc->aac_queues->qt_HostHighCmdQueue[0];
sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
&sc->aac_queues->qt_AdapNormCmdQueue[0];
sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
&sc->aac_queues->qt_AdapHighCmdQueue[0];
sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
&sc->aac_queues->qt_HostNormRespQueue[0];
sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
&sc->aac_queues->qt_HostHighRespQueue[0];
sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
&sc->aac_queues->qt_AdapNormRespQueue[0];
sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
&sc->aac_queues->qt_AdapHighRespQueue[0];
/*
* Do controller-type-specific initialisation
*/
switch (sc->aac_hwif) {
case AAC_HWIF_I960RX:
AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
break;
case AAC_HWIF_RKT:
AAC_SETREG4(sc, AAC_RKT_ODBR, ~0);
break;
default:
break;
}
/*
* Give the init structure to the controller.
*/
if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
sc->aac_common_busaddr +
offsetof(struct aac_common, ac_init), 0, 0, 0,
NULL)) {
printf("%s: error establishing init structure\n",
sc->aac_dev.dv_xname);
error = EIO;
goto bail_out;
}
aac_describe_controller(sc);
aac_startup(sc);
return (0);
bail_out:
if (state > 3)
bus_dmamap_unload(sc->aac_dmat, sc->aac_common_map);
if (state > 2)
bus_dmamap_destroy(sc->aac_dmat, sc->aac_common_map);
if (state > 1)
bus_dmamem_unmap(sc->aac_dmat, (caddr_t)sc->aac_common,
sizeof *sc->aac_common);
if (state > 0)
bus_dmamem_free(sc->aac_dmat, &seg, 1);
return (error);
}
/*
* Send a synchronous command to the controller and wait for a result.
*/
int
aac_sync_command(struct aac_softc *sc, u_int32_t command, u_int32_t arg0,
u_int32_t arg1, u_int32_t arg2, u_int32_t arg3, u_int32_t *sp)
{
// time_t then;
int i;
u_int32_t status;
u_int16_t reason;
/* populate the mailbox */
AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
/* ensure the sync command doorbell flag is cleared */
AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
/* then set it to signal the adapter */
AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
DELAY(AAC_SYNC_DELAY);
/* spin waiting for the command to complete */
for (i = 0; i < AAC_IMMEDIATE_TIMEOUT * 1000; i++) {
reason = AAC_GET_ISTATUS(sc);
if (reason & AAC_DB_SYNC_COMMAND)
break;
reason = AAC_GET_ISTATUS(sc);
if (reason & AAC_DB_SYNC_COMMAND)
break;
reason = AAC_GET_ISTATUS(sc);
if (reason & AAC_DB_SYNC_COMMAND)
break;
DELAY(1000);
}
if (i == AAC_IMMEDIATE_TIMEOUT * 1000) {
printf("aac_sync_command: failed, reason=%#x\n", reason);
return (EIO);
}
/* clear the completion flag */
AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
/* get the command status */
status = AAC_GET_MAILBOX(sc, 0);
if (sp != NULL)
*sp = status;
return(0);
}
/*
* Grab the sync fib area.
*/
int
aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
{
/*
* If the force flag is set, the system is shutting down, or in
* trouble. Ignore the mutex.
*/
if (!(flags & AAC_SYNC_LOCK_FORCE))
AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
*fib = &sc->aac_common->ac_sync_fib;
return (1);
}
/*
* Release the sync fib area.
*/
void
aac_release_sync_fib(struct aac_softc *sc)
{
AAC_LOCK_RELEASE(&sc->aac_sync_lock);
}
/*
* Send a synchronous FIB to the controller and wait for a result.
*/
int
aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
struct aac_fib *fib, u_int16_t datasize)
{
if (datasize > AAC_FIB_DATASIZE) {
printf("aac_sync_fib 1: datasize=%d AAC_FIB_DATASIZE %lu\n",
datasize, AAC_FIB_DATASIZE);
return(EINVAL);
}
/*
* Set up the sync FIB
*/
fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
AAC_FIBSTATE_INITIALISED |
AAC_FIBSTATE_EMPTY;
fib->Header.XferState |= xferstate;
fib->Header.Command = command;
fib->Header.StructType = AAC_FIBTYPE_TFIB;
fib->Header.Size = sizeof(struct aac_fib) + datasize;
fib->Header.SenderSize = sizeof(struct aac_fib);
fib->Header.SenderFibAddress = 0; /* Not needed */
fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
offsetof(struct aac_common,
ac_sync_fib);
/*
* Give the FIB to the controller, wait for a response.
*/
if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
AAC_DPRINTF(AAC_D_IO, ("%s: aac_sync_fib: IO error\n",
sc->aac_dev.dv_xname));
printf("aac_sync_fib 2\n");
return(EIO);
}
return (0);
}
/*****************************************************************************
* Adapter-space FIB queue manipulation
*
* Note that the queue implementation here is a little funky; neither the PI or
* CI will ever be zero. This behaviour is a controller feature.
*/
static struct {
int size;
int notify;
} aac_qinfo[] = {
{ AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL },
{ AAC_HOST_HIGH_CMD_ENTRIES, 0 },
{ AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY },
{ AAC_ADAP_HIGH_CMD_ENTRIES, 0 },
{ AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL },
{ AAC_HOST_HIGH_RESP_ENTRIES, 0 },
{ AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY },
{ AAC_ADAP_HIGH_RESP_ENTRIES, 0 }
};
/*
* Atomically insert an entry into the nominated queue, returns 0 on success
* or EBUSY if the queue is full.
*
* Note: it would be more efficient to defer notifying the controller in
* the case where we may be inserting several entries in rapid
* succession, but implementing this usefully may be difficult
* (it would involve a separate queue/notify interface).
*/
int
aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
{
u_int32_t pi, ci;
int error;
u_int32_t fib_size;
u_int32_t fib_addr;
fib_size = cm->cm_fib->Header.Size;
fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
/* get the producer/consumer indices */
pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
/* wrap the queue? */
if (pi >= aac_qinfo[queue].size)
pi = 0;
/* check for queue full */
if ((pi + 1) == ci) {
error = EBUSY;
goto out;
}
/* populate queue entry */
(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
/* update producer index */
sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
/*
* To avoid a race with its completion interrupt, place this command on
* the busy queue prior to advertising it to the controller.
*/
aac_enqueue_busy(cm);
/* notify the adapter if we know how */
if (aac_qinfo[queue].notify != 0)
AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
error = 0;
out:
return (error);
}
/*
* Atomically remove one entry from the nominated queue, returns 0 on success
* or ENOENT if the queue is empty.
*/
int
aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
struct aac_fib **fib_addr)
{
u_int32_t pi, ci;
u_int32_t fib_index;
int notify;
int error;
/* get the producer/consumer indices */
pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
/* check for queue empty */
if (ci == pi) {
error = ENOENT;
goto out;
}
/* wrap the pi so the following test works */
if (pi >= aac_qinfo[queue].size)
pi = 0;
notify = 0;
if (ci == pi + 1)
notify++;
/* wrap the queue? */
if (ci >= aac_qinfo[queue].size)
ci = 0;
/* fetch the entry */
*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
switch (queue) {
case AAC_HOST_NORM_CMD_QUEUE:
case AAC_HOST_HIGH_CMD_QUEUE:
/*
* The aq_fib_addr is only 32 bits wide so it can't be counted
* on to hold an address. For AIF's, the adapter assumes
* that it's giving us an address into the array of AIF fibs.
* Therefore, we have to convert it to an index.
*/
fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr /
sizeof(struct aac_fib);
*fib_addr = &sc->aac_common->ac_fibs[fib_index];
break;
case AAC_HOST_NORM_RESP_QUEUE:
case AAC_HOST_HIGH_RESP_QUEUE:
{
struct aac_command *cm;
/*
* As above, an index is used instead of an actual address.
* Gotta shift the index to account for the fast response
* bit. No other correction is needed since this value was
* originally provided by the driver via the SenderFibAddress
* field.
*/
fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr;
cm = sc->aac_commands + (fib_index >> 1);
*fib_addr = cm->cm_fib;
/*
* Is this a fast response? If it is, update the fib fields in
* local memory since the whole fib isn't DMA'd back up.
*/
if (fib_index & 0x01) {
(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
}
break;
}
default:
panic("Invalid queue in aac_dequeue_fib()");
break;
}
/* update consumer index */
sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
/* if we have made the queue un-full, notify the adapter */
if (notify && (aac_qinfo[queue].notify != 0))
AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
error = 0;
out:
return (error);
}
/*
* Put our response to an Adapter Initialed Fib on the response queue
*/
int
aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
{
u_int32_t pi, ci;
int error;
u_int32_t fib_size;
u_int32_t fib_addr;
/* Tell the adapter where the FIB is */
fib_size = fib->Header.Size;
fib_addr = fib->Header.SenderFibAddress;
fib->Header.ReceiverFibAddress = fib_addr;
/* get the producer/consumer indices */
pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
/* wrap the queue? */
if (pi >= aac_qinfo[queue].size)
pi = 0;
/* check for queue full */
if ((pi + 1) == ci) {
error = EBUSY;
goto out;
}
/* populate queue entry */
(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
/* update producer index */
sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
/* notify the adapter if we know how */
if (aac_qinfo[queue].notify != 0)
AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
error = 0;
out:
return(error);
}
void
aac_command_timeout(struct aac_command *cm)
{
struct aac_softc *sc = cm->cm_sc;
printf("%s: COMMAND %p (flags=%#x) TIMEOUT AFTER %d SECONDS\n",
sc->aac_dev.dv_xname, cm, cm->cm_flags,
(int)(getuptime() - cm->cm_timestamp));
if (cm->cm_flags & AAC_CMD_TIMEDOUT)
return;
cm->cm_flags |= AAC_CMD_TIMEDOUT;
AAC_PRINT_FIB(sc, cm->cm_fib);
if (cm->cm_flags & AAC_ON_AACQ_BIO) {
struct scsi_xfer *xs = cm->cm_private;
int s = splbio();
xs->error = XS_DRIVER_STUFFUP;
splx(s);
scsi_done(xs);
aac_remove_bio(cm);
aac_unmap_command(cm);
}
}
void
aac_timeout(struct aac_softc *sc)
{
struct aac_command *cm;
time_t deadline;
/*
* Traverse the busy command list and timeout any commands
* that are past their deadline.
*/
deadline = getuptime() - AAC_CMD_TIMEOUT;
TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
if (cm->cm_timestamp < deadline)
aac_command_timeout(cm);
}
}
/*
* Interface Function Vectors
*/
/*
* Read the current firmware status word.
*/
int
aac_sa_get_fwstatus(struct aac_softc *sc)
{
return (AAC_GETREG4(sc, AAC_SA_FWSTATUS));
}
int
aac_rx_get_fwstatus(struct aac_softc *sc)
{
return (AAC_GETREG4(sc, AAC_RX_FWSTATUS));
}
int
aac_fa_get_fwstatus(struct aac_softc *sc)
{
return (AAC_GETREG4(sc, AAC_FA_FWSTATUS));
}
int
aac_rkt_get_fwstatus(struct aac_softc *sc)
{
return(AAC_GETREG4(sc, AAC_RKT_FWSTATUS));
}
/*
* Notify the controller of a change in a given queue
*/
void
aac_sa_qnotify(struct aac_softc *sc, int qbit)
{
AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
}
void
aac_rx_qnotify(struct aac_softc *sc, int qbit)
{
AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
}
void
aac_fa_qnotify(struct aac_softc *sc, int qbit)
{
AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
AAC_FA_HACK(sc);
}
void
aac_rkt_qnotify(struct aac_softc *sc, int qbit)
{
AAC_SETREG4(sc, AAC_RKT_IDBR, qbit);
}
/*
* Get the interrupt reason bits
*/
int
aac_sa_get_istatus(struct aac_softc *sc)
{
return (AAC_GETREG2(sc, AAC_SA_DOORBELL0));
}
int
aac_rx_get_istatus(struct aac_softc *sc)
{
return (AAC_GETREG4(sc, AAC_RX_ODBR));
}
int
aac_fa_get_istatus(struct aac_softc *sc)
{
return (AAC_GETREG2(sc, AAC_FA_DOORBELL0));
}
int
aac_rkt_get_istatus(struct aac_softc *sc)
{
return(AAC_GETREG4(sc, AAC_RKT_ODBR));
}
/*
* Clear some interrupt reason bits
*/
void
aac_sa_clear_istatus(struct aac_softc *sc, int mask)
{
AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
}
void
aac_rx_clear_istatus(struct aac_softc *sc, int mask)
{
AAC_SETREG4(sc, AAC_RX_ODBR, mask);
}
void
aac_fa_clear_istatus(struct aac_softc *sc, int mask)
{
AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
AAC_FA_HACK(sc);
}
void
aac_rkt_clear_istatus(struct aac_softc *sc, int mask)
{
AAC_SETREG4(sc, AAC_RKT_ODBR, mask);
}
/*
* Populate the mailbox and set the command word
*/
void
aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command, u_int32_t arg0,
u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
{
AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
}
void
aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command, u_int32_t arg0,
u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
{
AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
}
void
aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command, u_int32_t arg0,
u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
{
AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
AAC_FA_HACK(sc);
AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
AAC_FA_HACK(sc);
AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
AAC_FA_HACK(sc);
AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
AAC_FA_HACK(sc);
AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
AAC_FA_HACK(sc);
}
void
aac_rkt_set_mailbox(struct aac_softc *sc, u_int32_t command, u_int32_t arg0,
u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
{
AAC_SETREG4(sc, AAC_RKT_MAILBOX, command);
AAC_SETREG4(sc, AAC_RKT_MAILBOX + 4, arg0);
AAC_SETREG4(sc, AAC_RKT_MAILBOX + 8, arg1);
AAC_SETREG4(sc, AAC_RKT_MAILBOX + 12, arg2);
AAC_SETREG4(sc, AAC_RKT_MAILBOX + 16, arg3);
}
/*
* Fetch the immediate command status word
*/
int
aac_sa_get_mailbox(struct aac_softc *sc, int mb)
{
return (AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
}
int
aac_rx_get_mailbox(struct aac_softc *sc, int mb)
{
return (AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
}
int
aac_fa_get_mailbox(struct aac_softc *sc, int mb)
{
return (AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4)));
}
int
aac_rkt_get_mailbox(struct aac_softc *sc, int mb)
{
return(AAC_GETREG4(sc, AAC_RKT_MAILBOX + (mb * 4)));
}
/*
* Set/clear interrupt masks
*/
void
aac_sa_set_interrupts(struct aac_softc *sc, int enable)
{
AAC_DPRINTF(AAC_D_INTR, ("%s: %sable interrupts\n",
sc->aac_dev.dv_xname, enable ? "en" : "dis"));
if (enable)
AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
else
AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
}
void
aac_rx_set_interrupts(struct aac_softc *sc, int enable)
{
AAC_DPRINTF(AAC_D_INTR, ("%s: %sable interrupts",
sc->aac_dev.dv_xname, enable ? "en" : "dis"));
if (enable)
AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
else
AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
}
void
aac_fa_set_interrupts(struct aac_softc *sc, int enable)
{
AAC_DPRINTF(AAC_D_INTR, ("%s: %sable interrupts",
sc->aac_dev.dv_xname, enable ? "en" : "dis"));
if (enable) {
AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
AAC_FA_HACK(sc);
} else {
AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
AAC_FA_HACK(sc);
}
}
void
aac_rkt_set_interrupts(struct aac_softc *sc, int enable)
{
AAC_DPRINTF(AAC_D_INTR, ("%s: %sable interrupts",
sc->aac_dev.dv_xname, enable ? "en" : "dis"));
if (enable)
AAC_SETREG4(sc, AAC_RKT_OIMR, ~AAC_DB_INTERRUPTS);
else
AAC_SETREG4(sc, AAC_RKT_OIMR, ~0);
}
void
aac_eval_mapping(u_int32_t size, int *cyls, int *heads, int *secs)
{
*cyls = size / AAC_HEADS / AAC_SECS;
if (*cyls < AAC_MAXCYLS) {
*heads = AAC_HEADS;
*secs = AAC_SECS;
} else {
/* Too high for 64 * 32 */
*cyls = size / AAC_MEDHEADS / AAC_MEDSECS;
if (*cyls < AAC_MAXCYLS) {
*heads = AAC_MEDHEADS;
*secs = AAC_MEDSECS;
} else {
/* Too high for 127 * 63 */
*cyls = size / AAC_BIGHEADS / AAC_BIGSECS;
*heads = AAC_BIGHEADS;
*secs = AAC_BIGSECS;
}
}
}
/* Emulated SCSI operation on cache device */
void
aac_internal_cache_cmd(struct scsi_xfer *xs)
{
struct scsi_link *link = xs->sc_link;
struct aac_softc *sc = link->bus->sb_adapter_softc;
struct scsi_inquiry_data inq;
struct scsi_sense_data sd;
struct scsi_read_cap_data rcd;
u_int8_t target = link->target;
AAC_DPRINTF(AAC_D_CMD, ("%s: aac_internal_cache_cmd: ",
sc->aac_dev.dv_xname));
switch (xs->cmd.opcode) {
case TEST_UNIT_READY:
case START_STOP:
#if 0
case VERIFY:
#endif
AAC_DPRINTF(AAC_D_CMD, ("opc %#x tgt %d ", xs->cmd.opcode,
target));
break;
case REQUEST_SENSE:
AAC_DPRINTF(AAC_D_CMD, ("REQUEST SENSE tgt %d ", target));
bzero(&sd, sizeof sd);
sd.error_code = SSD_ERRCODE_CURRENT;
sd.segment = 0;
sd.flags = SKEY_NO_SENSE;
aac_enc32(sd.info, 0);
sd.extra_len = 0;
scsi_copy_internal_data(xs, &sd, sizeof(sd));
break;
case INQUIRY:
AAC_DPRINTF(AAC_D_CMD, ("INQUIRY tgt %d devtype %x ", target,
sc->aac_hdr[target].hd_devtype));
bzero(&inq, sizeof inq);
/* XXX How do we detect removable/CD-ROM devices? */
inq.device = T_DIRECT;
inq.dev_qual2 = 0;
inq.version = SCSI_REV_2;
inq.response_format = SID_SCSI2_RESPONSE;
inq.additional_length = SID_SCSI2_ALEN;
inq.flags |= SID_CmdQue;
strlcpy(inq.vendor, "Adaptec", sizeof inq.vendor);
snprintf(inq.product, sizeof inq.product, "Container #%02d",
target);
strlcpy(inq.revision, " ", sizeof inq.revision);
scsi_copy_internal_data(xs, &inq, sizeof(inq));
break;
case READ_CAPACITY:
AAC_DPRINTF(AAC_D_CMD, ("READ CAPACITY tgt %d ", target));
bzero(&rcd, sizeof rcd);
_lto4b(sc->aac_hdr[target].hd_size - 1, rcd.addr);
_lto4b(AAC_BLOCK_SIZE, rcd.length);
scsi_copy_internal_data(xs, (u_int8_t *)&rcd, sizeof rcd);
break;
default:
AAC_DPRINTF(AAC_D_CMD, ("\n"));
printf("aac_internal_cache_cmd got bad opcode: %#x\n",
xs->cmd.opcode);
xs->error = XS_DRIVER_STUFFUP;
return;
}
xs->error = XS_NOERROR;
}
void
aac_scsi_cmd(struct scsi_xfer *xs)
{
struct scsi_link *link = xs->sc_link;
struct aac_softc *sc = link->bus->sb_adapter_softc;
u_int8_t target = link->target;
struct aac_command *cm;
u_int32_t blockno, blockcnt;
struct scsi_rw *rw;
struct scsi_rw_10 *rw10;
int s;
s = splbio();
xs->error = XS_NOERROR;
if (target >= AAC_MAX_CONTAINERS || !sc->aac_hdr[target].hd_present ||
link->lun != 0) {
/*
* XXX Should be XS_SENSE but that would require setting up a
* faked sense too.
*/
splx(s);
xs->error = XS_DRIVER_STUFFUP;
scsi_done(xs);
return;
}
AAC_DPRINTF(AAC_D_CMD, ("%s: aac_scsi_cmd: ", sc->aac_dev.dv_xname));
xs->error = XS_NOERROR;
cm = NULL;
link = xs->sc_link;
target = link->target;
switch (xs->cmd.opcode) {
case TEST_UNIT_READY:
case REQUEST_SENSE:
case INQUIRY:
case START_STOP:
case READ_CAPACITY:
#if 0
case VERIFY:
#endif
aac_internal_cache_cmd(xs);
scsi_done(xs);
goto ready;
case PREVENT_ALLOW:
AAC_DPRINTF(AAC_D_CMD, ("PREVENT/ALLOW "));
/* XXX Not yet implemented */
xs->error = XS_NOERROR;
scsi_done(xs);
goto ready;
case SYNCHRONIZE_CACHE:
AAC_DPRINTF(AAC_D_CMD, ("SYNCHRONIZE_CACHE "));
/* XXX Not yet implemented */
xs->error = XS_NOERROR;
scsi_done(xs);
goto ready;
default:
AAC_DPRINTF(AAC_D_CMD, ("unknown opc %#x ", xs->cmd.opcode));
/* XXX Not yet implemented */
xs->error = XS_DRIVER_STUFFUP;
scsi_done(xs);
goto ready;
case READ_COMMAND:
case READ_10:
case WRITE_COMMAND:
case WRITE_10:
AAC_DPRINTF(AAC_D_CMD, ("rw opc %#x ", xs->cmd.opcode));
/* A read or write operation. */
if (xs->cmdlen == 6) {
rw = (struct scsi_rw *)&xs->cmd;
blockno = _3btol(rw->addr) &
(SRW_TOPADDR << 16 | 0xffff);
blockcnt = rw->length ? rw->length : 0x100;
} else {
rw10 = (struct scsi_rw_10 *)&xs->cmd;
blockno = _4btol(rw10->addr);
blockcnt = _2btol(rw10->length);
}
AAC_DPRINTF(AAC_D_CMD, ("opcode=%d blkno=%d bcount=%d ",
xs->cmd.opcode, blockno, blockcnt));
if (blockno >= sc->aac_hdr[target].hd_size ||
blockno + blockcnt > sc->aac_hdr[target].hd_size) {
AAC_DPRINTF(AAC_D_CMD, ("\n"));
printf("%s: out of bounds %u-%u >= %u\n",
sc->aac_dev.dv_xname, blockno,
blockcnt, sc->aac_hdr[target].hd_size);
/*
* XXX Should be XS_SENSE but that
* would require setting up a faked
* sense too.
*/
xs->error = XS_DRIVER_STUFFUP;
scsi_done(xs);
goto ready;
}
cm = xs->io;
aac_scrub_command(cm);
/* fill out the command */
cm->cm_data = (void *)xs->data;
cm->cm_datalen = xs->datalen;
cm->cm_complete = aac_bio_complete;
cm->cm_private = xs;
cm->cm_timestamp = getuptime();
cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
cm->cm_blkno = blockno;
cm->cm_bcount = blockcnt;
AAC_DPRINTF(AAC_D_CMD, ("\n"));
aac_enqueue_bio(cm);
aac_startio(sc);
/* XXX what if enqueue did not start a transfer? */
if (xs->flags & SCSI_POLL) {
if (!aac_wait_command(cm, xs->timeout))
{
printf("%s: command timed out\n",
sc->aac_dev.dv_xname);
xs->error = XS_DRIVER_STUFFUP;
scsi_done(xs);
splx(s);
return;
}
scsi_done(xs);
}
}
ready:
splx(s);
AAC_DPRINTF(AAC_D_CMD, ("%s: scsi_cmd complete\n",
sc->aac_dev.dv_xname));
}
/*
* Debugging and Diagnostics
*/
/*
* Print some information about the controller.
*/
void
aac_describe_controller(struct aac_softc *sc)
{
struct aac_fib *fib;
struct aac_adapter_info *info;
aac_alloc_sync_fib(sc, &fib, 0);
fib->data[0] = 0;
if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
printf("%s: RequestAdapterInfo failed 2\n",
sc->aac_dev.dv_xname);
aac_release_sync_fib(sc);
return;
}
info = (struct aac_adapter_info *)&fib->data[0];
printf("%s: %s %dMHz, %dMB cache memory, %s\n", sc->aac_dev.dv_xname,
aac_describe_code(aac_cpu_variant, info->CpuVariant),
info->ClockSpeed, info->BufferMem / (1024 * 1024),
aac_describe_code(aac_battery_platform, info->batteryPlatform));
/* save the kernel revision structure for later use */
sc->aac_revision = info->KernelRevision;
printf("%s: Kernel %d.%d-%d, Build %d, S/N %6X\n",
sc->aac_dev.dv_xname,
info->KernelRevision.external.comp.major,
info->KernelRevision.external.comp.minor,
info->KernelRevision.external.comp.dash,
info->KernelRevision.buildNumber,
(u_int32_t)(info->SerialNumber & 0xffffff));
aac_release_sync_fib(sc);
}
/*
* Look up a text description of a numeric error code and return a pointer to
* same.
*/
char *
aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
{
int i;
for (i = 0; table[i].string != NULL; i++)
if (table[i].code == code)
return(table[i].string);
return(table[i + 1].string);
}
#ifdef AAC_DEBUG
/*
* Print a FIB
*/
void
aac_print_fib(struct aac_softc *sc, struct aac_fib *fib, const char *caller)
{
printf("%s: FIB @ %p\n", caller, fib);
printf(" XferState %b\n", fib->Header.XferState, "\20"
"\1HOSTOWNED"
"\2ADAPTEROWNED"
"\3INITIALISED"
"\4EMPTY"
"\5FROMPOOL"
"\6FROMHOST"
"\7FROMADAP"
"\10REXPECTED"
"\11RNOTEXPECTED"
"\12DONEADAP"
"\13DONEHOST"
"\14HIGH"
"\15NORM"
"\16ASYNC"
"\17PAGEFILEIO"
"\20SHUTDOWN"
"\21LAZYWRITE"
"\22ADAPMICROFIB"
"\23BIOSFIB"
"\24FAST_RESPONSE"
"\25APIFIB\n");
printf(" Command %d\n", fib->Header.Command);
printf(" StructType %d\n", fib->Header.StructType);
printf(" Flags 0x%x\n", fib->Header.Flags);
printf(" Size %d\n", fib->Header.Size);
printf(" SenderSize %d\n", fib->Header.SenderSize);
printf(" SenderAddress 0x%x\n", fib->Header.SenderFibAddress);
printf(" ReceiverAddress 0x%x\n", fib->Header.ReceiverFibAddress);
printf(" SenderData 0x%x\n", fib->Header.SenderData);
switch(fib->Header.Command) {
case ContainerCommand: {
struct aac_blockread *br = (struct aac_blockread *)fib->data;
struct aac_blockwrite *bw = (struct aac_blockwrite *)fib->data;
struct aac_sg_table *sg = NULL;
int i;
if (br->Command == VM_CtBlockRead) {
printf(" BlockRead: container %d 0x%x/%d\n",
br->ContainerId, br->BlockNumber, br->ByteCount);
sg = &br->SgMap;
}
if (bw->Command == VM_CtBlockWrite) {
printf(" BlockWrite: container %d 0x%x/%d (%s)\n",
bw->ContainerId, bw->BlockNumber, bw->ByteCount,
bw->Stable == CSTABLE ? "stable" : "unstable");
sg = &bw->SgMap;
}
if (sg != NULL) {
printf(" %d s/g entries\n", sg->SgCount);
for (i = 0; i < sg->SgCount; i++)
printf(" 0x%08x/%d\n",
sg->SgEntry[i].SgAddress,
sg->SgEntry[i].SgByteCount);
}
break;
}
default:
printf(" %16D\n", fib->data, " ");
printf(" %16D\n", fib->data + 16, " ");
break;
}
}
/*
* Describe an AIF we have received.
*/
void
aac_print_aif(struct aac_softc *sc, struct aac_aif_command *aif)
{
printf("%s: print_aif: ", sc->aac_dev.dv_xname);
switch(aif->command) {
case AifCmdEventNotify:
printf("EventNotify(%d)\n", aif->seqNumber);
switch(aif->data.EN.type) {
case AifEnGeneric:
/* Generic notification */
printf("\t(Generic) %.*s\n",
(int)sizeof(aif->data.EN.data.EG),
aif->data.EN.data.EG.text);
break;
case AifEnTaskComplete:
/* Task has completed */
printf("\t(TaskComplete)\n");
break;
case AifEnConfigChange:
/* Adapter configuration change occurred */
printf("\t(ConfigChange)\n");
break;
case AifEnContainerChange:
/* Adapter specific container configuration change */
printf("\t(ContainerChange) container %d,%d\n",
aif->data.EN.data.ECC.container[0],
aif->data.EN.data.ECC.container[1]);
break;
case AifEnDeviceFailure:
/* SCSI device failed */
printf("\t(DeviceFailure) handle %d\n",
aif->data.EN.data.EDF.deviceHandle);
break;
case AifEnMirrorFailover:
/* Mirror failover started */
printf("\t(MirrorFailover) container %d failed, "
"migrating from slice %d to %d\n",
aif->data.EN.data.EMF.container,
aif->data.EN.data.EMF.failedSlice,
aif->data.EN.data.EMF.creatingSlice);
break;
case AifEnContainerEvent:
/* Significant container event */
printf("\t(ContainerEvent) container %d event %d\n",
aif->data.EN.data.ECE.container,
aif->data.EN.data.ECE.eventType);
break;
case AifEnFileSystemChange:
/* File system changed */
printf("\t(FileSystemChange)\n");
break;
case AifEnConfigPause:
/* Container pause event */
printf("\t(ConfigPause)\n");
break;
case AifEnConfigResume:
/* Container resume event */
printf("\t(ConfigResume)\n");
break;
case AifEnFailoverChange:
/* Failover space assignment changed */
printf("\t(FailoverChange)\n");
break;
case AifEnRAID5RebuildDone:
/* RAID5 rebuild finished */
printf("\t(RAID5RebuildDone)\n");
break;
case AifEnEnclosureManagement:
/* Enclosure management event */
printf("\t(EnclosureManagement) EMPID %d unit %d "
"event %d\n",
aif->data.EN.data.EEE.empID,
aif->data.EN.data.EEE.unitID,
aif->data.EN.data.EEE.eventType);
break;
case AifEnBatteryEvent:
/* Significant NV battery event */
printf("\t(BatteryEvent) %d (state was %d, is %d\n",
aif->data.EN.data.EBE.transition_type,
aif->data.EN.data.EBE.current_state,
aif->data.EN.data.EBE.prior_state);
break;
case AifEnAddContainer:
/* A new container was created. */
printf("\t(AddContainer)\n");
break;
case AifEnDeleteContainer:
/* A container was deleted. */
printf("\t(DeleteContainer)\n");
break;
case AifEnBatteryNeedsRecond:
/* The battery needs reconditioning */
printf("\t(BatteryNeedsRecond)\n");
break;
case AifEnClusterEvent:
/* Some cluster event */
printf("\t(ClusterEvent) event %d\n",
aif->data.EN.data.ECLE.eventType);
break;
case AifEnDiskSetEvent:
/* A disk set event occurred. */
printf("(DiskSetEvent) event %d "
"diskset %lld creator %lld\n",
aif->data.EN.data.EDS.eventType,
aif->data.EN.data.EDS.DsNum,
aif->data.EN.data.EDS.CreatorId);
break;
case AifDenMorphComplete:
/* A morph operation completed */
printf("\t(MorphComplete)\n");
break;
case AifDenVolumeExtendComplete:
/* A volume expand operation completed */
printf("\t(VolumeExtendComplete)\n");
break;
default:
printf("\t(%d)\n", aif->data.EN.type);
break;
}
break;
case AifCmdJobProgress:
{
char *status;
switch(aif->data.PR[0].status) {
case AifJobStsSuccess:
status = "success"; break;
case AifJobStsFinished:
status = "finished"; break;
case AifJobStsAborted:
status = "aborted"; break;
case AifJobStsFailed:
status = "failed"; break;
case AifJobStsSuspended:
status = "suspended"; break;
case AifJobStsRunning:
status = "running"; break;
default:
status = "unknown status"; break;
}
printf("JobProgress (%d) - %s (%d, %d)\n",
aif->seqNumber, status,
aif->data.PR[0].currentTick,
aif->data.PR[0].finalTick);
switch(aif->data.PR[0].jd.type) {
case AifJobScsiZero:
/* SCSI dev clear operation */
printf("\t(ScsiZero) handle %d\n",
aif->data.PR[0].jd.client.scsi_dh);
break;
case AifJobScsiVerify:
/* SCSI device Verify operation NO REPAIR */
printf("\t(ScsiVerify) handle %d\n",
aif->data.PR[0].jd.client.scsi_dh);
break;
case AifJobScsiExercise:
/* SCSI device Exercise operation */
printf("\t(ScsiExercise) handle %d\n",
aif->data.PR[0].jd.client.scsi_dh);
break;
case AifJobScsiVerifyRepair:
/* SCSI device Verify operation WITH repair */
printf("\t(ScsiVerifyRepair) handle %d\n",
aif->data.PR[0].jd.client.scsi_dh);
break;
case AifJobCtrZero:
/* Container clear operation */
printf("\t(ContainerZero) container %d\n",
aif->data.PR[0].jd.client.container.src);
break;
case AifJobCtrCopy:
/* Container copy operation */
printf("\t(ContainerCopy) container %d to %d\n",
aif->data.PR[0].jd.client.container.src,
aif->data.PR[0].jd.client.container.dst);
break;
case AifJobCtrCreateMirror:
/* Container Create Mirror operation */
printf("\t(ContainerCreateMirror) container %d\n",
aif->data.PR[0].jd.client.container.src);
/* XXX two containers? */
break;
case AifJobCtrMergeMirror:
/* Container Merge Mirror operation */
printf("\t(ContainerMergeMirror) container %d\n",
aif->data.PR[0].jd.client.container.src);
/* XXX two containers? */
break;
case AifJobCtrScrubMirror:
/* Container Scrub Mirror operation */
printf("\t(ContainerScrubMirror) container %d\n",
aif->data.PR[0].jd.client.container.src);
break;
case AifJobCtrRebuildRaid5:
/* Container Rebuild Raid5 operation */
printf("\t(ContainerRebuildRaid5) container %d\n",
aif->data.PR[0].jd.client.container.src);
break;
case AifJobCtrScrubRaid5:
/* Container Scrub Raid5 operation */
printf("\t(ContainerScrubRaid5) container %d\n",
aif->data.PR[0].jd.client.container.src);
break;
case AifJobCtrMorph:
/* Container morph operation */
printf("\t(ContainerMorph) container %d\n",
aif->data.PR[0].jd.client.container.src);
/* XXX two containers? */
break;
case AifJobCtrPartCopy:
/* Container Partition copy operation */
printf("\t(ContainerPartCopy) container %d to %d\n",
aif->data.PR[0].jd.client.container.src,
aif->data.PR[0].jd.client.container.dst);
break;
case AifJobCtrRebuildMirror:
/* Container Rebuild Mirror operation */
printf("\t(ContainerRebuildMirror) container %d\n",
aif->data.PR[0].jd.client.container.src);
break;
case AifJobCtrCrazyCache:
/* crazy cache */
printf("\t(ContainerCrazyCache) container %d\n",
aif->data.PR[0].jd.client.container.src);
/* XXX two containers? */
break;
case AifJobFsCreate:
/* File System Create operation */
printf("\t(FsCreate)\n");
break;
case AifJobFsVerify:
/* File System Verify operation */
printf("\t(FsVerivy)\n");
break;
case AifJobFsExtend:
/* File System Extend operation */
printf("\t(FsExtend)\n");
break;
case AifJobApiFormatNTFS:
/* Format a drive to NTFS */
printf("\t(FormatNTFS)\n");
break;
case AifJobApiFormatFAT:
/* Format a drive to FAT */
printf("\t(FormatFAT)\n");
break;
case AifJobApiUpdateSnapshot:
/* update the read/write half of a snapshot */
printf("\t(UpdateSnapshot)\n");
break;
case AifJobApiFormatFAT32:
/* Format a drive to FAT32 */
printf("\t(FormatFAT32)\n");
break;
case AifJobCtlContinuousCtrVerify:
/* Adapter operation */
printf("\t(ContinuousCtrVerify)\n");
break;
default:
printf("\t(%d)\n", aif->data.PR[0].jd.type);
break;
}
break;
}
case AifCmdAPIReport:
printf("APIReport (%d)\n", aif->seqNumber);
break;
case AifCmdDriverNotify:
printf("DriverNotify (%d)\n", aif->seqNumber);
break;
default:
printf("AIF %d (%d)\n", aif->command, aif->seqNumber);
break;
}
}
#endif