src/sys/dev/ic/ar5416.c

961 lines
28 KiB
C

/* $OpenBSD: ar5416.c,v 1.23 2022/01/09 05:42:38 jsg Exp $ */
/*-
* Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2008-2009 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Driver for Atheros 802.11a/g/n chipsets.
* Routines for AR5416, AR5418 and AR9160 chipsets.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/timeout.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/endian.h>
#include <machine/bus.h>
#include <machine/intr.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <net/if.h>
#include <net/if_media.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_amrr.h>
#include <net80211/ieee80211_ra.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/ic/athnreg.h>
#include <dev/ic/athnvar.h>
#include <dev/ic/ar5008reg.h>
#include <dev/ic/ar5416reg.h>
int ar5416_attach(struct athn_softc *);
void ar5416_setup(struct athn_softc *);
void ar5416_swap_rom(struct athn_softc *);
const struct ar_spur_chan *
ar5416_get_spur_chans(struct athn_softc *, int);
int ar5416_set_synth(struct athn_softc *, struct ieee80211_channel *,
struct ieee80211_channel *);
uint8_t ar5416_reverse_bits(uint8_t, int);
uint8_t ar5416_get_rf_rev(struct athn_softc *);
void ar5416_init_from_rom(struct athn_softc *, struct ieee80211_channel *,
struct ieee80211_channel *);
int ar5416_init_calib(struct athn_softc *, struct ieee80211_channel *,
struct ieee80211_channel *);
void ar5416_set_power_calib(struct athn_softc *,
struct ieee80211_channel *);
void ar5416_set_txpower(struct athn_softc *, struct ieee80211_channel *,
struct ieee80211_channel *);
void ar5416_spur_mitigate(struct athn_softc *, struct ieee80211_channel *,
struct ieee80211_channel *);
void ar5416_rw_rfbits(uint32_t *, int, int, uint32_t, int);
void ar5416_rw_bank6tpc(struct athn_softc *, struct ieee80211_channel *,
uint32_t *);
void ar5416_rf_reset(struct athn_softc *, struct ieee80211_channel *);
void ar5416_reset_bb_gain(struct athn_softc *, struct ieee80211_channel *);
void ar5416_force_bias(struct athn_softc *, struct ieee80211_channel *);
void ar9160_rw_addac(struct athn_softc *, struct ieee80211_channel *,
uint32_t *);
void ar5416_reset_addac(struct athn_softc *, struct ieee80211_channel *);
void ar5416_get_pdadcs(struct athn_softc *, struct ieee80211_channel *,
int, int, uint8_t, uint8_t *, uint8_t *);
/* Extern functions. */
uint8_t athn_chan2fbin(struct ieee80211_channel *);
void athn_get_pier_ival(uint8_t, const uint8_t *, int, int *, int *);
int ar5008_attach(struct athn_softc *);
void ar5008_write_txpower(struct athn_softc *, int16_t power[]);
void ar5008_get_pdadcs(struct athn_softc *, uint8_t, struct athn_pier *,
struct athn_pier *, int, int, uint8_t, uint8_t *, uint8_t *);
void ar5008_set_viterbi_mask(struct athn_softc *, int);
void ar5008_get_lg_tpow(struct athn_softc *, struct ieee80211_channel *,
uint8_t, const struct ar_cal_target_power_leg *, int, uint8_t[]);
void ar5008_get_ht_tpow(struct athn_softc *, struct ieee80211_channel *,
uint8_t, const struct ar_cal_target_power_ht *, int, uint8_t[]);
void ar9280_olpc_get_pdadcs(struct athn_softc *, struct ieee80211_channel *,
int, uint8_t *, uint8_t *, uint8_t *);
int
ar5416_attach(struct athn_softc *sc)
{
sc->eep_base = AR5416_EEP_START_LOC;
sc->eep_size = sizeof(struct ar5416_eeprom);
sc->ngpiopins = 14;
sc->led_pin = 1;
sc->workaround = AR5416_WA_DEFAULT;
sc->ops.setup = ar5416_setup;
sc->ops.swap_rom = ar5416_swap_rom;
sc->ops.init_from_rom = ar5416_init_from_rom;
sc->ops.set_txpower = ar5416_set_txpower;
sc->ops.set_synth = ar5416_set_synth;
sc->ops.spur_mitigate = ar5416_spur_mitigate;
sc->ops.get_spur_chans = ar5416_get_spur_chans;
sc->cca_min_2g = AR5416_PHY_CCA_MIN_GOOD_VAL_2GHZ;
sc->cca_max_2g = AR5416_PHY_CCA_MAX_GOOD_VAL_2GHZ;
sc->cca_min_5g = AR5416_PHY_CCA_MIN_GOOD_VAL_5GHZ;
sc->cca_max_5g = AR5416_PHY_CCA_MAX_GOOD_VAL_5GHZ;
if (AR_SREV_9160_10_OR_LATER(sc))
sc->ini = &ar9160_ini;
else
sc->ini = &ar5416_ini;
sc->serdes = &ar5416_serdes;
return (ar5008_attach(sc));
}
void
ar5416_setup(struct athn_softc *sc)
{
/* Select ADDAC programming. */
if (AR_SREV_9160_11(sc))
sc->addac = &ar9160_1_1_addac;
else if (AR_SREV_9160_10_OR_LATER(sc))
sc->addac = &ar9160_1_0_addac;
else if (AR_SREV_5416_22_OR_LATER(sc))
sc->addac = &ar5416_2_2_addac;
else
sc->addac = &ar5416_2_1_addac;
}
void
ar5416_swap_rom(struct athn_softc *sc)
{
struct ar5416_eeprom *eep = sc->eep;
struct ar5416_modal_eep_header *modal;
int i, j;
for (i = 0; i < 2; i++) { /* Dual-band. */
modal = &eep->modalHeader[i];
modal->antCtrlCommon = swap32(modal->antCtrlCommon);
for (j = 0; j < AR5416_MAX_CHAINS; j++) {
modal->antCtrlChain[j] =
swap32(modal->antCtrlChain[j]);
}
for (j = 0; j < AR_EEPROM_MODAL_SPURS; j++) {
modal->spurChans[j].spurChan =
swap16(modal->spurChans[j].spurChan);
}
}
}
const struct ar_spur_chan *
ar5416_get_spur_chans(struct athn_softc *sc, int is2ghz)
{
const struct ar5416_eeprom *eep = sc->eep;
return (eep->modalHeader[is2ghz].spurChans);
}
int
ar5416_set_synth(struct athn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
uint32_t phy, reg;
uint32_t freq = c->ic_freq;
uint8_t chansel;
phy = 0;
if (IEEE80211_IS_CHAN_2GHZ(c)) {
if (((freq - 2192) % 5) == 0) {
chansel = ((freq - 672) * 2 - 3040) / 10;
} else if (((freq - 2224) % 5) == 0) {
chansel = ((freq - 704) * 2 - 3040) / 10;
phy |= AR5416_BMODE_SYNTH;
} else
return (EINVAL);
chansel <<= 2;
reg = AR_READ(sc, AR_PHY_CCK_TX_CTRL);
if (freq == 2484) /* Channel 14. */
reg |= AR_PHY_CCK_TX_CTRL_JAPAN;
else
reg &= ~AR_PHY_CCK_TX_CTRL_JAPAN;
AR_WRITE(sc, AR_PHY_CCK_TX_CTRL, reg);
/* Fix for orientation sensitivity issue. */
if (AR_SREV_5416(sc))
ar5416_force_bias(sc, c);
} else {
if (freq >= 5120 && (freq % 20) == 0) {
chansel = (freq - 4800) / 20;
chansel <<= 2;
phy |= SM(AR5416_AMODE_REFSEL, 2);
} else if ((freq % 10) == 0) {
chansel = (freq - 4800) / 10;
chansel <<= 1;
if (AR_SREV_9160_10_OR_LATER(sc))
phy |= SM(AR5416_AMODE_REFSEL, 1);
else
phy |= SM(AR5416_AMODE_REFSEL, 2);
} else if ((freq % 5) == 0) {
chansel = (freq - 4800) / 5;
phy |= SM(AR5416_AMODE_REFSEL, 2);
} else
return (EINVAL);
}
chansel = ar5416_reverse_bits(chansel, 8);
phy |= chansel << 8 | 1 << 5 | 1;
DPRINTFN(4, ("AR_PHY(0x37)=0x%08x\n", phy));
AR_WRITE(sc, AR_PHY(0x37), phy);
return (0);
}
void
ar5416_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
static const uint32_t chainoffset[] = { 0x0000, 0x2000, 0x1000 };
const struct ar5416_eeprom *eep = sc->eep;
const struct ar5416_modal_eep_header *modal;
uint32_t reg, offset;
uint8_t txRxAtten;
int i;
modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)];
AR_WRITE(sc, AR_PHY_SWITCH_COM, modal->antCtrlCommon);
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
if (AR_SREV_5416_20_OR_LATER(sc) &&
(sc->rxchainmask == 0x5 || sc->txchainmask == 0x5))
offset = chainoffset[i];
else
offset = i * 0x1000;
AR_WRITE(sc, AR_PHY_SWITCH_CHAIN_0 + offset,
modal->antCtrlChain[i]);
reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0 + offset);
reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF,
modal->iqCalICh[i]);
reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF,
modal->iqCalQCh[i]);
AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0 + offset, reg);
if (i > 0 && !AR_SREV_5416_20_OR_LATER(sc))
continue;
if (sc->eep_rev >= AR_EEP_MINOR_VER_3) {
reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset);
reg = RW(reg, AR_PHY_GAIN_2GHZ_BSW_MARGIN,
modal->bswMargin[i]);
reg = RW(reg, AR_PHY_GAIN_2GHZ_BSW_ATTEN,
modal->bswAtten[i]);
AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg);
}
if (sc->eep_rev >= AR_EEP_MINOR_VER_3)
txRxAtten = modal->txRxAttenCh[i];
else /* Workaround for ROM versions < 14.3. */
txRxAtten = IEEE80211_IS_CHAN_2GHZ(c) ? 23 : 44;
reg = AR_READ(sc, AR_PHY_RXGAIN + offset);
reg = RW(reg, AR_PHY_RXGAIN_TXRX_ATTEN, txRxAtten);
AR_WRITE(sc, AR_PHY_RXGAIN + offset, reg);
reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset);
reg = RW(reg, AR_PHY_GAIN_2GHZ_RXTX_MARGIN,
modal->rxTxMarginCh[i]);
AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg);
}
reg = AR_READ(sc, AR_PHY_SETTLING);
reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->switchSettling);
AR_WRITE(sc, AR_PHY_SETTLING, reg);
reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
reg = RW(reg, AR_PHY_DESIRED_SZ_ADC, modal->adcDesiredSize);
reg = RW(reg, AR_PHY_DESIRED_SZ_PGA, modal->pgaDesiredSize);
AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);
reg = SM(AR_PHY_RF_CTL4_TX_END_XPAA_OFF, modal->txEndToXpaOff);
reg |= SM(AR_PHY_RF_CTL4_TX_END_XPAB_OFF, modal->txEndToXpaOff);
reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAA_ON, modal->txFrameToXpaOn);
reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAB_ON, modal->txFrameToXpaOn);
AR_WRITE(sc, AR_PHY_RF_CTL4, reg);
reg = AR_READ(sc, AR_PHY_RF_CTL3);
reg = RW(reg, AR_PHY_TX_END_TO_A2_RX_ON, modal->txEndToRxOn);
AR_WRITE(sc, AR_PHY_RF_CTL3, reg);
reg = AR_READ(sc, AR_PHY_CCA(0));
reg = RW(reg, AR_PHY_CCA_THRESH62, modal->thresh62);
AR_WRITE(sc, AR_PHY_CCA(0), reg);
reg = AR_READ(sc, AR_PHY_EXT_CCA(0));
reg = RW(reg, AR_PHY_EXT_CCA_THRESH62, modal->thresh62);
AR_WRITE(sc, AR_PHY_EXT_CCA(0), reg);
if (sc->eep_rev >= AR_EEP_MINOR_VER_2) {
reg = AR_READ(sc, AR_PHY_RF_CTL2);
reg = RW(reg, AR_PHY_TX_END_DATA_START,
modal->txFrameToDataStart);
reg = RW(reg, AR_PHY_TX_END_PA_ON, modal->txFrameToPaOn);
AR_WRITE(sc, AR_PHY_RF_CTL2, reg);
}
if (sc->eep_rev >= AR_EEP_MINOR_VER_3 && extc != NULL) {
/* Overwrite switch settling with HT-40 value. */
reg = AR_READ(sc, AR_PHY_SETTLING);
reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->swSettleHt40);
AR_WRITE(sc, AR_PHY_SETTLING, reg);
}
}
int
ar5416_init_calib(struct athn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
int ntries;
if (AR_SREV_9280_10_OR_LATER(sc)) {
/* XXX Linux tests AR9287?! */
AR_CLRBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC);
AR_SETBITS(sc, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_FLTR_CAL);
}
/* Calibrate the AGC. */
AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
/* Poll for offset calibration completion. */
for (ntries = 0; ntries < 10000; ntries++) {
if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) &
AR_PHY_AGC_CONTROL_CAL))
break;
DELAY(10);
}
if (ntries == 10000)
return (ETIMEDOUT);
if (AR_SREV_9280_10_OR_LATER(sc)) {
AR_SETBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC);
AR_CLRBITS(sc, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_FLTR_CAL);
}
return (0);
}
void
ar5416_get_pdadcs(struct athn_softc *sc, struct ieee80211_channel *c,
int chain, int nxpdgains, uint8_t overlap, uint8_t *boundaries,
uint8_t *pdadcs)
{
const struct ar5416_eeprom *eep = sc->eep;
const struct ar5416_cal_data_per_freq *pierdata;
const uint8_t *pierfreq;
struct athn_pier lopier, hipier;
int16_t delta;
uint8_t fbin, pwroff;
int i, lo, hi, npiers;
if (IEEE80211_IS_CHAN_2GHZ(c)) {
pierfreq = eep->calFreqPier2G;
pierdata = eep->calPierData2G[chain];
npiers = AR5416_NUM_2G_CAL_PIERS;
} else {
pierfreq = eep->calFreqPier5G;
pierdata = eep->calPierData5G[chain];
npiers = AR5416_NUM_5G_CAL_PIERS;
}
/* Find channel in ROM pier table. */
fbin = athn_chan2fbin(c);
athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi);
lopier.fbin = pierfreq[lo];
hipier.fbin = pierfreq[hi];
for (i = 0; i < nxpdgains; i++) {
lopier.pwr[i] = pierdata[lo].pwrPdg[i];
lopier.vpd[i] = pierdata[lo].vpdPdg[i];
hipier.pwr[i] = pierdata[lo].pwrPdg[i];
hipier.vpd[i] = pierdata[lo].vpdPdg[i];
}
ar5008_get_pdadcs(sc, fbin, &lopier, &hipier, nxpdgains,
AR5416_PD_GAIN_ICEPTS, overlap, boundaries, pdadcs);
if (!AR_SREV_9280_20_OR_LATER(sc))
return;
if (sc->eep_rev >= AR_EEP_MINOR_VER_21)
pwroff = eep->baseEepHeader.pwrTableOffset;
else
pwroff = AR_PWR_TABLE_OFFSET_DB;
delta = (pwroff - AR_PWR_TABLE_OFFSET_DB) * 2; /* In half dB. */
/* Change the original gain boundaries setting. */
for (i = 0; i < nxpdgains; i++) {
/* XXX Possible overflows? */
boundaries[i] -= delta;
if (boundaries[i] > AR_MAX_RATE_POWER - overlap)
boundaries[i] = AR_MAX_RATE_POWER - overlap;
}
if (delta != 0) {
/* Shift the PDADC table to start at the new offset. */
for (i = 0; i < AR_NUM_PDADC_VALUES; i++)
pdadcs[i] = pdadcs[MIN(i + delta,
AR_NUM_PDADC_VALUES - 1)];
}
}
void
ar5416_set_power_calib(struct athn_softc *sc, struct ieee80211_channel *c)
{
static const uint32_t chainoffset[] = { 0x0000, 0x2000, 0x1000 };
const struct ar5416_eeprom *eep = sc->eep;
const struct ar5416_modal_eep_header *modal;
uint8_t boundaries[AR_PD_GAINS_IN_MASK];
uint8_t pdadcs[AR_NUM_PDADC_VALUES];
uint8_t xpdgains[AR5416_NUM_PD_GAINS];
uint8_t overlap, txgain;
uint32_t reg, offset;
int i, j, nxpdgains;
modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)];
if (sc->eep_rev < AR_EEP_MINOR_VER_2) {
overlap = MS(AR_READ(sc, AR_PHY_TPCRG5),
AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
} else
overlap = modal->pdGainOverlap;
if ((sc->flags & ATHN_FLAG_OLPC) && IEEE80211_IS_CHAN_2GHZ(c)) {
/* XXX not here. */
sc->pdadc =
((const struct ar_cal_data_per_freq_olpc *)
eep->calPierData2G[0])->vpdPdg[0][0];
}
nxpdgains = 0;
memset(xpdgains, 0, sizeof(xpdgains));
for (i = AR5416_PD_GAINS_IN_MASK - 1; i >= 0; i--) {
if (nxpdgains >= AR5416_NUM_PD_GAINS)
break; /* Can't happen. */
if (modal->xpdGain & (1 << i))
xpdgains[nxpdgains++] = i;
}
reg = AR_READ(sc, AR_PHY_TPCRG1);
reg = RW(reg, AR_PHY_TPCRG1_NUM_PD_GAIN, nxpdgains - 1);
reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_1, xpdgains[0]);
reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_2, xpdgains[1]);
reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_3, xpdgains[2]);
AR_WRITE(sc, AR_PHY_TPCRG1, reg);
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
if (!(sc->txchainmask & (1 << i)))
continue;
if (AR_SREV_5416_20_OR_LATER(sc) &&
(sc->rxchainmask == 0x5 || sc->txchainmask == 0x5))
offset = chainoffset[i];
else
offset = i * 0x1000;
if (sc->flags & ATHN_FLAG_OLPC) {
ar9280_olpc_get_pdadcs(sc, c, i, boundaries,
pdadcs, &txgain);
reg = AR_READ(sc, AR_PHY_TX_PWRCTRL6_0);
reg = RW(reg, AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
AR_WRITE(sc, AR_PHY_TX_PWRCTRL6_0, reg);
reg = AR_READ(sc, AR_PHY_TX_PWRCTRL6_1);
reg = RW(reg, AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
AR_WRITE(sc, AR_PHY_TX_PWRCTRL6_1, reg);
reg = AR_READ(sc, AR_PHY_TX_PWRCTRL7);
reg = RW(reg, AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, txgain);
AR_WRITE(sc, AR_PHY_TX_PWRCTRL7, reg);
overlap = 6;
} else {
ar5416_get_pdadcs(sc, c, i, nxpdgains, overlap,
boundaries, pdadcs);
}
/* Write boundaries. */
if (i == 0 || AR_SREV_5416_20_OR_LATER(sc)) {
reg = SM(AR_PHY_TPCRG5_PD_GAIN_OVERLAP,
overlap);
reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1,
boundaries[0]);
reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2,
boundaries[1]);
reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3,
boundaries[2]);
reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4,
boundaries[3]);
AR_WRITE(sc, AR_PHY_TPCRG5 + offset, reg);
}
/* Write PDADC values. */
for (j = 0; j < AR_NUM_PDADC_VALUES; j += 4) {
AR_WRITE(sc, AR_PHY_PDADC_TBL_BASE + offset + j,
pdadcs[j + 0] << 0 |
pdadcs[j + 1] << 8 |
pdadcs[j + 2] << 16 |
pdadcs[j + 3] << 24);
}
}
}
void
ar5416_set_txpower(struct athn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
const struct ar5416_eeprom *eep = sc->eep;
const struct ar5416_modal_eep_header *modal;
uint8_t tpow_cck[4], tpow_ofdm[4];
uint8_t tpow_cck_ext[4], tpow_ofdm_ext[4];
uint8_t tpow_ht20[8], tpow_ht40[8];
uint8_t ht40inc;
int16_t pwr = 0, pwroff, max_ant_gain, power[ATHN_POWER_COUNT];
uint8_t cckinc;
int i;
ar5416_set_power_calib(sc, c);
modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)];
/* Compute transmit power reduction due to antenna gain. */
max_ant_gain = MAX(modal->antennaGainCh[0], modal->antennaGainCh[1]);
max_ant_gain = MAX(modal->antennaGainCh[2], max_ant_gain);
/* XXX */
/*
* Reduce scaled power by number of active chains to get per-chain
* transmit power level.
*/
if (sc->ntxchains == 2)
pwr -= AR_PWR_DECREASE_FOR_2_CHAIN;
else if (sc->ntxchains == 3)
pwr -= AR_PWR_DECREASE_FOR_3_CHAIN;
if (pwr < 0)
pwr = 0;
if (IEEE80211_IS_CHAN_2GHZ(c)) {
/* Get CCK target powers. */
ar5008_get_lg_tpow(sc, c, AR_CTL_11B, eep->calTargetPowerCck,
AR5416_NUM_2G_CCK_TARGET_POWERS, tpow_cck);
/* Get OFDM target powers. */
ar5008_get_lg_tpow(sc, c, AR_CTL_11G, eep->calTargetPower2G,
AR5416_NUM_2G_20_TARGET_POWERS, tpow_ofdm);
/* Get HT-20 target powers. */
ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT20,
eep->calTargetPower2GHT20, AR5416_NUM_2G_20_TARGET_POWERS,
tpow_ht20);
if (extc != NULL) {
/* Get HT-40 target powers. */
ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT40,
eep->calTargetPower2GHT40,
AR5416_NUM_2G_40_TARGET_POWERS, tpow_ht40);
/* Get secondary channel CCK target powers. */
ar5008_get_lg_tpow(sc, extc, AR_CTL_11B,
eep->calTargetPowerCck,
AR5416_NUM_2G_CCK_TARGET_POWERS, tpow_cck_ext);
/* Get secondary channel OFDM target powers. */
ar5008_get_lg_tpow(sc, extc, AR_CTL_11G,
eep->calTargetPower2G,
AR5416_NUM_2G_20_TARGET_POWERS, tpow_ofdm_ext);
}
} else {
/* Get OFDM target powers. */
ar5008_get_lg_tpow(sc, c, AR_CTL_11A, eep->calTargetPower5G,
AR5416_NUM_5G_20_TARGET_POWERS, tpow_ofdm);
/* Get HT-20 target powers. */
ar5008_get_ht_tpow(sc, c, AR_CTL_5GHT20,
eep->calTargetPower5GHT20, AR5416_NUM_5G_20_TARGET_POWERS,
tpow_ht20);
if (extc != NULL) {
/* Get HT-40 target powers. */
ar5008_get_ht_tpow(sc, c, AR_CTL_5GHT40,
eep->calTargetPower5GHT40,
AR5416_NUM_5G_40_TARGET_POWERS, tpow_ht40);
/* Get secondary channel OFDM target powers. */
ar5008_get_lg_tpow(sc, extc, AR_CTL_11A,
eep->calTargetPower5G,
AR5416_NUM_5G_20_TARGET_POWERS, tpow_ofdm_ext);
}
}
/* Compute CCK/OFDM delta. */
cckinc = (sc->flags & ATHN_FLAG_OLPC) ? -2 : 0;
memset(power, 0, sizeof(power));
/* Shuffle target powers across transmit rates. */
power[ATHN_POWER_OFDM6 ] =
power[ATHN_POWER_OFDM9 ] =
power[ATHN_POWER_OFDM12] =
power[ATHN_POWER_OFDM18] =
power[ATHN_POWER_OFDM24] = tpow_ofdm[0];
power[ATHN_POWER_OFDM36] = tpow_ofdm[1];
power[ATHN_POWER_OFDM48] = tpow_ofdm[2];
power[ATHN_POWER_OFDM54] = tpow_ofdm[3];
power[ATHN_POWER_XR ] = tpow_ofdm[0];
if (IEEE80211_IS_CHAN_2GHZ(c)) {
power[ATHN_POWER_CCK1_LP ] = tpow_cck[0] + cckinc;
power[ATHN_POWER_CCK2_LP ] =
power[ATHN_POWER_CCK2_SP ] = tpow_cck[1] + cckinc;
power[ATHN_POWER_CCK55_LP] =
power[ATHN_POWER_CCK55_SP] = tpow_cck[2] + cckinc;
power[ATHN_POWER_CCK11_LP] =
power[ATHN_POWER_CCK11_SP] = tpow_cck[3] + cckinc;
}
for (i = 0; i < nitems(tpow_ht20); i++)
power[ATHN_POWER_HT20(i)] = tpow_ht20[i];
if (extc != NULL) {
/* Correct PAR difference between HT40 and HT20/Legacy. */
if (sc->eep_rev >= AR_EEP_MINOR_VER_2)
ht40inc = modal->ht40PowerIncForPdadc;
else
ht40inc = AR_HT40_POWER_INC_FOR_PDADC;
for (i = 0; i < nitems(tpow_ht40); i++)
power[ATHN_POWER_HT40(i)] = tpow_ht40[i] + ht40inc;
power[ATHN_POWER_OFDM_DUP] = tpow_ht40[0];
power[ATHN_POWER_CCK_DUP ] = tpow_ht40[0] + cckinc;
power[ATHN_POWER_OFDM_EXT] = tpow_ofdm_ext[0];
if (IEEE80211_IS_CHAN_2GHZ(c))
power[ATHN_POWER_CCK_EXT] = tpow_cck_ext[0] + cckinc;
}
if (AR_SREV_9280_10_OR_LATER(sc)) {
if (sc->eep_rev >= AR_EEP_MINOR_VER_21)
pwroff = eep->baseEepHeader.pwrTableOffset;
else
pwroff = AR_PWR_TABLE_OFFSET_DB;
for (i = 0; i < ATHN_POWER_COUNT; i++)
power[i] -= pwroff * 2; /* In half dB. */
}
for (i = 0; i < ATHN_POWER_COUNT; i++) {
if (power[i] > AR_MAX_RATE_POWER)
power[i] = AR_MAX_RATE_POWER;
}
/* Write transmit power values to hardware. */
ar5008_write_txpower(sc, power);
/*
* Write transmit power subtraction for dynamic chain changing
* and per-packet transmit power.
*/
AR_WRITE(sc, AR_PHY_POWER_TX_SUB,
(modal->pwrDecreaseFor3Chain & 0x3f) << 6 |
(modal->pwrDecreaseFor2Chain & 0x3f));
}
void
ar5416_spur_mitigate(struct athn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
const struct ar_spur_chan *spurchans;
int i, spur, bin, spur_delta_phase, spur_freq_sd;
spurchans = sc->ops.get_spur_chans(sc, IEEE80211_IS_CHAN_2GHZ(c));
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
spur = spurchans[i].spurChan;
if (spur == AR_NO_SPUR)
return; /* XXX disable if it was enabled! */
spur -= c->ic_freq * 10;
/* Verify range +/-9.5MHz */
if (abs(spur) < 95)
break;
}
if (i == AR_EEPROM_MODAL_SPURS)
return; /* XXX disable if it was enabled! */
DPRINTFN(2, ("enabling spur mitigation\n"));
AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0,
AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
AR_WRITE(sc, AR_PHY_SPUR_REG,
AR_PHY_SPUR_REG_MASK_RATE_CNTL |
AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
AR_PHY_SPUR_REG_MASK_RATE_SELECT |
AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
SM(AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, AR_SPUR_RSSI_THRESH));
spur_delta_phase = (spur * 524288) / 100;
if (IEEE80211_IS_CHAN_2GHZ(c))
spur_freq_sd = (spur * 2048) / 440;
else
spur_freq_sd = (spur * 2048) / 400;
AR_WRITE(sc, AR_PHY_TIMING11,
AR_PHY_TIMING11_USE_SPUR_IN_AGC |
SM(AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd) |
SM(AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase));
bin = spur * 32;
ar5008_set_viterbi_mask(sc, bin);
}
uint8_t
ar5416_reverse_bits(uint8_t v, int nbits)
{
KASSERT(nbits <= 8);
v = ((v >> 1) & 0x55) | ((v & 0x55) << 1);
v = ((v >> 2) & 0x33) | ((v & 0x33) << 2);
v = ((v >> 4) & 0x0f) | ((v & 0x0f) << 4);
return (v >> (8 - nbits));
}
uint8_t
ar5416_get_rf_rev(struct athn_softc *sc)
{
uint8_t rev, reg;
int i;
/* Allow access to analog chips. */
AR_WRITE(sc, AR_PHY(0), 0x00000007);
AR_WRITE(sc, AR_PHY(0x36), 0x00007058);
for (i = 0; i < 8; i++)
AR_WRITE(sc, AR_PHY(0x20), 0x00010000);
reg = (AR_READ(sc, AR_PHY(256)) >> 24) & 0xff;
reg = (reg & 0xf0) >> 4 | (reg & 0x0f) << 4;
rev = ar5416_reverse_bits(reg, 8);
if ((rev & AR_RADIO_SREV_MAJOR) == 0)
rev = AR_RAD5133_SREV_MAJOR;
return (rev);
}
/*
* Replace bits "off" to "off+nbits-1" in column "col" with the specified
* value.
*/
void
ar5416_rw_rfbits(uint32_t *buf, int col, int off, uint32_t val, int nbits)
{
int idx, bit;
KASSERT(off >= 1 && col < 4 && nbits <= 32);
off--; /* Starts at 1. */
while (nbits-- > 0) {
idx = off / 8;
bit = off % 8;
buf[idx] &= ~(1 << (bit + col * 8));
buf[idx] |= ((val >> nbits) & 1) << (bit + col * 8);
off++;
}
}
/*
* Overwrite db and ob based on ROM settings.
*/
void
ar5416_rw_bank6tpc(struct athn_softc *sc, struct ieee80211_channel *c,
uint32_t *rwbank6tpc)
{
const struct ar5416_eeprom *eep = sc->eep;
const struct ar5416_modal_eep_header *modal;
if (IEEE80211_IS_CHAN_5GHZ(c)) {
modal = &eep->modalHeader[0];
/* 5GHz db in column 0, bits [200-202]. */
ar5416_rw_rfbits(rwbank6tpc, 0, 200, modal->db, 3);
/* 5GHz ob in column 0, bits [203-205]. */
ar5416_rw_rfbits(rwbank6tpc, 0, 203, modal->ob, 3);
} else {
modal = &eep->modalHeader[1];
/* 2GHz db in column 0, bits [194-196]. */
ar5416_rw_rfbits(rwbank6tpc, 0, 194, modal->db, 3);
/* 2GHz ob in column 0, bits [197-199]. */
ar5416_rw_rfbits(rwbank6tpc, 0, 197, modal->ob, 3);
}
}
/*
* Program analog RF.
*/
void
ar5416_rf_reset(struct athn_softc *sc, struct ieee80211_channel *c)
{
const uint32_t *bank6tpc;
int i;
/* Bank 0. */
AR_WRITE(sc, 0x98b0, 0x1e5795e5);
AR_WRITE(sc, 0x98e0, 0x02008020);
/* Bank 1. */
AR_WRITE(sc, 0x98b0, 0x02108421);
AR_WRITE(sc, 0x98ec, 0x00000008);
/* Bank 2. */
AR_WRITE(sc, 0x98b0, 0x0e73ff17);
AR_WRITE(sc, 0x98e0, 0x00000420);
/* Bank 3. */
if (IEEE80211_IS_CHAN_5GHZ(c))
AR_WRITE(sc, 0x98f0, 0x01400018);
else
AR_WRITE(sc, 0x98f0, 0x01c00018);
/* Select the Bank 6 TPC values to use. */
if (AR_SREV_9160_10_OR_LATER(sc))
bank6tpc = ar9160_bank6tpc_vals;
else
bank6tpc = ar5416_bank6tpc_vals;
if (sc->eep_rev >= AR_EEP_MINOR_VER_2) {
uint32_t *rwbank6tpc = sc->rwbuf;
/* Copy values from .rodata to writable buffer. */
memcpy(rwbank6tpc, bank6tpc, 32 * sizeof(uint32_t));
ar5416_rw_bank6tpc(sc, c, rwbank6tpc);
bank6tpc = rwbank6tpc;
}
/* Bank 6 TPC. */
for (i = 0; i < 32; i++)
AR_WRITE(sc, 0x989c, bank6tpc[i]);
if (IEEE80211_IS_CHAN_5GHZ(c))
AR_WRITE(sc, 0x98d0, 0x0000000f);
else
AR_WRITE(sc, 0x98d0, 0x0010000f);
/* Bank 7. */
AR_WRITE(sc, 0x989c, 0x00000500);
AR_WRITE(sc, 0x989c, 0x00000800);
AR_WRITE(sc, 0x98cc, 0x0000000e);
}
void
ar5416_reset_bb_gain(struct athn_softc *sc, struct ieee80211_channel *c)
{
const uint32_t *pvals;
int i;
if (IEEE80211_IS_CHAN_2GHZ(c))
pvals = ar5416_bb_rfgain_vals_2g;
else
pvals = ar5416_bb_rfgain_vals_5g;
for (i = 0; i < 64; i++)
AR_WRITE(sc, AR_PHY_BB_RFGAIN(i), pvals[i]);
}
/*
* Fix orientation sensitivity issue on AR5416/2GHz by increasing
* rf_pwd_icsyndiv.
*/
void
ar5416_force_bias(struct athn_softc *sc, struct ieee80211_channel *c)
{
uint32_t *rwbank6 = sc->rwbuf;
uint8_t bias;
int i;
KASSERT(IEEE80211_IS_CHAN_2GHZ(c));
/* Copy values from .rodata to writable buffer. */
memcpy(rwbank6, ar5416_bank6_vals, sizeof(ar5416_bank6_vals));
if (c->ic_freq < 2412)
bias = 0;
else if (c->ic_freq < 2422)
bias = 1;
else
bias = 2;
ar5416_reverse_bits(bias, 3);
/* Overwrite "rf_pwd_icsyndiv" (column 3, bits [181-183].) */
ar5416_rw_rfbits(rwbank6, 3, 181, bias, 3);
/* Write Bank 6. */
for (i = 0; i < 32; i++)
AR_WRITE(sc, 0x989c, rwbank6[i]);
AR_WRITE(sc, 0x98d0, 0x0010000f);
}
/*
* Overwrite XPA bias level based on ROM setting.
*/
void
ar9160_rw_addac(struct athn_softc *sc, struct ieee80211_channel *c,
uint32_t *addac)
{
struct ar5416_eeprom *eep = sc->eep;
struct ar5416_modal_eep_header *modal;
uint8_t fbin, bias;
int i;
/* XXX xpaBiasLvlFreq values have not been endian-swapped? */
/* Get the XPA bias level to use for the specified channel. */
modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)];
if (modal->xpaBiasLvl == 0xff) {
bias = modal->xpaBiasLvlFreq[0] >> 14;
fbin = athn_chan2fbin(c);
for (i = 1; i < 3; i++) {
if (modal->xpaBiasLvlFreq[i] == 0)
break;
if ((modal->xpaBiasLvlFreq[i] & 0xff) < fbin)
break;
bias = modal->xpaBiasLvlFreq[i] >> 14;
}
} else
bias = modal->xpaBiasLvl & 0x3;
bias = ar5416_reverse_bits(bias, 2); /* Put in host bit-order. */
DPRINTFN(4, ("bias level=%d\n", bias));
if (IEEE80211_IS_CHAN_2GHZ(c))
ar5416_rw_rfbits(addac, 0, 60, bias, 2);
else
ar5416_rw_rfbits(addac, 0, 55, bias, 2);
}
void
ar5416_reset_addac(struct athn_softc *sc, struct ieee80211_channel *c)
{
const struct athn_addac *addac = sc->addac;
const uint32_t *pvals;
int i;
if (AR_SREV_9160(sc) && sc->eep_rev >= AR_EEP_MINOR_VER_7) {
uint32_t *rwaddac = sc->rwbuf;
/* Copy values from .rodata to writable buffer. */
memcpy(rwaddac, addac->vals, addac->nvals * sizeof(uint32_t));
ar9160_rw_addac(sc, c, rwaddac);
pvals = rwaddac;
} else
pvals = addac->vals;
for (i = 0; i < addac->nvals; i++)
AR_WRITE(sc, 0x989c, pvals[i]);
AR_WRITE(sc, 0x98cc, 0); /* Finalize. */
}