src/sys/dev/ic/dc.c

3121 lines
78 KiB
C

/* $OpenBSD: dc.c,v 1.156 2023/11/10 15:51:20 bluhm Exp $ */
/*
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ee.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD: src/sys/pci/if_dc.c,v 1.43 2001/01/19 23:55:07 wpaul Exp $
*/
/*
* DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
* series chips and several workalikes including the following:
*
* Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
* Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
* Lite-On 82c168/82c169 PNIC (www.litecom.com)
* ASIX Electronics AX88140A (www.asix.com.tw)
* ASIX Electronics AX88141 (www.asix.com.tw)
* ADMtek AL981 (www.admtek.com.tw)
* ADMtek AN983 (www.admtek.com.tw)
* Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
* Accton EN1217, EN2242 (www.accton.com)
* Xircom X3201 (www.xircom.com)
*
* Datasheets for the 21143 are available at developer.intel.com.
* Datasheets for the clone parts can be found at their respective sites.
* (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
* The PNIC II is essentially a Macronix 98715A chip; the only difference
* worth noting is that its multicast hash table is only 128 bits wide
* instead of 512.
*
* Written by Bill Paul <wpaul@ee.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The Intel 21143 is the successor to the DEC 21140. It is basically
* the same as the 21140 but with a few new features. The 21143 supports
* three kinds of media attachments:
*
* o MII port, for 10Mbps and 100Mbps support and NWAY
* autonegotiation provided by an external PHY.
* o SYM port, for symbol mode 100Mbps support.
* o 10baseT port.
* o AUI/BNC port.
*
* The 100Mbps SYM port and 10baseT port can be used together in
* combination with the internal NWAY support to create a 10/100
* autosensing configuration.
*
* Note that not all tulip workalikes are handled in this driver: we only
* deal with those which are relatively well behaved. The Winbond is
* handled separately due to its different register offsets and the
* special handling needed for its various bugs. The PNIC is handled
* here, but I'm not thrilled about it.
*
* All of the workalike chips use some form of MII transceiver support
* with the exception of the Macronix chips, which also have a SYM port.
* The ASIX AX88140A is also documented to have a SYM port, but all
* the cards I've seen use an MII transceiver, probably because the
* AX88140A doesn't support internal NWAY.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/timeout.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net/if_media.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <machine/bus.h>
#include <dev/pci/pcidevs.h>
#include <dev/ic/dcreg.h>
/*
* The Davicom DM9102 has a broken DMA engine that reads beyond the
* end of the programmed transfer. Architectures with a proper IOMMU
* (such as sparc64) will trap on this access. To avoid having to
* copy each transmitted mbuf to guarantee enough trailing space,
* those architectures should implement BUS_DMA_OVERRUN that takes
* appropriate action to tolerate this behaviour.
*/
#ifndef BUS_DMA_OVERRUN
#define BUS_DMA_OVERRUN 0
#endif
int dc_intr(void *);
struct dc_type *dc_devtype(void *);
int dc_newbuf(struct dc_softc *, int, struct mbuf *);
int dc_encap(struct dc_softc *, bus_dmamap_t, struct mbuf *, u_int32_t *);
void dc_pnic_rx_bug_war(struct dc_softc *, int);
int dc_rx_resync(struct dc_softc *);
int dc_rxeof(struct dc_softc *);
void dc_txeof(struct dc_softc *);
void dc_tick(void *);
void dc_tx_underrun(struct dc_softc *);
void dc_start(struct ifnet *);
int dc_ioctl(struct ifnet *, u_long, caddr_t);
void dc_watchdog(struct ifnet *);
int dc_ifmedia_upd(struct ifnet *);
void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
void dc_delay(struct dc_softc *);
void dc_eeprom_width(struct dc_softc *);
void dc_eeprom_idle(struct dc_softc *);
void dc_eeprom_putbyte(struct dc_softc *, int);
void dc_eeprom_getword(struct dc_softc *, int, u_int16_t *);
void dc_eeprom_getword_pnic(struct dc_softc *, int, u_int16_t *);
void dc_eeprom_getword_xircom(struct dc_softc *, int, u_int16_t *);
void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
void dc_mii_writebit(struct dc_softc *, int);
int dc_mii_readbit(struct dc_softc *);
void dc_mii_sync(struct dc_softc *);
void dc_mii_send(struct dc_softc *, u_int32_t, int);
int dc_mii_readreg(struct dc_softc *, struct dc_mii_frame *);
int dc_mii_writereg(struct dc_softc *, struct dc_mii_frame *);
int dc_miibus_readreg(struct device *, int, int);
void dc_miibus_writereg(struct device *, int, int, int);
void dc_miibus_statchg(struct device *);
void dc_setcfg(struct dc_softc *, uint64_t);
u_int32_t dc_crc_le(struct dc_softc *, caddr_t);
u_int32_t dc_crc_be(caddr_t);
void dc_setfilt_21143(struct dc_softc *);
void dc_setfilt_asix(struct dc_softc *);
void dc_setfilt_admtek(struct dc_softc *);
void dc_setfilt_xircom(struct dc_softc *);
void dc_setfilt(struct dc_softc *);
void dc_reset(struct dc_softc *);
int dc_list_rx_init(struct dc_softc *);
int dc_list_tx_init(struct dc_softc *);
void dc_read_srom(struct dc_softc *, int);
void dc_parse_21143_srom(struct dc_softc *);
void dc_decode_leaf_sia(struct dc_softc *,
struct dc_eblock_sia *);
void dc_decode_leaf_mii(struct dc_softc *,
struct dc_eblock_mii *);
void dc_decode_leaf_sym(struct dc_softc *,
struct dc_eblock_sym *);
void dc_apply_fixup(struct dc_softc *, uint64_t);
#define DC_SETBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
#define DC_CLRBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
#define SIO_SET(x) DC_SETBIT(sc, DC_SIO, (x))
#define SIO_CLR(x) DC_CLRBIT(sc, DC_SIO, (x))
void
dc_delay(struct dc_softc *sc)
{
int idx;
for (idx = (300 / 33) + 1; idx > 0; idx--)
CSR_READ_4(sc, DC_BUSCTL);
}
void
dc_eeprom_width(struct dc_softc *sc)
{
int i;
/* Force EEPROM to idle state. */
dc_eeprom_idle(sc);
/* Enter EEPROM access mode. */
CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
dc_delay(sc);
DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
dc_delay(sc);
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
dc_delay(sc);
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
dc_delay(sc);
for (i = 3; i--;) {
if (6 & (1 << i))
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
else
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
dc_delay(sc);
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
dc_delay(sc);
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
dc_delay(sc);
}
for (i = 1; i <= 12; i++) {
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
dc_delay(sc);
if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
dc_delay(sc);
break;
}
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
dc_delay(sc);
}
/* Turn off EEPROM access mode. */
dc_eeprom_idle(sc);
if (i < 4 || i > 12)
sc->dc_romwidth = 6;
else
sc->dc_romwidth = i;
/* Enter EEPROM access mode. */
CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
dc_delay(sc);
DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
dc_delay(sc);
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
dc_delay(sc);
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
dc_delay(sc);
/* Turn off EEPROM access mode. */
dc_eeprom_idle(sc);
}
void
dc_eeprom_idle(struct dc_softc *sc)
{
int i;
CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
dc_delay(sc);
DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
dc_delay(sc);
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
dc_delay(sc);
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
dc_delay(sc);
for (i = 0; i < 25; i++) {
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
dc_delay(sc);
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
dc_delay(sc);
}
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
dc_delay(sc);
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
dc_delay(sc);
CSR_WRITE_4(sc, DC_SIO, 0x00000000);
}
/*
* Send a read command and address to the EEPROM, check for ACK.
*/
void
dc_eeprom_putbyte(struct dc_softc *sc, int addr)
{
int d, i;
d = DC_EECMD_READ >> 6;
for (i = 3; i--; ) {
if (d & (1 << i))
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
else
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
dc_delay(sc);
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
dc_delay(sc);
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
dc_delay(sc);
}
/*
* Feed in each bit and strobe the clock.
*/
for (i = sc->dc_romwidth; i--;) {
if (addr & (1 << i)) {
SIO_SET(DC_SIO_EE_DATAIN);
} else {
SIO_CLR(DC_SIO_EE_DATAIN);
}
dc_delay(sc);
SIO_SET(DC_SIO_EE_CLK);
dc_delay(sc);
SIO_CLR(DC_SIO_EE_CLK);
dc_delay(sc);
}
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
* The PNIC 82c168/82c169 has its own non-standard way to read
* the EEPROM.
*/
void
dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, u_int16_t *dest)
{
int i;
u_int32_t r;
CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ|addr);
for (i = 0; i < DC_TIMEOUT; i++) {
DELAY(1);
r = CSR_READ_4(sc, DC_SIO);
if (!(r & DC_PN_SIOCTL_BUSY)) {
*dest = (u_int16_t)(r & 0xFFFF);
return;
}
}
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
* The Xircom X3201 has its own non-standard way to read
* the EEPROM, too.
*/
void
dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, u_int16_t *dest)
{
SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
addr *= 2;
CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
*dest = (u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
addr += 1;
CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
*dest |= ((u_int16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
void
dc_eeprom_getword(struct dc_softc *sc, int addr, u_int16_t *dest)
{
int i;
u_int16_t word = 0;
/* Force EEPROM to idle state. */
dc_eeprom_idle(sc);
/* Enter EEPROM access mode. */
CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
dc_delay(sc);
DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
dc_delay(sc);
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
dc_delay(sc);
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
dc_delay(sc);
/*
* Send address of word we want to read.
*/
dc_eeprom_putbyte(sc, addr);
/*
* Start reading bits from EEPROM.
*/
for (i = 0x8000; i; i >>= 1) {
SIO_SET(DC_SIO_EE_CLK);
dc_delay(sc);
if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
word |= i;
dc_delay(sc);
SIO_CLR(DC_SIO_EE_CLK);
dc_delay(sc);
}
/* Turn off EEPROM access mode. */
dc_eeprom_idle(sc);
*dest = word;
}
/*
* Read a sequence of words from the EEPROM.
*/
void
dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt,
int swap)
{
int i;
u_int16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
if (DC_IS_PNIC(sc))
dc_eeprom_getword_pnic(sc, off + i, &word);
else if (DC_IS_XIRCOM(sc))
dc_eeprom_getword_xircom(sc, off + i, &word);
else
dc_eeprom_getword(sc, off + i, &word);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = betoh16(word);
else
*ptr = letoh16(word);
}
}
/*
* The following two routines are taken from the Macronix 98713
* Application Notes pp.19-21.
*/
/*
* Write a bit to the MII bus.
*/
void
dc_mii_writebit(struct dc_softc *sc, int bit)
{
if (bit)
CSR_WRITE_4(sc, DC_SIO,
DC_SIO_ROMCTL_WRITE|DC_SIO_MII_DATAOUT);
else
CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
}
/*
* Read a bit from the MII bus.
*/
int
dc_mii_readbit(struct dc_softc *sc)
{
CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_READ|DC_SIO_MII_DIR);
CSR_READ_4(sc, DC_SIO);
DC_SETBIT(sc, DC_SIO, DC_SIO_MII_CLK);
DC_CLRBIT(sc, DC_SIO, DC_SIO_MII_CLK);
if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
return (1);
return (0);
}
/*
* Sync the PHYs by setting data bit and strobing the clock 32 times.
*/
void
dc_mii_sync(struct dc_softc *sc)
{
int i;
CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
for (i = 0; i < 32; i++)
dc_mii_writebit(sc, 1);
}
/*
* Clock a series of bits through the MII.
*/
void
dc_mii_send(struct dc_softc *sc, u_int32_t bits, int cnt)
{
int i;
for (i = (0x1 << (cnt - 1)); i; i >>= 1)
dc_mii_writebit(sc, bits & i);
}
/*
* Read an PHY register through the MII.
*/
int
dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
{
int i, ack, s;
s = splnet();
/*
* Set up frame for RX.
*/
frame->mii_stdelim = DC_MII_STARTDELIM;
frame->mii_opcode = DC_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
/*
* Sync the PHYs.
*/
dc_mii_sync(sc);
/*
* Send command/address info.
*/
dc_mii_send(sc, frame->mii_stdelim, 2);
dc_mii_send(sc, frame->mii_opcode, 2);
dc_mii_send(sc, frame->mii_phyaddr, 5);
dc_mii_send(sc, frame->mii_regaddr, 5);
#ifdef notdef
/* Idle bit */
dc_mii_writebit(sc, 1);
dc_mii_writebit(sc, 0);
#endif
/* Check for ack */
ack = dc_mii_readbit(sc);
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHY(s) in sync.
*/
if (ack) {
for(i = 0; i < 16; i++) {
dc_mii_readbit(sc);
}
goto fail;
}
for (i = 0x8000; i; i >>= 1) {
if (!ack) {
if (dc_mii_readbit(sc))
frame->mii_data |= i;
}
}
fail:
dc_mii_writebit(sc, 0);
dc_mii_writebit(sc, 0);
splx(s);
if (ack)
return (1);
return (0);
}
/*
* Write to a PHY register through the MII.
*/
int
dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
{
int s;
s = splnet();
/*
* Set up frame for TX.
*/
frame->mii_stdelim = DC_MII_STARTDELIM;
frame->mii_opcode = DC_MII_WRITEOP;
frame->mii_turnaround = DC_MII_TURNAROUND;
/*
* Sync the PHYs.
*/
dc_mii_sync(sc);
dc_mii_send(sc, frame->mii_stdelim, 2);
dc_mii_send(sc, frame->mii_opcode, 2);
dc_mii_send(sc, frame->mii_phyaddr, 5);
dc_mii_send(sc, frame->mii_regaddr, 5);
dc_mii_send(sc, frame->mii_turnaround, 2);
dc_mii_send(sc, frame->mii_data, 16);
/* Idle bit. */
dc_mii_writebit(sc, 0);
dc_mii_writebit(sc, 0);
splx(s);
return (0);
}
int
dc_miibus_readreg(struct device *self, int phy, int reg)
{
struct dc_mii_frame frame;
struct dc_softc *sc = (struct dc_softc *)self;
int i, rval, phy_reg;
/*
* Note: both the AL981 and AN983 have internal PHYs,
* however the AL981 provides direct access to the PHY
* registers while the AN983 uses a serial MII interface.
* The AN983's MII interface is also buggy in that you
* can read from any MII address (0 to 31), but only address 1
* behaves normally. To deal with both cases, we pretend
* that the PHY is at MII address 1.
*/
if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
return (0);
/*
* Note: the ukphy probs of the RS7112 report a PHY at
* MII address 0 (possibly HomePNA?) and 1 (ethernet)
* so we only respond to correct one.
*/
if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
return (0);
if (sc->dc_pmode != DC_PMODE_MII) {
if (phy == (MII_NPHY - 1)) {
switch(reg) {
case MII_BMSR:
/*
* Fake something to make the probe
* code think there's a PHY here.
*/
return (BMSR_MEDIAMASK);
break;
case MII_PHYIDR1:
if (DC_IS_PNIC(sc))
return (PCI_VENDOR_LITEON);
return (PCI_VENDOR_DEC);
break;
case MII_PHYIDR2:
if (DC_IS_PNIC(sc))
return (PCI_PRODUCT_LITEON_PNIC);
return (PCI_PRODUCT_DEC_21142);
break;
default:
return (0);
break;
}
} else
return (0);
}
if (DC_IS_PNIC(sc)) {
CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
(phy << 23) | (reg << 18));
for (i = 0; i < DC_TIMEOUT; i++) {
DELAY(1);
rval = CSR_READ_4(sc, DC_PN_MII);
if (!(rval & DC_PN_MII_BUSY)) {
rval &= 0xFFFF;
return (rval == 0xFFFF ? 0 : rval);
}
}
return (0);
}
if (DC_IS_COMET(sc)) {
switch(reg) {
case MII_BMCR:
phy_reg = DC_AL_BMCR;
break;
case MII_BMSR:
phy_reg = DC_AL_BMSR;
break;
case MII_PHYIDR1:
phy_reg = DC_AL_VENID;
break;
case MII_PHYIDR2:
phy_reg = DC_AL_DEVID;
break;
case MII_ANAR:
phy_reg = DC_AL_ANAR;
break;
case MII_ANLPAR:
phy_reg = DC_AL_LPAR;
break;
case MII_ANER:
phy_reg = DC_AL_ANER;
break;
default:
printf("%s: phy_read: bad phy register %x\n",
sc->sc_dev.dv_xname, reg);
return (0);
break;
}
rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
if (rval == 0xFFFF)
return (0);
return (rval);
}
bzero(&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
if (sc->dc_type == DC_TYPE_98713) {
phy_reg = CSR_READ_4(sc, DC_NETCFG);
CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
}
dc_mii_readreg(sc, &frame);
if (sc->dc_type == DC_TYPE_98713)
CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
return (frame.mii_data);
}
void
dc_miibus_writereg(struct device *self, int phy, int reg, int data)
{
struct dc_softc *sc = (struct dc_softc *)self;
struct dc_mii_frame frame;
int i, phy_reg;
bzero(&frame, sizeof(frame));
if (DC_IS_ADMTEK(sc) && phy != DC_ADMTEK_PHYADDR)
return;
if (DC_IS_CONEXANT(sc) && phy != DC_CONEXANT_PHYADDR)
return;
if (DC_IS_PNIC(sc)) {
CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
(phy << 23) | (reg << 10) | data);
for (i = 0; i < DC_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
break;
}
return;
}
if (DC_IS_COMET(sc)) {
switch(reg) {
case MII_BMCR:
phy_reg = DC_AL_BMCR;
break;
case MII_BMSR:
phy_reg = DC_AL_BMSR;
break;
case MII_PHYIDR1:
phy_reg = DC_AL_VENID;
break;
case MII_PHYIDR2:
phy_reg = DC_AL_DEVID;
break;
case MII_ANAR:
phy_reg = DC_AL_ANAR;
break;
case MII_ANLPAR:
phy_reg = DC_AL_LPAR;
break;
case MII_ANER:
phy_reg = DC_AL_ANER;
break;
default:
printf("%s: phy_write: bad phy register %x\n",
sc->sc_dev.dv_xname, reg);
return;
}
CSR_WRITE_4(sc, phy_reg, data);
return;
}
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
frame.mii_data = data;
if (sc->dc_type == DC_TYPE_98713) {
phy_reg = CSR_READ_4(sc, DC_NETCFG);
CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
}
dc_mii_writereg(sc, &frame);
if (sc->dc_type == DC_TYPE_98713)
CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
}
void
dc_miibus_statchg(struct device *self)
{
struct dc_softc *sc = (struct dc_softc *)self;
struct mii_data *mii;
struct ifmedia *ifm;
if (DC_IS_ADMTEK(sc))
return;
mii = &sc->sc_mii;
ifm = &mii->mii_media;
if (DC_IS_DAVICOM(sc) && IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
dc_setcfg(sc, ifm->ifm_media);
sc->dc_if_media = ifm->ifm_media;
} else {
dc_setcfg(sc, mii->mii_media_active);
sc->dc_if_media = mii->mii_media_active;
}
}
#define DC_BITS_512 9
#define DC_BITS_128 7
#define DC_BITS_64 6
u_int32_t
dc_crc_le(struct dc_softc *sc, caddr_t addr)
{
u_int32_t crc;
/* Compute CRC for the address value. */
crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
/*
* The hash table on the PNIC II and the MX98715AEC-C/D/E
* chips is only 128 bits wide.
*/
if (sc->dc_flags & DC_128BIT_HASH)
return (crc & ((1 << DC_BITS_128) - 1));
/* The hash table on the MX98715BEC is only 64 bits wide. */
if (sc->dc_flags & DC_64BIT_HASH)
return (crc & ((1 << DC_BITS_64) - 1));
/* Xircom's hash filtering table is different (read: weird) */
/* Xircom uses the LEAST significant bits */
if (DC_IS_XIRCOM(sc)) {
if ((crc & 0x180) == 0x180)
return (crc & 0x0F) + (crc & 0x70)*3 + (14 << 4);
else
return (crc & 0x1F) + ((crc>>1) & 0xF0)*3 + (12 << 4);
}
return (crc & ((1 << DC_BITS_512) - 1));
}
/*
* Calculate CRC of a multicast group address, return the lower 6 bits.
*/
#define dc_crc_be(addr) ((ether_crc32_be(addr,ETHER_ADDR_LEN) >> 26) \
& 0x0000003F)
/*
* 21143-style RX filter setup routine. Filter programming is done by
* downloading a special setup frame into the TX engine. 21143, Macronix,
* PNIC, PNIC II and Davicom chips are programmed this way.
*
* We always program the chip using 'hash perfect' mode, i.e. one perfect
* address (our node address) and a 512-bit hash filter for multicast
* frames. We also sneak the broadcast address into the hash filter since
* we need that too.
*/
void
dc_setfilt_21143(struct dc_softc *sc)
{
struct arpcom *ac = &sc->sc_arpcom;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct ether_multi *enm;
struct ether_multistep step;
struct dc_desc *sframe;
u_int32_t h, *sp;
int i;
i = sc->dc_cdata.dc_tx_prod;
DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
sc->dc_cdata.dc_tx_cnt++;
sframe = &sc->dc_ldata->dc_tx_list[i];
sp = &sc->dc_ldata->dc_sbuf[0];
bzero(sp, DC_SFRAME_LEN);
sframe->dc_data = htole32(sc->sc_listmap->dm_segs[0].ds_addr +
offsetof(struct dc_list_data, dc_sbuf));
sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
sc->dc_cdata.dc_tx_chain[i].sd_mbuf =
(struct mbuf *)&sc->dc_ldata->dc_sbuf[0];
DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ALLMULTI | DC_NETCFG_RX_PROMISC));
ifp->if_flags &= ~IFF_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
ifp->if_flags |= IFF_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC)
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
else
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
} else {
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
h = dc_crc_le(sc, enm->enm_addrlo);
sp[h >> 4] |= htole32(1 << (h & 0xF));
ETHER_NEXT_MULTI(step, enm);
}
}
/*
* Always accept broadcast frames.
*/
h = dc_crc_le(sc, (caddr_t)&etherbroadcastaddr);
sp[h >> 4] |= htole32(1 << (h & 0xF));
/* Set our MAC address */
sp[39] = DC_SP_FIELD(sc->sc_arpcom.ac_enaddr, 0);
sp[40] = DC_SP_FIELD(sc->sc_arpcom.ac_enaddr, 1);
sp[41] = DC_SP_FIELD(sc->sc_arpcom.ac_enaddr, 2);
bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap,
offsetof(struct dc_list_data, dc_sbuf[0]),
sizeof(struct dc_list_data) -
offsetof(struct dc_list_data, dc_sbuf[0]),
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
sframe->dc_status = htole32(DC_TXSTAT_OWN);
bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap,
offsetof(struct dc_list_data, dc_tx_list[i]),
sizeof(struct dc_desc), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
/*
* The PNIC takes an exceedingly long time to process its
* setup frame; wait 10ms after posting the setup frame
* before proceeding, just so it has time to swallow its
* medicine.
*/
DELAY(10000);
ifp->if_timer = 5;
}
void
dc_setfilt_admtek(struct dc_softc *sc)
{
struct arpcom *ac = &sc->sc_arpcom;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct ether_multi *enm;
struct ether_multistep step;
u_int32_t hashes[2];
int h = 0;
DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ALLMULTI | DC_NETCFG_RX_PROMISC));
bzero(hashes, sizeof(hashes));
ifp->if_flags &= ~IFF_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
ifp->if_flags |= IFF_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC)
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
else
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
} else {
/* now program new ones */
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
if (DC_IS_CENTAUR(sc))
h = dc_crc_le(sc, enm->enm_addrlo);
else
h = dc_crc_be(enm->enm_addrlo);
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
ETHER_NEXT_MULTI(step, enm);
}
}
/* Init our MAC address */
CSR_WRITE_4(sc, DC_AL_PAR0, ac->ac_enaddr[3] << 24 |
ac->ac_enaddr[2] << 16 | ac->ac_enaddr[1] << 8 | ac->ac_enaddr[0]);
CSR_WRITE_4(sc, DC_AL_PAR1, ac->ac_enaddr[5] << 8 | ac->ac_enaddr[4]);
CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
}
void
dc_setfilt_asix(struct dc_softc *sc)
{
struct arpcom *ac = &sc->sc_arpcom;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct ether_multi *enm;
struct ether_multistep step;
u_int32_t hashes[2];
int h = 0;
DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ALLMULTI | DC_AX_NETCFG_RX_BROAD |
DC_NETCFG_RX_PROMISC));
bzero(hashes, sizeof(hashes));
ifp->if_flags &= ~IFF_ALLMULTI;
/*
* Always accept broadcast frames.
*/
DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
ifp->if_flags |= IFF_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC)
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
else
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
} else {
/* now program new ones */
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
h = dc_crc_be(enm->enm_addrlo);
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
ETHER_NEXT_MULTI(step, enm);
}
}
/* Init our MAC address */
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
CSR_WRITE_4(sc, DC_AX_FILTDATA,
*(u_int32_t *)(&sc->sc_arpcom.ac_enaddr[0]));
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
CSR_WRITE_4(sc, DC_AX_FILTDATA,
*(u_int32_t *)(&sc->sc_arpcom.ac_enaddr[4]));
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
}
void
dc_setfilt_xircom(struct dc_softc *sc)
{
struct arpcom *ac = &sc->sc_arpcom;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct ether_multi *enm;
struct ether_multistep step;
struct dc_desc *sframe;
u_int32_t h, *sp;
int i;
DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
i = sc->dc_cdata.dc_tx_prod;
DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
sc->dc_cdata.dc_tx_cnt++;
sframe = &sc->dc_ldata->dc_tx_list[i];
sp = &sc->dc_ldata->dc_sbuf[0];
bzero(sp, DC_SFRAME_LEN);
sframe->dc_data = htole32(sc->sc_listmap->dm_segs[0].ds_addr +
offsetof(struct dc_list_data, dc_sbuf));
sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
sc->dc_cdata.dc_tx_chain[i].sd_mbuf =
(struct mbuf *)&sc->dc_ldata->dc_sbuf[0];
DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ALLMULTI | DC_NETCFG_RX_PROMISC));
ifp->if_flags &= ~IFF_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
ifp->if_flags |= IFF_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC)
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
else
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
} else {
/* now program new ones */
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
h = dc_crc_le(sc, enm->enm_addrlo);
sp[h >> 4] |= htole32(1 << (h & 0xF));
ETHER_NEXT_MULTI(step, enm);
}
}
/*
* Always accept broadcast frames.
*/
h = dc_crc_le(sc, (caddr_t)&etherbroadcastaddr);
sp[h >> 4] |= htole32(1 << (h & 0xF));
/* Set our MAC address */
sp[0] = DC_SP_FIELD(sc->sc_arpcom.ac_enaddr, 0);
sp[1] = DC_SP_FIELD(sc->sc_arpcom.ac_enaddr, 1);
sp[2] = DC_SP_FIELD(sc->sc_arpcom.ac_enaddr, 2);
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
ifp->if_flags |= IFF_RUNNING;
sframe->dc_status = htole32(DC_TXSTAT_OWN);
CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
/*
* wait some time...
*/
DELAY(1000);
ifp->if_timer = 5;
}
void
dc_setfilt(struct dc_softc *sc)
{
if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
dc_setfilt_21143(sc);
if (DC_IS_ASIX(sc))
dc_setfilt_asix(sc);
if (DC_IS_ADMTEK(sc))
dc_setfilt_admtek(sc);
if (DC_IS_XIRCOM(sc))
dc_setfilt_xircom(sc);
}
/*
* In order to fiddle with the
* 'full-duplex' and '100Mbps' bits in the netconfig register, we
* first have to put the transmit and/or receive logic in the idle state.
*/
void
dc_setcfg(struct dc_softc *sc, uint64_t media)
{
int i, restart = 0;
u_int32_t isr;
if (IFM_SUBTYPE(media) == IFM_NONE)
return;
if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON)) {
restart = 1;
DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON|DC_NETCFG_RX_ON));
for (i = 0; i < DC_TIMEOUT; i++) {
isr = CSR_READ_4(sc, DC_ISR);
if (isr & DC_ISR_TX_IDLE &&
((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
(isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
break;
DELAY(10);
}
if (i == DC_TIMEOUT) {
if (!(isr & DC_ISR_TX_IDLE) && !DC_IS_ASIX(sc))
printf("%s: failed to force tx to idle state\n",
sc->sc_dev.dv_xname);
if (!((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
(isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
!DC_HAS_BROKEN_RXSTATE(sc))
printf("%s: failed to force rx to idle state\n",
sc->sc_dev.dv_xname);
}
}
if (IFM_SUBTYPE(media) == IFM_100_TX) {
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
if (sc->dc_pmode == DC_PMODE_MII) {
int watchdogreg;
if (DC_IS_INTEL(sc)) {
/* there's a write enable bit here that reads as 1 */
watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
watchdogreg &= ~DC_WDOG_CTLWREN;
watchdogreg |= DC_WDOG_JABBERDIS;
CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
} else {
DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
}
DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
if (sc->dc_type == DC_TYPE_98713)
DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
DC_NETCFG_SCRAMBLER));
if (!DC_IS_DAVICOM(sc))
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
if (DC_IS_INTEL(sc))
dc_apply_fixup(sc, IFM_AUTO);
} else {
if (DC_IS_PNIC(sc)) {
DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
}
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
if (DC_IS_INTEL(sc))
dc_apply_fixup(sc,
(media & IFM_GMASK) == IFM_FDX ?
IFM_100_TX|IFM_FDX : IFM_100_TX);
}
}
if (IFM_SUBTYPE(media) == IFM_10_T) {
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
if (sc->dc_pmode == DC_PMODE_MII) {
int watchdogreg;
if (DC_IS_INTEL(sc)) {
/* there's a write enable bit here that reads as 1 */
watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
watchdogreg &= ~DC_WDOG_CTLWREN;
watchdogreg |= DC_WDOG_JABBERDIS;
CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
} else {
DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
}
DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS|
DC_NETCFG_PORTSEL|DC_NETCFG_SCRAMBLER));
if (sc->dc_type == DC_TYPE_98713)
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
if (!DC_IS_DAVICOM(sc))
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
if (DC_IS_INTEL(sc))
dc_apply_fixup(sc, IFM_AUTO);
} else {
if (DC_IS_PNIC(sc)) {
DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
}
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
if (DC_IS_INTEL(sc)) {
DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
if ((media & IFM_GMASK) == IFM_FDX)
DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
else
DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
DC_CLRBIT(sc, DC_10BTCTRL,
DC_TCTL_AUTONEGENBL);
dc_apply_fixup(sc,
(media & IFM_GMASK) == IFM_FDX ?
IFM_10_T|IFM_FDX : IFM_10_T);
DELAY(20000);
}
}
}
/*
* If this is a Davicom DM9102A card with a DM9801 HomePNA
* PHY and we want HomePNA mode, set the portsel bit to turn
* on the external MII port.
*/
if (DC_IS_DAVICOM(sc)) {
if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
sc->dc_link = 1;
} else {
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
}
}
if ((media & IFM_GMASK) == IFM_FDX) {
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
} else {
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
}
if (restart)
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON|DC_NETCFG_RX_ON);
}
void
dc_reset(struct dc_softc *sc)
{
int i;
DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
for (i = 0; i < DC_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
break;
}
if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_XIRCOM(sc) ||
DC_IS_INTEL(sc) || DC_IS_CONEXANT(sc)) {
DELAY(10000);
DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
i = 0;
}
if (i == DC_TIMEOUT)
printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
CSR_WRITE_4(sc, DC_IMR, 0x00000000);
CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
/*
* Bring the SIA out of reset. In some cases, it looks
* like failing to unreset the SIA soon enough gets it
* into a state where it will never come out of reset
* until we reset the whole chip again.
*/
if (DC_IS_INTEL(sc)) {
DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
CSR_WRITE_4(sc, DC_10BTCTRL, 0);
CSR_WRITE_4(sc, DC_WATCHDOG, 0);
}
if (sc->dc_type == DC_TYPE_21145)
dc_setcfg(sc, IFM_10_T);
}
void
dc_apply_fixup(struct dc_softc *sc, uint64_t media)
{
struct dc_mediainfo *m;
u_int8_t *p;
int i;
u_int32_t reg;
m = sc->dc_mi;
while (m != NULL) {
if (m->dc_media == media)
break;
m = m->dc_next;
}
if (m == NULL)
return;
for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
reg = (p[0] | (p[1] << 8)) << 16;
CSR_WRITE_4(sc, DC_WATCHDOG, reg);
}
for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
reg = (p[0] | (p[1] << 8)) << 16;
CSR_WRITE_4(sc, DC_WATCHDOG, reg);
}
}
void
dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
{
struct dc_mediainfo *m;
m = malloc(sizeof(*m), M_DEVBUF, M_NOWAIT | M_ZERO);
if (m == NULL)
return;
switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
case DC_SIA_CODE_10BT:
m->dc_media = IFM_10_T;
break;
case DC_SIA_CODE_10BT_FDX:
m->dc_media = IFM_10_T|IFM_FDX;
break;
case DC_SIA_CODE_10B2:
m->dc_media = IFM_10_2;
break;
case DC_SIA_CODE_10B5:
m->dc_media = IFM_10_5;
break;
default:
break;
}
/*
* We need to ignore CSR13, CSR14, CSR15 for SIA mode.
* Things apparently already work for cards that do
* supply Media Specific Data.
*/
if (l->dc_sia_code & DC_SIA_CODE_EXT) {
m->dc_gp_len = 2;
m->dc_gp_ptr =
(u_int8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
} else {
m->dc_gp_len = 2;
m->dc_gp_ptr =
(u_int8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
}
m->dc_next = sc->dc_mi;
sc->dc_mi = m;
sc->dc_pmode = DC_PMODE_SIA;
}
void
dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
{
struct dc_mediainfo *m;
m = malloc(sizeof(*m), M_DEVBUF, M_NOWAIT | M_ZERO);
if (m == NULL)
return;
if (l->dc_sym_code == DC_SYM_CODE_100BT)
m->dc_media = IFM_100_TX;
if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
m->dc_media = IFM_100_TX|IFM_FDX;
m->dc_gp_len = 2;
m->dc_gp_ptr = (u_int8_t *)&l->dc_sym_gpio_ctl;
m->dc_next = sc->dc_mi;
sc->dc_mi = m;
sc->dc_pmode = DC_PMODE_SYM;
}
void
dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
{
u_int8_t *p;
struct dc_mediainfo *m;
m = malloc(sizeof(*m), M_DEVBUF, M_NOWAIT | M_ZERO);
if (m == NULL)
return;
/* We abuse IFM_AUTO to represent MII. */
m->dc_media = IFM_AUTO;
m->dc_gp_len = l->dc_gpr_len;
p = (u_int8_t *)l;
p += sizeof(struct dc_eblock_mii);
m->dc_gp_ptr = p;
p += 2 * l->dc_gpr_len;
m->dc_reset_len = *p;
p++;
m->dc_reset_ptr = p;
m->dc_next = sc->dc_mi;
sc->dc_mi = m;
}
void
dc_read_srom(struct dc_softc *sc, int bits)
{
sc->dc_sromsize = 2 << bits;
sc->dc_srom = malloc(sc->dc_sromsize, M_DEVBUF, M_NOWAIT);
if (sc->dc_srom == NULL)
return;
dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (sc->dc_sromsize / 2), 0);
}
void
dc_parse_21143_srom(struct dc_softc *sc)
{
struct dc_leaf_hdr *lhdr;
struct dc_eblock_hdr *hdr;
int have_mii, i, loff;
char *ptr;
have_mii = 0;
loff = sc->dc_srom[27];
lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
ptr = (char *)lhdr;
ptr += sizeof(struct dc_leaf_hdr) - 1;
/*
* Look if we got a MII media block.
*/
for (i = 0; i < lhdr->dc_mcnt; i++) {
hdr = (struct dc_eblock_hdr *)ptr;
if (hdr->dc_type == DC_EBLOCK_MII)
have_mii++;
ptr += (hdr->dc_len & 0x7F);
ptr++;
}
/*
* Do the same thing again. Only use SIA and SYM media
* blocks if no MII media block is available.
*/
ptr = (char *)lhdr;
ptr += sizeof(struct dc_leaf_hdr) - 1;
for (i = 0; i < lhdr->dc_mcnt; i++) {
hdr = (struct dc_eblock_hdr *)ptr;
switch(hdr->dc_type) {
case DC_EBLOCK_MII:
dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
break;
case DC_EBLOCK_SIA:
if (! have_mii)
dc_decode_leaf_sia(sc,
(struct dc_eblock_sia *)hdr);
break;
case DC_EBLOCK_SYM:
if (! have_mii)
dc_decode_leaf_sym(sc,
(struct dc_eblock_sym *)hdr);
break;
default:
/* Don't care. Yet. */
break;
}
ptr += (hdr->dc_len & 0x7F);
ptr++;
}
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
void
dc_attach(struct dc_softc *sc)
{
struct ifnet *ifp;
int mac_offset, tmp, i;
u_int32_t reg;
/*
* Get station address from the EEPROM.
*/
if (sc->sc_hasmac)
goto hasmac;
switch(sc->dc_type) {
case DC_TYPE_98713:
case DC_TYPE_98713A:
case DC_TYPE_987x5:
case DC_TYPE_PNICII:
dc_read_eeprom(sc, (caddr_t)&mac_offset,
(DC_EE_NODEADDR_OFFSET / 2), 1, 0);
dc_read_eeprom(sc, (caddr_t)&sc->sc_arpcom.ac_enaddr,
(mac_offset / 2), 3, 0);
break;
case DC_TYPE_PNIC:
dc_read_eeprom(sc, (caddr_t)&sc->sc_arpcom.ac_enaddr, 0, 3, 1);
break;
case DC_TYPE_DM9102:
case DC_TYPE_21143:
case DC_TYPE_21145:
case DC_TYPE_ASIX:
dc_read_eeprom(sc, (caddr_t)&sc->sc_arpcom.ac_enaddr,
DC_EE_NODEADDR, 3, 0);
break;
case DC_TYPE_AL981:
case DC_TYPE_AN983:
reg = CSR_READ_4(sc, DC_AL_PAR0);
sc->sc_arpcom.ac_enaddr[0] = (reg & 0xff);
sc->sc_arpcom.ac_enaddr[1] = (reg >> 8) & 0xff;
sc->sc_arpcom.ac_enaddr[2] = (reg >> 16) & 0xff;
sc->sc_arpcom.ac_enaddr[3] = (reg >> 24) & 0xff;
reg = CSR_READ_4(sc, DC_AL_PAR1);
sc->sc_arpcom.ac_enaddr[4] = (reg & 0xff);
sc->sc_arpcom.ac_enaddr[5] = (reg >> 8) & 0xff;
break;
case DC_TYPE_CONEXANT:
bcopy(&sc->dc_srom + DC_CONEXANT_EE_NODEADDR,
&sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
break;
case DC_TYPE_XIRCOM:
/* Some newer units have the MAC at offset 8 */
dc_read_eeprom(sc, (caddr_t)&sc->sc_arpcom.ac_enaddr, 8, 3, 0);
if (sc->sc_arpcom.ac_enaddr[0] == 0x00 &&
sc->sc_arpcom.ac_enaddr[1] == 0x10 &&
sc->sc_arpcom.ac_enaddr[2] == 0xa4)
break;
if (sc->sc_arpcom.ac_enaddr[0] == 0x00 &&
sc->sc_arpcom.ac_enaddr[1] == 0x80 &&
sc->sc_arpcom.ac_enaddr[2] == 0xc7)
break;
dc_read_eeprom(sc, (caddr_t)&sc->sc_arpcom.ac_enaddr, 3, 3, 0);
break;
default:
dc_read_eeprom(sc, (caddr_t)&sc->sc_arpcom.ac_enaddr,
DC_EE_NODEADDR, 3, 0);
break;
}
hasmac:
if (bus_dmamem_alloc(sc->sc_dmat, sizeof(struct dc_list_data),
PAGE_SIZE, 0, sc->sc_listseg, 1, &sc->sc_listnseg,
BUS_DMA_NOWAIT | BUS_DMA_ZERO) != 0) {
printf(": can't alloc list mem\n");
goto fail;
}
if (bus_dmamem_map(sc->sc_dmat, sc->sc_listseg, sc->sc_listnseg,
sizeof(struct dc_list_data), &sc->sc_listkva,
BUS_DMA_NOWAIT) != 0) {
printf(": can't map list mem\n");
goto fail;
}
if (bus_dmamap_create(sc->sc_dmat, sizeof(struct dc_list_data), 1,
sizeof(struct dc_list_data), 0, BUS_DMA_NOWAIT,
&sc->sc_listmap) != 0) {
printf(": can't alloc list map\n");
goto fail;
}
if (bus_dmamap_load(sc->sc_dmat, sc->sc_listmap, sc->sc_listkva,
sizeof(struct dc_list_data), NULL, BUS_DMA_NOWAIT) != 0) {
printf(": can't load list map\n");
goto fail;
}
sc->dc_ldata = (struct dc_list_data *)sc->sc_listkva;
for (i = 0; i < DC_RX_LIST_CNT; i++) {
if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
0, BUS_DMA_NOWAIT,
&sc->dc_cdata.dc_rx_chain[i].sd_map) != 0) {
printf(": can't create rx map\n");
return;
}
}
if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
BUS_DMA_NOWAIT, &sc->sc_rx_sparemap) != 0) {
printf(": can't create rx spare map\n");
return;
}
for (i = 0; i < DC_TX_LIST_CNT; i++) {
if (bus_dmamap_create(sc->sc_dmat, MCLBYTES,
(sc->dc_flags & DC_TX_COALESCE) ? 1 : DC_TX_LIST_CNT - 5,
MCLBYTES, 0, BUS_DMA_NOWAIT,
&sc->dc_cdata.dc_tx_chain[i].sd_map) != 0) {
printf(": can't create tx map\n");
return;
}
}
if (bus_dmamap_create(sc->sc_dmat, MCLBYTES,
(sc->dc_flags & DC_TX_COALESCE) ? 1 : DC_TX_LIST_CNT - 5,
MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->sc_tx_sparemap) != 0) {
printf(": can't create tx spare map\n");
return;
}
/*
* A 21143 or clone chip was detected. Inform the world.
*/
printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
ifp = &sc->sc_arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = dc_ioctl;
ifp->if_start = dc_start;
ifp->if_watchdog = dc_watchdog;
ifq_init_maxlen(&ifp->if_snd, DC_TX_LIST_CNT - 1);
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
ifp->if_capabilities = IFCAP_VLAN_MTU;
/* Do MII setup. If this is a 21143, check for a PHY on the
* MII bus after applying any necessary fixups to twiddle the
* GPIO bits. If we don't end up finding a PHY, restore the
* old selection (SIA only or SIA/SYM) and attach the dcphy
* driver instead.
*/
if (DC_IS_INTEL(sc)) {
dc_apply_fixup(sc, IFM_AUTO);
tmp = sc->dc_pmode;
sc->dc_pmode = DC_PMODE_MII;
}
/*
* Setup General Purpose port mode and data so the tulip can talk
* to the MII. This needs to be done before mii_attach so that
* we can actually see them.
*/
if (DC_IS_XIRCOM(sc)) {
CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
DELAY(10);
CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
DELAY(10);
}
sc->sc_mii.mii_ifp = ifp;
sc->sc_mii.mii_readreg = dc_miibus_readreg;
sc->sc_mii.mii_writereg = dc_miibus_writereg;
sc->sc_mii.mii_statchg = dc_miibus_statchg;
ifmedia_init(&sc->sc_mii.mii_media, 0, dc_ifmedia_upd, dc_ifmedia_sts);
mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, 0);
if (DC_IS_INTEL(sc)) {
if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
sc->dc_pmode = tmp;
if (sc->dc_pmode != DC_PMODE_SIA)
sc->dc_pmode = DC_PMODE_SYM;
sc->dc_flags |= DC_21143_NWAY;
if (sc->dc_flags & DC_MOMENCO_BOTCH)
sc->dc_pmode = DC_PMODE_MII;
mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
MII_PHY_ANY, MII_OFFSET_ANY, 0);
} else {
/* we have a PHY, so we must clear this bit */
sc->dc_flags &= ~DC_TULIP_LEDS;
}
}
if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
printf("%s: MII without any PHY!\n", sc->sc_dev.dv_xname);
} else if (sc->dc_type == DC_TYPE_21145) {
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T);
} else
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
if (DC_IS_DAVICOM(sc) && sc->dc_revision >= DC_REVISION_DM9102A)
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_HPNA_1,0,NULL);
if (DC_IS_ADMTEK(sc)) {
/*
* Set automatic TX underrun recovery for the ADMtek chips
*/
DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
}
/*
* Call MI attach routines.
*/
if_attach(ifp);
ether_ifattach(ifp);
fail:
return;
}
/*
* Initialize the transmit descriptors.
*/
int
dc_list_tx_init(struct dc_softc *sc)
{
struct dc_chain_data *cd;
struct dc_list_data *ld;
int i;
bus_addr_t next;
cd = &sc->dc_cdata;
ld = sc->dc_ldata;
for (i = 0; i < DC_TX_LIST_CNT; i++) {
next = sc->sc_listmap->dm_segs[0].ds_addr;
if (i == (DC_TX_LIST_CNT - 1))
next +=
offsetof(struct dc_list_data, dc_tx_list[0]);
else
next +=
offsetof(struct dc_list_data, dc_tx_list[i + 1]);
cd->dc_tx_chain[i].sd_mbuf = NULL;
ld->dc_tx_list[i].dc_data = htole32(0);
ld->dc_tx_list[i].dc_ctl = htole32(0);
ld->dc_tx_list[i].dc_next = htole32(next);
}
cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
return (0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
int
dc_list_rx_init(struct dc_softc *sc)
{
struct dc_chain_data *cd;
struct dc_list_data *ld;
int i;
bus_addr_t next;
cd = &sc->dc_cdata;
ld = sc->dc_ldata;
for (i = 0; i < DC_RX_LIST_CNT; i++) {
if (dc_newbuf(sc, i, NULL) == ENOBUFS)
return (ENOBUFS);
next = sc->sc_listmap->dm_segs[0].ds_addr;
if (i == (DC_RX_LIST_CNT - 1))
next +=
offsetof(struct dc_list_data, dc_rx_list[0]);
else
next +=
offsetof(struct dc_list_data, dc_rx_list[i + 1]);
ld->dc_rx_list[i].dc_next = htole32(next);
}
cd->dc_rx_prod = 0;
return (0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
int
dc_newbuf(struct dc_softc *sc, int i, struct mbuf *m)
{
struct mbuf *m_new = NULL;
struct dc_desc *c;
bus_dmamap_t map;
c = &sc->dc_ldata->dc_rx_list[i];
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL)
return (ENOBUFS);
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
return (ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_rx_sparemap,
m_new, BUS_DMA_NOWAIT) != 0) {
m_freem(m_new);
return (ENOBUFS);
}
map = sc->dc_cdata.dc_rx_chain[i].sd_map;
sc->dc_cdata.dc_rx_chain[i].sd_map = sc->sc_rx_sparemap;
sc->sc_rx_sparemap = map;
} else {
/*
* We're re-using a previously allocated mbuf;
* be sure to re-init pointers and lengths to
* default values.
*/
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
m_adj(m_new, sizeof(u_int64_t));
/*
* If this is a PNIC chip, zero the buffer. This is part
* of the workaround for the receive bug in the 82c168 and
* 82c169 chips.
*/
if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
bzero(mtod(m_new, char *), m_new->m_len);
bus_dmamap_sync(sc->sc_dmat, sc->dc_cdata.dc_rx_chain[i].sd_map, 0,
sc->dc_cdata.dc_rx_chain[i].sd_map->dm_mapsize,
BUS_DMASYNC_PREREAD);
sc->dc_cdata.dc_rx_chain[i].sd_mbuf = m_new;
c->dc_data = htole32(
sc->dc_cdata.dc_rx_chain[i].sd_map->dm_segs[0].ds_addr +
sizeof(u_int64_t));
c->dc_ctl = htole32(DC_RXCTL_RLINK | ETHER_MAX_DIX_LEN);
c->dc_status = htole32(DC_RXSTAT_OWN);
bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap,
offsetof(struct dc_list_data, dc_rx_list[i]),
sizeof(struct dc_desc),
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* Grrrrr.
* The PNIC chip has a terrible bug in it that manifests itself during
* periods of heavy activity. The exact mode of failure if difficult to
* pinpoint: sometimes it only happens in promiscuous mode, sometimes it
* will happen on slow machines. The bug is that sometimes instead of
* uploading one complete frame during reception, it uploads what looks
* like the entire contents of its FIFO memory. The frame we want is at
* the end of the whole mess, but we never know exactly how much data has
* been uploaded, so salvaging the frame is hard.
*
* There is only one way to do it reliably, and it's disgusting.
* Here's what we know:
*
* - We know there will always be somewhere between one and three extra
* descriptors uploaded.
*
* - We know the desired received frame will always be at the end of the
* total data upload.
*
* - We know the size of the desired received frame because it will be
* provided in the length field of the status word in the last descriptor.
*
* Here's what we do:
*
* - When we allocate buffers for the receive ring, we bzero() them.
* This means that we know that the buffer contents should be all
* zeros, except for data uploaded by the chip.
*
* - We also force the PNIC chip to upload frames that include the
* ethernet CRC at the end.
*
* - We gather all of the bogus frame data into a single buffer.
*
* - We then position a pointer at the end of this buffer and scan
* backwards until we encounter the first non-zero byte of data.
* This is the end of the received frame. We know we will encounter
* some data at the end of the frame because the CRC will always be
* there, so even if the sender transmits a packet of all zeros,
* we won't be fooled.
*
* - We know the size of the actual received frame, so we subtract
* that value from the current pointer location. This brings us
* to the start of the actual received packet.
*
* - We copy this into an mbuf and pass it on, along with the actual
* frame length.
*
* The performance hit is tremendous, but it beats dropping frames all
* the time.
*/
#define DC_WHOLEFRAME (DC_RXSTAT_FIRSTFRAG|DC_RXSTAT_LASTFRAG)
void
dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
{
struct dc_desc *cur_rx;
struct dc_desc *c = NULL;
struct mbuf *m = NULL;
unsigned char *ptr;
int i, total_len;
u_int32_t rxstat = 0;
i = sc->dc_pnic_rx_bug_save;
cur_rx = &sc->dc_ldata->dc_rx_list[idx];
ptr = sc->dc_pnic_rx_buf;
bzero(ptr, ETHER_MAX_DIX_LEN * 5);
/* Copy all the bytes from the bogus buffers. */
while (1) {
c = &sc->dc_ldata->dc_rx_list[i];
rxstat = letoh32(c->dc_status);
m = sc->dc_cdata.dc_rx_chain[i].sd_mbuf;
bcopy(mtod(m, char *), ptr, ETHER_MAX_DIX_LEN);
ptr += ETHER_MAX_DIX_LEN;
/* If this is the last buffer, break out. */
if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
break;
dc_newbuf(sc, i, m);
DC_INC(i, DC_RX_LIST_CNT);
}
/* Find the length of the actual receive frame. */
total_len = DC_RXBYTES(rxstat);
/* Scan backwards until we hit a non-zero byte. */
while(*ptr == 0x00)
ptr--;
/* Round off. */
if ((unsigned long)(ptr) & 0x3)
ptr -= 1;
/* Now find the start of the frame. */
ptr -= total_len;
if (ptr < sc->dc_pnic_rx_buf)
ptr = sc->dc_pnic_rx_buf;
/*
* Now copy the salvaged frame to the last mbuf and fake up
* the status word to make it look like a successful
* frame reception.
*/
dc_newbuf(sc, i, m);
bcopy(ptr, mtod(m, char *), total_len);
cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
}
/*
* This routine searches the RX ring for dirty descriptors in the
* event that the rxeof routine falls out of sync with the chip's
* current descriptor pointer. This may happen sometimes as a result
* of a "no RX buffer available" condition that happens when the chip
* consumes all of the RX buffers before the driver has a chance to
* process the RX ring. This routine may need to be called more than
* once to bring the driver back in sync with the chip, however we
* should still be getting RX DONE interrupts to drive the search
* for new packets in the RX ring, so we should catch up eventually.
*/
int
dc_rx_resync(struct dc_softc *sc)
{
u_int32_t stat;
int i, pos, offset;
pos = sc->dc_cdata.dc_rx_prod;
for (i = 0; i < DC_RX_LIST_CNT; i++) {
offset = offsetof(struct dc_list_data, dc_rx_list[pos]);
bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap,
offset, sizeof(struct dc_desc),
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
stat = sc->dc_ldata->dc_rx_list[pos].dc_status;
if (!(stat & htole32(DC_RXSTAT_OWN)))
break;
DC_INC(pos, DC_RX_LIST_CNT);
}
/* If the ring really is empty, then just return. */
if (i == DC_RX_LIST_CNT)
return (0);
/* We've fallen behind the chip: catch it. */
sc->dc_cdata.dc_rx_prod = pos;
return (EAGAIN);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
int
dc_rxeof(struct dc_softc *sc)
{
struct mbuf *m;
struct ifnet *ifp;
struct dc_desc *cur_rx;
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
int i, offset, total_len = 0, consumed = 0;
u_int32_t rxstat;
ifp = &sc->sc_arpcom.ac_if;
i = sc->dc_cdata.dc_rx_prod;
for(;;) {
struct mbuf *m0 = NULL;
offset = offsetof(struct dc_list_data, dc_rx_list[i]);
bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap,
offset, sizeof(struct dc_desc),
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
cur_rx = &sc->dc_ldata->dc_rx_list[i];
rxstat = letoh32(cur_rx->dc_status);
if (rxstat & DC_RXSTAT_OWN)
break;
m = sc->dc_cdata.dc_rx_chain[i].sd_mbuf;
total_len = DC_RXBYTES(rxstat);
bus_dmamap_sync(sc->sc_dmat, sc->dc_cdata.dc_rx_chain[i].sd_map,
0, sc->dc_cdata.dc_rx_chain[i].sd_map->dm_mapsize,
BUS_DMASYNC_POSTREAD);
if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
if (rxstat & DC_RXSTAT_FIRSTFRAG)
sc->dc_pnic_rx_bug_save = i;
if ((rxstat & DC_RXSTAT_LASTFRAG) == 0) {
DC_INC(i, DC_RX_LIST_CNT);
continue;
}
dc_pnic_rx_bug_war(sc, i);
rxstat = letoh32(cur_rx->dc_status);
total_len = DC_RXBYTES(rxstat);
}
}
sc->dc_cdata.dc_rx_chain[i].sd_mbuf = NULL;
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring. However, don't report long
* frames as errors since they could be VLANs.
*/
if ((rxstat & DC_RXSTAT_RXERR)) {
if (!(rxstat & DC_RXSTAT_GIANT) ||
(rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
DC_RXSTAT_RUNT | DC_RXSTAT_DE))) {
ifp->if_ierrors++;
if (rxstat & DC_RXSTAT_COLLSEEN)
ifp->if_collisions++;
dc_newbuf(sc, i, m);
if (rxstat & DC_RXSTAT_CRCERR) {
DC_INC(i, DC_RX_LIST_CNT);
continue;
} else {
dc_init(sc);
break;
}
}
}
/* No errors; receive the packet. */
total_len -= ETHER_CRC_LEN;
m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN);
dc_newbuf(sc, i, m);
DC_INC(i, DC_RX_LIST_CNT);
if (m0 == NULL) {
ifp->if_ierrors++;
continue;
}
m = m0;
consumed++;
ml_enqueue(&ml, m);
}
sc->dc_cdata.dc_rx_prod = i;
if_input(ifp, &ml);
return (consumed);
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
void
dc_txeof(struct dc_softc *sc)
{
struct dc_desc *cur_tx = NULL;
struct ifnet *ifp;
int idx, offset;
ifp = &sc->sc_arpcom.ac_if;
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
idx = sc->dc_cdata.dc_tx_cons;
while(idx != sc->dc_cdata.dc_tx_prod) {
u_int32_t txstat;
offset = offsetof(struct dc_list_data, dc_tx_list[idx]);
bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap,
offset, sizeof(struct dc_desc),
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
cur_tx = &sc->dc_ldata->dc_tx_list[idx];
txstat = letoh32(cur_tx->dc_status);
if (txstat & DC_TXSTAT_OWN)
break;
if (!(cur_tx->dc_ctl & htole32(DC_TXCTL_LASTFRAG)) ||
cur_tx->dc_ctl & htole32(DC_TXCTL_SETUP)) {
if (cur_tx->dc_ctl & htole32(DC_TXCTL_SETUP)) {
/*
* Yes, the PNIC is so brain damaged
* that it will sometimes generate a TX
* underrun error while DMAing the RX
* filter setup frame. If we detect this,
* we have to send the setup frame again,
* or else the filter won't be programmed
* correctly.
*/
if (DC_IS_PNIC(sc)) {
if (txstat & DC_TXSTAT_ERRSUM)
dc_setfilt(sc);
}
sc->dc_cdata.dc_tx_chain[idx].sd_mbuf = NULL;
}
sc->dc_cdata.dc_tx_cnt--;
DC_INC(idx, DC_TX_LIST_CNT);
continue;
}
if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
/*
* XXX: Why does my Xircom taunt me so?
* For some reason it likes setting the CARRLOST flag
* even when the carrier is there. wtf?!
* Who knows, but Conexant chips have the
* same problem. Maybe they took lessons
* from Xircom.
*/
if (/*sc->dc_type == DC_TYPE_21143 &&*/
sc->dc_pmode == DC_PMODE_MII &&
((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
DC_TXSTAT_NOCARRIER)))
txstat &= ~DC_TXSTAT_ERRSUM;
} else {
if (/*sc->dc_type == DC_TYPE_21143 &&*/
sc->dc_pmode == DC_PMODE_MII &&
((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM|
DC_TXSTAT_NOCARRIER|DC_TXSTAT_CARRLOST)))
txstat &= ~DC_TXSTAT_ERRSUM;
}
if (txstat & DC_TXSTAT_ERRSUM) {
ifp->if_oerrors++;
if (txstat & DC_TXSTAT_EXCESSCOLL)
ifp->if_collisions++;
if (txstat & DC_TXSTAT_LATECOLL)
ifp->if_collisions++;
if (!(txstat & DC_TXSTAT_UNDERRUN)) {
dc_init(sc);
return;
}
}
ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
if (sc->dc_cdata.dc_tx_chain[idx].sd_map->dm_nsegs != 0) {
bus_dmamap_t map = sc->dc_cdata.dc_tx_chain[idx].sd_map;
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, map);
}
if (sc->dc_cdata.dc_tx_chain[idx].sd_mbuf != NULL) {
m_freem(sc->dc_cdata.dc_tx_chain[idx].sd_mbuf);
sc->dc_cdata.dc_tx_chain[idx].sd_mbuf = NULL;
}
bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap,
offset, sizeof(struct dc_desc),
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
sc->dc_cdata.dc_tx_cnt--;
DC_INC(idx, DC_TX_LIST_CNT);
}
sc->dc_cdata.dc_tx_cons = idx;
if (DC_TX_LIST_CNT - sc->dc_cdata.dc_tx_cnt > 5)
ifq_clr_oactive(&ifp->if_snd);
if (sc->dc_cdata.dc_tx_cnt == 0)
ifp->if_timer = 0;
}
void
dc_tick(void *xsc)
{
struct dc_softc *sc = (struct dc_softc *)xsc;
struct mii_data *mii;
struct ifnet *ifp;
int s;
u_int32_t r;
s = splnet();
ifp = &sc->sc_arpcom.ac_if;
mii = &sc->sc_mii;
if (sc->dc_flags & DC_REDUCED_MII_POLL) {
if (sc->dc_flags & DC_21143_NWAY) {
r = CSR_READ_4(sc, DC_10BTSTAT);
if (IFM_SUBTYPE(mii->mii_media_active) ==
IFM_100_TX && (r & DC_TSTAT_LS100)) {
sc->dc_link = 0;
mii_mediachg(mii);
}
if (IFM_SUBTYPE(mii->mii_media_active) ==
IFM_10_T && (r & DC_TSTAT_LS10)) {
sc->dc_link = 0;
mii_mediachg(mii);
}
if (sc->dc_link == 0)
mii_tick(mii);
} else {
/*
* For NICs which never report DC_RXSTATE_WAIT, we
* have to bite the bullet...
*/
if ((DC_HAS_BROKEN_RXSTATE(sc) || (CSR_READ_4(sc,
DC_ISR) & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
sc->dc_cdata.dc_tx_cnt == 0 && !DC_IS_ASIX(sc)) {
mii_tick(mii);
if (!(mii->mii_media_status & IFM_ACTIVE))
sc->dc_link = 0;
}
}
} else
mii_tick(mii);
/*
* When the init routine completes, we expect to be able to send
* packets right away, and in fact the network code will send a
* gratuitous ARP the moment the init routine marks the interface
* as running. However, even though the MAC may have been initialized,
* there may be a delay of a few seconds before the PHY completes
* autonegotiation and the link is brought up. Any transmissions
* made during that delay will be lost. Dealing with this is tricky:
* we can't just pause in the init routine while waiting for the
* PHY to come ready since that would bring the whole system to
* a screeching halt for several seconds.
*
* What we do here is prevent the TX start routine from sending
* any packets until a link has been established. After the
* interface has been initialized, the tick routine will poll
* the state of the PHY until the IFM_ACTIVE flag is set. Until
* that time, packets will stay in the send queue, and once the
* link comes up, they will be flushed out to the wire.
*/
if (!sc->dc_link && mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
sc->dc_link++;
if (ifq_empty(&ifp->if_snd) == 0)
dc_start(ifp);
}
if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
timeout_add_msec(&sc->dc_tick_tmo, 100);
else
timeout_add_sec(&sc->dc_tick_tmo, 1);
splx(s);
}
/* A transmit underrun has occurred. Back off the transmit threshold,
* or switch to store and forward mode if we have to.
*/
void
dc_tx_underrun(struct dc_softc *sc)
{
u_int32_t isr;
int i;
if (DC_IS_DAVICOM(sc))
dc_init(sc);
if (DC_IS_INTEL(sc)) {
/*
* The real 21143 requires that the transmitter be idle
* in order to change the transmit threshold or store
* and forward state.
*/
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
for (i = 0; i < DC_TIMEOUT; i++) {
isr = CSR_READ_4(sc, DC_ISR);
if (isr & DC_ISR_TX_IDLE)
break;
DELAY(10);
}
if (i == DC_TIMEOUT) {
printf("%s: failed to force tx to idle state\n",
sc->sc_dev.dv_xname);
dc_init(sc);
}
}
sc->dc_txthresh += DC_TXTHRESH_INC;
if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
} else {
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
}
if (DC_IS_INTEL(sc))
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
return;
}
int
dc_intr(void *arg)
{
struct dc_softc *sc;
struct ifnet *ifp;
u_int32_t status, ints;
int claimed = 0;
sc = arg;
ifp = &sc->sc_arpcom.ac_if;
ints = CSR_READ_4(sc, DC_ISR);
if ((ints & DC_INTRS) == 0)
return (claimed);
if (ints == 0xffffffff)
return (0);
/* Suppress unwanted interrupts */
if (!(ifp->if_flags & IFF_UP)) {
if (CSR_READ_4(sc, DC_ISR) & DC_INTRS)
dc_stop(sc, 0);
return (claimed);
}
/* Disable interrupts. */
CSR_WRITE_4(sc, DC_IMR, 0x00000000);
while (((status = CSR_READ_4(sc, DC_ISR)) & DC_INTRS) &&
status != 0xFFFFFFFF &&
(ifp->if_flags & IFF_RUNNING)) {
claimed = 1;
CSR_WRITE_4(sc, DC_ISR, status);
if (status & DC_ISR_RX_OK) {
if (dc_rxeof(sc) == 0) {
while(dc_rx_resync(sc))
dc_rxeof(sc);
}
}
if (status & (DC_ISR_TX_OK|DC_ISR_TX_NOBUF))
dc_txeof(sc);
if (status & DC_ISR_TX_IDLE) {
dc_txeof(sc);
if (sc->dc_cdata.dc_tx_cnt) {
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
}
}
if (status & DC_ISR_TX_UNDERRUN)
dc_tx_underrun(sc);
if ((status & DC_ISR_RX_WATDOGTIMEO)
|| (status & DC_ISR_RX_NOBUF)) {
if (dc_rxeof(sc) == 0) {
while(dc_rx_resync(sc))
dc_rxeof(sc);
}
}
if (status & DC_ISR_BUS_ERR)
dc_init(sc);
}
/* Re-enable interrupts. */
CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
if (ifq_empty(&ifp->if_snd) == 0)
dc_start(ifp);
return (claimed);
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
int
dc_encap(struct dc_softc *sc, bus_dmamap_t map, struct mbuf *m, u_int32_t *idx)
{
struct dc_desc *f = NULL;
int frag, cur, cnt = 0, i;
cur = frag = *idx;
for (i = 0; i < map->dm_nsegs; i++) {
f = &sc->dc_ldata->dc_tx_list[frag];
f->dc_ctl = htole32(DC_TXCTL_TLINK | map->dm_segs[i].ds_len);
if (cnt == 0) {
f->dc_status = htole32(0);
f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
} else
f->dc_status = htole32(DC_TXSTAT_OWN);
f->dc_data = htole32(map->dm_segs[i].ds_addr);
cur = frag;
DC_INC(frag, DC_TX_LIST_CNT);
cnt++;
}
sc->dc_cdata.dc_tx_cnt += cnt;
sc->dc_cdata.dc_tx_chain[cur].sd_mbuf = m;
sc->sc_tx_sparemap = sc->dc_cdata.dc_tx_chain[cur].sd_map;
sc->dc_cdata.dc_tx_chain[cur].sd_map = map;
sc->dc_ldata->dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
sc->dc_ldata->dc_tx_list[*idx].dc_ctl |=
htole32(DC_TXCTL_FINT);
if (sc->dc_flags & DC_TX_INTR_ALWAYS)
sc->dc_ldata->dc_tx_list[cur].dc_ctl |=
htole32(DC_TXCTL_FINT);
if (sc->dc_flags & DC_TX_USE_TX_INTR && sc->dc_cdata.dc_tx_cnt > 64)
sc->dc_ldata->dc_tx_list[cur].dc_ctl |=
htole32(DC_TXCTL_FINT);
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
sc->dc_ldata->dc_tx_list[*idx].dc_status = htole32(DC_TXSTAT_OWN);
*idx = frag;
return (0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static inline int
dc_fits(struct dc_softc *sc, int idx, bus_dmamap_t map)
{
if (sc->dc_flags & DC_TX_ADMTEK_WAR) {
if (sc->dc_cdata.dc_tx_prod != idx &&
idx + map->dm_nsegs >= DC_TX_LIST_CNT)
return (0);
}
if (sc->dc_cdata.dc_tx_cnt + map->dm_nsegs + 5 > DC_TX_LIST_CNT)
return (0);
return (1);
}
void
dc_start(struct ifnet *ifp)
{
struct dc_softc *sc = ifp->if_softc;
bus_dmamap_t map;
struct mbuf *m;
int idx;
if (!sc->dc_link && ifq_len(&ifp->if_snd) < 10)
return;
if (ifq_is_oactive(&ifp->if_snd))
return;
idx = sc->dc_cdata.dc_tx_prod;
bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap,
offsetof(struct dc_list_data, dc_tx_list),
sizeof(struct dc_desc) * DC_TX_LIST_CNT,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (;;) {
m = ifq_deq_begin(&ifp->if_snd);
if (m == NULL)
break;
map = sc->sc_tx_sparemap;
switch (bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
BUS_DMA_NOWAIT | BUS_DMA_OVERRUN)) {
case 0:
break;
case EFBIG:
if (m_defrag(m, M_DONTWAIT) == 0 &&
bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
BUS_DMA_NOWAIT | BUS_DMA_OVERRUN) == 0)
break;
/* FALLTHROUGH */
default:
ifq_deq_commit(&ifp->if_snd, m);
m_freem(m);
ifp->if_oerrors++;
continue;
}
if (!dc_fits(sc, idx, map)) {
bus_dmamap_unload(sc->sc_dmat, map);
ifq_deq_rollback(&ifp->if_snd, m);
ifq_set_oactive(&ifp->if_snd);
break;
}
/* now we are committed to transmit the packet */
ifq_deq_commit(&ifp->if_snd, m);
if (dc_encap(sc, map, m, &idx) != 0) {
m_freem(m);
ifp->if_oerrors++;
continue;
}
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
#endif
if (sc->dc_flags & DC_TX_ONE) {
ifq_set_oactive(&ifp->if_snd);
break;
}
}
bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap,
offsetof(struct dc_list_data, dc_tx_list),
sizeof(struct dc_desc) * DC_TX_LIST_CNT,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if (idx == sc->dc_cdata.dc_tx_prod)
return;
/* Transmit */
sc->dc_cdata.dc_tx_prod = idx;
if (!(sc->dc_flags & DC_TX_POLL))
CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
}
void
dc_init(void *xsc)
{
struct dc_softc *sc = xsc;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct mii_data *mii;
int s;
s = splnet();
mii = &sc->sc_mii;
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
dc_stop(sc, 0);
dc_reset(sc);
/*
* Set cache alignment and burst length.
*/
if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
CSR_WRITE_4(sc, DC_BUSCTL, 0);
else
CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME|DC_BUSCTL_MRLE);
/*
* Evenly share the bus between receive and transmit process.
*/
if (DC_IS_INTEL(sc))
DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
} else {
DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
}
if (sc->dc_flags & DC_TX_POLL)
DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
switch(sc->dc_cachesize) {
case 32:
DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
break;
case 16:
DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
break;
case 8:
DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
break;
case 0:
default:
DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
break;
}
if (sc->dc_flags & DC_TX_STORENFWD)
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
else {
if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
} else {
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
}
}
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
/*
* The app notes for the 98713 and 98715A say that
* in order to have the chips operate properly, a magic
* number must be written to CSR16. Macronix does not
* document the meaning of these bits so there's no way
* to know exactly what they do. The 98713 has a magic
* number all its own; the rest all use a different one.
*/
DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
if (sc->dc_type == DC_TYPE_98713)
DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
else
DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
}
if (DC_IS_XIRCOM(sc)) {
CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
DELAY(10);
CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
DELAY(10);
}
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
/* Init circular RX list. */
if (dc_list_rx_init(sc) == ENOBUFS) {
printf("%s: initialization failed: no "
"memory for rx buffers\n", sc->sc_dev.dv_xname);
dc_stop(sc, 0);
splx(s);
return;
}
/*
* Init tx descriptors.
*/
dc_list_tx_init(sc);
/*
* Sync down both lists initialized.
*/
bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap,
0, sc->sc_listmap->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/*
* Load the address of the RX list.
*/
CSR_WRITE_4(sc, DC_RXADDR, sc->sc_listmap->dm_segs[0].ds_addr +
offsetof(struct dc_list_data, dc_rx_list[0]));
CSR_WRITE_4(sc, DC_TXADDR, sc->sc_listmap->dm_segs[0].ds_addr +
offsetof(struct dc_list_data, dc_tx_list[0]));
/*
* Enable interrupts.
*/
CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
/* Enable transmitter. */
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
/*
* If this is an Intel 21143 and we're not using the
* MII port, program the LED control pins so we get
* link and activity indications.
*/
if (sc->dc_flags & DC_TULIP_LEDS) {
CSR_WRITE_4(sc, DC_WATCHDOG,
DC_WDOG_CTLWREN|DC_WDOG_LINK|DC_WDOG_ACTIVITY);
CSR_WRITE_4(sc, DC_WATCHDOG, 0);
}
/*
* Load the RX/multicast filter. We do this sort of late
* because the filter programming scheme on the 21143 and
* some clones requires DMAing a setup frame via the TX
* engine, and we need the transmitter enabled for that.
*/
dc_setfilt(sc);
/* Enable receiver. */
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
mii_mediachg(mii);
dc_setcfg(sc, sc->dc_if_media);
ifp->if_flags |= IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
splx(s);
timeout_set(&sc->dc_tick_tmo, dc_tick, sc);
if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
sc->dc_link = 1;
else {
if (sc->dc_flags & DC_21143_NWAY)
timeout_add_msec(&sc->dc_tick_tmo, 100);
else
timeout_add_sec(&sc->dc_tick_tmo, 1);
}
#ifdef SRM_MEDIA
if(sc->dc_srm_media) {
struct ifreq ifr;
ifr.ifr_media = sc->dc_srm_media;
ifmedia_ioctl(ifp, &ifr, &mii->mii_media, SIOCSIFMEDIA);
sc->dc_srm_media = 0;
}
#endif
}
/*
* Set media options.
*/
int
dc_ifmedia_upd(struct ifnet *ifp)
{
struct dc_softc *sc;
struct mii_data *mii;
struct ifmedia *ifm;
sc = ifp->if_softc;
mii = &sc->sc_mii;
mii_mediachg(mii);
ifm = &mii->mii_media;
if (DC_IS_DAVICOM(sc) &&
IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
dc_setcfg(sc, ifm->ifm_media);
else
sc->dc_link = 0;
return (0);
}
/*
* Report current media status.
*/
void
dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct dc_softc *sc;
struct mii_data *mii;
struct ifmedia *ifm;
sc = ifp->if_softc;
mii = &sc->sc_mii;
mii_pollstat(mii);
ifm = &mii->mii_media;
if (DC_IS_DAVICOM(sc)) {
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
ifmr->ifm_active = ifm->ifm_media;
ifmr->ifm_status = 0;
return;
}
}
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
}
int
dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct dc_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
s = splnet();
switch(command) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
if (!(ifp->if_flags & IFF_RUNNING))
dc_init(sc);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING)
error = ENETRESET;
else {
sc->dc_txthresh = 0;
dc_init(sc);
}
} else {
if (ifp->if_flags & IFF_RUNNING)
dc_stop(sc, 0);
}
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
#ifdef SRM_MEDIA
if (sc->dc_srm_media)
sc->dc_srm_media = 0;
#endif
break;
default:
error = ether_ioctl(ifp, &sc->sc_arpcom, command, data);
}
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
dc_setfilt(sc);
error = 0;
}
splx(s);
return (error);
}
void
dc_watchdog(struct ifnet *ifp)
{
struct dc_softc *sc;
sc = ifp->if_softc;
ifp->if_oerrors++;
printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
dc_init(sc);
if (ifq_empty(&ifp->if_snd) == 0)
dc_start(ifp);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
void
dc_stop(struct dc_softc *sc, int softonly)
{
struct ifnet *ifp;
u_int32_t isr;
int i;
ifp = &sc->sc_arpcom.ac_if;
ifp->if_timer = 0;
timeout_del(&sc->dc_tick_tmo);
ifp->if_flags &= ~IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
if (!softonly) {
DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_RX_ON|DC_NETCFG_TX_ON));
for (i = 0; i < DC_TIMEOUT; i++) {
isr = CSR_READ_4(sc, DC_ISR);
if ((isr & DC_ISR_TX_IDLE ||
(isr & DC_ISR_TX_STATE) == DC_TXSTATE_RESET) &&
(isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED)
break;
DELAY(10);
}
if (i == DC_TIMEOUT) {
if (!((isr & DC_ISR_TX_IDLE) ||
(isr & DC_ISR_TX_STATE) == DC_TXSTATE_RESET) &&
!DC_IS_ASIX(sc) && !DC_IS_DAVICOM(sc))
printf("%s: failed to force tx to idle state\n",
sc->sc_dev.dv_xname);
if (!((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED) &&
!DC_HAS_BROKEN_RXSTATE(sc))
printf("%s: failed to force rx to idle state\n",
sc->sc_dev.dv_xname);
}
CSR_WRITE_4(sc, DC_IMR, 0x00000000);
CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
sc->dc_link = 0;
}
/*
* Free data in the RX lists.
*/
for (i = 0; i < DC_RX_LIST_CNT; i++) {
if (sc->dc_cdata.dc_rx_chain[i].sd_map->dm_nsegs != 0) {
bus_dmamap_t map = sc->dc_cdata.dc_rx_chain[i].sd_map;
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, map);
}
if (sc->dc_cdata.dc_rx_chain[i].sd_mbuf != NULL) {
m_freem(sc->dc_cdata.dc_rx_chain[i].sd_mbuf);
sc->dc_cdata.dc_rx_chain[i].sd_mbuf = NULL;
}
}
bzero(&sc->dc_ldata->dc_rx_list, sizeof(sc->dc_ldata->dc_rx_list));
/*
* Free the TX list buffers.
*/
for (i = 0; i < DC_TX_LIST_CNT; i++) {
if (sc->dc_cdata.dc_tx_chain[i].sd_map->dm_nsegs != 0) {
bus_dmamap_t map = sc->dc_cdata.dc_tx_chain[i].sd_map;
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, map);
}
if (sc->dc_cdata.dc_tx_chain[i].sd_mbuf != NULL) {
if (sc->dc_ldata->dc_tx_list[i].dc_ctl &
htole32(DC_TXCTL_SETUP)) {
sc->dc_cdata.dc_tx_chain[i].sd_mbuf = NULL;
continue;
}
m_freem(sc->dc_cdata.dc_tx_chain[i].sd_mbuf);
sc->dc_cdata.dc_tx_chain[i].sd_mbuf = NULL;
}
}
bzero(&sc->dc_ldata->dc_tx_list, sizeof(sc->dc_ldata->dc_tx_list));
bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap,
0, sc->sc_listmap->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
int
dc_activate(struct device *self, int act)
{
struct dc_softc *sc = (struct dc_softc *)self;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
int rv = 0;
switch (act) {
case DVACT_SUSPEND:
if (ifp->if_flags & IFF_RUNNING)
dc_stop(sc, 0);
rv = config_activate_children(self, act);
break;
case DVACT_RESUME:
if (ifp->if_flags & IFF_UP)
dc_init(sc);
break;
default:
rv = config_activate_children(self, act);
break;
}
return (rv);
}
int
dc_detach(struct dc_softc *sc)
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
int i;
dc_stop(sc, 1);
if (LIST_FIRST(&sc->sc_mii.mii_phys) != NULL)
mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
if (sc->dc_srom)
free(sc->dc_srom, M_DEVBUF, sc->dc_sromsize);
for (i = 0; i < DC_RX_LIST_CNT; i++)
bus_dmamap_destroy(sc->sc_dmat, sc->dc_cdata.dc_rx_chain[i].sd_map);
if (sc->sc_rx_sparemap)
bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_sparemap);
for (i = 0; i < DC_TX_LIST_CNT; i++)
bus_dmamap_destroy(sc->sc_dmat, sc->dc_cdata.dc_tx_chain[i].sd_map);
if (sc->sc_tx_sparemap)
bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_sparemap);
/// XXX bus_dmamap_sync
bus_dmamap_unload(sc->sc_dmat, sc->sc_listmap);
bus_dmamem_unmap(sc->sc_dmat, sc->sc_listkva, sc->sc_listnseg);
bus_dmamap_destroy(sc->sc_dmat, sc->sc_listmap);
bus_dmamem_free(sc->sc_dmat, sc->sc_listseg, sc->sc_listnseg);
ether_ifdetach(ifp);
if_detach(ifp);
return (0);
}
struct cfdriver dc_cd = {
0, "dc", DV_IFNET
};