src/sys/dev/ic/if_wi.c
2023-07-10 00:10:46 +00:00

3191 lines
82 KiB
C

/* $OpenBSD: if_wi.c,v 1.177 2022/07/14 13:46:24 bluhm Exp $ */
/*
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* From: if_wi.c,v 1.7 1999/07/04 14:40:22 wpaul Exp $
*/
/*
* Lucent WaveLAN/IEEE 802.11 driver for OpenBSD.
*
* Originally written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The WaveLAN/IEEE adapter is the second generation of the WaveLAN
* from Lucent. Unlike the older cards, the new ones are programmed
* entirely via a firmware-driven controller called the Hermes.
* Unfortunately, Lucent will not release the Hermes programming manual
* without an NDA (if at all). What they do release is an API library
* called the HCF (Hardware Control Functions) which is supposed to
* do the device-specific operations of a device driver for you. The
* publicly available version of the HCF library (the 'HCF Light') is
* a) extremely gross, b) lacks certain features, particularly support
* for 802.11 frames, and c) is contaminated by the GNU Public License.
*
* This driver does not use the HCF or HCF Light at all. Instead, it
* programs the Hermes controller directly, using information gleaned
* from the HCF Light code and corresponding documentation.
*/
#define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
#define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/device.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_ioctl.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <machine/bus.h>
#include <dev/ic/if_wireg.h>
#include <dev/ic/if_wi_ieee.h>
#include <dev/ic/if_wivar.h>
#include <crypto/arc4.h>
#define BPFATTACH(if_bpf,if,dlt,sz)
#define STATIC
#ifdef WIDEBUG
u_int32_t widebug = WIDEBUG;
#define WID_INTR 0x01
#define WID_START 0x02
#define WID_IOCTL 0x04
#define WID_INIT 0x08
#define WID_STOP 0x10
#define WID_RESET 0x20
#define DPRINTF(mask,args) if (widebug & (mask)) printf args;
#else /* !WIDEBUG */
#define DPRINTF(mask,args)
#endif /* WIDEBUG */
#ifdef foo
static u_int8_t wi_mcast_addr[6] = { 0x01, 0x60, 0x1D, 0x00, 0x01, 0x00 };
#endif
STATIC void wi_reset(struct wi_softc *);
STATIC int wi_ioctl(struct ifnet *, u_long, caddr_t);
STATIC void wi_init_io(struct wi_softc *);
STATIC void wi_start(struct ifnet *);
STATIC void wi_watchdog(struct ifnet *);
STATIC void wi_rxeof(struct wi_softc *);
STATIC void wi_txeof(struct wi_softc *, int);
STATIC void wi_update_stats(struct wi_softc *);
STATIC void wi_setmulti(struct wi_softc *);
STATIC int wi_cmd_io(struct wi_softc *, int, int, int, int);
STATIC int wi_read_record_io(struct wi_softc *, struct wi_ltv_gen *);
STATIC int wi_write_record_io(struct wi_softc *, struct wi_ltv_gen *);
STATIC int wi_read_data_io(struct wi_softc *, int,
int, caddr_t, int);
STATIC int wi_write_data_io(struct wi_softc *, int,
int, caddr_t, int);
STATIC int wi_seek(struct wi_softc *, int, int, int);
STATIC void wi_inquire(void *);
STATIC int wi_setdef(struct wi_softc *, struct wi_req *);
STATIC void wi_get_id(struct wi_softc *);
STATIC int wi_media_change(struct ifnet *);
STATIC void wi_media_status(struct ifnet *, struct ifmediareq *);
STATIC int wi_set_ssid(struct ieee80211_nwid *, u_int8_t *, int);
STATIC int wi_set_nwkey(struct wi_softc *, struct ieee80211_nwkey *);
STATIC int wi_get_nwkey(struct wi_softc *, struct ieee80211_nwkey *);
STATIC int wi_sync_media(struct wi_softc *, int, int);
STATIC int wi_set_pm(struct wi_softc *, struct ieee80211_power *);
STATIC int wi_get_pm(struct wi_softc *, struct ieee80211_power *);
STATIC int wi_set_txpower(struct wi_softc *, struct ieee80211_txpower *);
STATIC int wi_get_txpower(struct wi_softc *, struct ieee80211_txpower *);
STATIC int wi_get_debug(struct wi_softc *, struct wi_req *);
STATIC int wi_set_debug(struct wi_softc *, struct wi_req *);
STATIC void wi_do_hostencrypt(struct wi_softc *, caddr_t, int);
STATIC int wi_do_hostdecrypt(struct wi_softc *, caddr_t, int);
STATIC int wi_alloc_nicmem_io(struct wi_softc *, int, int *);
STATIC int wi_get_fid_io(struct wi_softc *sc, int fid);
STATIC void wi_intr_enable(struct wi_softc *sc, int mode);
STATIC void wi_intr_ack(struct wi_softc *sc, int mode);
void wi_scan_timeout(void *);
/* Autoconfig definition of driver back-end */
struct cfdriver wi_cd = {
NULL, "wi", DV_IFNET
};
const struct wi_card_ident wi_card_ident[] = {
WI_CARD_IDS
};
struct wi_funcs wi_func_io = {
wi_cmd_io,
wi_read_record_io,
wi_write_record_io,
wi_alloc_nicmem_io,
wi_read_data_io,
wi_write_data_io,
wi_get_fid_io,
wi_init_io,
wi_start,
wi_ioctl,
wi_watchdog,
wi_inquire,
};
int
wi_attach(struct wi_softc *sc, struct wi_funcs *funcs)
{
struct ieee80211com *ic;
struct ifnet *ifp;
struct wi_ltv_macaddr mac;
struct wi_ltv_rates rates;
struct wi_ltv_gen gen;
int error;
ic = &sc->sc_ic;
ifp = &ic->ic_if;
sc->sc_funcs = funcs;
sc->wi_cmd_count = 500;
wi_reset(sc);
/* Read the station address. */
mac.wi_type = WI_RID_MAC_NODE;
mac.wi_len = 4;
error = wi_read_record(sc, (struct wi_ltv_gen *)&mac);
if (error) {
printf(": unable to read station address\n");
return (error);
}
bcopy(&mac.wi_mac_addr, &ic->ic_myaddr, IEEE80211_ADDR_LEN);
wi_get_id(sc);
printf("address %s", ether_sprintf(ic->ic_myaddr));
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = funcs->f_ioctl;
ifp->if_start = funcs->f_start;
ifp->if_watchdog = funcs->f_watchdog;
(void)wi_set_ssid(&sc->wi_node_name, WI_DEFAULT_NODENAME,
sizeof(WI_DEFAULT_NODENAME) - 1);
(void)wi_set_ssid(&sc->wi_net_name, WI_DEFAULT_NETNAME,
sizeof(WI_DEFAULT_NETNAME) - 1);
(void)wi_set_ssid(&sc->wi_ibss_name, WI_DEFAULT_IBSS,
sizeof(WI_DEFAULT_IBSS) - 1);
sc->wi_portnum = WI_DEFAULT_PORT;
sc->wi_ptype = WI_PORTTYPE_BSS;
sc->wi_ap_density = WI_DEFAULT_AP_DENSITY;
sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH;
sc->wi_tx_rate = WI_DEFAULT_TX_RATE;
sc->wi_max_data_len = WI_DEFAULT_DATALEN;
sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS;
sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED;
sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP;
sc->wi_roaming = WI_DEFAULT_ROAMING;
sc->wi_authtype = WI_DEFAULT_AUTHTYPE;
sc->wi_diversity = WI_DEFAULT_DIVERSITY;
sc->wi_crypto_algorithm = WI_CRYPTO_FIRMWARE_WEP;
/*
* Read the default channel from the NIC. This may vary
* depending on the country where the NIC was purchased, so
* we can't hard-code a default and expect it to work for
* everyone.
*/
gen.wi_type = WI_RID_OWN_CHNL;
gen.wi_len = 2;
if (wi_read_record(sc, &gen) == 0)
sc->wi_channel = letoh16(gen.wi_val);
else
sc->wi_channel = 3;
/*
* Set flags based on firmware version.
*/
switch (sc->sc_firmware_type) {
case WI_LUCENT:
sc->wi_flags |= WI_FLAGS_HAS_ROAMING;
if (sc->sc_sta_firmware_ver >= 60000)
sc->wi_flags |= WI_FLAGS_HAS_MOR;
if (sc->sc_sta_firmware_ver >= 60006) {
sc->wi_flags |= WI_FLAGS_HAS_IBSS;
sc->wi_flags |= WI_FLAGS_HAS_CREATE_IBSS;
}
sc->wi_ibss_port = htole16(1);
break;
case WI_INTERSIL:
sc->wi_flags |= WI_FLAGS_HAS_ROAMING;
/* older prism firmware is slow so crank the count */
if (sc->sc_sta_firmware_ver < 10000)
sc->wi_cmd_count = 5000;
else
sc->wi_cmd_count = 2000;
if (sc->sc_sta_firmware_ver >= 800) {
#ifndef SMALL_KERNEL
/*
* USB hostap is more pain than it is worth
* for now, things would have to be overhauled
*/
if ((sc->sc_sta_firmware_ver != 10402) &&
(!(sc->wi_flags & WI_FLAGS_BUS_USB)))
sc->wi_flags |= WI_FLAGS_HAS_HOSTAP;
#endif
sc->wi_flags |= WI_FLAGS_HAS_IBSS;
sc->wi_flags |= WI_FLAGS_HAS_CREATE_IBSS;
}
if (sc->sc_sta_firmware_ver >= 10603)
sc->wi_flags |= WI_FLAGS_HAS_ENH_SECURITY;
sc->wi_ibss_port = htole16(0);
break;
case WI_SYMBOL:
sc->wi_flags |= WI_FLAGS_HAS_DIVERSITY;
if (sc->sc_sta_firmware_ver >= 20000)
sc->wi_flags |= WI_FLAGS_HAS_IBSS;
if (sc->sc_sta_firmware_ver >= 25000)
sc->wi_flags |= WI_FLAGS_HAS_CREATE_IBSS;
sc->wi_ibss_port = htole16(4);
break;
}
/*
* Find out if we support WEP on this card.
*/
gen.wi_type = WI_RID_WEP_AVAIL;
gen.wi_len = 2;
if (wi_read_record(sc, &gen) == 0 && gen.wi_val != htole16(0))
sc->wi_flags |= WI_FLAGS_HAS_WEP;
timeout_set(&sc->sc_timo, funcs->f_inquire, sc);
bzero(&sc->wi_stats, sizeof(sc->wi_stats));
/* Find supported rates. */
rates.wi_type = WI_RID_DATA_RATES;
rates.wi_len = sizeof(rates.wi_rates);
if (wi_read_record(sc, (struct wi_ltv_gen *)&rates) == 0) {
int i, nrates;
nrates = letoh16(*(u_int16_t *)rates.wi_rates);
if (nrates > sizeof(rates.wi_rates) - 2)
nrates = sizeof(rates.wi_rates) - 2;
sc->wi_supprates = 0;
for (i = 0; i < nrates; i++)
sc->wi_supprates |= rates.wi_rates[2 + i];
} else
sc->wi_supprates = WI_SUPPRATES_1M | WI_SUPPRATES_2M |
WI_SUPPRATES_5M | WI_SUPPRATES_11M;
ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status);
#define ADD(m, c) ifmedia_add(&sc->sc_media, (m), (c), NULL)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_ADHOC, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, IFM_IEEE80211_IBSS,
0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
IFM_IEEE80211_IBSSMASTER, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
IFM_IEEE80211_HOSTAP, 0), 0);
if (sc->wi_supprates & WI_SUPPRATES_1M) {
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
IFM_IEEE80211_ADHOC, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
IFM_IEEE80211_IBSS, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
IFM_IEEE80211_IBSSMASTER, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
IFM_IEEE80211_HOSTAP, 0), 0);
}
if (sc->wi_supprates & WI_SUPPRATES_2M) {
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
IFM_IEEE80211_ADHOC, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
IFM_IEEE80211_IBSS, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
IFM_IEEE80211_IBSSMASTER, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
IFM_IEEE80211_HOSTAP, 0), 0);
}
if (sc->wi_supprates & WI_SUPPRATES_5M) {
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
IFM_IEEE80211_ADHOC, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
IFM_IEEE80211_IBSS, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
IFM_IEEE80211_IBSSMASTER, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
IFM_IEEE80211_HOSTAP, 0), 0);
}
if (sc->wi_supprates & WI_SUPPRATES_11M) {
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
IFM_IEEE80211_ADHOC, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
IFM_IEEE80211_IBSS, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
IFM_IEEE80211_IBSSMASTER, 0), 0);
if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP)
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
IFM_IEEE80211_HOSTAP, 0), 0);
ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_MANUAL, 0, 0), 0);
}
#undef ADD
ifmedia_set(&sc->sc_media,
IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0));
/*
* Call MI attach routines.
*/
if_attach(ifp);
memcpy(((struct arpcom *)ifp)->ac_enaddr, ic->ic_myaddr,
ETHER_ADDR_LEN);
ether_ifattach(ifp);
printf("\n");
sc->wi_flags |= WI_FLAGS_ATTACHED;
#if NBPFILTER > 0
BPFATTACH(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
if_addgroup(ifp, "wlan");
ifp->if_priority = IF_WIRELESS_DEFAULT_PRIORITY;
wi_init(sc);
wi_stop(sc);
return (0);
}
STATIC void
wi_intr_enable(struct wi_softc *sc, int mode)
{
if (!(sc->wi_flags & WI_FLAGS_BUS_USB))
CSR_WRITE_2(sc, WI_INT_EN, mode);
}
STATIC void
wi_intr_ack(struct wi_softc *sc, int mode)
{
if (!(sc->wi_flags & WI_FLAGS_BUS_USB))
CSR_WRITE_2(sc, WI_EVENT_ACK, mode);
}
int
wi_intr(void *vsc)
{
struct wi_softc *sc = vsc;
struct ifnet *ifp;
u_int16_t status;
DPRINTF(WID_INTR, ("wi_intr: sc %p\n", sc));
ifp = &sc->sc_ic.ic_if;
if (!(sc->wi_flags & WI_FLAGS_ATTACHED) || !(ifp->if_flags & IFF_UP)) {
CSR_WRITE_2(sc, WI_INT_EN, 0);
CSR_WRITE_2(sc, WI_EVENT_ACK, 0xffff);
return (0);
}
/* Disable interrupts. */
CSR_WRITE_2(sc, WI_INT_EN, 0);
status = CSR_READ_2(sc, WI_EVENT_STAT);
CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS);
if (status & WI_EV_RX) {
wi_rxeof(sc);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX);
}
if (status & WI_EV_TX) {
wi_txeof(sc, status);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX);
}
if (status & WI_EV_ALLOC) {
int id;
id = CSR_READ_2(sc, WI_ALLOC_FID);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
if (id == sc->wi_tx_data_id)
wi_txeof(sc, status);
}
if (status & WI_EV_INFO) {
wi_update_stats(sc);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO);
}
if (status & WI_EV_TX_EXC) {
wi_txeof(sc, status);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC);
}
if (status & WI_EV_INFO_DROP) {
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP);
}
/* Re-enable interrupts. */
CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
if (status == 0)
return (0);
if (!ifq_empty(&ifp->if_snd))
wi_start(ifp);
return (1);
}
STATIC int
wi_get_fid_io(struct wi_softc *sc, int fid)
{
return CSR_READ_2(sc, fid);
}
void
wi_rxeof(struct wi_softc *sc)
{
struct ifnet *ifp;
struct ether_header *eh;
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
struct mbuf *m;
caddr_t olddata;
u_int16_t ftype;
int maxlen;
int id;
ifp = &sc->sc_ic.ic_if;
id = wi_get_fid(sc, WI_RX_FID);
if (sc->wi_procframe || sc->wi_debug.wi_monitor) {
struct wi_frame *rx_frame;
int datlen, hdrlen;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
ifp->if_ierrors++;
return;
}
MCLGET(m, M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
m_freem(m);
ifp->if_ierrors++;
return;
}
if (wi_read_data(sc, id, 0, mtod(m, caddr_t),
sizeof(struct wi_frame))) {
m_freem(m);
ifp->if_ierrors++;
return;
}
rx_frame = mtod(m, struct wi_frame *);
if (rx_frame->wi_status & htole16(WI_STAT_BADCRC)) {
m_freem(m);
ifp->if_ierrors++;
return;
}
switch ((letoh16(rx_frame->wi_status) & WI_STAT_MAC_PORT)
>> 8) {
case 7:
switch (letoh16(rx_frame->wi_frame_ctl) &
WI_FCTL_FTYPE) {
case WI_FTYPE_DATA:
hdrlen = WI_DATA_HDRLEN;
datlen = letoh16(rx_frame->wi_dat_len);
break;
case WI_FTYPE_MGMT:
hdrlen = WI_MGMT_HDRLEN;
datlen = letoh16(rx_frame->wi_dat_len);
break;
case WI_FTYPE_CTL:
hdrlen = WI_CTL_HDRLEN;
datlen = 0;
break;
default:
printf(WI_PRT_FMT ": received packet of "
"unknown type on port 7\n", WI_PRT_ARG(sc));
m_freem(m);
ifp->if_ierrors++;
return;
}
break;
case 0:
hdrlen = WI_DATA_HDRLEN;
datlen = letoh16(rx_frame->wi_dat_len);
break;
default:
printf(WI_PRT_FMT ": received packet on invalid port "
"(wi_status=0x%x)\n", WI_PRT_ARG(sc),
letoh16(rx_frame->wi_status));
m_freem(m);
ifp->if_ierrors++;
return;
}
if ((hdrlen + datlen + 2) > MCLBYTES) {
m_freem(m);
ifp->if_ierrors++;
return;
}
if (wi_read_data(sc, id, hdrlen, mtod(m, caddr_t) + hdrlen,
datlen + 2)) {
m_freem(m);
ifp->if_ierrors++;
return;
}
m->m_pkthdr.len = m->m_len = hdrlen + datlen;
} else {
struct wi_frame rx_frame;
/* First read in the frame header */
if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame,
sizeof(rx_frame))) {
ifp->if_ierrors++;
return;
}
/* Drop undecryptable or packets with receive errors here */
if (rx_frame.wi_status & htole16(WI_STAT_ERRSTAT)) {
ifp->if_ierrors++;
return;
}
/* Stash frame type in host byte order for later use */
ftype = letoh16(rx_frame.wi_frame_ctl) & WI_FCTL_FTYPE;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
ifp->if_ierrors++;
return;
}
MCLGET(m, M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
m_freem(m);
ifp->if_ierrors++;
return;
}
olddata = m->m_data;
/* Align the data after the ethernet header */
m->m_data = (caddr_t)ALIGN(m->m_data +
sizeof(struct ether_header)) - sizeof(struct ether_header);
eh = mtod(m, struct ether_header *);
maxlen = MCLBYTES - (m->m_data - olddata);
if (ftype == WI_FTYPE_MGMT &&
sc->wi_ptype == WI_PORTTYPE_HOSTAP) {
u_int16_t rxlen = letoh16(rx_frame.wi_dat_len);
if ((WI_802_11_OFFSET_RAW + rxlen + 2) > maxlen) {
printf("%s: oversized mgmt packet received in "
"hostap mode (wi_dat_len=%d, "
"wi_status=0x%x)\n", sc->sc_dev.dv_xname,
rxlen, letoh16(rx_frame.wi_status));
m_freem(m);
ifp->if_ierrors++;
return;
}
/* Put the whole header in there. */
bcopy(&rx_frame, mtod(m, void *),
sizeof(struct wi_frame));
if (wi_read_data(sc, id, WI_802_11_OFFSET_RAW,
mtod(m, caddr_t) + WI_802_11_OFFSET_RAW,
rxlen + 2)) {
m_freem(m);
if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG)
printf("wihap: failed to copy header\n");
ifp->if_ierrors++;
return;
}
m->m_pkthdr.len = m->m_len =
WI_802_11_OFFSET_RAW + rxlen;
/* XXX: consider giving packet to bhp? */
wihap_mgmt_input(sc, &rx_frame, m);
return;
}
switch (letoh16(rx_frame.wi_status) & WI_RXSTAT_MSG_TYPE) {
case WI_STAT_1042:
case WI_STAT_TUNNEL:
case WI_STAT_WMP_MSG:
if ((letoh16(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN) >
maxlen) {
printf(WI_PRT_FMT ": oversized packet received "
"(wi_dat_len=%d, wi_status=0x%x)\n",
WI_PRT_ARG(sc),
letoh16(rx_frame.wi_dat_len),
letoh16(rx_frame.wi_status));
m_freem(m);
ifp->if_ierrors++;
return;
}
m->m_pkthdr.len = m->m_len =
letoh16(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN;
bcopy(&rx_frame.wi_dst_addr,
&eh->ether_dhost, ETHER_ADDR_LEN);
bcopy(&rx_frame.wi_src_addr,
&eh->ether_shost, ETHER_ADDR_LEN);
bcopy(&rx_frame.wi_type,
&eh->ether_type, ETHER_TYPE_LEN);
if (wi_read_data(sc, id, WI_802_11_OFFSET,
mtod(m, caddr_t) + sizeof(struct ether_header),
m->m_len + 2)) {
ifp->if_ierrors++;
m_freem(m);
return;
}
break;
default:
if ((letoh16(rx_frame.wi_dat_len) +
sizeof(struct ether_header)) > maxlen) {
printf(WI_PRT_FMT ": oversized packet received "
"(wi_dat_len=%d, wi_status=0x%x)\n",
WI_PRT_ARG(sc),
letoh16(rx_frame.wi_dat_len),
letoh16(rx_frame.wi_status));
m_freem(m);
ifp->if_ierrors++;
return;
}
m->m_pkthdr.len = m->m_len =
letoh16(rx_frame.wi_dat_len) +
sizeof(struct ether_header);
if (wi_read_data(sc, id, WI_802_3_OFFSET,
mtod(m, caddr_t), m->m_len + 2)) {
m_freem(m);
ifp->if_ierrors++;
return;
}
break;
}
if (sc->wi_use_wep &&
rx_frame.wi_frame_ctl & htole16(WI_FCTL_WEP)) {
int len;
switch (sc->wi_crypto_algorithm) {
case WI_CRYPTO_FIRMWARE_WEP:
break;
case WI_CRYPTO_SOFTWARE_WEP:
m_copydata(m, 0, m->m_pkthdr.len,
sc->wi_rxbuf);
len = m->m_pkthdr.len -
sizeof(struct ether_header);
if (wi_do_hostdecrypt(sc, sc->wi_rxbuf +
sizeof(struct ether_header), len)) {
if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG)
printf(WI_PRT_FMT ": Error decrypting incoming packet.\n", WI_PRT_ARG(sc));
m_freem(m);
ifp->if_ierrors++;
return;
}
len -= IEEE80211_WEP_IVLEN +
IEEE80211_WEP_KIDLEN + IEEE80211_WEP_CRCLEN;
/*
* copy data back to mbufs:
* we need to ditch the IV & most LLC/SNAP stuff
* (except SNAP type, we're going use that to
* overwrite the ethertype in the ether_header)
*/
m_copyback(m, sizeof(struct ether_header) -
WI_ETHERTYPE_LEN, WI_ETHERTYPE_LEN +
(len - WI_SNAPHDR_LEN),
sc->wi_rxbuf + sizeof(struct ether_header) +
IEEE80211_WEP_IVLEN +
IEEE80211_WEP_KIDLEN + WI_SNAPHDR_LEN,
M_NOWAIT);
m_adj(m, -(WI_ETHERTYPE_LEN +
IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
WI_SNAPHDR_LEN));
break;
}
}
if (sc->wi_ptype == WI_PORTTYPE_HOSTAP) {
/*
* Give host AP code first crack at data packets.
* If it decides to handle it (or drop it), it will
* return a non-zero. Otherwise, it is destined for
* this host.
*/
if (wihap_data_input(sc, &rx_frame, m))
return;
}
}
/* Receive packet unless in procframe or monitor mode. */
if (sc->wi_procframe || sc->wi_debug.wi_monitor)
m_freem(m);
else {
ml_enqueue(&ml, m);
if_input(ifp, &ml);
}
return;
}
void
wi_txeof(struct wi_softc *sc, int status)
{
struct ifnet *ifp;
ifp = &sc->sc_ic.ic_if;
ifp->if_timer = 0;
ifq_clr_oactive(&ifp->if_snd);
if (status & WI_EV_TX_EXC)
ifp->if_oerrors++;
return;
}
void
wi_inquire(void *xsc)
{
struct wi_softc *sc;
struct ifnet *ifp;
int s, rv;
sc = xsc;
ifp = &sc->sc_ic.ic_if;
timeout_add_sec(&sc->sc_timo, 60);
/* Don't do this while we're transmitting */
if (ifq_is_oactive(&ifp->if_snd))
return;
s = splnet();
rv = wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS, 0, 0);
splx(s);
if (rv)
printf(WI_PRT_FMT ": wi_cmd failed with %d\n", WI_PRT_ARG(sc),
rv);
return;
}
void
wi_update_stats(struct wi_softc *sc)
{
struct wi_ltv_gen gen;
u_int16_t id;
struct ifnet *ifp;
u_int32_t *ptr;
int len, i;
u_int16_t t;
ifp = &sc->sc_ic.ic_if;
id = wi_get_fid(sc, WI_INFO_FID);
wi_read_data(sc, id, 0, (char *)&gen, 4);
if (gen.wi_type == htole16(WI_INFO_SCAN_RESULTS)) {
sc->wi_scanbuf_len = letoh16(gen.wi_len);
wi_read_data(sc, id, 4, (caddr_t)sc->wi_scanbuf,
sc->wi_scanbuf_len * 2);
return;
} else if (gen.wi_type != htole16(WI_INFO_COUNTERS))
return;
/* Some card versions have a larger stats structure */
len = (letoh16(gen.wi_len) - 1 < sizeof(sc->wi_stats) / 4) ?
letoh16(gen.wi_len) - 1 : sizeof(sc->wi_stats) / 4;
ptr = (u_int32_t *)&sc->wi_stats;
for (i = 0; i < len; i++) {
if (sc->wi_flags & WI_FLAGS_BUS_USB) {
wi_read_data(sc, id, 4 + i*2, (char *)&t, 2);
t = letoh16(t);
} else
t = CSR_READ_2(sc, WI_DATA1);
#ifdef WI_HERMES_STATS_WAR
if (t > 0xF000)
t = ~t & 0xFFFF;
#endif
ptr[i] += t;
}
ifp->if_collisions = sc->wi_stats.wi_tx_single_retries +
sc->wi_stats.wi_tx_multi_retries +
sc->wi_stats.wi_tx_retry_limit;
return;
}
STATIC int
wi_cmd_io(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
{
int i, s = 0;
/* Wait for the busy bit to clear. */
for (i = sc->wi_cmd_count; i--; DELAY(1000)) {
if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY))
break;
}
if (i < 0) {
if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG)
printf(WI_PRT_FMT ": wi_cmd_io: busy bit won't clear\n",
WI_PRT_ARG(sc));
return(ETIMEDOUT);
}
CSR_WRITE_2(sc, WI_PARAM0, val0);
CSR_WRITE_2(sc, WI_PARAM1, val1);
CSR_WRITE_2(sc, WI_PARAM2, val2);
CSR_WRITE_2(sc, WI_COMMAND, cmd);
for (i = WI_TIMEOUT; i--; DELAY(WI_DELAY)) {
/*
* Wait for 'command complete' bit to be
* set in the event status register.
*/
s = CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD;
if (s) {
/* Ack the event and read result code. */
s = CSR_READ_2(sc, WI_STATUS);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
if (s & WI_STAT_CMD_RESULT)
return(EIO);
break;
}
}
if (i < 0) {
if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG)
printf(WI_PRT_FMT
": timeout in wi_cmd 0x%04x; event status 0x%04x\n",
WI_PRT_ARG(sc), cmd, s);
return(ETIMEDOUT);
}
return(0);
}
STATIC void
wi_reset(struct wi_softc *sc)
{
int error, tries = 3;
DPRINTF(WID_RESET, ("wi_reset: sc %p\n", sc));
/* Symbol firmware cannot be initialized more than once. */
if (sc->sc_firmware_type == WI_SYMBOL) {
if (sc->wi_flags & WI_FLAGS_INITIALIZED)
return;
tries = 1;
}
for (; tries--; DELAY(WI_DELAY * 1000)) {
if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
break;
}
if (tries < 0) {
printf(WI_PRT_FMT ": init failed\n", WI_PRT_ARG(sc));
return;
}
sc->wi_flags |= WI_FLAGS_INITIALIZED;
wi_intr_enable(sc, 0);
wi_intr_ack(sc, 0xffff);
/* Calibrate timer. */
WI_SETVAL(WI_RID_TICK_TIME, 8);
return;
}
STATIC void
wi_cor_reset(struct wi_softc *sc)
{
u_int8_t cor_value;
DPRINTF(WID_RESET, ("wi_cor_reset: sc %p\n", sc));
/*
* Do a soft reset of the card; this is required for Symbol cards.
* This shouldn't hurt other cards but there have been reports
* of the COR reset messing up old Lucent firmware revisions so
* we avoid soft reset on Lucent cards for now.
*/
if (sc->sc_firmware_type != WI_LUCENT) {
cor_value = bus_space_read_1(sc->wi_ltag, sc->wi_lhandle,
sc->wi_cor_offset);
bus_space_write_1(sc->wi_ltag, sc->wi_lhandle,
sc->wi_cor_offset, (cor_value | WI_COR_SOFT_RESET));
DELAY(1000);
bus_space_write_1(sc->wi_ltag, sc->wi_lhandle,
sc->wi_cor_offset, (cor_value & ~WI_COR_SOFT_RESET));
DELAY(1000);
}
return;
}
/*
* Read an LTV record from the NIC.
*/
STATIC int
wi_read_record_io(struct wi_softc *sc, struct wi_ltv_gen *ltv)
{
u_int8_t *ptr;
int len, code;
struct wi_ltv_gen *oltv, p2ltv;
if (sc->sc_firmware_type != WI_LUCENT) {
oltv = ltv;
switch (ltv->wi_type) {
case WI_RID_ENCRYPTION:
p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
p2ltv.wi_len = 2;
ltv = &p2ltv;
break;
case WI_RID_TX_CRYPT_KEY:
if (ltv->wi_val > WI_NLTV_KEYS)
return (EINVAL);
p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
p2ltv.wi_len = 2;
ltv = &p2ltv;
break;
}
}
/* Tell the NIC to enter record read mode. */
if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type, 0, 0))
return(EIO);
/* Seek to the record. */
if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
return(EIO);
/*
* Read the length and record type and make sure they
* match what we expect (this verifies that we have enough
* room to hold all of the returned data).
*/
len = CSR_READ_2(sc, WI_DATA1);
if (len > ltv->wi_len)
return(ENOSPC);
code = CSR_READ_2(sc, WI_DATA1);
if (code != ltv->wi_type)
return(EIO);
ltv->wi_len = len;
ltv->wi_type = code;
/* Now read the data. */
ptr = (u_int8_t *)&ltv->wi_val;
if (ltv->wi_len > 1)
CSR_READ_RAW_2(sc, WI_DATA1, ptr, (ltv->wi_len-1)*2);
if (ltv->wi_type == WI_RID_PORTTYPE && sc->wi_ptype == WI_PORTTYPE_IBSS
&& ltv->wi_val == sc->wi_ibss_port) {
/*
* Convert vendor IBSS port type to WI_PORTTYPE_IBSS.
* Since Lucent uses port type 1 for BSS *and* IBSS we
* have to rely on wi_ptype to distinguish this for us.
*/
ltv->wi_val = htole16(WI_PORTTYPE_IBSS);
} else if (sc->sc_firmware_type != WI_LUCENT) {
int v;
switch (oltv->wi_type) {
case WI_RID_TX_RATE:
case WI_RID_CUR_TX_RATE:
switch (letoh16(ltv->wi_val)) {
case 1: v = 1; break;
case 2: v = 2; break;
case 3: v = 6; break;
case 4: v = 5; break;
case 7: v = 7; break;
case 8: v = 11; break;
case 15: v = 3; break;
default: v = 0x100 + letoh16(ltv->wi_val); break;
}
oltv->wi_val = htole16(v);
break;
case WI_RID_ENCRYPTION:
oltv->wi_len = 2;
if (ltv->wi_val & htole16(0x01))
oltv->wi_val = htole16(1);
else
oltv->wi_val = htole16(0);
break;
case WI_RID_TX_CRYPT_KEY:
case WI_RID_CNFAUTHMODE:
oltv->wi_len = 2;
oltv->wi_val = ltv->wi_val;
break;
}
}
return(0);
}
/*
* Same as read, except we inject data instead of reading it.
*/
STATIC int
wi_write_record_io(struct wi_softc *sc, struct wi_ltv_gen *ltv)
{
u_int8_t *ptr;
u_int16_t val = 0;
int i;
struct wi_ltv_gen p2ltv;
if (ltv->wi_type == WI_RID_PORTTYPE &&
letoh16(ltv->wi_val) == WI_PORTTYPE_IBSS) {
/* Convert WI_PORTTYPE_IBSS to vendor IBSS port type. */
p2ltv.wi_type = WI_RID_PORTTYPE;
p2ltv.wi_len = 2;
p2ltv.wi_val = sc->wi_ibss_port;
ltv = &p2ltv;
} else if (sc->sc_firmware_type != WI_LUCENT) {
int v;
switch (ltv->wi_type) {
case WI_RID_TX_RATE:
p2ltv.wi_type = WI_RID_TX_RATE;
p2ltv.wi_len = 2;
switch (letoh16(ltv->wi_val)) {
case 1: v = 1; break;
case 2: v = 2; break;
case 3: v = 15; break;
case 5: v = 4; break;
case 6: v = 3; break;
case 7: v = 7; break;
case 11: v = 8; break;
default: return EINVAL;
}
p2ltv.wi_val = htole16(v);
ltv = &p2ltv;
break;
case WI_RID_ENCRYPTION:
p2ltv.wi_type = WI_RID_P2_ENCRYPTION;
p2ltv.wi_len = 2;
if (ltv->wi_val & htole16(0x01)) {
val = PRIVACY_INVOKED;
/*
* If using shared key WEP we must set the
* EXCLUDE_UNENCRYPTED bit. Symbol cards
* need this bit set even when not using
* shared key. We can't just test for
* IEEE80211_AUTH_SHARED since Symbol cards
* have 2 shared key modes.
*/
if (sc->wi_authtype != IEEE80211_AUTH_OPEN ||
sc->sc_firmware_type == WI_SYMBOL)
val |= EXCLUDE_UNENCRYPTED;
switch (sc->wi_crypto_algorithm) {
case WI_CRYPTO_FIRMWARE_WEP:
/*
* TX encryption is broken in
* Host AP mode.
*/
if (sc->wi_ptype == WI_PORTTYPE_HOSTAP)
val |= HOST_ENCRYPT;
break;
case WI_CRYPTO_SOFTWARE_WEP:
val |= HOST_ENCRYPT|HOST_DECRYPT;
break;
}
p2ltv.wi_val = htole16(val);
} else
p2ltv.wi_val = htole16(HOST_ENCRYPT | HOST_DECRYPT);
ltv = &p2ltv;
break;
case WI_RID_TX_CRYPT_KEY:
if (ltv->wi_val > WI_NLTV_KEYS)
return (EINVAL);
p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY;
p2ltv.wi_len = 2;
p2ltv.wi_val = ltv->wi_val;
ltv = &p2ltv;
break;
case WI_RID_DEFLT_CRYPT_KEYS: {
int error;
int keylen;
struct wi_ltv_str ws;
struct wi_ltv_keys *wk = (struct wi_ltv_keys *)ltv;
keylen = wk->wi_keys[sc->wi_tx_key].wi_keylen;
keylen = letoh16(keylen);
for (i = 0; i < 4; i++) {
bzero(&ws, sizeof(ws));
ws.wi_len = (keylen > 5) ? 8 : 4;
ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i;
bcopy(&wk->wi_keys[i].wi_keydat,
ws.wi_str, keylen);
error = wi_write_record(sc,
(struct wi_ltv_gen *)&ws);
if (error)
return (error);
}
}
return (0);
}
}
if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1))
return(EIO);
CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len);
CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type);
ptr = (u_int8_t *)&ltv->wi_val;
if (ltv->wi_len > 1)
CSR_WRITE_RAW_2(sc, WI_DATA1, ptr, (ltv->wi_len-1) *2);
if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type, 0, 0))
return(EIO);
return(0);
}
STATIC int
wi_seek(struct wi_softc *sc, int id, int off, int chan)
{
int i;
int selreg, offreg;
switch (chan) {
case WI_BAP0:
selreg = WI_SEL0;
offreg = WI_OFF0;
break;
case WI_BAP1:
selreg = WI_SEL1;
offreg = WI_OFF1;
break;
default:
printf(WI_PRT_FMT ": invalid data path: %x\n", WI_PRT_ARG(sc),
chan);
return(EIO);
}
CSR_WRITE_2(sc, selreg, id);
CSR_WRITE_2(sc, offreg, off);
for (i = WI_TIMEOUT; i--; DELAY(1))
if (!(CSR_READ_2(sc, offreg) & (WI_OFF_BUSY|WI_OFF_ERR)))
break;
if (i < 0)
return(ETIMEDOUT);
return(0);
}
STATIC int
wi_read_data_io(struct wi_softc *sc, int id, int off, caddr_t buf, int len)
{
u_int8_t *ptr;
if (wi_seek(sc, id, off, WI_BAP1))
return(EIO);
ptr = (u_int8_t *)buf;
CSR_READ_RAW_2(sc, WI_DATA1, ptr, len);
return(0);
}
/*
* According to the comments in the HCF Light code, there is a bug in
* the Hermes (or possibly in certain Hermes firmware revisions) where
* the chip's internal autoincrement counter gets thrown off during
* data writes: the autoincrement is missed, causing one data word to
* be overwritten and subsequent words to be written to the wrong memory
* locations. The end result is that we could end up transmitting bogus
* frames without realizing it. The workaround for this is to write a
* couple of extra guard words after the end of the transfer, then
* attempt to read then back. If we fail to locate the guard words where
* we expect them, we preform the transfer over again.
*/
STATIC int
wi_write_data_io(struct wi_softc *sc, int id, int off, caddr_t buf, int len)
{
u_int8_t *ptr;
#ifdef WI_HERMES_AUTOINC_WAR
again:
#endif
if (wi_seek(sc, id, off, WI_BAP0))
return(EIO);
ptr = (u_int8_t *)buf;
CSR_WRITE_RAW_2(sc, WI_DATA0, ptr, len);
#ifdef WI_HERMES_AUTOINC_WAR
CSR_WRITE_2(sc, WI_DATA0, 0x1234);
CSR_WRITE_2(sc, WI_DATA0, 0x5678);
if (wi_seek(sc, id, off + len, WI_BAP0))
return(EIO);
if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
CSR_READ_2(sc, WI_DATA0) != 0x5678)
goto again;
#endif
return(0);
}
/*
* Allocate a region of memory inside the NIC and zero
* it out.
*/
STATIC int
wi_alloc_nicmem_io(struct wi_softc *sc, int len, int *id)
{
int i;
if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
printf(WI_PRT_FMT ": failed to allocate %d bytes on NIC\n",
WI_PRT_ARG(sc), len);
return(ENOMEM);
}
for (i = WI_TIMEOUT; i--; DELAY(1)) {
if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
break;
}
if (i < 0)
return(ETIMEDOUT);
*id = CSR_READ_2(sc, WI_ALLOC_FID);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
if (wi_seek(sc, *id, 0, WI_BAP0))
return(EIO);
for (i = 0; i < len / 2; i++)
CSR_WRITE_2(sc, WI_DATA0, 0);
return(0);
}
STATIC void
wi_setmulti(struct wi_softc *sc)
{
struct arpcom *ac = &sc->sc_ic.ic_ac;
struct ifnet *ifp;
int i = 0;
struct wi_ltv_mcast mcast;
struct ether_multistep step;
struct ether_multi *enm;
ifp = &sc->sc_ic.ic_if;
bzero(&mcast, sizeof(mcast));
mcast.wi_type = WI_RID_MCAST_LIST;
mcast.wi_len = ((ETHER_ADDR_LEN / 2) * 16) + 1;
if (ac->ac_multirangecnt > 0)
ifp->if_flags |= IFF_ALLMULTI;
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
return;
}
ETHER_FIRST_MULTI(step, &sc->sc_ic.ic_ac, enm);
while (enm != NULL) {
if (i >= 16) {
bzero(&mcast, sizeof(mcast));
break;
}
bcopy(enm->enm_addrlo, &mcast.wi_mcast[i], ETHER_ADDR_LEN);
i++;
ETHER_NEXT_MULTI(step, enm);
}
mcast.wi_len = (i * 3) + 1;
wi_write_record(sc, (struct wi_ltv_gen *)&mcast);
return;
}
STATIC int
wi_setdef(struct wi_softc *sc, struct wi_req *wreq)
{
struct ifnet *ifp;
int error = 0;
ifp = &sc->sc_ic.ic_if;
switch(wreq->wi_type) {
case WI_RID_MAC_NODE:
bcopy(&wreq->wi_val, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
bcopy(&wreq->wi_val, &sc->sc_ic.ic_myaddr, ETHER_ADDR_LEN);
break;
case WI_RID_PORTTYPE:
error = wi_sync_media(sc, letoh16(wreq->wi_val[0]),
sc->wi_tx_rate);
break;
case WI_RID_TX_RATE:
error = wi_sync_media(sc, sc->wi_ptype,
letoh16(wreq->wi_val[0]));
break;
case WI_RID_MAX_DATALEN:
sc->wi_max_data_len = letoh16(wreq->wi_val[0]);
break;
case WI_RID_RTS_THRESH:
sc->wi_rts_thresh = letoh16(wreq->wi_val[0]);
break;
case WI_RID_SYSTEM_SCALE:
sc->wi_ap_density = letoh16(wreq->wi_val[0]);
break;
case WI_RID_CREATE_IBSS:
sc->wi_create_ibss = letoh16(wreq->wi_val[0]);
error = wi_sync_media(sc, sc->wi_ptype, sc->wi_tx_rate);
break;
case WI_RID_OWN_CHNL:
sc->wi_channel = letoh16(wreq->wi_val[0]);
break;
case WI_RID_NODENAME:
error = wi_set_ssid(&sc->wi_node_name,
(u_int8_t *)&wreq->wi_val[1], letoh16(wreq->wi_val[0]));
break;
case WI_RID_DESIRED_SSID:
error = wi_set_ssid(&sc->wi_net_name,
(u_int8_t *)&wreq->wi_val[1], letoh16(wreq->wi_val[0]));
break;
case WI_RID_OWN_SSID:
error = wi_set_ssid(&sc->wi_ibss_name,
(u_int8_t *)&wreq->wi_val[1], letoh16(wreq->wi_val[0]));
break;
case WI_RID_PM_ENABLED:
sc->wi_pm_enabled = letoh16(wreq->wi_val[0]);
break;
case WI_RID_MICROWAVE_OVEN:
sc->wi_mor_enabled = letoh16(wreq->wi_val[0]);
break;
case WI_RID_MAX_SLEEP:
sc->wi_max_sleep = letoh16(wreq->wi_val[0]);
break;
case WI_RID_CNFAUTHMODE:
sc->wi_authtype = letoh16(wreq->wi_val[0]);
break;
case WI_RID_ROAMING_MODE:
sc->wi_roaming = letoh16(wreq->wi_val[0]);
break;
case WI_RID_SYMBOL_DIVERSITY:
sc->wi_diversity = letoh16(wreq->wi_val[0]);
break;
case WI_RID_ENH_SECURITY:
sc->wi_enh_security = letoh16(wreq->wi_val[0]);
break;
case WI_RID_ENCRYPTION:
sc->wi_use_wep = letoh16(wreq->wi_val[0]);
break;
case WI_RID_TX_CRYPT_KEY:
sc->wi_tx_key = letoh16(wreq->wi_val[0]);
break;
case WI_RID_DEFLT_CRYPT_KEYS:
bcopy(wreq, &sc->wi_keys, sizeof(struct wi_ltv_keys));
break;
case WI_FRID_CRYPTO_ALG:
switch (letoh16(wreq->wi_val[0])) {
case WI_CRYPTO_FIRMWARE_WEP:
sc->wi_crypto_algorithm = WI_CRYPTO_FIRMWARE_WEP;
break;
case WI_CRYPTO_SOFTWARE_WEP:
sc->wi_crypto_algorithm = WI_CRYPTO_SOFTWARE_WEP;
break;
default:
printf(WI_PRT_FMT ": unsupported crypto algorithm %d\n",
WI_PRT_ARG(sc), letoh16(wreq->wi_val[0]));
error = EINVAL;
}
break;
default:
error = EINVAL;
break;
}
return (error);
}
STATIC int
wi_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
int s, error = 0, i, j, len;
struct wi_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
struct proc *p = curproc;
struct wi_scan_res *res;
struct wi_scan_p2_hdr *p2;
struct wi_req *wreq = NULL;
u_int32_t flags;
struct ieee80211_nwid *nwidp = NULL;
struct ieee80211_nodereq_all *na;
struct ieee80211_bssid *bssid;
s = splnet();
if (!(sc->wi_flags & WI_FLAGS_ATTACHED)) {
error = ENODEV;
goto fail;
}
/*
* Prevent processes from entering this function while another
* process is tsleep'ing in it.
*/
while ((sc->wi_flags & WI_FLAGS_BUSY) && error == 0)
error = tsleep_nsec(&sc->wi_flags, PCATCH, "wiioc", INFSLP);
if (error != 0) {
splx(s);
return error;
}
sc->wi_flags |= WI_FLAGS_BUSY;
DPRINTF (WID_IOCTL, ("wi_ioctl: command %lu data %p\n",
command, data));
switch(command) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
wi_init(sc);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->wi_if_flags & IFF_PROMISC)) {
if (sc->wi_ptype != WI_PORTTYPE_HOSTAP)
WI_SETVAL(WI_RID_PROMISC, 1);
} else if (ifp->if_flags & IFF_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->wi_if_flags & IFF_PROMISC) {
if (sc->wi_ptype != WI_PORTTYPE_HOSTAP)
WI_SETVAL(WI_RID_PROMISC, 0);
} else
wi_init(sc);
} else if (ifp->if_flags & IFF_RUNNING)
wi_stop(sc);
sc->wi_if_flags = ifp->if_flags;
error = 0;
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
break;
case SIOCGWAVELAN:
wreq = malloc(sizeof *wreq, M_DEVBUF, M_WAITOK | M_ZERO);
error = copyin(ifr->ifr_data, wreq, sizeof(*wreq));
if (error)
break;
if (wreq->wi_len > WI_MAX_DATALEN) {
error = EINVAL;
break;
}
switch (wreq->wi_type) {
case WI_RID_IFACE_STATS:
/* XXX native byte order */
bcopy(&sc->wi_stats, &wreq->wi_val,
sizeof(sc->wi_stats));
wreq->wi_len = (sizeof(sc->wi_stats) / 2) + 1;
break;
case WI_RID_DEFLT_CRYPT_KEYS:
/* For non-root user, return all-zeroes keys */
if (suser(p))
bzero(wreq, sizeof(struct wi_ltv_keys));
else
bcopy(&sc->wi_keys, wreq,
sizeof(struct wi_ltv_keys));
break;
case WI_RID_PROCFRAME:
wreq->wi_len = 2;
wreq->wi_val[0] = htole16(sc->wi_procframe);
break;
case WI_RID_PRISM2:
wreq->wi_len = 2;
wreq->wi_val[0] = htole16(sc->sc_firmware_type ==
WI_LUCENT ? 0 : 1);
break;
case WI_FRID_CRYPTO_ALG:
wreq->wi_val[0] =
htole16((u_int16_t)sc->wi_crypto_algorithm);
wreq->wi_len = 1;
break;
case WI_RID_SCAN_RES:
if (sc->sc_firmware_type == WI_LUCENT) {
memcpy((char *)wreq->wi_val,
(char *)sc->wi_scanbuf,
sc->wi_scanbuf_len * 2);
wreq->wi_len = sc->wi_scanbuf_len;
break;
}
/* FALLTHROUGH */
default:
if (wi_read_record(sc, (struct wi_ltv_gen *)wreq)) {
error = EINVAL;
}
break;
}
error = copyout(wreq, ifr->ifr_data, sizeof(*wreq));
break;
case SIOCSWAVELAN:
if ((error = suser(curproc)) != 0)
break;
wreq = malloc(sizeof *wreq, M_DEVBUF, M_WAITOK | M_ZERO);
error = copyin(ifr->ifr_data, wreq, sizeof(*wreq));
if (error)
break;
error = EINVAL;
if (wreq->wi_len > WI_MAX_DATALEN)
break;
switch (wreq->wi_type) {
case WI_RID_IFACE_STATS:
break;
case WI_RID_MGMT_XMIT:
error = wi_mgmt_xmit(sc, (caddr_t)&wreq->wi_val,
wreq->wi_len);
break;
case WI_RID_PROCFRAME:
sc->wi_procframe = letoh16(wreq->wi_val[0]);
error = 0;
break;
case WI_RID_SCAN_REQ:
error = 0;
if (sc->sc_firmware_type == WI_LUCENT)
wi_cmd(sc, WI_CMD_INQUIRE,
WI_INFO_SCAN_RESULTS, 0, 0);
else
error = wi_write_record(sc,
(struct wi_ltv_gen *)wreq);
break;
case WI_FRID_CRYPTO_ALG:
if (sc->sc_firmware_type != WI_LUCENT) {
error = wi_setdef(sc, wreq);
if (!error && (ifp->if_flags & IFF_UP))
wi_init(sc);
}
break;
case WI_RID_SYMBOL_DIVERSITY:
case WI_RID_ROAMING_MODE:
case WI_RID_CREATE_IBSS:
case WI_RID_MICROWAVE_OVEN:
case WI_RID_OWN_SSID:
case WI_RID_ENH_SECURITY:
/*
* Check for features that may not be supported
* (must be just before default case).
*/
if ((wreq->wi_type == WI_RID_SYMBOL_DIVERSITY &&
!(sc->wi_flags & WI_FLAGS_HAS_DIVERSITY)) ||
(wreq->wi_type == WI_RID_ROAMING_MODE &&
!(sc->wi_flags & WI_FLAGS_HAS_ROAMING)) ||
(wreq->wi_type == WI_RID_CREATE_IBSS &&
!(sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS)) ||
(wreq->wi_type == WI_RID_MICROWAVE_OVEN &&
!(sc->wi_flags & WI_FLAGS_HAS_MOR)) ||
(wreq->wi_type == WI_RID_ENH_SECURITY &&
!(sc->wi_flags & WI_FLAGS_HAS_ENH_SECURITY)) ||
(wreq->wi_type == WI_RID_OWN_SSID &&
wreq->wi_len != 0))
break;
/* FALLTHROUGH */
default:
error = wi_write_record(sc, (struct wi_ltv_gen *)wreq);
if (!error)
error = wi_setdef(sc, wreq);
if (!error && (ifp->if_flags & IFF_UP))
wi_init(sc);
}
break;
case SIOCGPRISM2DEBUG:
wreq = malloc(sizeof *wreq, M_DEVBUF, M_WAITOK | M_ZERO);
error = copyin(ifr->ifr_data, wreq, sizeof(*wreq));
if (error)
break;
if (!(ifp->if_flags & IFF_RUNNING) ||
sc->sc_firmware_type == WI_LUCENT) {
error = EIO;
break;
}
error = wi_get_debug(sc, wreq);
if (error == 0)
error = copyout(wreq, ifr->ifr_data, sizeof(*wreq));
break;
case SIOCSPRISM2DEBUG:
if ((error = suser(curproc)) != 0)
break;
wreq = malloc(sizeof *wreq, M_DEVBUF, M_WAITOK | M_ZERO);
error = copyin(ifr->ifr_data, wreq, sizeof(*wreq));
if (error)
break;
error = wi_set_debug(sc, wreq);
break;
case SIOCG80211NWID:
if ((ifp->if_flags & IFF_UP) && sc->wi_net_name.i_len > 0) {
/* Return the desired ID */
error = copyout(&sc->wi_net_name, ifr->ifr_data,
sizeof(sc->wi_net_name));
} else {
wreq = malloc(sizeof *wreq, M_DEVBUF, M_WAITOK|M_ZERO);
wreq->wi_type = WI_RID_CURRENT_SSID;
wreq->wi_len = WI_MAX_DATALEN;
if (wi_read_record(sc, (struct wi_ltv_gen *)wreq) ||
letoh16(wreq->wi_val[0]) > IEEE80211_NWID_LEN)
error = EINVAL;
else {
nwidp = malloc(sizeof *nwidp, M_DEVBUF,
M_WAITOK | M_ZERO);
wi_set_ssid(nwidp, (u_int8_t *)&wreq->wi_val[1],
letoh16(wreq->wi_val[0]));
error = copyout(nwidp, ifr->ifr_data,
sizeof(*nwidp));
}
}
break;
case SIOCS80211NWID:
if ((error = suser(curproc)) != 0)
break;
nwidp = malloc(sizeof *nwidp, M_DEVBUF, M_WAITOK);
error = copyin(ifr->ifr_data, nwidp, sizeof(*nwidp));
if (error)
break;
if (nwidp->i_len > IEEE80211_NWID_LEN) {
error = EINVAL;
break;
}
if (sc->wi_net_name.i_len == nwidp->i_len &&
memcmp(sc->wi_net_name.i_nwid, nwidp->i_nwid, nwidp->i_len) == 0)
break;
wi_set_ssid(&sc->wi_net_name, nwidp->i_nwid, nwidp->i_len);
WI_SETSTR(WI_RID_DESIRED_SSID, sc->wi_net_name);
if (ifp->if_flags & IFF_UP)
/* Reinitialize WaveLAN. */
wi_init(sc);
break;
case SIOCS80211NWKEY:
if ((error = suser(curproc)) != 0)
break;
error = wi_set_nwkey(sc, (struct ieee80211_nwkey *)data);
break;
case SIOCG80211NWKEY:
error = wi_get_nwkey(sc, (struct ieee80211_nwkey *)data);
break;
case SIOCS80211POWER:
if ((error = suser(curproc)) != 0)
break;
error = wi_set_pm(sc, (struct ieee80211_power *)data);
break;
case SIOCG80211POWER:
error = wi_get_pm(sc, (struct ieee80211_power *)data);
break;
case SIOCS80211TXPOWER:
if ((error = suser(curproc)) != 0)
break;
error = wi_set_txpower(sc, (struct ieee80211_txpower *)data);
break;
case SIOCG80211TXPOWER:
error = wi_get_txpower(sc, (struct ieee80211_txpower *)data);
break;
case SIOCS80211CHANNEL:
if ((error = suser(curproc)) != 0)
break;
if (((struct ieee80211chanreq *)data)->i_channel > 14) {
error = EINVAL;
break;
}
wreq = malloc(sizeof *wreq, M_DEVBUF, M_WAITOK | M_ZERO);
wreq->wi_type = WI_RID_OWN_CHNL;
wreq->wi_val[0] =
htole16(((struct ieee80211chanreq *)data)->i_channel);
error = wi_setdef(sc, wreq);
if (!error && (ifp->if_flags & IFF_UP))
wi_init(sc);
break;
case SIOCG80211CHANNEL:
wreq = malloc(sizeof *wreq, M_DEVBUF, M_WAITOK | M_ZERO);
wreq->wi_type = WI_RID_CURRENT_CHAN;
wreq->wi_len = WI_MAX_DATALEN;
if (wi_read_record(sc, (struct wi_ltv_gen *)wreq)) {
error = EINVAL;
break;
}
((struct ieee80211chanreq *)data)->i_channel =
letoh16(wreq->wi_val[0]);
break;
case SIOCG80211BSSID:
bssid = (struct ieee80211_bssid *)data;
wreq = malloc(sizeof *wreq, M_DEVBUF, M_WAITOK | M_ZERO);
wreq->wi_type = WI_RID_CURRENT_BSSID;
wreq->wi_len = WI_MAX_DATALEN;
if (wi_read_record(sc, (struct wi_ltv_gen *)wreq)) {
error = EINVAL;
break;
}
IEEE80211_ADDR_COPY(bssid->i_bssid, wreq->wi_val);
break;
case SIOCS80211SCAN:
if ((error = suser(curproc)) != 0)
break;
if (sc->wi_ptype == WI_PORTTYPE_HOSTAP)
break;
if ((ifp->if_flags & IFF_UP) == 0) {
error = ENETDOWN;
break;
}
if (sc->sc_firmware_type == WI_LUCENT) {
wi_cmd(sc, WI_CMD_INQUIRE,
WI_INFO_SCAN_RESULTS, 0, 0);
} else {
wreq = malloc(sizeof *wreq, M_DEVBUF, M_WAITOK|M_ZERO);
wreq->wi_len = 3;
wreq->wi_type = WI_RID_SCAN_REQ;
wreq->wi_val[0] = 0x3FFF;
wreq->wi_val[1] = 0x000F;
error = wi_write_record(sc,
(struct wi_ltv_gen *)wreq);
if (error)
break;
}
sc->wi_scan_lock = 0;
timeout_set(&sc->wi_scan_timeout, wi_scan_timeout, sc);
len = WI_WAVELAN_RES_TIMEOUT;
if (sc->wi_flags & WI_FLAGS_BUS_USB) {
/* Use a longer timeout for wi@usb */
len = WI_WAVELAN_RES_TIMEOUT * 4;
}
timeout_add(&sc->wi_scan_timeout, len);
/* Let the userspace process wait for completion */
error = tsleep_nsec(&sc->wi_scan_lock, PCATCH, "wiscan",
SEC_TO_NSEC(IEEE80211_SCAN_TIMEOUT));
break;
case SIOCG80211ALLNODES:
{
struct ieee80211_nodereq *nr = NULL;
if ((error = suser(curproc)) != 0)
break;
na = (struct ieee80211_nodereq_all *)data;
if (sc->wi_ptype == WI_PORTTYPE_HOSTAP) {
/* List all associated stations */
error = wihap_ioctl(sc, command, data);
break;
}
wreq = malloc(sizeof *wreq, M_DEVBUF, M_WAITOK | M_ZERO);
wreq->wi_len = WI_MAX_DATALEN;
wreq->wi_type = WI_RID_SCAN_RES;
if (sc->sc_firmware_type == WI_LUCENT) {
bcopy(sc->wi_scanbuf, wreq->wi_val,
sc->wi_scanbuf_len * 2);
wreq->wi_len = sc->wi_scanbuf_len;
i = 0;
len = WI_WAVELAN_RES_SIZE;
} else {
if (wi_read_record(sc, (struct wi_ltv_gen *)wreq)) {
error = EINVAL;
break;
}
p2 = (struct wi_scan_p2_hdr *)wreq->wi_val;
if (p2->wi_reason == 0)
break;
i = sizeof(*p2);
len = WI_PRISM2_RES_SIZE;
}
for (na->na_nodes = j = 0; (i < (wreq->wi_len * 2) - len) &&
(na->na_size >= j + sizeof(struct ieee80211_nodereq));
i += len) {
if (nr == NULL)
nr = malloc(sizeof *nr, M_DEVBUF, M_WAITOK);
res = (struct wi_scan_res *)((char *)wreq->wi_val + i);
if (res == NULL)
break;
bzero(nr, sizeof(*nr));
IEEE80211_ADDR_COPY(nr->nr_macaddr, res->wi_bssid);
IEEE80211_ADDR_COPY(nr->nr_bssid, res->wi_bssid);
nr->nr_channel = letoh16(res->wi_chan);
nr->nr_chan_flags = IEEE80211_CHAN_B;
nr->nr_rssi = letoh16(res->wi_signal);
nr->nr_max_rssi = 0; /* XXX */
nr->nr_nwid_len = letoh16(res->wi_ssid_len);
bcopy(res->wi_ssid, nr->nr_nwid, nr->nr_nwid_len);
nr->nr_intval = letoh16(res->wi_interval);
nr->nr_capinfo = letoh16(res->wi_capinfo);
nr->nr_txrate = res->wi_rate == WI_WAVELAN_RES_1M ? 2 :
(res->wi_rate == WI_WAVELAN_RES_2M ? 4 :
(res->wi_rate == WI_WAVELAN_RES_5M ? 11 :
(res->wi_rate == WI_WAVELAN_RES_11M ? 22 : 0)));
nr->nr_nrates = 0;
while (res->wi_srates[nr->nr_nrates] != 0) {
nr->nr_rates[nr->nr_nrates] =
res->wi_srates[nr->nr_nrates] &
WI_VAR_SRATES_MASK;
nr->nr_nrates++;
}
nr->nr_flags = 0;
if (bcmp(nr->nr_macaddr, nr->nr_bssid,
IEEE80211_ADDR_LEN) == 0)
nr->nr_flags |= IEEE80211_NODEREQ_AP;
error = copyout(nr, (caddr_t)na->na_node + j,
sizeof(struct ieee80211_nodereq));
if (error)
break;
j += sizeof(struct ieee80211_nodereq);
na->na_nodes++;
}
if (nr)
free(nr, M_DEVBUF, 0);
break;
}
case SIOCG80211FLAGS:
if (sc->wi_ptype != WI_PORTTYPE_HOSTAP)
break;
ifr->ifr_flags = 0;
if (sc->wi_flags & WI_FLAGS_HAS_ENH_SECURITY) {
wreq = malloc(sizeof *wreq, M_DEVBUF, M_WAITOK|M_ZERO);
wreq->wi_len = WI_MAX_DATALEN;
wreq->wi_type = WI_RID_ENH_SECURITY;
if (wi_read_record(sc, (struct wi_ltv_gen *)wreq)) {
error = EINVAL;
break;
}
sc->wi_enh_security = letoh16(wreq->wi_val[0]);
if (sc->wi_enh_security == WI_HIDESSID_IGNPROBES)
ifr->ifr_flags |= IEEE80211_F_HIDENWID;
}
break;
case SIOCS80211FLAGS:
if ((error = suser(curproc)) != 0)
break;
if (sc->wi_ptype != WI_PORTTYPE_HOSTAP) {
error = EINVAL;
break;
}
flags = (u_int32_t)ifr->ifr_flags;
if (sc->wi_flags & WI_FLAGS_HAS_ENH_SECURITY) {
sc->wi_enh_security = (flags & IEEE80211_F_HIDENWID) ?
WI_HIDESSID_IGNPROBES : 0;
WI_SETVAL(WI_RID_ENH_SECURITY, sc->wi_enh_security);
}
break;
case SIOCHOSTAP_ADD:
case SIOCHOSTAP_DEL:
case SIOCHOSTAP_GET:
case SIOCHOSTAP_GETALL:
case SIOCHOSTAP_GFLAGS:
case SIOCHOSTAP_SFLAGS:
/* Send all Host AP specific ioctl's to Host AP code. */
error = wihap_ioctl(sc, command, data);
break;
default:
error = ether_ioctl(ifp, &sc->sc_ic.ic_ac, command, data);
}
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
wi_setmulti(sc);
error = 0;
}
if (wreq)
free(wreq, M_DEVBUF, 0);
if (nwidp)
free(nwidp, M_DEVBUF, 0);
fail:
sc->wi_flags &= ~WI_FLAGS_BUSY;
wakeup(&sc->wi_flags);
splx(s);
return(error);
}
void
wi_scan_timeout(void *arg)
{
struct wi_softc *sc = (struct wi_softc *)arg;
struct wi_req wreq;
if (sc->wi_scan_lock++ < WI_WAVELAN_RES_TRIES &&
sc->sc_firmware_type != WI_LUCENT &&
(sc->wi_flags & WI_FLAGS_BUS_USB) == 0) {
/*
* The Prism2/2.5/3 chipsets will set an extra field in the
* scan result if the scan request has been completed by the
* firmware. This allows to poll for completion and to
* wait for some more time if the scan is still in progress.
*
* XXX This doesn't work with wi@usb because it isn't safe
* to call wi_read_record_usb() while being in the timeout
* handler.
*/
wreq.wi_len = WI_MAX_DATALEN;
wreq.wi_type = WI_RID_SCAN_RES;
if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) == 0 &&
((struct wi_scan_p2_hdr *)wreq.wi_val)->wi_reason == 0) {
/* Wait some more time for scan completion */
timeout_add(&sc->wi_scan_timeout, WI_WAVELAN_RES_TIMEOUT);
return;
}
}
if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG)
printf(WI_PRT_FMT ": wi_scan_timeout: %d tries\n",
WI_PRT_ARG(sc), sc->wi_scan_lock);
/* Wakeup the userland */
wakeup(&sc->wi_scan_lock);
sc->wi_scan_lock = 0;
}
STATIC void
wi_init_io(struct wi_softc *sc)
{
struct ifnet *ifp = &sc->sc_ic.ic_ac.ac_if;
int s;
struct wi_ltv_macaddr mac;
int id = 0;
if (!(sc->wi_flags & WI_FLAGS_ATTACHED))
return;
DPRINTF(WID_INIT, ("wi_init: sc %p\n", sc));
s = splnet();
if (ifp->if_flags & IFF_RUNNING)
wi_stop(sc);
wi_reset(sc);
/* Program max data length. */
WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len);
/* Set the port type. */
WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype);
/* Enable/disable IBSS creation. */
WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss);
/* Program the RTS/CTS threshold. */
WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh);
/* Program the TX rate */
WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate);
/* Access point density */
WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density);
/* Power Management Enabled */
WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled);
/* Power Management Max Sleep */
WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep);
/* Set Enhanced Security if supported. */
if (sc->wi_flags & WI_FLAGS_HAS_ENH_SECURITY)
WI_SETVAL(WI_RID_ENH_SECURITY, sc->wi_enh_security);
/* Set Roaming Mode unless this is a Symbol card. */
if (sc->wi_flags & WI_FLAGS_HAS_ROAMING)
WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming);
/* Set Antenna Diversity if this is a Symbol card. */
if (sc->wi_flags & WI_FLAGS_HAS_DIVERSITY)
WI_SETVAL(WI_RID_SYMBOL_DIVERSITY, sc->wi_diversity);
/* Specify the network name */
WI_SETSTR(WI_RID_DESIRED_SSID, sc->wi_net_name);
/* Specify the IBSS name */
if (sc->wi_net_name.i_len != 0 && (sc->wi_ptype == WI_PORTTYPE_HOSTAP ||
(sc->wi_create_ibss && sc->wi_ptype == WI_PORTTYPE_IBSS)))
WI_SETSTR(WI_RID_OWN_SSID, sc->wi_net_name);
else
WI_SETSTR(WI_RID_OWN_SSID, sc->wi_ibss_name);
/* Specify the frequency to use */
WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel);
/* Program the nodename. */
WI_SETSTR(WI_RID_NODENAME, sc->wi_node_name);
/* Set our MAC address. */
mac.wi_len = 4;
mac.wi_type = WI_RID_MAC_NODE;
bcopy(LLADDR(ifp->if_sadl), &sc->sc_ic.ic_myaddr, ETHER_ADDR_LEN);
bcopy(&sc->sc_ic.ic_myaddr, &mac.wi_mac_addr, ETHER_ADDR_LEN);
wi_write_record(sc, (struct wi_ltv_gen *)&mac);
/*
* Initialize promisc mode.
* Being in the Host-AP mode causes
* great deal of pain if promisc mode is set.
* Therefore we avoid confusing the firmware
* and always reset promisc mode in Host-AP regime,
* it shows us all the packets anyway.
*/
if (sc->wi_ptype != WI_PORTTYPE_HOSTAP && ifp->if_flags & IFF_PROMISC)
WI_SETVAL(WI_RID_PROMISC, 1);
else
WI_SETVAL(WI_RID_PROMISC, 0);
/* Configure WEP. */
if (sc->wi_flags & WI_FLAGS_HAS_WEP) {
WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep);
WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key);
sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1;
sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS;
wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys);
if (sc->sc_firmware_type != WI_LUCENT && sc->wi_use_wep) {
/*
* HWB3163 EVAL-CARD Firmware version less than 0.8.2.
*
* If promiscuous mode is disabled, the Prism2 chip
* does not work with WEP .
* I'm currently investigating the details of this.
* (ichiro@netbsd.org)
*/
if (sc->sc_firmware_type == WI_INTERSIL &&
sc->sc_sta_firmware_ver < 802 ) {
/* firm ver < 0.8.2 */
WI_SETVAL(WI_RID_PROMISC, 1);
}
WI_SETVAL(WI_RID_CNFAUTHMODE, sc->wi_authtype);
}
}
/* Set multicast filter. */
wi_setmulti(sc);
/* Enable desired port */
wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0, 0, 0);
if (wi_alloc_nicmem(sc, ETHER_MAX_LEN + sizeof(struct wi_frame) + 8, &id))
printf(WI_PRT_FMT ": tx buffer allocation failed\n",
WI_PRT_ARG(sc));
sc->wi_tx_data_id = id;
if (wi_alloc_nicmem(sc, ETHER_MAX_LEN + sizeof(struct wi_frame) + 8, &id))
printf(WI_PRT_FMT ": mgmt. buffer allocation failed\n",
WI_PRT_ARG(sc));
sc->wi_tx_mgmt_id = id;
/* Set txpower */
if (sc->wi_flags & WI_FLAGS_TXPOWER)
wi_set_txpower(sc, NULL);
/* enable interrupts */
wi_intr_enable(sc, WI_INTRS);
wihap_init(sc);
splx(s);
ifp->if_flags |= IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
timeout_add_sec(&sc->sc_timo, 60);
return;
}
STATIC void
wi_do_hostencrypt(struct wi_softc *sc, caddr_t buf, int len)
{
u_int32_t crc, klen;
u_int8_t key[RC4KEYLEN];
u_int8_t *dat;
struct rc4_ctx ctx;
if (!sc->wi_icv_flag) {
sc->wi_icv = arc4random();
sc->wi_icv_flag++;
} else
sc->wi_icv++;
/*
* Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
* (B, 255, N) with 3 <= B < 8
*/
if (sc->wi_icv >= 0x03ff00 &&
(sc->wi_icv & 0xf8ff00) == 0x00ff00)
sc->wi_icv += 0x000100;
/* prepend 24bit IV to tx key, byte order does not matter */
bzero(key, sizeof(key));
key[0] = sc->wi_icv >> 16;
key[1] = sc->wi_icv >> 8;
key[2] = sc->wi_icv;
klen = letoh16(sc->wi_keys.wi_keys[sc->wi_tx_key].wi_keylen);
bcopy(&sc->wi_keys.wi_keys[sc->wi_tx_key].wi_keydat,
key + IEEE80211_WEP_IVLEN, klen);
klen = (klen > IEEE80211_WEP_KEYLEN) ? RC4KEYLEN : RC4KEYLEN / 2;
/* rc4 keysetup */
rc4_keysetup(&ctx, key, klen);
/* output: IV, tx keyid, rc4(data), rc4(crc32(data)) */
dat = buf;
dat[0] = key[0];
dat[1] = key[1];
dat[2] = key[2];
dat[3] = sc->wi_tx_key << 6; /* pad and keyid */
dat += 4;
/* compute crc32 over data and encrypt */
crc = ~ether_crc32_le(dat, len);
rc4_crypt(&ctx, dat, dat, len);
dat += len;
/* append little-endian crc32 and encrypt */
dat[0] = crc;
dat[1] = crc >> 8;
dat[2] = crc >> 16;
dat[3] = crc >> 24;
rc4_crypt(&ctx, dat, dat, IEEE80211_WEP_CRCLEN);
}
STATIC int
wi_do_hostdecrypt(struct wi_softc *sc, caddr_t buf, int len)
{
u_int32_t crc, klen, kid;
u_int8_t key[RC4KEYLEN];
u_int8_t *dat;
struct rc4_ctx ctx;
if (len < IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
IEEE80211_WEP_CRCLEN)
return -1;
len -= (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
IEEE80211_WEP_CRCLEN);
dat = buf;
bzero(key, sizeof(key));
key[0] = dat[0];
key[1] = dat[1];
key[2] = dat[2];
kid = (dat[3] >> 6) % 4;
dat += 4;
klen = letoh16(sc->wi_keys.wi_keys[kid].wi_keylen);
bcopy(&sc->wi_keys.wi_keys[kid].wi_keydat,
key + IEEE80211_WEP_IVLEN, klen);
klen = (klen > IEEE80211_WEP_KEYLEN) ? RC4KEYLEN : RC4KEYLEN / 2;
/* rc4 keysetup */
rc4_keysetup(&ctx, key, klen);
/* decrypt and compute crc32 over data */
rc4_crypt(&ctx, dat, dat, len);
crc = ~ether_crc32_le(dat, len);
dat += len;
/* decrypt little-endian crc32 and verify */
rc4_crypt(&ctx, dat, dat, IEEE80211_WEP_CRCLEN);
if ((dat[0] != crc) && (dat[1] != crc >> 8) &&
(dat[2] != crc >> 16) && (dat[3] != crc >> 24)) {
if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG)
printf(WI_PRT_FMT ": wi_do_hostdecrypt: iv mismatch: "
"0x%02x%02x%02x%02x vs. 0x%x\n", WI_PRT_ARG(sc),
dat[3], dat[2], dat[1], dat[0], crc);
return -1;
}
return 0;
}
void
wi_start(struct ifnet *ifp)
{
struct wi_softc *sc;
struct mbuf *m0;
struct wi_frame tx_frame;
struct ether_header *eh;
int id, hostencrypt = 0;
sc = ifp->if_softc;
DPRINTF(WID_START, ("wi_start: ifp %p sc %p\n", ifp, sc));
if (!(sc->wi_flags & WI_FLAGS_ATTACHED))
return;
if (ifq_is_oactive(&ifp->if_snd))
return;
nextpkt:
m0 = ifq_dequeue(&ifp->if_snd);
if (m0 == NULL)
return;
bzero(&tx_frame, sizeof(tx_frame));
tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA | WI_STYPE_DATA);
id = sc->wi_tx_data_id;
eh = mtod(m0, struct ether_header *);
if (sc->wi_ptype == WI_PORTTYPE_HOSTAP) {
if (!wihap_check_tx(&sc->wi_hostap_info, eh->ether_dhost,
&tx_frame.wi_tx_rate) && !(ifp->if_flags & IFF_PROMISC)) {
if (ifp->if_flags & IFF_DEBUG)
printf(WI_PRT_FMT
": wi_start: dropping unassoc dst %s\n",
WI_PRT_ARG(sc),
ether_sprintf(eh->ether_dhost));
m_freem(m0);
goto nextpkt;
}
}
/*
* Use RFC1042 encoding for IP and ARP datagrams,
* 802.3 for anything else.
*/
if (eh->ether_type == htons(ETHERTYPE_IP) ||
eh->ether_type == htons(ETHERTYPE_ARP) ||
eh->ether_type == htons(ETHERTYPE_REVARP) ||
eh->ether_type == htons(ETHERTYPE_IPV6)) {
bcopy(&eh->ether_dhost,
&tx_frame.wi_addr1, ETHER_ADDR_LEN);
if (sc->wi_ptype == WI_PORTTYPE_HOSTAP) {
tx_frame.wi_tx_ctl = htole16(WI_ENC_TX_MGMT); /* XXX */
tx_frame.wi_frame_ctl |= htole16(WI_FCTL_FROMDS);
bcopy(&sc->sc_ic.ic_myaddr,
&tx_frame.wi_addr2, ETHER_ADDR_LEN);
bcopy(&eh->ether_shost,
&tx_frame.wi_addr3, ETHER_ADDR_LEN);
if (sc->wi_use_wep)
hostencrypt = 1;
} else if (sc->wi_ptype == WI_PORTTYPE_BSS && sc->wi_use_wep &&
sc->wi_crypto_algorithm != WI_CRYPTO_FIRMWARE_WEP) {
tx_frame.wi_tx_ctl = htole16(WI_ENC_TX_MGMT); /* XXX */
tx_frame.wi_frame_ctl |= htole16(WI_FCTL_TODS);
bcopy(&sc->sc_ic.ic_myaddr,
&tx_frame.wi_addr2, ETHER_ADDR_LEN);
bcopy(&eh->ether_dhost,
&tx_frame.wi_addr3, ETHER_ADDR_LEN);
hostencrypt = 1;
} else
bcopy(&eh->ether_shost,
&tx_frame.wi_addr2, ETHER_ADDR_LEN);
bcopy(&eh->ether_dhost, &tx_frame.wi_dst_addr, ETHER_ADDR_LEN);
bcopy(&eh->ether_shost, &tx_frame.wi_src_addr, ETHER_ADDR_LEN);
tx_frame.wi_dat_len = m0->m_pkthdr.len - WI_SNAPHDR_LEN;
tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0);
tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1);
tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN);
tx_frame.wi_type = eh->ether_type;
if (hostencrypt) {
/* Do host encryption. */
tx_frame.wi_frame_ctl |= htole16(WI_FCTL_WEP);
bcopy(&tx_frame.wi_dat[0], &sc->wi_txbuf[4], 6);
bcopy(&tx_frame.wi_type, &sc->wi_txbuf[10], 2);
m_copydata(m0, sizeof(struct ether_header),
m0->m_pkthdr.len - sizeof(struct ether_header),
&sc->wi_txbuf[12]);
wi_do_hostencrypt(sc, (caddr_t)&sc->wi_txbuf,
tx_frame.wi_dat_len);
tx_frame.wi_dat_len += IEEE80211_WEP_IVLEN +
IEEE80211_WEP_KIDLEN + IEEE80211_WEP_CRCLEN;
tx_frame.wi_dat_len = htole16(tx_frame.wi_dat_len);
wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
sizeof(struct wi_frame));
wi_write_data(sc, id, WI_802_11_OFFSET_RAW,
(caddr_t)&sc->wi_txbuf,
(m0->m_pkthdr.len -
sizeof(struct ether_header)) + 18);
} else {
m_copydata(m0, sizeof(struct ether_header),
m0->m_pkthdr.len - sizeof(struct ether_header),
&sc->wi_txbuf);
tx_frame.wi_dat_len = htole16(tx_frame.wi_dat_len);
wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
sizeof(struct wi_frame));
wi_write_data(sc, id, WI_802_11_OFFSET,
(caddr_t)&sc->wi_txbuf,
(m0->m_pkthdr.len -
sizeof(struct ether_header)) + 2);
}
} else {
tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len);
if (sc->wi_ptype == WI_PORTTYPE_HOSTAP && sc->wi_use_wep) {
/* Do host encryption. (XXX - not implemented) */
printf(WI_PRT_FMT
": host encrypt not implemented for 802.3\n",
WI_PRT_ARG(sc));
} else {
m_copydata(m0, 0, m0->m_pkthdr.len, &sc->wi_txbuf);
wi_write_data(sc, id, 0, (caddr_t)&tx_frame,
sizeof(struct wi_frame));
wi_write_data(sc, id, WI_802_3_OFFSET,
(caddr_t)&sc->wi_txbuf, m0->m_pkthdr.len + 2);
}
}
#if NBPFILTER > 0
/*
* If there's a BPF listener, bounce a copy of
* this frame to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
#endif
m_freem(m0);
ifq_set_oactive(&ifp->if_snd);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id, 0, 0))
printf(WI_PRT_FMT ": wi_start: xmit failed\n", WI_PRT_ARG(sc));
return;
}
STATIC int
wi_mgmt_xmit(struct wi_softc *sc, caddr_t data, int len)
{
struct wi_frame tx_frame;
int id;
struct wi_80211_hdr *hdr;
caddr_t dptr;
if (!(sc->wi_flags & WI_FLAGS_ATTACHED))
return(ENODEV);
hdr = (struct wi_80211_hdr *)data;
dptr = data + sizeof(struct wi_80211_hdr);
bzero(&tx_frame, sizeof(tx_frame));
id = sc->wi_tx_mgmt_id;
bcopy(hdr, &tx_frame.wi_frame_ctl, sizeof(struct wi_80211_hdr));
tx_frame.wi_tx_ctl = htole16(WI_ENC_TX_MGMT);
tx_frame.wi_dat_len = len - sizeof(struct wi_80211_hdr);
tx_frame.wi_len = htole16(tx_frame.wi_dat_len);
tx_frame.wi_dat_len = htole16(tx_frame.wi_dat_len);
wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame));
wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr,
(len - sizeof(struct wi_80211_hdr)) + 2);
if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id, 0, 0)) {
printf(WI_PRT_FMT ": wi_mgmt_xmit: xmit failed\n",
WI_PRT_ARG(sc));
/*
* Hostile stations or corrupt frames may crash the card
* and cause the kernel to get stuck printing complaints.
* Reset the card and hope the problem goes away.
*/
wi_reset(sc);
return(EIO);
}
return(0);
}
void
wi_stop(struct wi_softc *sc)
{
struct ifnet *ifp;
wihap_shutdown(sc);
if (!(sc->wi_flags & WI_FLAGS_ATTACHED))
return;
DPRINTF(WID_STOP, ("wi_stop: sc %p\n", sc));
timeout_del(&sc->sc_timo);
ifp = &sc->sc_ic.ic_if;
wi_intr_enable(sc, 0);
wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0, 0, 0);
ifp->if_flags &= ~IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
ifp->if_timer = 0;
return;
}
void
wi_watchdog(struct ifnet *ifp)
{
struct wi_softc *sc;
sc = ifp->if_softc;
printf(WI_PRT_FMT ": device timeout\n", WI_PRT_ARG(sc));
wi_cor_reset(sc);
wi_init(sc);
ifp->if_oerrors++;
return;
}
void
wi_detach(struct wi_softc *sc)
{
struct ifnet *ifp;
ifp = &sc->sc_ic.ic_if;
if (ifp->if_flags & IFF_RUNNING)
wi_stop(sc);
if (sc->wi_flags & WI_FLAGS_ATTACHED) {
sc->wi_flags &= ~WI_FLAGS_ATTACHED;
}
}
STATIC void
wi_get_id(struct wi_softc *sc)
{
struct wi_ltv_ver ver;
const struct wi_card_ident *id;
u_int16_t pri_fw_ver[3];
const char *card_name;
u_int16_t card_id;
/* get chip identity */
bzero(&ver, sizeof(ver));
ver.wi_type = WI_RID_CARD_ID;
ver.wi_len = 5;
wi_read_record(sc, (struct wi_ltv_gen *)&ver);
card_id = letoh16(ver.wi_ver[0]);
for (id = wi_card_ident; id->firm_type != WI_NOTYPE; id++) {
if (card_id == id->card_id)
break;
}
if (id->firm_type != WI_NOTYPE) {
sc->sc_firmware_type = id->firm_type;
card_name = id->card_name;
} else if (ver.wi_ver[0] & htole16(0x8000)) {
sc->sc_firmware_type = WI_INTERSIL;
card_name = "Unknown PRISM2 chip";
} else {
sc->sc_firmware_type = WI_LUCENT;
}
/* get primary firmware version (XXX - how to do Lucent?) */
if (sc->sc_firmware_type != WI_LUCENT) {
bzero(&ver, sizeof(ver));
ver.wi_type = WI_RID_PRI_IDENTITY;
ver.wi_len = 5;
wi_read_record(sc, (struct wi_ltv_gen *)&ver);
pri_fw_ver[0] = letoh16(ver.wi_ver[2]);
pri_fw_ver[1] = letoh16(ver.wi_ver[3]);
pri_fw_ver[2] = letoh16(ver.wi_ver[1]);
}
/* get station firmware version */
bzero(&ver, sizeof(ver));
ver.wi_type = WI_RID_STA_IDENTITY;
ver.wi_len = 5;
wi_read_record(sc, (struct wi_ltv_gen *)&ver);
ver.wi_ver[1] = letoh16(ver.wi_ver[1]);
ver.wi_ver[2] = letoh16(ver.wi_ver[2]);
ver.wi_ver[3] = letoh16(ver.wi_ver[3]);
sc->sc_sta_firmware_ver = ver.wi_ver[2] * 10000 +
ver.wi_ver[3] * 100 + ver.wi_ver[1];
if (sc->sc_firmware_type == WI_INTERSIL &&
(sc->sc_sta_firmware_ver == 10102 || sc->sc_sta_firmware_ver == 20102)) {
struct wi_ltv_str sver;
char *p;
bzero(&sver, sizeof(sver));
sver.wi_type = WI_RID_SYMBOL_IDENTITY;
sver.wi_len = 7;
/* value should be something like "V2.00-11" */
if (wi_read_record(sc, (struct wi_ltv_gen *)&sver) == 0 &&
*(p = (char *)sver.wi_str) >= 'A' &&
p[2] == '.' && p[5] == '-' && p[8] == '\0') {
sc->sc_firmware_type = WI_SYMBOL;
sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
(p[3] - '0') * 1000 + (p[4] - '0') * 100 +
(p[6] - '0') * 10 + (p[7] - '0');
}
}
if (sc->sc_firmware_type == WI_LUCENT) {
printf("%s: Firmware %d.%02d variant %d, ", WI_PRT_ARG(sc),
ver.wi_ver[2], ver.wi_ver[3], ver.wi_ver[1]);
} else {
printf("%s: %s%s (0x%04x), Firmware %d.%d.%d (primary), %d.%d.%d (station), ",
WI_PRT_ARG(sc),
sc->sc_firmware_type == WI_SYMBOL ? "Symbol " : "",
card_name, card_id, pri_fw_ver[0], pri_fw_ver[1],
pri_fw_ver[2], sc->sc_sta_firmware_ver / 10000,
(sc->sc_sta_firmware_ver % 10000) / 100,
sc->sc_sta_firmware_ver % 100);
}
}
STATIC int
wi_sync_media(struct wi_softc *sc, int ptype, int txrate)
{
uint64_t media = sc->sc_media.ifm_cur->ifm_media;
uint64_t options = IFM_OPTIONS(media);
uint64_t subtype;
switch (txrate) {
case 1:
subtype = IFM_IEEE80211_DS1;
break;
case 2:
subtype = IFM_IEEE80211_DS2;
break;
case 3:
subtype = IFM_AUTO;
break;
case 5:
subtype = IFM_IEEE80211_DS5;
break;
case 11:
subtype = IFM_IEEE80211_DS11;
break;
default:
subtype = IFM_MANUAL; /* Unable to represent */
break;
}
options &= ~IFM_OMASK;
switch (ptype) {
case WI_PORTTYPE_BSS:
/* default port type */
break;
case WI_PORTTYPE_ADHOC:
options |= IFM_IEEE80211_ADHOC;
break;
case WI_PORTTYPE_HOSTAP:
options |= IFM_IEEE80211_HOSTAP;
break;
case WI_PORTTYPE_IBSS:
if (sc->wi_create_ibss)
options |= IFM_IEEE80211_IBSSMASTER;
else
options |= IFM_IEEE80211_IBSS;
break;
default:
subtype = IFM_MANUAL; /* Unable to represent */
break;
}
media = IFM_MAKEWORD(IFM_TYPE(media), subtype, options,
IFM_INST(media));
if (!ifmedia_match(&sc->sc_media, media, sc->sc_media.ifm_mask))
return (EINVAL);
ifmedia_set(&sc->sc_media, media);
sc->wi_ptype = ptype;
sc->wi_tx_rate = txrate;
return (0);
}
STATIC int
wi_media_change(struct ifnet *ifp)
{
struct wi_softc *sc = ifp->if_softc;
int otype = sc->wi_ptype;
int orate = sc->wi_tx_rate;
int ocreate_ibss = sc->wi_create_ibss;
if ((sc->sc_media.ifm_cur->ifm_media & IFM_IEEE80211_HOSTAP) &&
sc->sc_firmware_type != WI_INTERSIL)
return (EINVAL);
sc->wi_create_ibss = 0;
switch (sc->sc_media.ifm_cur->ifm_media & IFM_OMASK) {
case 0:
sc->wi_ptype = WI_PORTTYPE_BSS;
break;
case IFM_IEEE80211_ADHOC:
sc->wi_ptype = WI_PORTTYPE_ADHOC;
break;
case IFM_IEEE80211_HOSTAP:
sc->wi_ptype = WI_PORTTYPE_HOSTAP;
break;
case IFM_IEEE80211_IBSSMASTER:
case IFM_IEEE80211_IBSSMASTER|IFM_IEEE80211_IBSS:
if (!(sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS))
return (EINVAL);
sc->wi_create_ibss = 1;
/* FALLTHROUGH */
case IFM_IEEE80211_IBSS:
sc->wi_ptype = WI_PORTTYPE_IBSS;
break;
default:
/* Invalid combination. */
return (EINVAL);
}
switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
case IFM_IEEE80211_DS1:
sc->wi_tx_rate = 1;
break;
case IFM_IEEE80211_DS2:
sc->wi_tx_rate = 2;
break;
case IFM_AUTO:
sc->wi_tx_rate = 3;
break;
case IFM_IEEE80211_DS5:
sc->wi_tx_rate = 5;
break;
case IFM_IEEE80211_DS11:
sc->wi_tx_rate = 11;
break;
}
if (sc->sc_ic.ic_if.if_flags & IFF_UP) {
if (otype != sc->wi_ptype || orate != sc->wi_tx_rate ||
ocreate_ibss != sc->wi_create_ibss)
wi_init(sc);
}
ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media);
return (0);
}
STATIC void
wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
{
struct wi_softc *sc = ifp->if_softc;
struct wi_req wreq;
if (!(sc->sc_ic.ic_if.if_flags & IFF_UP)) {
imr->ifm_active = IFM_IEEE80211|IFM_NONE;
imr->ifm_status = 0;
return;
}
if (sc->wi_tx_rate == 3) {
imr->ifm_active = IFM_IEEE80211|IFM_AUTO;
wreq.wi_type = WI_RID_CUR_TX_RATE;
wreq.wi_len = WI_MAX_DATALEN;
if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) == 0) {
switch (letoh16(wreq.wi_val[0])) {
case 1:
imr->ifm_active |= IFM_IEEE80211_DS1;
break;
case 2:
imr->ifm_active |= IFM_IEEE80211_DS2;
break;
case 6:
imr->ifm_active |= IFM_IEEE80211_DS5;
break;
case 11:
imr->ifm_active |= IFM_IEEE80211_DS11;
break;
}
}
} else {
imr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
}
imr->ifm_status = IFM_AVALID;
switch (sc->wi_ptype) {
case WI_PORTTYPE_ADHOC:
case WI_PORTTYPE_IBSS:
/*
* XXX: It would be nice if we could give some actually
* useful status like whether we joined another IBSS or
* created one ourselves.
*/
/* FALLTHROUGH */
case WI_PORTTYPE_HOSTAP:
imr->ifm_status |= IFM_ACTIVE;
break;
default:
wreq.wi_type = WI_RID_COMMQUAL;
wreq.wi_len = WI_MAX_DATALEN;
if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) == 0 &&
letoh16(wreq.wi_val[0]) != 0)
imr->ifm_status |= IFM_ACTIVE;
}
}
STATIC int
wi_set_nwkey(struct wi_softc *sc, struct ieee80211_nwkey *nwkey)
{
int i, len, error;
struct wi_req wreq;
struct wi_ltv_keys *wk = (struct wi_ltv_keys *)&wreq;
if (!(sc->wi_flags & WI_FLAGS_HAS_WEP))
return ENODEV;
if (nwkey->i_defkid <= 0 || nwkey->i_defkid > IEEE80211_WEP_NKID)
return EINVAL;
memcpy(wk, &sc->wi_keys, sizeof(*wk));
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
if (nwkey->i_key[i].i_keydat == NULL)
continue;
len = nwkey->i_key[i].i_keylen;
if (len > sizeof(wk->wi_keys[i].wi_keydat))
return EINVAL;
error = copyin(nwkey->i_key[i].i_keydat,
wk->wi_keys[i].wi_keydat, len);
if (error)
return error;
wk->wi_keys[i].wi_keylen = htole16(len);
}
wk->wi_len = (sizeof(*wk) / 2) + 1;
wk->wi_type = WI_RID_DEFLT_CRYPT_KEYS;
if (sc->sc_ic.ic_if.if_flags & IFF_UP) {
error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
if (error)
return error;
}
if ((error = wi_setdef(sc, &wreq)))
return (error);
wreq.wi_len = 2;
wreq.wi_type = WI_RID_TX_CRYPT_KEY;
wreq.wi_val[0] = htole16(nwkey->i_defkid - 1);
if (sc->sc_ic.ic_if.if_flags & IFF_UP) {
error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
if (error)
return error;
}
if ((error = wi_setdef(sc, &wreq)))
return (error);
wreq.wi_type = WI_RID_ENCRYPTION;
wreq.wi_val[0] = htole16(nwkey->i_wepon);
if (sc->sc_ic.ic_if.if_flags & IFF_UP) {
error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq);
if (error)
return error;
}
if ((error = wi_setdef(sc, &wreq)))
return (error);
if (sc->sc_ic.ic_if.if_flags & IFF_UP)
wi_init(sc);
return 0;
}
STATIC int
wi_get_nwkey(struct wi_softc *sc, struct ieee80211_nwkey *nwkey)
{
int i;
if (!(sc->wi_flags & WI_FLAGS_HAS_WEP))
return ENODEV;
nwkey->i_wepon = sc->wi_use_wep;
nwkey->i_defkid = sc->wi_tx_key + 1;
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
if (nwkey->i_key[i].i_keydat == NULL)
continue;
/* do not show any keys to userland */
return EPERM;
}
return 0;
}
STATIC int
wi_set_pm(struct wi_softc *sc, struct ieee80211_power *power)
{
sc->wi_pm_enabled = power->i_enabled;
sc->wi_max_sleep = power->i_maxsleep;
if (sc->sc_ic.ic_if.if_flags & IFF_UP)
wi_init(sc);
return (0);
}
STATIC int
wi_get_pm(struct wi_softc *sc, struct ieee80211_power *power)
{
power->i_enabled = sc->wi_pm_enabled;
power->i_maxsleep = sc->wi_max_sleep;
return (0);
}
STATIC int
wi_set_txpower(struct wi_softc *sc, struct ieee80211_txpower *txpower)
{
u_int16_t cmd;
u_int16_t power;
int8_t tmp;
int error;
int alc;
if (txpower == NULL) {
if (!(sc->wi_flags & WI_FLAGS_TXPOWER))
return (EINVAL);
alc = 0; /* disable ALC */
} else {
if (txpower->i_mode == IEEE80211_TXPOWER_MODE_AUTO) {
alc = 1; /* enable ALC */
sc->wi_flags &= ~WI_FLAGS_TXPOWER;
} else {
alc = 0; /* disable ALC */
sc->wi_flags |= WI_FLAGS_TXPOWER;
sc->wi_txpower = txpower->i_val;
}
}
/* Set ALC */
cmd = WI_CMD_DEBUG | (WI_DEBUG_CONFBITS << 8);
if ((error = wi_cmd(sc, cmd, alc, 0x8, 0)) != 0)
return (error);
/* No need to set the TX power value if ALC is enabled */
if (alc)
return (0);
/* Convert dBM to internal TX power value */
if (sc->wi_txpower > 20)
power = 128;
else if (sc->wi_txpower < -43)
power = 127;
else {
tmp = sc->wi_txpower;
tmp = -12 - tmp;
tmp <<= 2;
power = (u_int16_t)tmp;
}
/* Set manual TX power */
cmd = WI_CMD_WRITE_MIF;
if ((error = wi_cmd(sc, cmd,
WI_HFA384X_CR_MANUAL_TX_POWER, power, 0)) != 0)
return (error);
if (sc->sc_ic.ic_if.if_flags & IFF_DEBUG)
printf("%s: %u (%d dBm)\n", sc->sc_dev.dv_xname, power,
sc->wi_txpower);
return (0);
}
STATIC int
wi_get_txpower(struct wi_softc *sc, struct ieee80211_txpower *txpower)
{
u_int16_t cmd;
u_int16_t power;
int8_t tmp;
int error;
if (sc->wi_flags & WI_FLAGS_BUS_USB)
return (EOPNOTSUPP);
/* Get manual TX power */
cmd = WI_CMD_READ_MIF;
if ((error = wi_cmd(sc, cmd,
WI_HFA384X_CR_MANUAL_TX_POWER, 0, 0)) != 0)
return (error);
power = CSR_READ_2(sc, WI_RESP0);
/* Convert internal TX power value to dBM */
if (power > 255)
txpower->i_val = 255;
else {
tmp = power;
tmp >>= 2;
txpower->i_val = (u_int16_t)(-12 - tmp);
}
if (sc->wi_flags & WI_FLAGS_TXPOWER)
txpower->i_mode = IEEE80211_TXPOWER_MODE_FIXED;
else
txpower->i_mode = IEEE80211_TXPOWER_MODE_AUTO;
return (0);
}
STATIC int
wi_set_ssid(struct ieee80211_nwid *ws, u_int8_t *id, int len)
{
if (len > IEEE80211_NWID_LEN)
return (EINVAL);
ws->i_len = len;
memcpy(ws->i_nwid, id, len);
return (0);
}
STATIC int
wi_get_debug(struct wi_softc *sc, struct wi_req *wreq)
{
int error = 0;
wreq->wi_len = 1;
switch (wreq->wi_type) {
case WI_DEBUG_SLEEP:
wreq->wi_len++;
wreq->wi_val[0] = htole16(sc->wi_debug.wi_sleep);
break;
case WI_DEBUG_DELAYSUPP:
wreq->wi_len++;
wreq->wi_val[0] = htole16(sc->wi_debug.wi_delaysupp);
break;
case WI_DEBUG_TXSUPP:
wreq->wi_len++;
wreq->wi_val[0] = htole16(sc->wi_debug.wi_txsupp);
break;
case WI_DEBUG_MONITOR:
wreq->wi_len++;
wreq->wi_val[0] = htole16(sc->wi_debug.wi_monitor);
break;
case WI_DEBUG_LEDTEST:
wreq->wi_len += 3;
wreq->wi_val[0] = htole16(sc->wi_debug.wi_ledtest);
wreq->wi_val[1] = htole16(sc->wi_debug.wi_ledtest_param0);
wreq->wi_val[2] = htole16(sc->wi_debug.wi_ledtest_param1);
break;
case WI_DEBUG_CONTTX:
wreq->wi_len += 2;
wreq->wi_val[0] = htole16(sc->wi_debug.wi_conttx);
wreq->wi_val[1] = htole16(sc->wi_debug.wi_conttx_param0);
break;
case WI_DEBUG_CONTRX:
wreq->wi_len++;
wreq->wi_val[0] = htole16(sc->wi_debug.wi_contrx);
break;
case WI_DEBUG_SIGSTATE:
wreq->wi_len += 2;
wreq->wi_val[0] = htole16(sc->wi_debug.wi_sigstate);
wreq->wi_val[1] = htole16(sc->wi_debug.wi_sigstate_param0);
break;
case WI_DEBUG_CONFBITS:
wreq->wi_len += 2;
wreq->wi_val[0] = htole16(sc->wi_debug.wi_confbits);
wreq->wi_val[1] = htole16(sc->wi_debug.wi_confbits_param0);
break;
default:
error = EIO;
break;
}
return (error);
}
STATIC int
wi_set_debug(struct wi_softc *sc, struct wi_req *wreq)
{
int error = 0;
u_int16_t cmd, param0 = 0, param1 = 0;
switch (wreq->wi_type) {
case WI_DEBUG_RESET:
case WI_DEBUG_INIT:
case WI_DEBUG_CALENABLE:
break;
case WI_DEBUG_SLEEP:
sc->wi_debug.wi_sleep = 1;
break;
case WI_DEBUG_WAKE:
sc->wi_debug.wi_sleep = 0;
break;
case WI_DEBUG_CHAN:
param0 = letoh16(wreq->wi_val[0]);
break;
case WI_DEBUG_DELAYSUPP:
sc->wi_debug.wi_delaysupp = 1;
break;
case WI_DEBUG_TXSUPP:
sc->wi_debug.wi_txsupp = 1;
break;
case WI_DEBUG_MONITOR:
sc->wi_debug.wi_monitor = 1;
break;
case WI_DEBUG_LEDTEST:
param0 = letoh16(wreq->wi_val[0]);
param1 = letoh16(wreq->wi_val[1]);
sc->wi_debug.wi_ledtest = 1;
sc->wi_debug.wi_ledtest_param0 = param0;
sc->wi_debug.wi_ledtest_param1 = param1;
break;
case WI_DEBUG_CONTTX:
param0 = letoh16(wreq->wi_val[0]);
sc->wi_debug.wi_conttx = 1;
sc->wi_debug.wi_conttx_param0 = param0;
break;
case WI_DEBUG_STOPTEST:
sc->wi_debug.wi_delaysupp = 0;
sc->wi_debug.wi_txsupp = 0;
sc->wi_debug.wi_monitor = 0;
sc->wi_debug.wi_ledtest = 0;
sc->wi_debug.wi_ledtest_param0 = 0;
sc->wi_debug.wi_ledtest_param1 = 0;
sc->wi_debug.wi_conttx = 0;
sc->wi_debug.wi_conttx_param0 = 0;
sc->wi_debug.wi_contrx = 0;
sc->wi_debug.wi_sigstate = 0;
sc->wi_debug.wi_sigstate_param0 = 0;
break;
case WI_DEBUG_CONTRX:
sc->wi_debug.wi_contrx = 1;
break;
case WI_DEBUG_SIGSTATE:
param0 = letoh16(wreq->wi_val[0]);
sc->wi_debug.wi_sigstate = 1;
sc->wi_debug.wi_sigstate_param0 = param0;
break;
case WI_DEBUG_CONFBITS:
param0 = letoh16(wreq->wi_val[0]);
param1 = letoh16(wreq->wi_val[1]);
sc->wi_debug.wi_confbits = param0;
sc->wi_debug.wi_confbits_param0 = param1;
break;
default:
error = EIO;
break;
}
if (error)
return (error);
cmd = WI_CMD_DEBUG | (wreq->wi_type << 8);
error = wi_cmd(sc, cmd, param0, param1, 0);
return (error);
}