src/sys/dev/ic/rtwn.c

3424 lines
92 KiB
C

/* $OpenBSD: rtwn.c,v 1.57 2023/04/28 01:24:14 kevlo Exp $ */
/*-
* Copyright (c) 2010 Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2015 Stefan Sperling <stsp@openbsd.org>
* Copyright (c) 2016 Nathanial Sloss <nathanialsloss@yahoo.com.au>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Driver for Realtek 802.11b/g/n chipsets.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/task.h>
#include <sys/timeout.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/endian.h>
#include <machine/bus.h>
#include <machine/intr.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/ic/r92creg.h>
#include <dev/ic/rtwnvar.h>
#define RTWN_RIDX_CCK1 0
#define RTWN_RIDX_CCK2 1
#define RTWN_RIDX_CCK11 3
#define RTWN_RIDX_OFDM6 4
#define RTWN_RIDX_OFDM54 11
#define RTWN_RIDX_MCS0 12
#define RTWN_RIDX_MCS8 (RTWN_RIDX_MCS0 + 8)
#define RTWN_RIDX_MCS15 27
#define RTWN_RIDX_MAX 27
#define RTWN_POWER_CCK1 0
#define RTWN_POWER_CCK2 1
#define RTWN_POWER_CCK55 2
#define RTWN_POWER_CCK11 3
#define RTWN_POWER_OFDM6 4
#define RTWN_POWER_OFDM9 5
#define RTWN_POWER_OFDM12 6
#define RTWN_POWER_OFDM18 7
#define RTWN_POWER_OFDM24 8
#define RTWN_POWER_OFDM36 9
#define RTWN_POWER_OFDM48 10
#define RTWN_POWER_OFDM54 11
#define RTWN_POWER_MCS(mcs) (12 + (mcs))
#define RTWN_POWER_COUNT 28
#ifdef RTWN_DEBUG
#define DPRINTF(x) do { if (rtwn_debug) printf x; } while (0)
#define DPRINTFN(n, x) do { if (rtwn_debug >= (n)) printf x; } while (0)
int rtwn_debug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
/* Registers to save and restore during IQ calibration. */
struct rtwn_iq_cal_regs {
uint32_t adda[16];
uint8_t txpause;
uint8_t bcn_ctrl;
uint8_t bcn_ctrl1;
uint32_t gpio_muxcfg;
uint32_t ofdm0_trxpathena;
uint32_t ofdm0_trmuxpar;
uint32_t fpga0_rfifacesw0;
uint32_t fpga0_rfifacesw1;
uint32_t fpga0_rfifaceoe0;
uint32_t fpga0_rfifaceoe1;
uint32_t config_ant_a;
uint32_t config_ant_b;
uint32_t cck0_afesetting;
};
void rtwn_write_1(struct rtwn_softc *, uint16_t, uint8_t);
void rtwn_write_2(struct rtwn_softc *, uint16_t, uint16_t);
void rtwn_write_4(struct rtwn_softc *, uint16_t, uint32_t);
uint8_t rtwn_read_1(struct rtwn_softc *, uint16_t);
uint16_t rtwn_read_2(struct rtwn_softc *, uint16_t);
uint32_t rtwn_read_4(struct rtwn_softc *, uint16_t);
int rtwn_fw_cmd(struct rtwn_softc *, uint8_t, const void *, int);
void rtwn_rf_write(struct rtwn_softc *, int, uint16_t, uint32_t);
uint32_t rtwn_rf_read(struct rtwn_softc *, int, uint8_t);
void rtwn_cam_write(struct rtwn_softc *, uint32_t, uint32_t);
uint8_t rtwn_efuse_read_1(struct rtwn_softc *, uint16_t);
void rtwn_efuse_read(struct rtwn_softc *, uint8_t *, size_t);
void rtwn_efuse_switch_power(struct rtwn_softc *);
int rtwn_read_chipid(struct rtwn_softc *);
void rtwn_read_rom(struct rtwn_softc *);
void rtwn_r92c_read_rom(struct rtwn_softc *);
void rtwn_r92e_read_rom(struct rtwn_softc *);
void rtwn_r88e_read_rom(struct rtwn_softc *);
void rtwn_r88f_read_rom(struct rtwn_softc *);
void rtwn_r23a_read_rom(struct rtwn_softc *);
int rtwn_media_change(struct ifnet *);
int rtwn_ra_init(struct rtwn_softc *);
int rtwn_r92c_ra_init(struct rtwn_softc *, u_int8_t, u_int32_t,
int, uint32_t, int);
int rtwn_r88e_ra_init(struct rtwn_softc *, u_int8_t, u_int32_t,
int, uint32_t, int);
void rtwn_tsf_sync_enable(struct rtwn_softc *);
void rtwn_set_led(struct rtwn_softc *, int, int);
void rtwn_set_nettype(struct rtwn_softc *, enum ieee80211_opmode);
void rtwn_update_short_preamble(struct ieee80211com *);
void rtwn_r92c_update_short_preamble(struct rtwn_softc *);
void rtwn_r88e_update_short_preamble(struct rtwn_softc *);
int8_t rtwn_r88e_get_rssi(struct rtwn_softc *, int, void *);
int8_t rtwn_r88f_get_rssi(struct rtwn_softc *, int, void *);
void rtwn_watchdog(struct ifnet *);
void rtwn_fw_reset(struct rtwn_softc *);
void rtwn_r92c_fw_reset(struct rtwn_softc *);
void rtwn_r88e_fw_reset(struct rtwn_softc *);
int rtwn_load_firmware(struct rtwn_softc *);
void rtwn_rf_init(struct rtwn_softc *);
void rtwn_cam_init(struct rtwn_softc *);
void rtwn_pa_bias_init(struct rtwn_softc *);
void rtwn_rxfilter_init(struct rtwn_softc *);
void rtwn_edca_init(struct rtwn_softc *);
void rtwn_rate_fallback_init(struct rtwn_softc *);
void rtwn_write_txpower(struct rtwn_softc *, int, uint16_t *);
void rtwn_get_txpower(struct rtwn_softc *sc, int,
struct ieee80211_channel *, struct ieee80211_channel *,
uint16_t *);
void rtwn_r92c_get_txpower(struct rtwn_softc *, int,
struct ieee80211_channel *, struct ieee80211_channel *,
uint16_t *);
void rtwn_r92e_get_txpower(struct rtwn_softc *, int,
struct ieee80211_channel *,
struct ieee80211_channel *, uint16_t *);
void rtwn_r88e_get_txpower(struct rtwn_softc *, int,
struct ieee80211_channel *,
struct ieee80211_channel *, uint16_t *);
void rtwn_set_txpower(struct rtwn_softc *,
struct ieee80211_channel *, struct ieee80211_channel *);
void rtwn_set_chan(struct rtwn_softc *,
struct ieee80211_channel *, struct ieee80211_channel *);
int rtwn_chan2group(int);
int rtwn_iq_calib_chain(struct rtwn_softc *, int, uint16_t[2],
uint16_t[2]);
void rtwn_iq_calib_run(struct rtwn_softc *, int, uint16_t[2][2],
uint16_t rx[2][2], struct rtwn_iq_cal_regs *);
int rtwn_iq_calib_compare_results(uint16_t[2][2], uint16_t[2][2],
uint16_t[2][2], uint16_t[2][2], int);
void rtwn_iq_calib_write_results(struct rtwn_softc *, uint16_t[2],
uint16_t[2], int);
void rtwn_iq_calib(struct rtwn_softc *);
void rtwn_lc_calib(struct rtwn_softc *);
void rtwn_temp_calib(struct rtwn_softc *);
void rtwn_enable_intr(struct rtwn_softc *);
void rtwn_disable_intr(struct rtwn_softc *);
int rtwn_init(struct ifnet *);
void rtwn_init_task(void *);
void rtwn_stop(struct ifnet *);
/* Aliases. */
#define rtwn_bb_write rtwn_write_4
#define rtwn_bb_read rtwn_read_4
/*
* Macro to convert 4-bit signed integer to 8-bit signed integer.
*/
#define RTWN_SIGN4TO8(val) (((val) & 0x08) ? (val) | 0xf0 : (val))
int
rtwn_attach(struct device *pdev, struct rtwn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
int i, error;
sc->sc_pdev = pdev;
task_set(&sc->init_task, rtwn_init_task, sc);
error = rtwn_read_chipid(sc);
if (error != 0) {
printf("%s: unsupported chip\n", sc->sc_pdev->dv_xname);
return (ENXIO);
}
/* Determine number of Tx/Rx chains. */
if (sc->chip & (RTWN_CHIP_92C | RTWN_CHIP_92E)) {
sc->ntxchains = (sc->chip & RTWN_CHIP_92C_1T2R) ? 1 : 2;
sc->nrxchains = 2;
} else {
sc->ntxchains = 1;
sc->nrxchains = 1;
}
rtwn_read_rom(sc);
if (sc->chip & RTWN_CHIP_PCI) {
printf("%s: MAC/BB RTL%s, RF 6052 %dT%dR, address %s\n",
sc->sc_pdev->dv_xname,
(sc->chip & RTWN_CHIP_92C) ? "8192CE" :
(sc->chip & RTWN_CHIP_88E) ? "8188EE" :
(sc->chip & RTWN_CHIP_92E) ? "8192EE" :
(sc->chip & RTWN_CHIP_23A) ? "8723AE" :
(sc->chip & RTWN_CHIP_23B) ? "8723BE" : "8188CE",
sc->ntxchains, sc->nrxchains,
ether_sprintf(ic->ic_myaddr));
} else if (sc->chip & RTWN_CHIP_USB) {
printf("%s: MAC/BB RTL%s, RF 6052 %dT%dR, address %s\n",
sc->sc_pdev->dv_xname,
(sc->chip & RTWN_CHIP_92C) ? "8192CU" :
(sc->chip & RTWN_CHIP_92E) ? "8192EU" :
(sc->chip & RTWN_CHIP_88E) ? "8188EU" :
(sc->chip & RTWN_CHIP_88F) ? "8188FTV" :
(sc->board_type == R92C_BOARD_TYPE_HIGHPA) ? "8188RU" :
(sc->board_type == R92C_BOARD_TYPE_MINICARD) ?
"8188CE-VAU" : "8188CUS",
sc->ntxchains, sc->nrxchains,
ether_sprintf(ic->ic_myaddr));
} else {
printf("%s: unsupported chip\n", sc->sc_pdev->dv_xname);
return (ENXIO);
}
ic->ic_phytype = IEEE80211_T_OFDM; /* Not only, but not used. */
ic->ic_opmode = IEEE80211_M_STA; /* Default to BSS mode. */
ic->ic_state = IEEE80211_S_INIT;
/* Set device capabilities. */
ic->ic_caps =
IEEE80211_C_MONITOR | /* Monitor mode supported. */
IEEE80211_C_SHPREAMBLE | /* Short preamble supported. */
IEEE80211_C_SHSLOT | /* Short slot time supported. */
IEEE80211_C_WEP | /* WEP. */
IEEE80211_C_RSN; /* WPA/RSN. */
/* Set HT capabilities. */
ic->ic_htcaps =
IEEE80211_HTCAP_CBW20_40 |
IEEE80211_HTCAP_DSSSCCK40;
/* Set supported HT rates. */
for (i = 0; i < sc->nrxchains; i++)
ic->ic_sup_mcs[i] = 0xff;
/* Set supported .11b and .11g rates. */
ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
/* Set supported .11b and .11g channels (1 through 14). */
for (i = 1; i <= 14; i++) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_channels[i].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
#ifdef notyet
/*
* The number of STAs that we can support is limited by the number
* of CAM entries used for hardware crypto.
*/
ic->ic_max_nnodes = R92C_CAM_ENTRY_COUNT - 4;
if (ic->ic_max_nnodes > IEEE80211_CACHE_SIZE)
ic->ic_max_nnodes = IEEE80211_CACHE_SIZE;
#endif
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = rtwn_ioctl;
ifp->if_start = rtwn_start;
ifp->if_watchdog = rtwn_watchdog;
memcpy(ifp->if_xname, sc->sc_pdev->dv_xname, IFNAMSIZ);
if_attach(ifp);
ieee80211_ifattach(ifp);
ic->ic_updateslot = rtwn_updateslot;
ic->ic_updateedca = rtwn_updateedca;
#ifdef notyet
ic->ic_set_key = rtwn_set_key;
ic->ic_delete_key = rtwn_delete_key;
#endif
/* Override state transition machine. */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = rtwn_newstate;
ieee80211_media_init(ifp, rtwn_media_change, ieee80211_media_status);
return (0);
}
int
rtwn_detach(struct rtwn_softc *sc, int flags)
{
struct ifnet *ifp = &sc->sc_ic.ic_if;
int s;
s = splnet();
task_del(systq, &sc->init_task);
if (ifp->if_softc != NULL) {
ieee80211_ifdetach(ifp);
if_detach(ifp);
}
splx(s);
return (0);
}
int
rtwn_activate(struct rtwn_softc *sc, int act)
{
struct ifnet *ifp = &sc->sc_ic.ic_if;
switch (act) {
case DVACT_QUIESCE: /* rtwn_stop() may sleep */
if (ifp->if_flags & IFF_RUNNING)
rtwn_stop(ifp);
break;
case DVACT_WAKEUP:
rtwn_init_task(sc);
break;
}
return (0);
}
void
rtwn_write_1(struct rtwn_softc *sc, uint16_t addr, uint8_t val)
{
sc->sc_ops.write_1(sc->sc_ops.cookie, addr, val);
}
void
rtwn_write_2(struct rtwn_softc *sc, uint16_t addr, uint16_t val)
{
sc->sc_ops.write_2(sc->sc_ops.cookie, addr, val);
}
void
rtwn_write_4(struct rtwn_softc *sc, uint16_t addr, uint32_t val)
{
sc->sc_ops.write_4(sc->sc_ops.cookie, addr, val);
}
uint8_t
rtwn_read_1(struct rtwn_softc *sc, uint16_t addr)
{
return sc->sc_ops.read_1(sc->sc_ops.cookie, addr);
}
uint16_t
rtwn_read_2(struct rtwn_softc *sc, uint16_t addr)
{
return sc->sc_ops.read_2(sc->sc_ops.cookie, addr);
}
uint32_t
rtwn_read_4(struct rtwn_softc *sc, uint16_t addr)
{
return sc->sc_ops.read_4(sc->sc_ops.cookie, addr);
}
int
rtwn_fw_cmd(struct rtwn_softc *sc, uint8_t id, const void *buf, int len)
{
struct r92c_fw_cmd cmd;
int ntries;
/* Wait for current FW box to be empty. */
for (ntries = 0; ntries < 100; ntries++) {
if (!(rtwn_read_1(sc, R92C_HMETFR) & (1 << sc->fwcur)))
break;
DELAY(10);
}
if (ntries == 100) {
printf("%s: could not send firmware command %d\n",
sc->sc_pdev->dv_xname, id);
return (ETIMEDOUT);
}
memset(&cmd, 0, sizeof(cmd));
cmd.id = id;
if (len > 3)
cmd.id |= R92C_CMD_FLAG_EXT;
KASSERT(len <= sizeof(cmd.msg));
memcpy(cmd.msg, buf, len);
/* Write the first word last since that will trigger the FW. */
if (sc->chip & RTWN_CHIP_92E)
rtwn_write_2(sc, R88E_HMEBOX_EXT(sc->fwcur),
*((uint8_t *)&cmd + 4));
else
rtwn_write_2(sc, R92C_HMEBOX_EXT(sc->fwcur),
*((uint8_t *)&cmd + 4));
rtwn_write_4(sc, R92C_HMEBOX(sc->fwcur), *((uint8_t *)&cmd + 0));
sc->fwcur = (sc->fwcur + 1) % R92C_H2C_NBOX;
if (sc->chip & RTWN_CHIP_PCI) {
/* Give firmware some time for processing. */
DELAY(2000);
}
return (0);
}
void
rtwn_rf_write(struct rtwn_softc *sc, int chain, uint16_t addr, uint32_t val)
{
uint32_t param_addr;
if (sc->chip & RTWN_CHIP_92E) {
rtwn_write_4(sc, R92C_FPGA0_POWER_SAVE,
rtwn_read_4(sc, R92C_FPGA0_POWER_SAVE) & ~0x20000);
}
if (sc->chip & (RTWN_CHIP_88E | RTWN_CHIP_88F | RTWN_CHIP_92E))
param_addr = SM(R88E_LSSI_PARAM_ADDR, addr);
else
param_addr = SM(R92C_LSSI_PARAM_ADDR, addr);
rtwn_bb_write(sc, R92C_LSSI_PARAM(chain),
param_addr | SM(R92C_LSSI_PARAM_DATA, val));
DELAY(1);
if (sc->chip & RTWN_CHIP_92E) {
rtwn_write_4(sc, R92C_FPGA0_POWER_SAVE,
rtwn_read_4(sc, R92C_FPGA0_POWER_SAVE) | 0x20000);
}
}
uint32_t
rtwn_rf_read(struct rtwn_softc *sc, int chain, uint8_t addr)
{
uint32_t reg[R92C_MAX_CHAINS], val;
reg[0] = rtwn_bb_read(sc, R92C_HSSI_PARAM2(0));
if (chain != 0)
reg[chain] = rtwn_bb_read(sc, R92C_HSSI_PARAM2(chain));
rtwn_bb_write(sc, R92C_HSSI_PARAM2(0),
reg[0] & ~R92C_HSSI_PARAM2_READ_EDGE);
DELAY(1000);
rtwn_bb_write(sc, R92C_HSSI_PARAM2(chain),
RW(reg[chain], R92C_HSSI_PARAM2_READ_ADDR, addr) |
R92C_HSSI_PARAM2_READ_EDGE);
DELAY(1000);
if (!(sc->chip & RTWN_CHIP_88E)) {
rtwn_bb_write(sc, R92C_HSSI_PARAM2(0),
reg[0] | R92C_HSSI_PARAM2_READ_EDGE);
DELAY(1000);
}
if (rtwn_bb_read(sc, R92C_HSSI_PARAM1(chain)) & R92C_HSSI_PARAM1_PI)
val = rtwn_bb_read(sc, R92C_HSPI_READBACK(chain));
else
val = rtwn_bb_read(sc, R92C_LSSI_READBACK(chain));
return (MS(val, R92C_LSSI_READBACK_DATA));
}
void
rtwn_cam_write(struct rtwn_softc *sc, uint32_t addr, uint32_t data)
{
rtwn_write_4(sc, R92C_CAMWRITE, data);
rtwn_write_4(sc, R92C_CAMCMD,
R92C_CAMCMD_POLLING | R92C_CAMCMD_WRITE |
SM(R92C_CAMCMD_ADDR, addr));
}
uint8_t
rtwn_efuse_read_1(struct rtwn_softc *sc, uint16_t addr)
{
uint32_t reg;
int ntries;
reg = rtwn_read_4(sc, R92C_EFUSE_CTRL);
reg = RW(reg, R92C_EFUSE_CTRL_ADDR, addr);
reg &= ~R92C_EFUSE_CTRL_VALID;
rtwn_write_4(sc, R92C_EFUSE_CTRL, reg);
/* Wait for read operation to complete. */
for (ntries = 0; ntries < 100; ntries++) {
reg = rtwn_read_4(sc, R92C_EFUSE_CTRL);
if (reg & R92C_EFUSE_CTRL_VALID)
return (MS(reg, R92C_EFUSE_CTRL_DATA));
DELAY(5);
}
printf("%s: could not read efuse byte at address 0x%x\n",
sc->sc_pdev->dv_xname, addr);
return (0xff);
}
void
rtwn_efuse_read(struct rtwn_softc *sc, uint8_t *rom, size_t size)
{
uint8_t off, msk, tmp;
uint16_t addr = 0;
uint32_t reg;
int i, len;
if (!(sc->chip & (RTWN_CHIP_92C | RTWN_CHIP_88C)))
rtwn_write_1(sc, R92C_EFUSE_ACCESS, R92C_EFUSE_ACCESS_ON);
rtwn_efuse_switch_power(sc);
/* Switch bank to 0 for wifi/bt later use. */
if (sc->chip & RTWN_CHIP_88F) {
reg = rtwn_read_4(sc, R92C_EFUSE_TEST);
reg = RW(reg, R92C_EFUSE_TEST_SEL, 0);
rtwn_write_4(sc, R92C_EFUSE_TEST, reg);
}
memset(rom, 0xff, size);
len = (sc->chip & RTWN_CHIP_88E) ? 256 : 512;
while (addr < len) {
reg = rtwn_efuse_read_1(sc, addr);
if (reg == 0xff)
break;
addr++;
/* Check for extended header. */
if ((sc->sc_flags & RTWN_FLAG_EXT_HDR) &&
(reg & 0x1f) == 0x0f) {
tmp = (reg & 0xe0) >> 5;
reg = rtwn_efuse_read_1(sc, addr);
addr++;
if ((reg & 0x0f) != 0x0f)
off = ((reg & 0xf0) >> 1) | tmp;
else
continue;
} else
off = reg >> 4;
msk = reg & 0xf;
for (i = 0; i < 4; i++) {
if (msk & (1 << i))
continue;
rom[off * 8 + i * 2 + 0] = rtwn_efuse_read_1(sc, addr);
addr++;
rom[off * 8 + i * 2 + 1] = rtwn_efuse_read_1(sc, addr);
addr++;
}
}
#ifdef RTWN_DEBUG
if (rtwn_debug >= 2) {
/* Dump ROM content. */
printf("\n");
for (i = 0; i < size; i++)
printf("%02x:", rom[i]);
printf("\n");
}
#endif
if (!(sc->chip & (RTWN_CHIP_92C | RTWN_CHIP_88C)))
rtwn_write_1(sc, R92C_EFUSE_ACCESS, R92C_EFUSE_ACCESS_OFF);
}
void
rtwn_efuse_switch_power(struct rtwn_softc *sc)
{
uint16_t reg;
if (!(sc->chip & (RTWN_CHIP_88F | RTWN_CHIP_92E))) {
reg = rtwn_read_2(sc, R92C_SYS_ISO_CTRL);
if (!(reg & R92C_SYS_ISO_CTRL_PWC_EV12V)) {
rtwn_write_2(sc, R92C_SYS_ISO_CTRL,
reg | R92C_SYS_ISO_CTRL_PWC_EV12V);
}
}
reg = rtwn_read_2(sc, R92C_SYS_FUNC_EN);
if (!(reg & R92C_SYS_FUNC_EN_ELDR)) {
rtwn_write_2(sc, R92C_SYS_FUNC_EN,
reg | R92C_SYS_FUNC_EN_ELDR);
}
reg = rtwn_read_2(sc, R92C_SYS_CLKR);
if ((reg & (R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) !=
(R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M)) {
rtwn_write_2(sc, R92C_SYS_CLKR,
reg | R92C_SYS_CLKR_LOADER_EN | R92C_SYS_CLKR_ANA8M);
}
}
int
rtwn_read_chipid(struct rtwn_softc *sc)
{
uint32_t reg;
if (sc->chip & (RTWN_CHIP_88E | RTWN_CHIP_88F | RTWN_CHIP_92E)) {
sc->sc_flags |= RTWN_FLAG_EXT_HDR;
return (0);
}
reg = rtwn_read_4(sc, R92C_SYS_CFG);
if (reg & R92C_SYS_CFG_TRP_VAUX_EN)
/* Unsupported test chip. */
return (EIO);
if ((sc->chip & (RTWN_CHIP_92C | RTWN_CHIP_88C)) != 0) {
if (reg & R92C_SYS_CFG_TYPE_92C) {
sc->chip &= ~RTWN_CHIP_88C;
/* Check if it is a castrated 8192C. */
if (MS(rtwn_read_4(sc, R92C_HPON_FSM),
R92C_HPON_FSM_CHIP_BONDING_ID) ==
R92C_HPON_FSM_CHIP_BONDING_ID_92C_1T2R)
sc->chip |= RTWN_CHIP_92C_1T2R;
} else
sc->chip &= ~RTWN_CHIP_92C;
if (reg & R92C_SYS_CFG_VENDOR_UMC) {
sc->chip |= RTWN_CHIP_UMC;
if (MS(reg, R92C_SYS_CFG_CHIP_VER_RTL) == 0)
sc->chip |= RTWN_CHIP_UMC_A_CUT;
}
return (0);
} else if (sc->chip & RTWN_CHIP_23A) {
sc->sc_flags |= RTWN_FLAG_EXT_HDR;
if ((reg & 0xf000) == 0)
sc->chip |= RTWN_CHIP_UMC_A_CUT;
return (0);
}
return (ENXIO); /* unsupported chip */
}
void
rtwn_read_rom(struct rtwn_softc *sc)
{
if (sc->chip & RTWN_CHIP_88E)
rtwn_r88e_read_rom(sc);
else if (sc->chip & RTWN_CHIP_88F)
rtwn_r88f_read_rom(sc);
else if (sc->chip & RTWN_CHIP_92E)
rtwn_r92e_read_rom(sc);
else if (sc->chip & RTWN_CHIP_23A)
rtwn_r23a_read_rom(sc);
else
rtwn_r92c_read_rom(sc);
}
void
rtwn_r92c_read_rom(struct rtwn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct r92c_rom *rom = &sc->sc_r92c_rom;
/* Read full ROM image. */
rtwn_efuse_read(sc, (uint8_t *)&sc->sc_r92c_rom,
sizeof(sc->sc_r92c_rom));
/* XXX Weird but this is what the vendor driver does. */
sc->pa_setting = rtwn_efuse_read_1(sc, 0x1fa);
DPRINTF(("PA setting=0x%x\n", sc->pa_setting));
sc->board_type = MS(rom->rf_opt1, R92C_ROM_RF1_BOARD_TYPE);
DPRINTF(("board type=%d\n", sc->board_type));
sc->regulatory = MS(rom->rf_opt1, R92C_ROM_RF1_REGULATORY);
DPRINTF(("regulatory type=%d\n", sc->regulatory));
IEEE80211_ADDR_COPY(ic->ic_myaddr, rom->macaddr);
}
void
rtwn_r92e_read_rom(struct rtwn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct r92e_rom *rom = &sc->sc_r92e_rom;
/* Read full ROM image. */
rtwn_efuse_read(sc, (uint8_t *)&sc->sc_r92e_rom,
sizeof(sc->sc_r92e_rom));
sc->crystal_cap = rom->xtal_k;
DPRINTF(("crystal cap=0x%x\n", sc->crystal_cap));
sc->regulatory = MS(rom->rf_board_opt, R92C_ROM_RF1_REGULATORY);
DPRINTF(("regulatory type=%d\n", sc->regulatory));
IEEE80211_ADDR_COPY(ic->ic_myaddr, rom->macaddr);
}
void
rtwn_r88e_read_rom(struct rtwn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct r88e_rom *rom = &sc->sc_r88e_rom;
/* Read full ROM image. */
rtwn_efuse_read(sc, (uint8_t *)&sc->sc_r88e_rom,
sizeof(sc->sc_r88e_rom));
sc->crystal_cap = (sc->chip & RTWN_CHIP_PCI) ? 0x20 : rom->xtal;
DPRINTF(("Crystal cap=0x%x\n", sc->crystal_cap));
sc->regulatory = MS(rom->rf_board_opt, R92C_ROM_RF1_REGULATORY);
DPRINTF(("regulatory type=%d\n", sc->regulatory));
if (sc->chip & RTWN_CHIP_PCI)
IEEE80211_ADDR_COPY(ic->ic_myaddr, rom->r88ee_rom.macaddr);
else
IEEE80211_ADDR_COPY(ic->ic_myaddr, rom->r88eu_rom.macaddr);
}
void
rtwn_r88f_read_rom(struct rtwn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct r88f_rom *rom = &sc->sc_r88f_rom;
/* Read full ROM image. */
rtwn_efuse_read(sc, (uint8_t *)&sc->sc_r88f_rom,
sizeof(sc->sc_r88f_rom));
sc->crystal_cap = rom->xtal;
IEEE80211_ADDR_COPY(ic->ic_myaddr, rom->macaddr);
}
void
rtwn_r23a_read_rom(struct rtwn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct r23a_rom *rom = &sc->sc_r23a_rom;
/* Read full ROM image. */
rtwn_efuse_read(sc, (uint8_t *)&sc->sc_r23a_rom,
sizeof(sc->sc_r23a_rom));
IEEE80211_ADDR_COPY(ic->ic_myaddr, rom->macaddr);
}
int
rtwn_media_change(struct ifnet *ifp)
{
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return (error);
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING)) {
rtwn_stop(ifp);
error = rtwn_init(ifp);
}
return (error);
}
/*
* Initialize rate adaptation.
*/
int
rtwn_ra_init(struct rtwn_softc *sc)
{
static const uint8_t map[] =
{ 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 };
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
struct ieee80211_rateset *rs = &ni->ni_rates;
uint32_t rates, basicrates;
uint8_t mode;
int maxrate, maxbasicrate, i, j;
int error = 0;
/* Get normal and basic rates mask. */
rates = basicrates = 0;
maxrate = maxbasicrate = 0;
for (i = 0; i < rs->rs_nrates; i++) {
/* Convert 802.11 rate to HW rate index. */
for (j = 0; j < nitems(map); j++)
if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == map[j])
break;
if (j == nitems(map)) /* Unknown rate, skip. */
continue;
rates |= 1 << j;
if (j > maxrate)
maxrate = j;
if (rs->rs_rates[i] & IEEE80211_RATE_BASIC) {
basicrates |= 1 << j;
if (j > maxbasicrate)
maxbasicrate = j;
}
}
if (ic->ic_curmode == IEEE80211_MODE_11B)
mode = R92C_RAID_11B;
else
mode = R92C_RAID_11BG;
DPRINTF(("mode=0x%x rates=0x%08x, basicrates=0x%08x\n",
mode, rates, basicrates));
if (sc->chip & RTWN_CHIP_PCI) {
/* Configure Automatic Rate Fallback Register. */
if (ic->ic_curmode == IEEE80211_MODE_11B) {
if (rates & 0x0c)
rtwn_write_4(sc, R92C_ARFR(0), rates & 0x05);
else
rtwn_write_4(sc, R92C_ARFR(0), rates & 0x07);
} else
rtwn_write_4(sc, R92C_ARFR(0), rates & 0x07f5);
}
if (sc->chip & (RTWN_CHIP_88E | RTWN_CHIP_88F | RTWN_CHIP_92E)) {
error = rtwn_r88e_ra_init(sc, mode, rates, maxrate,
basicrates, maxbasicrate);
/* We use AMRR with this chip. Start with the lowest rate. */
ni->ni_txrate = 0;
} else {
if (sc->chip & RTWN_CHIP_PCI) {
ni->ni_txrate = 0; /* AMRR will raise. */
/* Set initial MRR rates. */
rtwn_write_1(sc,
R92C_INIDATA_RATE_SEL(R92C_MACID_BC), maxbasicrate);
rtwn_write_1(sc,
R92C_INIDATA_RATE_SEL(R92C_MACID_BSS), 0);
} else {
error = rtwn_r92c_ra_init(sc, mode, rates, maxrate,
basicrates, maxbasicrate);
/* No AMRR support. Indicate highest supported rate. */
ni->ni_txrate = rs->rs_nrates - 1;
}
}
return (error);
}
/*
* Initialize rate adaptation in firmware.
*/
int rtwn_r92c_ra_init(struct rtwn_softc *sc, u_int8_t mode, u_int32_t rates,
int maxrate, uint32_t basicrates, int maxbasicrate)
{
struct r92c_fw_cmd_macid_cfg cmd;
int error;
/* Set rates mask for group addressed frames. */
cmd.macid = R92C_MACID_BC | R92C_MACID_VALID;
cmd.mask = htole32(mode << 28 | basicrates);
error = rtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd));
if (error != 0) {
printf("%s: could not add broadcast station\n",
sc->sc_pdev->dv_xname);
return (error);
}
/* Set initial MRR rate. */
DPRINTF(("maxbasicrate=%d\n", maxbasicrate));
rtwn_write_1(sc, R92C_INIDATA_RATE_SEL(R92C_MACID_BC),
maxbasicrate);
/* Set rates mask for unicast frames. */
cmd.macid = R92C_MACID_BSS | R92C_MACID_VALID;
cmd.mask = htole32(mode << 28 | rates);
error = rtwn_fw_cmd(sc, R92C_CMD_MACID_CONFIG, &cmd, sizeof(cmd));
if (error != 0) {
printf("%s: could not add BSS station\n",
sc->sc_pdev->dv_xname);
return (error);
}
/* Set initial MRR rate. */
DPRINTF(("maxrate=%d\n", maxrate));
rtwn_write_1(sc, R92C_INIDATA_RATE_SEL(R92C_MACID_BSS),
maxrate);
return (0);
}
int
rtwn_r88e_ra_init(struct rtwn_softc *sc, u_int8_t mode, u_int32_t rates,
int maxrate, uint32_t basicrates, int maxbasicrate)
{
u_int32_t reg;
rtwn_write_1(sc, R92C_INIRTS_RATE_SEL, maxbasicrate);
reg = rtwn_read_4(sc, R92C_RRSR);
reg = RW(reg, R92C_RRSR_RATE_BITMAP, rates);
rtwn_write_4(sc, R92C_RRSR, reg);
/*
* Workaround for performance problems with firmware rate adaptation:
* If the AP only supports 11b rates, disable mixed B/G mode.
*/
if (mode != R92C_RAID_11B && maxrate <= 3 /* 11M */)
sc->sc_flags |= RTWN_FLAG_FORCE_RAID_11B;
return (0);
}
void
rtwn_tsf_sync_enable(struct rtwn_softc *sc)
{
struct ieee80211_node *ni = sc->sc_ic.ic_bss;
uint64_t tsf;
/* Enable TSF synchronization. */
rtwn_write_1(sc, R92C_BCN_CTRL,
rtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_DIS_TSF_UDT0);
rtwn_write_1(sc, R92C_BCN_CTRL,
rtwn_read_1(sc, R92C_BCN_CTRL) & ~R92C_BCN_CTRL_EN_BCN);
/* Set initial TSF. */
memcpy(&tsf, ni->ni_tstamp, sizeof(tsf));
tsf = letoh64(tsf);
tsf = tsf - (tsf % (ni->ni_intval * IEEE80211_DUR_TU));
tsf -= IEEE80211_DUR_TU;
rtwn_write_4(sc, R92C_TSFTR + 0, tsf);
rtwn_write_4(sc, R92C_TSFTR + 4, tsf >> 32);
rtwn_write_1(sc, R92C_BCN_CTRL,
rtwn_read_1(sc, R92C_BCN_CTRL) | R92C_BCN_CTRL_EN_BCN);
}
void
rtwn_set_led(struct rtwn_softc *sc, int led, int on)
{
uint8_t reg;
if (led != RTWN_LED_LINK)
return; /* not supported */
if (sc->chip & RTWN_CHIP_PCI) {
reg = rtwn_read_1(sc, R92C_LEDCFG2) & 0xf0;
if (!on)
reg |= R92C_LEDCFG2_DIS;
else
reg |= R92C_LEDCFG2_EN;
rtwn_write_1(sc, R92C_LEDCFG2, reg);
} else if (sc->chip & RTWN_CHIP_USB) {
if (sc->chip & RTWN_CHIP_92E) {
rtwn_write_1(sc, 0x64, rtwn_read_1(sc, 0x64) & 0xfe);
reg = rtwn_read_1(sc, R92C_LEDCFG1) & R92E_LEDSON;
rtwn_write_1(sc, R92C_LEDCFG1, reg |
(R92C_LEDCFG0_DIS << 1));
if (on) {
reg = rtwn_read_1(sc, R92C_LEDCFG1) &
R92E_LEDSON;
rtwn_write_1(sc, R92C_LEDCFG1, reg);
}
} else if (sc->chip & RTWN_CHIP_88E) {
reg = rtwn_read_1(sc, R92C_LEDCFG2) & 0xf0;
rtwn_write_1(sc, R92C_LEDCFG2, reg | R92C_LEDCFG2_EN);
if (!on) {
reg = rtwn_read_1(sc, R92C_LEDCFG2) & 0x90;
rtwn_write_1(sc, R92C_LEDCFG2,
reg | R92C_LEDCFG0_DIS);
rtwn_write_1(sc, R92C_MAC_PINMUX_CFG,
rtwn_read_1(sc, R92C_MAC_PINMUX_CFG) &
0xfe);
}
} else {
reg = rtwn_read_1(sc, R92C_LEDCFG0) & 0x70;
if (!on)
reg |= R92C_LEDCFG0_DIS;
rtwn_write_1(sc, R92C_LEDCFG0, reg);
}
}
sc->ledlink = on; /* Save LED state. */
}
void
rtwn_set_nettype(struct rtwn_softc *sc, enum ieee80211_opmode opmode)
{
uint8_t msr;
msr = rtwn_read_1(sc, R92C_MSR) & ~R92C_MSR_NETTYPE_MASK;
switch (opmode) {
case IEEE80211_M_MONITOR:
msr |= R92C_MSR_NETTYPE_NOLINK;
break;
case IEEE80211_M_STA:
msr |= R92C_MSR_NETTYPE_INFRA;
break;
default:
break;
}
rtwn_write_1(sc, R92C_MSR, msr);
}
void
rtwn_calib(struct rtwn_softc *sc)
{
if (sc->avg_pwdb != -1) {
DPRINTFN(3, ("sending RSSI command avg=%d\n", sc->avg_pwdb));
/* Indicate Rx signal strength to FW for rate adaptation. */
if (sc->chip & RTWN_CHIP_92E) {
struct r92e_fw_cmd_rssi cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.macid = 0; /* BSS. */
cmd.pwdb = sc->avg_pwdb;
rtwn_fw_cmd(sc, R92E_CMD_RSSI_REPORT, &cmd,
sizeof(cmd));
} else {
struct r92c_fw_cmd_rssi cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.macid = 0; /* BSS. */
cmd.pwdb = sc->avg_pwdb;
rtwn_fw_cmd(sc, R92C_CMD_RSSI_SETTING, &cmd,
sizeof(cmd));
}
}
/* Do temperature compensation. */
rtwn_temp_calib(sc);
sc->sc_ops.next_calib(sc->sc_ops.cookie);
}
void
rtwn_next_scan(struct rtwn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
int s;
s = splnet();
if (ic->ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(&ic->ic_if);
splx(s);
}
int
rtwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct rtwn_softc *sc = ic->ic_softc;
struct ieee80211_node *ni;
enum ieee80211_state ostate;
uint32_t reg;
int s, error;
s = splnet();
ostate = ic->ic_state;
if (nstate != ostate)
DPRINTF(("newstate %s -> %s\n",
ieee80211_state_name[ostate],
ieee80211_state_name[nstate]));
if (ostate == IEEE80211_S_RUN) {
/* Stop calibration. */
sc->sc_ops.cancel_calib(sc->sc_ops.cookie);
/* Turn link LED off. */
rtwn_set_led(sc, RTWN_LED_LINK, 0);
/* Set media status to 'No Link'. */
rtwn_set_nettype(sc, IEEE80211_M_MONITOR);
/* Stop Rx of data frames. */
rtwn_write_2(sc, R92C_RXFLTMAP2, 0);
/* Rest TSF. */
rtwn_write_1(sc, R92C_DUAL_TSF_RST, 0x03);
/* Disable TSF synchronization. */
rtwn_write_1(sc, R92C_BCN_CTRL,
rtwn_read_1(sc, R92C_BCN_CTRL) |
R92C_BCN_CTRL_DIS_TSF_UDT0);
/* Reset EDCA parameters. */
rtwn_edca_init(sc);
rtwn_updateslot(ic);
rtwn_update_short_preamble(ic);
/* Disable 11b-only AP workaround (see rtwn_r88e_ra_init). */
sc->sc_flags &= ~RTWN_FLAG_FORCE_RAID_11B;
}
switch (nstate) {
case IEEE80211_S_INIT:
/* Turn link LED off. */
rtwn_set_led(sc, RTWN_LED_LINK, 0);
break;
case IEEE80211_S_SCAN:
if (ostate != IEEE80211_S_SCAN) {
/* Allow Rx from any BSSID. */
rtwn_write_4(sc, R92C_RCR,
rtwn_read_4(sc, R92C_RCR) &
~(R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN));
/* Set gain for scanning. */
reg = rtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0));
reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
rtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg);
if (!(sc->chip & RTWN_CHIP_88E)) {
reg = rtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1));
reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x20);
rtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg);
}
}
/* Make link LED blink during scan. */
rtwn_set_led(sc, RTWN_LED_LINK, !sc->ledlink);
/* Pause AC Tx queues. */
rtwn_write_1(sc, R92C_TXPAUSE,
rtwn_read_1(sc, R92C_TXPAUSE) | R92C_TXPAUSE_AC_VO |
R92C_TXPAUSE_AC_VI | R92C_TXPAUSE_AC_BE |
R92C_TXPAUSE_AC_BK);
rtwn_set_chan(sc, ic->ic_bss->ni_chan, NULL);
sc->sc_ops.next_scan(sc->sc_ops.cookie);
break;
case IEEE80211_S_AUTH:
/* Set initial gain under link. */
reg = rtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0));
reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x32);
rtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg);
if (!(sc->chip & RTWN_CHIP_88E)) {
reg = rtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1));
reg = RW(reg, R92C_OFDM0_AGCCORE1_GAIN, 0x32);
rtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg);
}
rtwn_set_chan(sc, ic->ic_bss->ni_chan, NULL);
break;
case IEEE80211_S_ASSOC:
break;
case IEEE80211_S_RUN:
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
rtwn_set_chan(sc, ic->ic_ibss_chan, NULL);
/* Enable Rx of data frames. */
rtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
/* Enable Rx of control frames. */
rtwn_write_2(sc, R92C_RXFLTMAP1, 0xffff);
rtwn_write_4(sc, R92C_RCR,
rtwn_read_4(sc, R92C_RCR) |
R92C_RCR_AAP | R92C_RCR_ADF | R92C_RCR_ACF |
R92C_RCR_AMF);
/* Turn link LED on. */
rtwn_set_led(sc, RTWN_LED_LINK, 1);
break;
}
ni = ic->ic_bss;
/* Set media status to 'Associated'. */
rtwn_set_nettype(sc, IEEE80211_M_STA);
/* Set BSSID. */
rtwn_write_4(sc, R92C_BSSID + 0, LE_READ_4(&ni->ni_bssid[0]));
rtwn_write_4(sc, R92C_BSSID + 4, LE_READ_2(&ni->ni_bssid[4]));
if (ic->ic_curmode == IEEE80211_MODE_11B)
rtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 0);
else /* 802.11b/g */
rtwn_write_1(sc, R92C_INIRTS_RATE_SEL, 3);
rtwn_updateslot(ic);
rtwn_update_short_preamble(ic);
/* Enable Rx of data frames. */
rtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
/* Flush all AC queues. */
rtwn_write_1(sc, R92C_TXPAUSE, 0x00);
/* Set beacon interval. */
rtwn_write_2(sc, R92C_BCN_INTERVAL, ni->ni_intval);
/* Allow Rx from our BSSID only. */
rtwn_write_4(sc, R92C_RCR,
rtwn_read_4(sc, R92C_RCR) |
R92C_RCR_CBSSID_DATA | R92C_RCR_CBSSID_BCN);
/* Enable TSF synchronization. */
rtwn_tsf_sync_enable(sc);
/* Initialize rate adaptation. */
rtwn_ra_init(sc);
/* Turn link LED on. */
rtwn_set_led(sc, RTWN_LED_LINK, 1);
sc->avg_pwdb = -1; /* Reset average RSSI. */
/* Reset temperature calibration state machine. */
sc->thcal_state = 0;
sc->thcal_lctemp = 0;
/* Start periodic calibration. */
sc->sc_ops.next_calib(sc->sc_ops.cookie);
break;
}
error = sc->sc_newstate(ic, nstate, arg);
splx(s);
return (error);
}
void
rtwn_update_short_preamble(struct ieee80211com *ic)
{
struct rtwn_softc *sc = ic->ic_softc;
if (sc->chip & (RTWN_CHIP_88E | RTWN_CHIP_92E))
rtwn_r88e_update_short_preamble(sc);
else
rtwn_r92c_update_short_preamble(sc);
}
void
rtwn_r92c_update_short_preamble(struct rtwn_softc *sc)
{
uint32_t reg;
reg = rtwn_read_4(sc, R92C_RRSR);
if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
reg |= R92C_RRSR_SHORT;
else
reg &= ~R92C_RRSR_SHORT;
rtwn_write_4(sc, R92C_RRSR, reg);
}
void
rtwn_r88e_update_short_preamble(struct rtwn_softc *sc)
{
uint32_t reg;
reg = rtwn_read_4(sc, R92C_WMAC_TRXPTCL_CTL);
if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
reg |= R92C_WMAC_TRXPTCL_CTL_SHORT;
else
reg &= ~R92C_WMAC_TRXPTCL_CTL_SHORT;
rtwn_write_4(sc, R92C_WMAC_TRXPTCL_CTL, reg);
}
void
rtwn_updateslot(struct ieee80211com *ic)
{
struct rtwn_softc *sc = ic->ic_softc;
int s;
s = splnet();
if (ic->ic_flags & IEEE80211_F_SHSLOT)
rtwn_write_1(sc, R92C_SLOT, IEEE80211_DUR_DS_SHSLOT);
else
rtwn_write_1(sc, R92C_SLOT, IEEE80211_DUR_DS_SLOT);
splx(s);
}
void
rtwn_updateedca(struct ieee80211com *ic)
{
struct rtwn_softc *sc = ic->ic_softc;
const uint16_t aci2reg[EDCA_NUM_AC] = {
R92C_EDCA_BE_PARAM,
R92C_EDCA_BK_PARAM,
R92C_EDCA_VI_PARAM,
R92C_EDCA_VO_PARAM
};
struct ieee80211_edca_ac_params *ac;
int s, aci, aifs, slottime;
uint8_t acm = 0;
if (ic->ic_flags & IEEE80211_F_SHSLOT)
slottime = IEEE80211_DUR_DS_SHSLOT;
else
slottime = IEEE80211_DUR_DS_SLOT;
s = splnet();
for (aci = 0; aci < EDCA_NUM_AC; aci++) {
ac = &ic->ic_edca_ac[aci];
/* AIFS[AC] = AIFSN[AC] * aSlotTime + aSIFSTime. */
aifs = ac->ac_aifsn * slottime + IEEE80211_DUR_DS_SIFS;
rtwn_write_4(sc, aci2reg[aci],
SM(R92C_EDCA_PARAM_TXOP, ac->ac_txoplimit) |
SM(R92C_EDCA_PARAM_ECWMIN, ac->ac_ecwmin) |
SM(R92C_EDCA_PARAM_ECWMAX, ac->ac_ecwmax) |
SM(R92C_EDCA_PARAM_AIFS, aifs));
/* Is admission control mandatory for this queue? */
if (ac->ac_acm) {
switch (aci) {
case EDCA_AC_BE:
acm |= R92C_ACMHW_BEQEN;
break;
case EDCA_AC_VI:
acm |= R92C_ACMHW_VIQEN;
break;
case EDCA_AC_VO:
acm |= R92C_ACMHW_VOQEN;
break;
default:
break;
}
}
}
splx(s);
/* Enable hardware admission control. */
rtwn_write_1(sc, R92C_ACMHWCTRL, R92C_ACMHW_HWEN | acm);
}
int
rtwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
struct rtwn_softc *sc = ic->ic_softc;
static const uint8_t etherzeroaddr[6] = { 0 };
const uint8_t *macaddr;
uint8_t keybuf[16], algo;
int i, entry;
/* Defer setting of WEP keys until interface is brought up. */
if ((ic->ic_if.if_flags & (IFF_UP | IFF_RUNNING)) !=
(IFF_UP | IFF_RUNNING))
return (0);
/* Map net80211 cipher to HW crypto algorithm. */
switch (k->k_cipher) {
case IEEE80211_CIPHER_WEP40:
algo = R92C_CAM_ALGO_WEP40;
break;
case IEEE80211_CIPHER_WEP104:
algo = R92C_CAM_ALGO_WEP104;
break;
case IEEE80211_CIPHER_TKIP:
algo = R92C_CAM_ALGO_TKIP;
break;
case IEEE80211_CIPHER_CCMP:
algo = R92C_CAM_ALGO_AES;
break;
default:
/* Fallback to software crypto for other ciphers. */
return (ieee80211_set_key(ic, ni, k));
}
if (k->k_flags & IEEE80211_KEY_GROUP) {
macaddr = etherzeroaddr;
entry = k->k_id;
} else {
macaddr = ic->ic_bss->ni_macaddr;
entry = 4;
}
/* Write key. */
memset(keybuf, 0, sizeof(keybuf));
memcpy(keybuf, k->k_key, MIN(k->k_len, sizeof(keybuf)));
for (i = 0; i < 4; i++) {
rtwn_cam_write(sc, R92C_CAM_KEY(entry, i),
LE_READ_4(&keybuf[i * 4]));
}
/* Write CTL0 last since that will validate the CAM entry. */
rtwn_cam_write(sc, R92C_CAM_CTL1(entry),
LE_READ_4(&macaddr[2]));
rtwn_cam_write(sc, R92C_CAM_CTL0(entry),
SM(R92C_CAM_ALGO, algo) |
SM(R92C_CAM_KEYID, k->k_id) |
SM(R92C_CAM_MACLO, LE_READ_2(&macaddr[0])) |
R92C_CAM_VALID);
return (0);
}
void
rtwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
struct rtwn_softc *sc = ic->ic_softc;
int i, entry;
if (!(ic->ic_if.if_flags & IFF_RUNNING) ||
ic->ic_state != IEEE80211_S_RUN)
return; /* Nothing to do. */
if (k->k_flags & IEEE80211_KEY_GROUP)
entry = k->k_id;
else
entry = 4;
rtwn_cam_write(sc, R92C_CAM_CTL0(entry), 0);
rtwn_cam_write(sc, R92C_CAM_CTL1(entry), 0);
/* Clear key. */
for (i = 0; i < 4; i++)
rtwn_cam_write(sc, R92C_CAM_KEY(entry, i), 0);
}
void
rtwn_update_avgrssi(struct rtwn_softc *sc, int rate, int8_t rssi)
{
int pwdb;
/* Convert antenna signal to percentage. */
if (rssi <= -100 || rssi >= 20)
pwdb = 0;
else if (rssi >= 0)
pwdb = 100;
else
pwdb = 100 + rssi;
if (sc->chip & (RTWN_CHIP_92C | RTWN_CHIP_88C)) {
if (rate <= 3) {
/* CCK gain is smaller than OFDM/MCS gain. */
pwdb += 6;
if (pwdb > 100)
pwdb = 100;
if (pwdb <= 14)
pwdb -= 4;
else if (pwdb <= 26)
pwdb -= 8;
else if (pwdb <= 34)
pwdb -= 6;
else if (pwdb <= 42)
pwdb -= 2;
}
}
if (sc->avg_pwdb == -1) /* Init. */
sc->avg_pwdb = pwdb;
else if (sc->avg_pwdb < pwdb)
sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20) + 1;
else
sc->avg_pwdb = ((sc->avg_pwdb * 19 + pwdb) / 20);
DPRINTFN(4, ("PWDB=%d EMA=%d\n", pwdb, sc->avg_pwdb));
}
int8_t
rtwn_get_rssi(struct rtwn_softc *sc, int rate, void *physt)
{
static const int8_t cckoff[] = { 16, -12, -26, -46 };
struct r92c_rx_phystat *phy;
struct r92c_rx_cck *cck;
uint8_t rpt;
int8_t rssi;
if (sc->chip & (RTWN_CHIP_88E | RTWN_CHIP_92E))
return rtwn_r88e_get_rssi(sc, rate, physt);
else if (sc->chip & RTWN_CHIP_88E)
return rtwn_r88f_get_rssi(sc, rate, physt);
if (rate <= 3) {
cck = (struct r92c_rx_cck *)physt;
if (sc->sc_flags & RTWN_FLAG_CCK_HIPWR) {
rpt = (cck->agc_rpt >> 5) & 0x3;
rssi = (cck->agc_rpt & 0x1f) << 1;
} else {
rpt = (cck->agc_rpt >> 6) & 0x3;
rssi = cck->agc_rpt & 0x3e;
}
rssi = cckoff[rpt] - rssi;
} else { /* OFDM/HT. */
phy = (struct r92c_rx_phystat *)physt;
rssi = ((letoh32(phy->phydw1) >> 1) & 0x7f) - 110;
}
return (rssi);
}
int8_t
rtwn_r88e_get_rssi(struct rtwn_softc *sc, int rate, void *physt)
{
static const int8_t cckoff[] = { 20, 14, 10, -4, -16, -22, -38, -40 };
struct r88e_rx_phystat *phy;
uint8_t rpt;
int8_t rssi;
phy = (struct r88e_rx_phystat *)physt;
if (rate <= 3) {
rpt = (phy->agc_rpt >> 5) & 0x7;
rssi = (phy->agc_rpt & 0x1f) << 1;
if (sc->sc_flags & RTWN_FLAG_CCK_HIPWR) {
if (rpt == 2)
rssi -= 6;
}
rssi = (phy->agc_rpt & 0x1f) > 27 ? -94 : cckoff[rpt] - rssi;
} else { /* OFDM/HT. */
rssi = ((le32toh(phy->sq_rpt) >> 1) & 0x7f) - 110;
}
return (rssi);
}
int8_t
rtwn_r88f_get_rssi(struct rtwn_softc *sc, int rate, void *physt)
{
struct r88e_rx_phystat *phy;
uint8_t lna_idx, vga_idx;
int8_t rssi;
phy = (struct r88e_rx_phystat *)physt;
lna_idx = (phy->agc_rpt & 0xe0) >> 5;
vga_idx = (phy->agc_rpt & 0x1f);
rssi = -(2 * vga_idx);
if (rate <= 3) {
switch (lna_idx) {
case 7:
if (vga_idx > 27)
rssi = -100;
else
rssi += -46;
break;
case 5:
rssi += -32;
break;
case 3:
rssi += -20;
break;
case 1:
rssi += -6;
break;
default:
rssi = 0;
break;
}
} else { /* OFDM/HT. */
rssi = ((le32toh(phy->sq_rpt) >> 1) & 0x7f) - 110;
}
return (rssi);
}
void
rtwn_start(struct ifnet *ifp)
{
struct rtwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
struct mbuf *m;
if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
return;
for (;;) {
if (sc->sc_ops.is_oactive(sc->sc_ops.cookie)) {
ifq_set_oactive(&ifp->if_snd);
break;
}
/* Send pending management frames first. */
m = mq_dequeue(&ic->ic_mgtq);
if (m != NULL) {
ni = m->m_pkthdr.ph_cookie;
goto sendit;
}
if (ic->ic_state != IEEE80211_S_RUN)
break;
/* Encapsulate and send data frames. */
m = ifq_dequeue(&ifp->if_snd);
if (m == NULL)
break;
#if NBPFILTER > 0
if (ifp->if_bpf != NULL)
bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
#endif
if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
continue;
sendit:
#if NBPFILTER > 0
if (ic->ic_rawbpf != NULL)
bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
#endif
if (sc->sc_ops.tx(sc->sc_ops.cookie, m, ni) != 0) {
ieee80211_release_node(ic, ni);
ifp->if_oerrors++;
continue;
}
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
}
void
rtwn_watchdog(struct ifnet *ifp)
{
struct rtwn_softc *sc = ifp->if_softc;
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
printf("%s: device timeout\n", sc->sc_pdev->dv_xname);
task_add(systq, &sc->init_task);
ifp->if_oerrors++;
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(ifp);
}
int
rtwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct rtwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int s, error = 0;
s = splnet();
/*
* Prevent processes from entering this function while another
* process is tsleep'ing in it.
*/
while ((sc->sc_flags & RTWN_FLAG_BUSY) && error == 0)
error = tsleep_nsec(&sc->sc_flags, PCATCH, "rtwnioc", INFSLP);
if (error != 0) {
splx(s);
return error;
}
sc->sc_flags |= RTWN_FLAG_BUSY;
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
/* FALLTHROUGH */
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_flags & IFF_RUNNING))
rtwn_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
rtwn_stop(ifp);
}
break;
case SIOCS80211CHANNEL:
error = ieee80211_ioctl(ifp, cmd, data);
if (error == ENETRESET &&
ic->ic_opmode == IEEE80211_M_MONITOR) {
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING))
rtwn_set_chan(sc, ic->ic_ibss_chan, NULL);
error = 0;
}
break;
default:
error = ieee80211_ioctl(ifp, cmd, data);
}
if (error == ENETRESET) {
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING)) {
rtwn_stop(ifp);
rtwn_init(ifp);
}
error = 0;
}
sc->sc_flags &= ~RTWN_FLAG_BUSY;
wakeup(&sc->sc_flags);
splx(s);
return (error);
}
void
rtwn_fw_reset(struct rtwn_softc *sc)
{
if (sc->chip & (RTWN_CHIP_88E | RTWN_CHIP_88F | RTWN_CHIP_92E))
rtwn_r88e_fw_reset(sc);
else
rtwn_r92c_fw_reset(sc);
}
void
rtwn_r92c_fw_reset(struct rtwn_softc *sc)
{
uint16_t reg;
int ntries;
/* Tell 8051 to reset itself. */
rtwn_write_1(sc, R92C_HMETFR + 3, 0x20);
/* Wait until 8051 resets by itself. */
for (ntries = 0; ntries < 100; ntries++) {
reg = rtwn_read_2(sc, R92C_SYS_FUNC_EN);
if (!(reg & R92C_SYS_FUNC_EN_CPUEN))
goto sleep;
DELAY(50);
}
/* Force 8051 reset. */
rtwn_write_2(sc, R92C_SYS_FUNC_EN, reg & ~R92C_SYS_FUNC_EN_CPUEN);
sleep:
if (sc->chip & RTWN_CHIP_PCI) {
/*
* We must sleep for one second to let the firmware settle.
* Accessing registers too early will hang the whole system.
*/
tsleep_nsec(&reg, 0, "rtwnrst", SEC_TO_NSEC(1));
}
}
void
rtwn_r88e_fw_reset(struct rtwn_softc *sc)
{
/* Reset MCU IO wrapper. */
if (!(sc->chip & RTWN_CHIP_88F)) {
rtwn_write_1(sc, R92C_RSV_CTRL,
rtwn_read_1(sc, R92C_RSV_CTRL) & ~R92C_RSV_CTRL_WLOCK_00);
}
if (sc->chip & RTWN_CHIP_88E) {
rtwn_write_2(sc, R92C_RSV_CTRL,
rtwn_read_2(sc, R92C_RSV_CTRL) & ~R88E_RSV_CTRL_MCU_RST);
} else {
rtwn_write_2(sc, R92C_RSV_CTRL,
rtwn_read_2(sc, R92C_RSV_CTRL) & ~R88E_RSV_CTRL_MIO_EN);
}
rtwn_write_2(sc, R92C_SYS_FUNC_EN,
rtwn_read_2(sc, R92C_SYS_FUNC_EN) & ~R92C_SYS_FUNC_EN_CPUEN);
/* Enable MCU IO wrapper. */
if (!(sc->chip & RTWN_CHIP_88F)) {
rtwn_write_1(sc, R92C_RSV_CTRL,
rtwn_read_1(sc, R92C_RSV_CTRL) & ~R92C_RSV_CTRL_WLOCK_00);
}
if (sc->chip & RTWN_CHIP_88E) {
rtwn_write_2(sc, R92C_RSV_CTRL,
rtwn_read_2(sc, R92C_RSV_CTRL) | R88E_RSV_CTRL_MCU_RST);
} else {
rtwn_write_2(sc, R92C_RSV_CTRL,
rtwn_read_2(sc, R92C_RSV_CTRL) | R88E_RSV_CTRL_MIO_EN);
}
rtwn_write_2(sc, R92C_SYS_FUNC_EN,
rtwn_read_2(sc, R92C_SYS_FUNC_EN) | R92C_SYS_FUNC_EN_CPUEN);
}
int
rtwn_load_firmware(struct rtwn_softc *sc)
{
const struct r92c_fw_hdr *hdr;
u_char *fw, *ptr;
size_t len0, len;
uint32_t reg;
int mlen, ntries, page, error;
/* Read firmware image from the filesystem. */
error = sc->sc_ops.load_firmware(sc->sc_ops.cookie, &fw, &len0);
if (error)
return (error);
len = len0;
if (len < sizeof(*hdr)) {
printf("%s: firmware too short\n", sc->sc_pdev->dv_xname);
error = EINVAL;
goto fail;
}
ptr = fw;
hdr = (const struct r92c_fw_hdr *)ptr;
/* Check if there is a valid FW header and skip it. */
if ((letoh16(hdr->signature) >> 4) == 0x230 ||
(letoh16(hdr->signature) >> 4) == 0x88c ||
(letoh16(hdr->signature) >> 4) == 0x88e ||
(letoh16(hdr->signature) >> 4) == 0x88f ||
(letoh16(hdr->signature) >> 4) == 0x92c ||
(letoh16(hdr->signature) >> 4) == 0x92e) {
DPRINTF(("FW V%d.%d %02d-%02d %02d:%02d\n",
letoh16(hdr->version), letoh16(hdr->subversion),
hdr->month, hdr->date, hdr->hour, hdr->minute));
ptr += sizeof(*hdr);
len -= sizeof(*hdr);
}
if (rtwn_read_1(sc, R92C_MCUFWDL) & R92C_MCUFWDL_RAM_DL_SEL) {
rtwn_write_1(sc, R92C_MCUFWDL, 0);
rtwn_fw_reset(sc);
}
if ((sc->chip & RTWN_CHIP_PCI) || (sc->chip & RTWN_CHIP_88F)) {
rtwn_write_2(sc, R92C_SYS_FUNC_EN,
rtwn_read_2(sc, R92C_SYS_FUNC_EN) | R92C_SYS_FUNC_EN_CPUEN);
}
/* Enable FW download. */
rtwn_write_1(sc, R92C_MCUFWDL,
rtwn_read_1(sc, R92C_MCUFWDL) | R92C_MCUFWDL_EN);
rtwn_write_4(sc, R92C_MCUFWDL,
rtwn_read_4(sc, R92C_MCUFWDL) & ~R92C_MCUFWDL_ROM_DLEN);
/* Reset the FWDL checksum. */
rtwn_write_1(sc, R92C_MCUFWDL,
rtwn_read_1(sc, R92C_MCUFWDL) | R92C_MCUFWDL_CHKSUM_RPT);
DELAY(50);
for (page = 0; len > 0; page++) {
mlen = MIN(len, R92C_FW_PAGE_SIZE);
error = sc->sc_ops.fw_loadpage(sc->sc_ops.cookie, page, ptr,
mlen);
if (error != 0) {
printf("%s: could not load firmware page %d\n",
sc->sc_pdev->dv_xname, page);
goto fail;
}
ptr += mlen;
len -= mlen;
}
/* Wait for checksum report. */
for (ntries = 0; ntries < 1000; ntries++) {
if (rtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_CHKSUM_RPT)
break;
DELAY(5);
}
if (ntries == 1000) {
printf("%s: timeout waiting for checksum report\n",
sc->sc_pdev->dv_xname);
error = ETIMEDOUT;
goto fail;
}
/* Disable FW download. */
rtwn_write_1(sc, R92C_MCUFWDL,
rtwn_read_1(sc, R92C_MCUFWDL) & ~R92C_MCUFWDL_EN);
/* Reserved for fw extension. */
if (!(sc->chip & (RTWN_CHIP_88F | RTWN_CHIP_92E)))
rtwn_write_1(sc, R92C_MCUFWDL + 1, 0);
reg = rtwn_read_4(sc, R92C_MCUFWDL);
reg = (reg & ~R92C_MCUFWDL_WINTINI_RDY) | R92C_MCUFWDL_RDY;
rtwn_write_4(sc, R92C_MCUFWDL, reg);
if (sc->chip & (RTWN_CHIP_92C | RTWN_CHIP_88C | RTWN_CHIP_23A)) {
reg = rtwn_read_2(sc, R92C_SYS_FUNC_EN);
rtwn_write_2(sc, R92C_SYS_FUNC_EN,
reg & ~R92C_SYS_FUNC_EN_CPUEN);
rtwn_write_2(sc, R92C_SYS_FUNC_EN,
reg | R92C_SYS_FUNC_EN_CPUEN);
} else
rtwn_fw_reset(sc);
/* Wait for firmware readiness. */
for (ntries = 0; ntries < 1000; ntries++) {
if (rtwn_read_4(sc, R92C_MCUFWDL) & R92C_MCUFWDL_WINTINI_RDY)
break;
DELAY(10);
}
if (ntries == 1000) {
printf("%s: timeout waiting for firmware readiness\n",
sc->sc_pdev->dv_xname);
error = ETIMEDOUT;
goto fail;
}
fail:
free(fw, M_DEVBUF, len0);
/* Init H2C command. */
if (sc->chip & RTWN_CHIP_88F)
rtwn_write_1(sc, R92C_HMETFR, 0xf);
return (error);
}
void
rtwn_rf_init(struct rtwn_softc *sc)
{
const struct r92c_rf_prog *prog;
uint32_t reg, type;
int i, j, idx, off;
/* Select RF programming based on board type. */
if (sc->chip & RTWN_CHIP_88E)
prog = rtl8188eu_rf_prog;
else if (sc->chip & RTWN_CHIP_88F)
prog = rtl8188ftv_rf_prog;
else if (sc->chip & RTWN_CHIP_92E)
prog = rtl8192e_rf_prog;
else if (!(sc->chip & RTWN_CHIP_92C)) {
if (sc->board_type == R92C_BOARD_TYPE_MINICARD)
prog = rtl8188ce_rf_prog;
else if (sc->board_type == R92C_BOARD_TYPE_HIGHPA)
prog = rtl8188ru_rf_prog;
else
prog = rtl8188cu_rf_prog;
} else
prog = rtl8192ce_rf_prog;
for (i = 0; i < sc->nrxchains; i++) {
/* Save RF_ENV control type. */
idx = i / 2;
off = (i % 2) * 16;
reg = rtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx));
type = (reg >> off) & 0x10;
/* Set RF_ENV enable. */
reg = rtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i));
reg |= 0x100000;
rtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg);
DELAY(50);
/* Set RF_ENV output high. */
reg = rtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(i));
reg |= 0x10;
rtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(i), reg);
DELAY(50);
/* Set address and data lengths of RF registers. */
reg = rtwn_bb_read(sc, R92C_HSSI_PARAM2(i));
reg &= ~R92C_HSSI_PARAM2_ADDR_LENGTH;
rtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg);
DELAY(50);
reg = rtwn_bb_read(sc, R92C_HSSI_PARAM2(i));
reg &= ~R92C_HSSI_PARAM2_DATA_LENGTH;
rtwn_bb_write(sc, R92C_HSSI_PARAM2(i), reg);
DELAY(50);
/* Write RF initialization values for this chain. */
for (j = 0; j < prog[i].count; j++) {
switch (prog[i].regs[j]) {
case 0xfe:
case 0xffe:
DELAY(50000);
continue;
case 0xfd:
DELAY(5000);
continue;
case 0xfc:
DELAY(1000);
continue;
case 0xfb:
DELAY(50);
continue;
case 0xfa:
DELAY(5);
continue;
case 0xf9:
DELAY(1);
continue;
}
rtwn_rf_write(sc, i, prog[i].regs[j],
prog[i].vals[j]);
DELAY(5);
}
/* Restore RF_ENV control type. */
reg = rtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(idx));
reg &= ~(0x10 << off) | (type << off);
rtwn_bb_write(sc, R92C_FPGA0_RFIFACESW(idx), reg);
/* Cache RF register CHNLBW. */
sc->rf_chnlbw[i] = rtwn_rf_read(sc, i, R92C_RF_CHNLBW);
}
/* magic value for HP 8188EEs */
if (sc->chip == (RTWN_CHIP_88E | RTWN_CHIP_PCI)) {
struct r88e_rom *rom = &sc->sc_r88e_rom;
if (rom->r88ee_rom.svid == 0x103c &&
rom->r88ee_rom.smid == 0x197d)
rtwn_rf_write(sc, 0, 0x52, 0x7e4bd);
}
if ((sc->chip & (RTWN_CHIP_UMC_A_CUT | RTWN_CHIP_92C)) ==
RTWN_CHIP_UMC_A_CUT) {
rtwn_rf_write(sc, 0, R92C_RF_RX_G1, 0x30255);
rtwn_rf_write(sc, 0, R92C_RF_RX_G2, 0x50a00);
} else if (sc->chip & RTWN_CHIP_23A) {
rtwn_rf_write(sc, 0, 0x0C, 0x894ae);
rtwn_rf_write(sc, 0, 0x0A, 0x1af31);
rtwn_rf_write(sc, 0, R92C_RF_IPA, 0x8f425);
rtwn_rf_write(sc, 0, R92C_RF_SYN_G(1), 0x4f200);
rtwn_rf_write(sc, 0, R92C_RF_RCK1, 0x44053);
rtwn_rf_write(sc, 0, R92C_RF_RCK2, 0x80201);
}
}
void
rtwn_cam_init(struct rtwn_softc *sc)
{
/* Invalidate all CAM entries. */
rtwn_write_4(sc, R92C_CAMCMD,
R92C_CAMCMD_POLLING | R92C_CAMCMD_CLR);
}
void
rtwn_pa_bias_init(struct rtwn_softc *sc)
{
uint8_t reg;
int i;
for (i = 0; i < sc->nrxchains; i++) {
if (sc->pa_setting & (1 << i))
continue;
rtwn_rf_write(sc, i, R92C_RF_IPA, 0x0f406);
rtwn_rf_write(sc, i, R92C_RF_IPA, 0x4f406);
rtwn_rf_write(sc, i, R92C_RF_IPA, 0x8f406);
rtwn_rf_write(sc, i, R92C_RF_IPA, 0xcf406);
}
if (!(sc->pa_setting & 0x10)) {
reg = rtwn_read_1(sc, 0x16);
reg = (reg & ~0xf0) | 0x90;
rtwn_write_1(sc, 0x16, reg);
}
}
void
rtwn_rxfilter_init(struct rtwn_softc *sc)
{
/* Initialize Rx filter. */
rtwn_write_4(sc, R92C_RCR,
R92C_RCR_AAP | R92C_RCR_APM | R92C_RCR_AM | R92C_RCR_AB |
R92C_RCR_APP_ICV | R92C_RCR_AMF | R92C_RCR_HTC_LOC_CTRL |
R92C_RCR_APP_MIC | R92C_RCR_APP_PHYSTS);
/* Accept all multicast frames. */
rtwn_write_4(sc, R92C_MAR + 0, 0xffffffff);
rtwn_write_4(sc, R92C_MAR + 4, 0xffffffff);
/* Accept all management frames. */
rtwn_write_2(sc, R92C_RXFLTMAP0, 0xffff);
/* Reject all control frames. */
rtwn_write_2(sc, R92C_RXFLTMAP1, 0x0000);
/* Accept all data frames. */
rtwn_write_2(sc, R92C_RXFLTMAP2, 0xffff);
}
void
rtwn_edca_init(struct rtwn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
int mode, aci;
/* Set SIFS; 0x10 = 16 usec (SIFS 11g), 0x0a = 10 usec (SIFS 11b) */
rtwn_write_2(sc, R92C_SPEC_SIFS, 0x100a);
rtwn_write_2(sc, R92C_MAC_SPEC_SIFS, 0x100a);
rtwn_write_2(sc, R92C_SIFS_CCK, 0x100a);
rtwn_write_2(sc, R92C_SIFS_OFDM, 0x100a);
if (!(sc->chip & RTWN_CHIP_88F)) {
rtwn_write_2(sc, R92C_RESP_SIFS_CCK, 0x100a);
rtwn_write_2(sc, R92C_RESP_SIFS_OFDM, 0x100a);
} else {
rtwn_write_2(sc, R92C_RESP_SIFS_CCK, 0x0808);
rtwn_write_2(sc, R92C_RESP_SIFS_OFDM, 0x0a0a);
}
if (ic->ic_curmode == IEEE80211_MODE_AUTO)
mode = IEEE80211_MODE_11G; /* XXX */
else
mode = ic->ic_curmode;
for (aci = 0; aci < EDCA_NUM_AC; aci++)
memcpy(&ic->ic_edca_ac[aci], &ieee80211_edca_table[mode][aci],
sizeof(struct ieee80211_edca_ac_params));
rtwn_updateedca(ic);
if (sc->chip & RTWN_CHIP_PCI) {
/* linux magic */
rtwn_write_4(sc, R92C_FAST_EDCA_CTRL, 0x086666);
}
rtwn_write_4(sc, R92C_EDCA_RANDOM_GEN, arc4random());
}
void
rtwn_rate_fallback_init(struct rtwn_softc *sc)
{
if (!(sc->chip & (RTWN_CHIP_88E | RTWN_CHIP_92E))) {
if (sc->chip & RTWN_CHIP_PCI) {
rtwn_write_4(sc, R92C_DARFRC + 0, 0x01000000);
rtwn_write_4(sc, R92C_DARFRC + 4, 0x07060504);
rtwn_write_4(sc, R92C_RARFRC + 0, 0x01000000);
rtwn_write_4(sc, R92C_RARFRC + 4, 0x07060504);
} else if (sc->chip & RTWN_CHIP_USB) {
rtwn_write_4(sc, R92C_DARFRC + 0, 0x00000000);
rtwn_write_4(sc, R92C_DARFRC + 4, 0x10080404);
rtwn_write_4(sc, R92C_RARFRC + 0, 0x04030201);
rtwn_write_4(sc, R92C_RARFRC + 4, 0x08070605);
}
}
}
void
rtwn_write_txpower(struct rtwn_softc *sc, int chain,
uint16_t power[RTWN_POWER_COUNT])
{
uint32_t reg;
/* Write per-CCK rate Tx power. */
if (chain == 0) {
reg = rtwn_bb_read(sc, R92C_TXAGC_A_CCK1_MCS32);
reg = RW(reg, R92C_TXAGC_A_CCK1, power[RTWN_POWER_CCK1]);
rtwn_bb_write(sc, R92C_TXAGC_A_CCK1_MCS32, reg);
reg = rtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11);
reg = RW(reg, R92C_TXAGC_A_CCK2, power[RTWN_POWER_CCK2]);
reg = RW(reg, R92C_TXAGC_A_CCK55, power[RTWN_POWER_CCK55]);
reg = RW(reg, R92C_TXAGC_A_CCK11, power[RTWN_POWER_CCK11]);
rtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg);
} else {
reg = rtwn_bb_read(sc, R92C_TXAGC_B_CCK1_55_MCS32);
reg = RW(reg, R92C_TXAGC_B_CCK1, power[RTWN_POWER_CCK1]);
reg = RW(reg, R92C_TXAGC_B_CCK2, power[RTWN_POWER_CCK2]);
reg = RW(reg, R92C_TXAGC_B_CCK55, power[RTWN_POWER_CCK55]);
rtwn_bb_write(sc, R92C_TXAGC_B_CCK1_55_MCS32, reg);
reg = rtwn_bb_read(sc, R92C_TXAGC_B_CCK11_A_CCK2_11);
reg = RW(reg, R92C_TXAGC_B_CCK11, power[RTWN_POWER_CCK11]);
rtwn_bb_write(sc, R92C_TXAGC_B_CCK11_A_CCK2_11, reg);
}
/* Write per-OFDM rate Tx power. */
rtwn_bb_write(sc, R92C_TXAGC_RATE18_06(chain),
SM(R92C_TXAGC_RATE06, power[RTWN_POWER_OFDM6]) |
SM(R92C_TXAGC_RATE09, power[RTWN_POWER_OFDM9]) |
SM(R92C_TXAGC_RATE12, power[RTWN_POWER_OFDM12]) |
SM(R92C_TXAGC_RATE18, power[RTWN_POWER_OFDM18]));
rtwn_bb_write(sc, R92C_TXAGC_RATE54_24(chain),
SM(R92C_TXAGC_RATE24, power[RTWN_POWER_OFDM24]) |
SM(R92C_TXAGC_RATE36, power[RTWN_POWER_OFDM36]) |
SM(R92C_TXAGC_RATE48, power[RTWN_POWER_OFDM48]) |
SM(R92C_TXAGC_RATE54, power[RTWN_POWER_OFDM54]));
/* Write per-MCS Tx power. */
rtwn_bb_write(sc, R92C_TXAGC_MCS03_MCS00(chain),
SM(R92C_TXAGC_MCS00, power[RTWN_POWER_MCS( 0)]) |
SM(R92C_TXAGC_MCS01, power[RTWN_POWER_MCS( 1)]) |
SM(R92C_TXAGC_MCS02, power[RTWN_POWER_MCS( 2)]) |
SM(R92C_TXAGC_MCS03, power[RTWN_POWER_MCS( 3)]));
rtwn_bb_write(sc, R92C_TXAGC_MCS07_MCS04(chain),
SM(R92C_TXAGC_MCS04, power[RTWN_POWER_MCS( 4)]) |
SM(R92C_TXAGC_MCS05, power[RTWN_POWER_MCS( 5)]) |
SM(R92C_TXAGC_MCS06, power[RTWN_POWER_MCS( 6)]) |
SM(R92C_TXAGC_MCS07, power[RTWN_POWER_MCS( 7)]));
if (sc->ntxchains > 1) {
rtwn_bb_write(sc, R92C_TXAGC_MCS11_MCS08(chain),
SM(R92C_TXAGC_MCS08, power[RTWN_POWER_MCS( 8)]) |
SM(R92C_TXAGC_MCS09, power[RTWN_POWER_MCS( 9)]) |
SM(R92C_TXAGC_MCS10, power[RTWN_POWER_MCS(10)]) |
SM(R92C_TXAGC_MCS11, power[RTWN_POWER_MCS(11)]));
rtwn_bb_write(sc, R92C_TXAGC_MCS15_MCS12(chain),
SM(R92C_TXAGC_MCS12, power[RTWN_POWER_MCS(12)]) |
SM(R92C_TXAGC_MCS13, power[RTWN_POWER_MCS(13)]) |
SM(R92C_TXAGC_MCS14, power[RTWN_POWER_MCS(14)]) |
SM(R92C_TXAGC_MCS15, power[RTWN_POWER_MCS(15)]));
}
}
void
rtwn_get_txpower(struct rtwn_softc *sc, int chain, struct ieee80211_channel *c,
struct ieee80211_channel *extc, uint16_t power[RTWN_POWER_COUNT])
{
if (sc->chip & (RTWN_CHIP_88E | RTWN_CHIP_88F))
rtwn_r88e_get_txpower(sc, chain, c, extc, power);
else if (sc->chip & RTWN_CHIP_92E)
rtwn_r92e_get_txpower(sc, chain, c, extc, power);
else
rtwn_r92c_get_txpower(sc, chain, c, extc, power);
}
void
rtwn_r92c_get_txpower(struct rtwn_softc *sc, int chain,
struct ieee80211_channel *c, struct ieee80211_channel *extc,
uint16_t power[RTWN_POWER_COUNT])
{
struct ieee80211com *ic = &sc->sc_ic;
struct r92c_rom *rom = &sc->sc_r92c_rom;
uint16_t cckpow, ofdmpow, htpow, diff, max;
const struct r92c_txpwr *base;
int ridx, chan, group;
/* Determine channel group. */
chan = ieee80211_chan2ieee(ic, c); /* XXX center freq! */
if (chan <= 3)
group = 0;
else if (chan <= 9)
group = 1;
else
group = 2;
/* Get original Tx power based on board type and RF chain. */
if (!(sc->chip & RTWN_CHIP_92C)) {
if (sc->board_type == R92C_BOARD_TYPE_HIGHPA)
base = &rtl8188ru_txagc[chain];
else
base = &rtl8192cu_txagc[chain];
} else
base = &rtl8192cu_txagc[chain];
memset(power, 0, RTWN_POWER_COUNT * sizeof(power[0]));
if (sc->regulatory == 0) {
for (ridx = RTWN_RIDX_CCK1; ridx <= RTWN_RIDX_CCK11; ridx++)
power[ridx] = base->pwr[0][ridx];
}
for (ridx = RTWN_RIDX_OFDM6; ridx <= RTWN_RIDX_MAX; ridx++) {
if (sc->regulatory == 3) {
power[ridx] = base->pwr[0][ridx];
/* Apply vendor limits. */
if (extc != NULL)
max = rom->ht40_max_pwr[group];
else
max = rom->ht20_max_pwr[group];
max = (max >> (chain * 4)) & 0xf;
if (power[ridx] > max)
power[ridx] = max;
} else if (sc->regulatory == 1) {
if (extc == NULL)
power[ridx] = base->pwr[group][ridx];
} else if (sc->regulatory != 2)
power[ridx] = base->pwr[0][ridx];
}
/* Compute per-CCK rate Tx power. */
cckpow = rom->cck_tx_pwr[chain][group];
for (ridx = RTWN_RIDX_CCK1; ridx <= RTWN_RIDX_CCK11; ridx++) {
power[ridx] += cckpow;
if (power[ridx] > R92C_MAX_TX_PWR)
power[ridx] = R92C_MAX_TX_PWR;
}
htpow = rom->ht40_1s_tx_pwr[chain][group];
if (sc->ntxchains > 1) {
/* Apply reduction for 2 spatial streams. */
diff = rom->ht40_2s_tx_pwr_diff[group];
diff = (diff >> (chain * 4)) & 0xf;
htpow = (htpow > diff) ? htpow - diff : 0;
}
/* Compute per-OFDM rate Tx power. */
diff = rom->ofdm_tx_pwr_diff[group];
diff = (diff >> (chain * 4)) & 0xf;
ofdmpow = htpow + diff; /* HT->OFDM correction. */
for (ridx = RTWN_RIDX_OFDM6; ridx <= RTWN_RIDX_OFDM54; ridx++) {
power[ridx] += ofdmpow;
if (power[ridx] > R92C_MAX_TX_PWR)
power[ridx] = R92C_MAX_TX_PWR;
}
/* Compute per-MCS Tx power. */
if (extc == NULL) {
diff = rom->ht20_tx_pwr_diff[group];
diff = (diff >> (chain * 4)) & 0xf;
htpow += diff; /* HT40->HT20 correction. */
}
for (ridx = RTWN_RIDX_MCS0; ridx <= RTWN_RIDX_MCS15; ridx++) {
power[ridx] += htpow;
if (power[ridx] > R92C_MAX_TX_PWR)
power[ridx] = R92C_MAX_TX_PWR;
}
#ifdef RTWN_DEBUG
if (rtwn_debug >= 4) {
/* Dump per-rate Tx power values. */
printf("Tx power for chain %d:\n", chain);
for (ridx = RTWN_RIDX_CCK1; ridx <= RTWN_RIDX_MAX; ridx++)
printf("Rate %d = %u\n", ridx, power[ridx]);
}
#endif
}
void
rtwn_r92e_get_txpower(struct rtwn_softc *sc, int chain,
struct ieee80211_channel *c, struct ieee80211_channel *extc,
uint16_t power[RTWN_POWER_COUNT])
{
struct ieee80211com *ic = &sc->sc_ic;
struct r92e_rom *rom = &sc->sc_r92e_rom;
struct r92e_tx_pwr *txpwr;
uint8_t cckpow, htpow, htpow2s = 0, ofdmpow;
int8_t diff;
int ridx, chan, group;
/* Determine channel group. */
chan = ieee80211_chan2ieee(ic, c); /* XXX center freq! */
group = rtwn_chan2group(chan);
memset(power, 0, RTWN_POWER_COUNT * sizeof(power[0]));
if (chain == 0)
txpwr = &rom->txpwr_a;
else
txpwr = &rom->txpwr_b;
/* Compute per-CCK rate Tx power. */
cckpow = txpwr->cck_tx_pwr[group];
for (ridx = RTWN_RIDX_CCK1; ridx <= RTWN_RIDX_CCK11; ridx++) {
power[ridx] = cckpow;
if (power[ridx] > R92C_MAX_TX_PWR)
power[ridx] = R92C_MAX_TX_PWR;
}
htpow = txpwr->ht40_tx_pwr[group];
/* Compute per-OFDM rate Tx power. */
diff = RTWN_SIGN4TO8(MS(txpwr->ht20_ofdm_tx_pwr_diff,
R92E_ROM_TXPWR_OFDM_DIFF));
ofdmpow = htpow + diff;
for (ridx = RTWN_RIDX_OFDM6; ridx <= RTWN_RIDX_OFDM54; ridx++) {
power[ridx] = ofdmpow;
if (power[ridx] > R92C_MAX_TX_PWR)
power[ridx] = R92C_MAX_TX_PWR;
}
/* Compute per-MCS Tx power. */
if (extc == NULL) {
diff = RTWN_SIGN4TO8(MS(txpwr->ht20_ofdm_tx_pwr_diff,
R92E_ROM_TXPWR_HT20_DIFF));
htpow += diff;
if (sc->ntxchains > 1) {
diff = RTWN_SIGN4TO8(MS(
txpwr->pwr_diff[0].ht40_ht20_tx_pwr_diff,
R92E_ROM_TXPWR_HT20_2S_DIFF));
htpow2s = htpow + diff;
}
}
for (ridx = RTWN_RIDX_MCS0; ridx <= RTWN_RIDX_MCS15; ridx++) {
power[ridx] = (ridx < RTWN_RIDX_MCS8) ? htpow : htpow2s;
if (power[ridx] > R92C_MAX_TX_PWR)
power[ridx] = R92C_MAX_TX_PWR;
}
}
void
rtwn_r88e_get_txpower(struct rtwn_softc *sc, int chain,
struct ieee80211_channel *c, struct ieee80211_channel *extc,
uint16_t power[RTWN_POWER_COUNT])
{
struct ieee80211com *ic = &sc->sc_ic;
struct r88e_rom *rom = &sc->sc_r88e_rom;
uint8_t cckpow, htpow, ofdmpow;
int8_t diff;
int ridx, chan, group;
/* Determine channel group. */
chan = ieee80211_chan2ieee(ic, c); /* XXX center freq! */
if (sc->chip & RTWN_CHIP_88F)
group = rtwn_chan2group(chan);
else {
if (chan <= 2)
group = 0;
else if (chan <= 5)
group = 1;
else if (chan <= 8)
group = 2;
else if (chan <= 11)
group = 3;
else if (chan <= 13)
group = 4;
else
group = 5;
}
memset(power, 0, RTWN_POWER_COUNT * sizeof(power[0]));
/* Compute per-CCK rate Tx power. */
cckpow = rom->txpwr.cck_tx_pwr[group];
for (ridx = RTWN_RIDX_CCK1; ridx <= RTWN_RIDX_CCK11; ridx++) {
if (sc->chip & RTWN_CHIP_88F)
power[ridx] = cckpow;
else
power[ridx] = (ridx == RTWN_RIDX_CCK2) ?
cckpow - 9 : cckpow;
if (power[ridx] > R92C_MAX_TX_PWR)
power[ridx] = R92C_MAX_TX_PWR;
}
if (sc->chip & RTWN_CHIP_88F)
htpow = rom->txpwr.ht40_tx_pwr[group];
else
htpow = (group == 5) ? rom->txpwr.ht40_tx_pwr[group - 1] :
rom->txpwr.ht40_tx_pwr[group];
/* Compute per-OFDM rate Tx power. */
diff = RTWN_SIGN4TO8(MS(rom->txpwr.ht20_ofdm_tx_pwr_diff,
R88E_ROM_TXPWR_OFDM_DIFF));
ofdmpow = htpow + diff;
for (ridx = RTWN_RIDX_OFDM6; ridx <= RTWN_RIDX_OFDM54; ridx++) {
power[ridx] = ofdmpow;
if (power[ridx] > R92C_MAX_TX_PWR)
power[ridx] = R92C_MAX_TX_PWR;
}
/* Compute per-MCS Tx power. */
if (extc == NULL) {
diff = RTWN_SIGN4TO8(MS(rom->txpwr.ht20_ofdm_tx_pwr_diff,
R88E_ROM_TXPWR_HT20_DIFF));
htpow += diff;
}
for (ridx = RTWN_RIDX_MCS0; ridx < RTWN_RIDX_MCS8; ridx++) {
power[ridx] = htpow;
if (power[ridx] > R92C_MAX_TX_PWR)
power[ridx] = R92C_MAX_TX_PWR;
}
}
void
rtwn_set_txpower(struct rtwn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
uint16_t power[RTWN_POWER_COUNT];
int i;
for (i = 0; i < sc->ntxchains; i++) {
/* Compute per-rate Tx power values. */
rtwn_get_txpower(sc, i, c, extc, power);
/* Write per-rate Tx power values to hardware. */
rtwn_write_txpower(sc, i, power);
}
}
void
rtwn_set_chan(struct rtwn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
struct ieee80211com *ic = &sc->sc_ic;
u_int chan;
uint32_t reg;
int i;
chan = ieee80211_chan2ieee(ic, c); /* XXX center freq! */
/* Set Tx power for this new channel. */
rtwn_set_txpower(sc, c, extc);
if (extc != NULL) {
/* Is secondary channel below or above primary? */
int prichlo = c->ic_freq < extc->ic_freq;
if (sc->chip & RTWN_CHIP_92E) {
reg = rtwn_read_2(sc, R92C_WMAC_TRXPTCL_CTL);
reg &= ~R92C_WMAC_TRXPTCL_CTL_BW_MASK;
reg |= R92C_WMAC_TRXPTCL_CTL_BW_40;
rtwn_write_2(sc, R92C_WMAC_TRXPTCL_CTL, reg);
rtwn_write_1(sc, R92E_DATA_SC, 0);
} else {
rtwn_write_1(sc, R92C_BWOPMODE,
rtwn_read_1(sc, R92C_BWOPMODE) &
~R92C_BWOPMODE_20MHZ);
}
reg = rtwn_read_1(sc, R92C_RRSR + 2);
reg = (reg & ~0x6f) | (prichlo ? 1 : 2) << 5;
rtwn_write_1(sc, R92C_RRSR + 2, reg);
rtwn_bb_write(sc, R92C_FPGA0_RFMOD,
rtwn_bb_read(sc, R92C_FPGA0_RFMOD) | R92C_RFMOD_40MHZ);
rtwn_bb_write(sc, R92C_FPGA1_RFMOD,
rtwn_bb_read(sc, R92C_FPGA1_RFMOD) | R92C_RFMOD_40MHZ);
/* Set CCK side band. */
reg = rtwn_bb_read(sc, R92C_CCK0_SYSTEM);
reg = (reg & ~0x00000010) | (prichlo ? 0 : 1) << 4;
rtwn_bb_write(sc, R92C_CCK0_SYSTEM, reg);
reg = rtwn_bb_read(sc, R92C_OFDM1_LSTF);
reg = (reg & ~0x00000c00) | (prichlo ? 1 : 2) << 10;
rtwn_bb_write(sc, R92C_OFDM1_LSTF, reg);
if (!(sc->chip & (RTWN_CHIP_88E | RTWN_CHIP_92E))) {
rtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2,
rtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) &
~R92C_FPGA0_ANAPARAM2_CBW20);
}
reg = rtwn_bb_read(sc, 0x818);
reg = (reg & ~0x0c000000) | (prichlo ? 2 : 1) << 26;
rtwn_bb_write(sc, 0x818, reg);
/* Select 40MHz bandwidth. */
for (i = 0; i < sc->nrxchains; i++) {
rtwn_rf_write(sc, i, R92C_RF_CHNLBW,
(sc->rf_chnlbw[i] & ~0xfff) | chan);
}
} else {
if (sc->chip & RTWN_CHIP_92E) {
reg = rtwn_read_2(sc, R92C_WMAC_TRXPTCL_CTL);
reg &= ~R92C_WMAC_TRXPTCL_CTL_BW_MASK;
rtwn_write_2(sc, R92C_WMAC_TRXPTCL_CTL, reg);
rtwn_write_1(sc, R92E_DATA_SC, 0);
} else if (!(sc->chip & RTWN_CHIP_88F)) {
rtwn_write_1(sc, R92C_BWOPMODE,
rtwn_read_1(sc, R92C_BWOPMODE) |
R92C_BWOPMODE_20MHZ);
}
rtwn_bb_write(sc, R92C_FPGA0_RFMOD,
rtwn_bb_read(sc, R92C_FPGA0_RFMOD) & ~R92C_RFMOD_40MHZ);
rtwn_bb_write(sc, R92C_FPGA1_RFMOD,
rtwn_bb_read(sc, R92C_FPGA1_RFMOD) & ~R92C_RFMOD_40MHZ);
if (!(sc->chip &
(RTWN_CHIP_88E | RTWN_CHIP_88F | RTWN_CHIP_92E))) {
rtwn_bb_write(sc, R92C_FPGA0_ANAPARAM2,
rtwn_bb_read(sc, R92C_FPGA0_ANAPARAM2) |
R92C_FPGA0_ANAPARAM2_CBW20);
} else if (sc->chip & (RTWN_CHIP_88F | RTWN_CHIP_92E)) {
if (sc->chip & RTWN_CHIP_88F) {
reg = rtwn_bb_read(sc, R92C_FPGA0_RFMOD);
reg = (reg & ~0x00000700) | 0x7 << 8;
rtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg);
reg = rtwn_bb_read(sc, R92C_FPGA0_RFMOD);
reg = (reg & ~0x00007000) | 0x5 << 12;
rtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg);
}
reg = rtwn_bb_read(sc, R92C_OFDM0_TX_PSDO_NOISE_WEIGHT);
reg &= ~0xc0000000;
rtwn_bb_write(sc, R92C_OFDM0_TX_PSDO_NOISE_WEIGHT, reg);
if (sc->chip & RTWN_CHIP_88F) {
/* Small bandwidth */
reg = rtwn_bb_read(sc,
R92C_OFDM0_TX_PSDO_NOISE_WEIGHT);
reg |= 0x30000000;
rtwn_bb_write(sc,
R92C_OFDM0_TX_PSDO_NOISE_WEIGHT, reg);
/* ADC buffer clk */
rtwn_bb_write(sc, R92C_OFDM0_RXAFE,
rtwn_bb_read(sc, R92C_OFDM0_RXAFE) |
0x30000000);
/* OFDM Rx DFIR */
rtwn_bb_write(sc, R88F_RX_DFIR,
rtwn_bb_read(sc, R88F_RX_DFIR) &
~0x00080000);
reg = rtwn_bb_read(sc, R88F_RX_DFIR);
reg = (reg & ~0x00f00000) | 0x3 << 15;
rtwn_bb_write(sc, R88F_RX_DFIR, reg);
}
}
/* Select 20MHz bandwidth. */
for (i = 0; i < sc->nrxchains; i++) {
rtwn_rf_write(sc, i, R92C_RF_CHNLBW,
(sc->rf_chnlbw[i] & ~0xfff) | chan |
((sc->chip &
(RTWN_CHIP_88E | RTWN_CHIP_88F | RTWN_CHIP_92E)) ?
R88E_RF_CHNLBW_BW20 : R92C_RF_CHNLBW_BW20));
if (sc->chip & RTWN_CHIP_88F) {
rtwn_rf_write(sc, i, 0x87, 0x65);
rtwn_rf_write(sc, i, 0x1c, 0);
rtwn_rf_write(sc, i, 0xdf, 0x0140);
rtwn_rf_write(sc, i, 0x1b, 0x1c6c);;
}
}
}
if (sc->chip == (RTWN_CHIP_88E | RTWN_CHIP_PCI))
DELAY(25000);
}
int
rtwn_chan2group(int chan)
{
int group;
if (chan <= 2)
group = 0;
else if (chan <= 5)
group = 1;
else if (chan <= 8)
group = 2;
else if (chan <= 11)
group = 3;
else
group = 4;
return (group);
}
int
rtwn_iq_calib_chain(struct rtwn_softc *sc, int chain, uint16_t tx[2],
uint16_t rx[2])
{
uint32_t status;
int offset = chain * 0x20;
uint32_t iqk_tone_92c[] = {
0x10008c1f, 0x10008c1f, 0x82140102, 0x28160202, 0x10008c22
};
uint32_t iqk_tone_92e[] = {
0x18008c1c, 0x38008c1c, 0x82140303, 0x68160000, 0x38008c1c
};
uint32_t *iqk_tone;
if (sc->chip & RTWN_CHIP_92E)
iqk_tone = iqk_tone_92e;
else
iqk_tone = iqk_tone_92c;
if (chain == 0) { /* IQ calibration for chain 0. */
/* IQ calibration settings for chain 0. */
rtwn_bb_write(sc, R92C_TX_IQK_TONE_A, iqk_tone[0]);
rtwn_bb_write(sc, R92C_RX_IQK_TONE_B, iqk_tone[1]);
rtwn_bb_write(sc, R92C_TX_IQK_PI_A, iqk_tone[2]);
if (sc->ntxchains > 1) {
rtwn_bb_write(sc, R92C_RX_IQK_PI_A, iqk_tone[3]);
/* IQ calibration settings for chain 1. */
rtwn_bb_write(sc, R92C_TX_IQK_TONE_B, iqk_tone[4]);
rtwn_bb_write(sc, R92C_RX_IQK_TONE_B, iqk_tone[4]);
rtwn_bb_write(sc, R92C_TX_IQK_PI_B, 0x82140102);
rtwn_bb_write(sc, R92C_RX_IQK_PI_B, 0x28160202);
} else
rtwn_bb_write(sc, R92C_RX_IQK_PI_A, 0x28160502);
/* LO calibration settings. */
if (sc->chip & (RTWN_CHIP_88E | RTWN_CHIP_92E))
rtwn_bb_write(sc, R92C_IQK_AGC_RSP, 0x00462911);
else
rtwn_bb_write(sc, R92C_IQK_AGC_RSP, 0x001028d1);
/* We're doing LO and IQ calibration in one shot. */
rtwn_bb_write(sc, R92C_IQK_AGC_PTS, 0xf9000000);
rtwn_bb_write(sc, R92C_IQK_AGC_PTS, 0xf8000000);
} else { /* IQ calibration for chain 1. */
/* We're doing LO and IQ calibration in one shot. */
rtwn_bb_write(sc, R92C_IQK_AGC_CONT, 0x00000002);
rtwn_bb_write(sc, R92C_IQK_AGC_CONT, 0x00000000);
}
/* Give LO and IQ calibrations the time to complete. */
DELAY(1000);
/* Read IQ calibration status. */
status = rtwn_bb_read(sc, 0xeac);
if (status & (1 << (28 + chain * 3)))
return (0); /* Tx failed. */
/* Read Tx IQ calibration results. */
tx[0] = (rtwn_bb_read(sc, R92C_TX_POWER_BEFORE_IQK_A + offset) >> 16)
& 0x3ff;
tx[1] = (rtwn_bb_read(sc, R92C_TX_POWER_AFTER_IQK_A + offset) >> 16)
& 0x3ff;
if (tx[0] == 0x142 || tx[1] == 0x042)
return (0); /* Tx failed. */
if (status & (1 << (27 + chain * 3)))
return (1); /* Rx failed. */
/* Read Rx IQ calibration results. */
rx[0] = (rtwn_bb_read(sc, R92C_RX_POWER_BEFORE_IQK_A_2 + offset) >> 16)
& 0x3ff;
rx[1] = (rtwn_bb_read(sc, R92C_RX_POWER_AFTER_IQK_A_2 + offset) >> 16)
& 0x3ff;
if (rx[0] == 0x132 || rx[1] == 0x036)
return (1); /* Rx failed. */
return (3); /* Both Tx and Rx succeeded. */
}
void
rtwn_iq_calib_run(struct rtwn_softc *sc, int n, uint16_t tx[2][2],
uint16_t rx[2][2], struct rtwn_iq_cal_regs *iq_cal_regs)
{
static const uint16_t reg_adda[16] = {
0x85c, 0xe6c, 0xe70, 0xe74,
0xe78, 0xe7c, 0xe80, 0xe84,
0xe88, 0xe8c, 0xed0, 0xed4,
0xed8, 0xedc, 0xee0, 0xeec
};
static const uint32_t adda_92c[] = {
0x0b1b25a0, 0x0bdb25a0, 0x04db25a4, 0x0b1b25a4
};
static const uint32_t adda_92e[] = {
0x0fc01616, 0x0fc01616, 0x0fc01616, 0x0fc01616
};
const uint32_t *adda_vals;
int i, chain;
uint32_t hssi_param1, reg;
uint8_t xa_agc, xb_agc;
xa_agc = rtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0)) & 0xff;
xb_agc = rtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1)) & 0xff;
if (sc->chip & RTWN_CHIP_92E)
adda_vals = adda_92e;
else
adda_vals = adda_92c;
if (n == 0) {
for (i = 0; i < nitems(reg_adda); i++)
iq_cal_regs->adda[i] = rtwn_bb_read(sc, reg_adda[i]);
iq_cal_regs->txpause = rtwn_read_1(sc, R92C_TXPAUSE);
iq_cal_regs->bcn_ctrl = rtwn_read_1(sc, R92C_BCN_CTRL);
iq_cal_regs->bcn_ctrl1 = rtwn_read_1(sc, R92C_BCN_CTRL1);
iq_cal_regs->gpio_muxcfg = rtwn_read_4(sc, R92C_GPIO_MUXCFG);
}
if (sc->ntxchains == 1) {
rtwn_bb_write(sc, reg_adda[0], adda_vals[0]);
for (i = 1; i < nitems(reg_adda); i++)
rtwn_bb_write(sc, reg_adda[i], adda_vals[1]);
} else {
for (i = 0; i < nitems(reg_adda); i++)
rtwn_bb_write(sc, reg_adda[i], adda_vals[2]);
}
if (n == 0) {
iq_cal_regs->ofdm0_trxpathena =
rtwn_bb_read(sc, R92C_OFDM0_TRXPATHENA);
iq_cal_regs->ofdm0_trmuxpar =
rtwn_bb_read(sc, R92C_OFDM0_TRMUXPAR);
iq_cal_regs->fpga0_rfifacesw0 =
rtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(0));
iq_cal_regs->fpga0_rfifacesw1 =
rtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(1));
iq_cal_regs->fpga0_rfifaceoe0 =
rtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(0));
iq_cal_regs->fpga0_rfifaceoe1 =
rtwn_bb_read(sc, R92C_FPGA0_RFIFACEOE(1));
iq_cal_regs->config_ant_a =
rtwn_bb_read(sc, R92C_CONFIG_ANT_A);
iq_cal_regs->config_ant_b =
rtwn_bb_read(sc, R92C_CONFIG_ANT_B);
iq_cal_regs->cck0_afesetting =
rtwn_bb_read(sc, R92C_CCK0_AFESETTING);
}
if (sc->chip & RTWN_CHIP_92E) {
rtwn_write_4(sc, R92C_CCK0_AFESETTING, rtwn_read_4(sc,
R92C_CCK0_AFESETTING) | 0x0f000000);
} else {
hssi_param1 = rtwn_bb_read(sc, R92C_HSSI_PARAM1(0));
if (!(hssi_param1 & R92C_HSSI_PARAM1_PI)) {
rtwn_bb_write(sc, R92C_HSSI_PARAM1(0),
hssi_param1 | R92C_HSSI_PARAM1_PI);
rtwn_bb_write(sc, R92C_HSSI_PARAM1(1),
hssi_param1 | R92C_HSSI_PARAM1_PI);
}
}
rtwn_bb_write(sc, R92C_OFDM0_TRXPATHENA, 0x03a05600);
rtwn_bb_write(sc, R92C_OFDM0_TRMUXPAR, 0x000800e4);
if (sc->chip & RTWN_CHIP_92E) {
rtwn_bb_write(sc, R92C_FPGA0_RFIFACESW(1), 0x22208200);
rtwn_bb_write(sc, R92C_FPGA0_RFIFACESW(0),
rtwn_bb_read(sc, R92C_FPGA0_RFIFACESW(0)) | (1 << 10) |
(1 << 26));
rtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(0), rtwn_bb_read(sc,
R92C_FPGA0_RFIFACEOE(0)) | (1 << 10));
rtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(1), rtwn_bb_read(sc,
R92C_FPGA0_RFIFACEOE(1)) | (1 << 10));
} else {
rtwn_bb_write(sc, R92C_FPGA0_RFIFACESW(1), 0x22204000);
if (sc->ntxchains > 1) {
rtwn_bb_write(sc, R92C_LSSI_PARAM(0), 0x00010000);
rtwn_bb_write(sc, R92C_LSSI_PARAM(1), 0x00010000);
}
rtwn_write_1(sc, R92C_TXPAUSE, R92C_TXPAUSE_AC_VO |
R92C_TXPAUSE_AC_VI | R92C_TXPAUSE_AC_BE |
R92C_TXPAUSE_AC_BK | R92C_TXPAUSE_MGNT |
R92C_TXPAUSE_HIGH);
}
rtwn_write_1(sc, R92C_BCN_CTRL,
iq_cal_regs->bcn_ctrl & ~(R92C_BCN_CTRL_EN_BCN));
rtwn_write_1(sc, R92C_BCN_CTRL1,
iq_cal_regs->bcn_ctrl1 & ~(R92C_BCN_CTRL_EN_BCN));
rtwn_write_1(sc, R92C_GPIO_MUXCFG,
iq_cal_regs->gpio_muxcfg & ~(R92C_GPIO_MUXCFG_ENBT));
rtwn_bb_write(sc, R92C_CONFIG_ANT_A, 0x00080000);
if (sc->ntxchains > 1)
rtwn_bb_write(sc, R92C_CONFIG_ANT_B, 0x00080000);
rtwn_bb_write(sc, R92C_FPGA0_IQK, 0x80800000);
rtwn_bb_write(sc, R92C_TX_IQK, 0x01007c00);
rtwn_bb_write(sc, R92C_RX_IQK, 0x01004800);
rtwn_bb_write(sc, R92C_CONFIG_ANT_A, 0x00080000);
for (chain = 0; chain < sc->ntxchains; chain++) {
if (chain > 0) {
/* Put chain 0 on standby. */
rtwn_bb_write(sc, R92C_FPGA0_IQK, 0x00);
rtwn_bb_write(sc, R92C_LSSI_PARAM(0), 0x00010000);
rtwn_bb_write(sc, R92C_FPGA0_IQK, 0x80800000);
/* Enable chain 1. */
for (i = 0; i < nitems(reg_adda); i++)
rtwn_bb_write(sc, reg_adda[i], adda_vals[3]);
}
/* Run IQ calibration twice. */
for (i = 0; i < 2; i++) {
int ret;
ret = rtwn_iq_calib_chain(sc, chain,
tx[chain], rx[chain]);
if (ret == 0) {
DPRINTF(("%s: chain %d: Tx failed.\n",
__func__, chain));
tx[chain][0] = 0xff;
tx[chain][1] = 0xff;
rx[chain][0] = 0xff;
rx[chain][1] = 0xff;
} else if (ret == 1) {
DPRINTF(("%s: chain %d: Rx failed.\n",
__func__, chain));
rx[chain][0] = 0xff;
rx[chain][1] = 0xff;
} else if (ret == 3) {
DPRINTF(("%s: chain %d: Both Tx and Rx "
"succeeded.\n", __func__, chain));
}
}
DPRINTF(("%s: results for run %d chain %d: tx[0]=0x%x, "
"tx[1]=0x%x rx[0]=0x%x rx[1]=0x%x\n", __func__, n, chain,
tx[chain][0], tx[chain][1], rx[chain][0], rx[chain][1]));
}
rtwn_bb_write(sc, R92C_FPGA0_IQK, 0x00);
if (!(sc->chip & RTWN_CHIP_92E)) {
rtwn_bb_write(sc, R92C_LSSI_PARAM(0), 0x00032ed3);
if (sc->ntxchains > 1)
rtwn_bb_write(sc, R92C_LSSI_PARAM(1), 0x00032ed3);
}
if (n != 0) {
if (!(sc->chip & RTWN_CHIP_92E)) {
if (!(hssi_param1 & R92C_HSSI_PARAM1_PI)) {
rtwn_bb_write(sc, R92C_HSSI_PARAM1(0),
hssi_param1);
rtwn_bb_write(sc, R92C_HSSI_PARAM1(1),
hssi_param1);
}
}
for (i = 0; i < nitems(reg_adda); i++)
rtwn_bb_write(sc, reg_adda[i], iq_cal_regs->adda[i]);
rtwn_write_1(sc, R92C_TXPAUSE, iq_cal_regs->txpause);
rtwn_write_1(sc, R92C_BCN_CTRL, iq_cal_regs->bcn_ctrl);
rtwn_write_1(sc, R92C_BCN_CTRL1, iq_cal_regs->bcn_ctrl1);
rtwn_write_4(sc, R92C_GPIO_MUXCFG, iq_cal_regs->gpio_muxcfg);
rtwn_bb_write(sc, R92C_OFDM0_TRXPATHENA,
iq_cal_regs->ofdm0_trxpathena);
rtwn_bb_write(sc, R92C_FPGA0_RFIFACESW(0),
iq_cal_regs->fpga0_rfifacesw0);
rtwn_bb_write(sc, R92C_FPGA0_RFIFACESW(1),
iq_cal_regs->fpga0_rfifacesw1);
rtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(0),
iq_cal_regs->fpga0_rfifaceoe0);
rtwn_bb_write(sc, R92C_FPGA0_RFIFACEOE(1),
iq_cal_regs->fpga0_rfifaceoe1);
rtwn_bb_write(sc, R92C_OFDM0_TRMUXPAR,
iq_cal_regs->ofdm0_trmuxpar);
rtwn_bb_write(sc, R92C_CONFIG_ANT_A,
iq_cal_regs->config_ant_a);
rtwn_bb_write(sc, R92C_CONFIG_ANT_B,
iq_cal_regs->config_ant_b);
rtwn_bb_write(sc, R92C_CCK0_AFESETTING,
iq_cal_regs->cck0_afesetting);
reg = rtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(0));
reg &= ~0xff;
rtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg | 0x50);
rtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(0), reg | xa_agc);
reg = rtwn_bb_read(sc, R92C_OFDM0_AGCCORE1(1));
reg &= ~0xff;
rtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg | 0x50);
rtwn_bb_write(sc, R92C_OFDM0_AGCCORE1(1), reg | xb_agc);
rtwn_bb_write(sc, R92C_TX_IQK_TONE_A, 0x01008c00);
rtwn_bb_write(sc, R92C_RX_IQK_TONE_A, 0x01008c00);
}
}
#define RTWN_IQ_CAL_MAX_TOLERANCE 5
int
rtwn_iq_calib_compare_results(uint16_t tx1[2][2], uint16_t rx1[2][2],
uint16_t tx2[2][2], uint16_t rx2[2][2], int ntxchains)
{
int chain, i, tx_ok[2], rx_ok[2];
tx_ok[0] = tx_ok[1] = rx_ok[0] = rx_ok[1] = 0;
for (chain = 0; chain < ntxchains; chain++) {
for (i = 0; i < 2; i++) {
if (tx1[chain][i] == 0xff || tx2[chain][i] == 0xff ||
rx1[chain][i] == 0xff || rx2[chain][i] == 0xff)
continue;
tx_ok[chain] = (abs(tx1[chain][i] - tx2[chain][i]) <=
RTWN_IQ_CAL_MAX_TOLERANCE);
rx_ok[chain] = (abs(rx1[chain][i] - rx2[chain][i]) <=
RTWN_IQ_CAL_MAX_TOLERANCE);
}
}
if (ntxchains > 1)
return (tx_ok[0] && tx_ok[1] && rx_ok[0] && rx_ok[1]);
else
return (tx_ok[0] && rx_ok[0]);
}
#undef RTWN_IQ_CAL_MAX_TOLERANCE
void
rtwn_iq_calib_write_results(struct rtwn_softc *sc, uint16_t tx[2],
uint16_t rx[2], int chain)
{
uint32_t reg, val, x;
long y, tx_c;
if (tx[0] == 0xff || tx[1] == 0xff)
return;
reg = rtwn_bb_read(sc, R92C_OFDM0_TXIQIMBALANCE(chain));
val = ((reg >> 22) & 0x3ff);
x = tx[0];
if (x & 0x00000200)
x |= 0xfffffc00;
reg &= ~0x3ff;
reg |= (((x * val) >> 8) & 0x3ff);
rtwn_bb_write(sc, R92C_OFDM0_TXIQIMBALANCE(chain), reg);
reg = rtwn_bb_read(sc, R92C_OFDM0_ECCATHRESHOLD);
if (((x * val) >> 7) & 0x01)
reg |= 0x80000000;
else
reg &= ~0x80000000;
rtwn_bb_write(sc, R92C_OFDM0_ECCATHRESHOLD, reg);
y = tx[1];
if (y & 0x00000200)
y |= 0xfffffc00;
tx_c = (y * val) >> 8;
reg = rtwn_bb_read(sc, R92C_OFDM0_TXAFE(chain));
reg &= ~0xf0000000;
reg |= ((tx_c & 0x3c0) << 22);
rtwn_bb_write(sc, R92C_OFDM0_TXAFE(chain), reg);
reg = rtwn_bb_read(sc, R92C_OFDM0_TXIQIMBALANCE(chain));
reg &= ~0x003f0000;
reg |= ((tx_c & 0x3f) << 16);
rtwn_bb_write(sc, R92C_OFDM0_TXIQIMBALANCE(chain), reg);
reg = rtwn_bb_read(sc, R92C_OFDM0_ECCATHRESHOLD);
if (((y * val) >> 7) & 0x01)
reg |= 0x20000000;
else
reg &= ~0x20000000;
rtwn_bb_write(sc, R92C_OFDM0_ECCATHRESHOLD, reg);
if (rx[0] == 0xff || rx[1] == 0xff)
return;
reg = rtwn_bb_read(sc, R92C_OFDM0_RXIQIMBALANCE(chain));
reg &= ~0x3ff;
reg |= (rx[0] & 0x3ff);
rtwn_bb_write(sc, R92C_OFDM0_RXIQIMBALANCE(chain), reg);
reg &= ~0xfc00;
reg |= ((rx[1] & 0x03f) << 10);
rtwn_bb_write(sc, R92C_OFDM0_RXIQIMBALANCE(chain), reg);
if (chain == 0) {
reg = rtwn_bb_read(sc, R92C_OFDM0_RXIQEXTANTA);
reg &= ~0xf0000000;
reg |= ((rx[1] & 0x3c0) << 22);
rtwn_bb_write(sc, R92C_OFDM0_RXIQEXTANTA, reg);
} else {
reg = rtwn_bb_read(sc, R92C_OFDM0_AGCRSSITABLE);
reg &= ~0xf000;
reg |= ((rx[1] & 0x3c0) << 6);
rtwn_bb_write(sc, R92C_OFDM0_AGCRSSITABLE, reg);
}
}
#define RTWN_IQ_CAL_NRUN 3
void
rtwn_iq_calib(struct rtwn_softc *sc)
{
uint16_t tx[RTWN_IQ_CAL_NRUN][2][2], rx[RTWN_IQ_CAL_NRUN][2][2];
int n, valid;
struct rtwn_iq_cal_regs regs;
valid = 0;
memset(&regs, 0, sizeof(regs));
for (n = 0; n < RTWN_IQ_CAL_NRUN; n++) {
rtwn_iq_calib_run(sc, n, tx[n], rx[n], &regs);
if (n == 0)
continue;
/* Valid results remain stable after consecutive runs. */
valid = rtwn_iq_calib_compare_results(tx[n - 1], rx[n - 1],
tx[n], rx[n], sc->ntxchains);
if (valid)
break;
}
if (valid) {
rtwn_iq_calib_write_results(sc, tx[n][0], rx[n][0], 0);
if (sc->ntxchains > 1)
rtwn_iq_calib_write_results(sc, tx[n][1], rx[n][1], 1);
}
}
#undef RTWN_IQ_CAL_NRUN
void
rtwn_lc_calib(struct rtwn_softc *sc)
{
uint32_t rf_ac[2];
uint8_t txmode;
int i;
txmode = rtwn_read_1(sc, R92C_OFDM1_LSTF + 3);
if ((txmode & 0x70) != 0) {
/* Disable all continuous Tx. */
rtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode & ~0x70);
/* Set RF mode to standby mode. */
for (i = 0; i < sc->nrxchains; i++) {
rf_ac[i] = rtwn_rf_read(sc, i, R92C_RF_AC);
rtwn_rf_write(sc, i, R92C_RF_AC,
RW(rf_ac[i], R92C_RF_AC_MODE,
R92C_RF_AC_MODE_STANDBY));
}
} else {
/* Block all Tx queues. */
rtwn_write_1(sc, R92C_TXPAUSE, R92C_TXPAUSE_ALL);
}
/* Start calibration. */
rtwn_rf_write(sc, 0, R92C_RF_CHNLBW,
rtwn_rf_read(sc, 0, R92C_RF_CHNLBW) | R92C_RF_CHNLBW_LCSTART);
/* Give calibration the time to complete. */
DELAY(100);
/* Restore configuration. */
if ((txmode & 0x70) != 0) {
/* Restore Tx mode. */
rtwn_write_1(sc, R92C_OFDM1_LSTF + 3, txmode);
/* Restore RF mode. */
for (i = 0; i < sc->nrxchains; i++)
rtwn_rf_write(sc, i, R92C_RF_AC, rf_ac[i]);
} else {
/* Unblock all Tx queues. */
rtwn_write_1(sc, R92C_TXPAUSE, 0x00);
}
}
void
rtwn_temp_calib(struct rtwn_softc *sc)
{
int temp, t_meter_reg, t_meter_val;
if (sc->chip & RTWN_CHIP_92E) {
t_meter_reg = R92E_RF_T_METER;
t_meter_val = 0x37cf8;
} else {
t_meter_reg = R92C_RF_T_METER;
t_meter_val = 0x60;
}
if (sc->thcal_state == 0) {
/* Start measuring temperature. */
rtwn_rf_write(sc, 0, t_meter_reg, t_meter_val);
sc->thcal_state = 1;
return;
}
sc->thcal_state = 0;
/* Read measured temperature. */
temp = rtwn_rf_read(sc, 0, t_meter_reg) & 0x1f;
if (temp == 0) /* Read failed, skip. */
return;
DPRINTFN(2, ("temperature=%d\n", temp));
/*
* Redo IQ and LC calibration if temperature changed significantly
* since last calibration.
*/
if (sc->thcal_lctemp == 0) {
/* First calibration is performed in rtwn_init(). */
sc->thcal_lctemp = temp;
} else if (abs(temp - sc->thcal_lctemp) > 1) {
DPRINTF(("IQ/LC calib triggered by temp: %d -> %d\n",
sc->thcal_lctemp, temp));
rtwn_iq_calib(sc);
rtwn_lc_calib(sc);
/* Record temperature of last calibration. */
sc->thcal_lctemp = temp;
}
}
void
rtwn_enable_intr(struct rtwn_softc *sc)
{
if (sc->chip & RTWN_CHIP_92E) {
rtwn_write_4(sc, R88E_HISR, 0xffffffff);
rtwn_write_4(sc, R88E_HISRE, 0xffffffff);
rtwn_write_4(sc, R88E_HIMR, 0);
rtwn_write_4(sc, R88E_HIMRE, 0);
} else if (sc->chip & RTWN_CHIP_88E) {
rtwn_write_4(sc, R88E_HISR, 0xffffffff);
if (sc->chip & RTWN_CHIP_USB) {
rtwn_write_4(sc, R88E_HIMR, R88E_HIMR_CPWM |
R88E_HIMR_CPWM2 | R88E_HIMR_TBDER |
R88E_HIMR_PSTIMEOUT);
rtwn_write_4(sc, R88E_HIMRE, R88E_HIMRE_RXFOVW |
R88E_HIMRE_TXFOVW | R88E_HIMRE_RXERR |
R88E_HIMRE_TXERR);
} else {
rtwn_write_4(sc, R88E_HIMR,
RTWN_88E_INT_ENABLE);
rtwn_write_4(sc, R88E_HIMRE,
R88E_HIMRE_RXFOVW);
rtwn_write_1(sc, R92C_C2HEVT_CLEAR, 0);
rtwn_write_4(sc, R92C_HSIMR,
R88E_HSIMR_PDN_INT_EN | R88E_HSIMR_RON_INT_EN);
}
if (sc->chip & RTWN_CHIP_USB) {
rtwn_write_1(sc, R92C_USB_SPECIAL_OPTION,
rtwn_read_1(sc, R92C_USB_SPECIAL_OPTION) |
R92C_USB_SPECIAL_OPTION_INT_BULK_SEL);
}
} else {
uint32_t imask = 0;
if (sc->chip & RTWN_CHIP_USB)
imask = 0xffffffff;
else if (sc->chip & RTWN_CHIP_PCI)
imask = RTWN_92C_INT_ENABLE;
else
panic("unknown chip type 0x%x", sc->chip);
/* CLear pending interrupts. */
rtwn_write_4(sc, R92C_HISR, 0xffffffff);
/* Enable interrupts. */
rtwn_write_4(sc, R92C_HIMR, imask);
}
}
void
rtwn_disable_intr(struct rtwn_softc *sc)
{
if (sc->chip & RTWN_CHIP_88E) {
rtwn_write_4(sc, R88E_HISR, 0x00000000);
rtwn_write_4(sc, R88E_HIMR, 0x00000000);
rtwn_write_4(sc, R88E_HIMRE, 0x00000000);
if (sc->chip & RTWN_CHIP_USB) {
rtwn_write_1(sc, R92C_USB_SPECIAL_OPTION,
rtwn_read_1(sc, R92C_USB_SPECIAL_OPTION) &
~R92C_USB_SPECIAL_OPTION_INT_BULK_SEL);
}
} else {
rtwn_write_4(sc, R92C_HISR, 0x00000000);
rtwn_write_4(sc, R92C_HIMR, 0x00000000);
}
}
int
rtwn_init(struct ifnet *ifp)
{
struct rtwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint32_t reg;
int i, error;
/* Init firmware commands ring. */
sc->fwcur = 0;
error = sc->sc_ops.alloc_buffers(sc->sc_ops.cookie);
if (error)
goto fail;
/* Power on adapter. */
error = sc->sc_ops.power_on(sc->sc_ops.cookie);
if (error != 0) {
printf("%s: could not power on adapter\n",
sc->sc_pdev->dv_xname);
goto fail;
}
/* Initialize DMA. */
error = sc->sc_ops.dma_init(sc->sc_ops.cookie);
if (error != 0) {
printf("%s: could not initialize DMA\n",
sc->sc_pdev->dv_xname);
goto fail;
}
/* Set info size in Rx descriptors (in 64-bit words). */
rtwn_write_1(sc, R92C_RX_DRVINFO_SZ, 4);
if ((sc->chip & RTWN_CHIP_USB) && !(sc->chip & RTWN_CHIP_88F)) {
/* Init interrupts. */
rtwn_enable_intr(sc);
} else if (sc->chip & RTWN_CHIP_PCI) {
rtwn_disable_intr(sc);
}
/* Set MAC address. */
IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
for (i = 0; i < IEEE80211_ADDR_LEN; i++)
rtwn_write_1(sc, R92C_MACID + i, ic->ic_myaddr[i]);
/* Set initial network type. */
rtwn_set_nettype(sc, IEEE80211_M_MONITOR);
rtwn_rxfilter_init(sc);
reg = rtwn_read_4(sc, R92C_RRSR);
if (sc->chip & RTWN_CHIP_USB) {
reg = RW(reg, R92C_RRSR_RATE_BITMAP,
R92C_RRSR_RATE_CCK_ONLY_1M);
} else {
reg = RW(reg, R92C_RRSR_RATE_BITMAP, R92C_RRSR_RATE_ALL);
}
rtwn_write_4(sc, R92C_RRSR, reg);
/* Set short/long retry limits. */
if (sc->chip & RTWN_CHIP_USB) {
rtwn_write_2(sc, R92C_RL,
SM(R92C_RL_SRL, 0x30) | SM(R92C_RL_LRL, 0x30));
} else {
rtwn_write_2(sc, R92C_RL,
SM(R92C_RL_SRL, 0x07) | SM(R92C_RL_LRL, 0x07));
}
/* Initialize EDCA parameters. */
rtwn_edca_init(sc);
/* Set data and response automatic rate fallback retry counts. */
rtwn_rate_fallback_init(sc);
if (sc->chip & RTWN_CHIP_USB) {
rtwn_write_1(sc, R92C_FWHW_TXQ_CTRL,
rtwn_read_1(sc, R92C_FWHW_TXQ_CTRL) |
R92C_FWHW_TXQ_CTRL_AMPDU_RTY_NEW);
} else {
rtwn_write_2(sc, R92C_FWHW_TXQ_CTRL, 0x1f80);
}
/* Set ACK timeout. */
rtwn_write_1(sc, R92C_ACKTO, 0x40);
/* Setup USB aggregation. */
if (sc->chip & RTWN_CHIP_USB)
sc->sc_ops.aggr_init(sc->sc_ops.cookie);
/* Initialize beacon parameters. */
rtwn_write_2(sc, R92C_BCN_CTRL,
(R92C_BCN_CTRL_DIS_TSF_UDT0 << 8) | R92C_BCN_CTRL_DIS_TSF_UDT0);
rtwn_write_2(sc, R92C_TBTT_PROHIBIT, 0x6404);
if (!(sc->chip & RTWN_CHIP_88F))
rtwn_write_1(sc, R92C_DRVERLYINT, R92C_DRVERLYINT_INIT_TIME);
rtwn_write_1(sc, R92C_BCNDMATIM, R92C_BCNDMATIM_INIT_TIME);
rtwn_write_2(sc, R92C_BCNTCFG, 0x660f);
if (!(sc->chip & (RTWN_CHIP_88E | RTWN_CHIP_88F | RTWN_CHIP_92E))) {
/* Setup AMPDU aggregation. */
rtwn_write_4(sc, R92C_AGGLEN_LMT, 0x99997631); /* MCS7~0 */
rtwn_write_1(sc, R92C_AGGR_BREAK_TIME, 0x16);
rtwn_write_2(sc, R92C_MAX_AGGR_NUM, 0x0708);
rtwn_write_1(sc, R92C_BCN_MAX_ERR, 0xff);
}
if (sc->chip & RTWN_CHIP_PCI) {
/* Reset H2C protection register. */
rtwn_write_4(sc, R92C_MCUTST_1, 0x0);
}
/* Load 8051 microcode. */
error = rtwn_load_firmware(sc);
if (error != 0)
goto fail;
/* Initialize MAC/BB/RF blocks. */
sc->sc_ops.mac_init(sc->sc_ops.cookie);
sc->sc_ops.bb_init(sc->sc_ops.cookie);
rtwn_rf_init(sc);
if (sc->chip & (RTWN_CHIP_88E | RTWN_CHIP_88F | RTWN_CHIP_92E)) {
rtwn_write_2(sc, R92C_CR,
rtwn_read_2(sc, R92C_CR) | R92C_CR_MACTXEN |
R92C_CR_MACRXEN);
}
/* Turn CCK and OFDM blocks on. */
reg = rtwn_bb_read(sc, R92C_FPGA0_RFMOD);
reg |= R92C_RFMOD_CCK_EN;
rtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg);
reg = rtwn_bb_read(sc, R92C_FPGA0_RFMOD);
reg |= R92C_RFMOD_OFDM_EN;
rtwn_bb_write(sc, R92C_FPGA0_RFMOD, reg);
/* Clear per-station keys table. */
rtwn_cam_init(sc);
/* Enable decryption / encryption. */
if (sc->chip & RTWN_CHIP_USB) {
rtwn_write_2(sc, R92C_SECCFG,
R92C_SECCFG_TXUCKEY_DEF | R92C_SECCFG_RXUCKEY_DEF |
R92C_SECCFG_TXENC_ENA | R92C_SECCFG_RXENC_ENA |
R92C_SECCFG_TXBCKEY_DEF | R92C_SECCFG_RXBCKEY_DEF);
}
/* Enable hardware sequence numbering. */
rtwn_write_1(sc, R92C_HWSEQ_CTRL, 0xff);
if (sc->chip & RTWN_CHIP_92E) {
rtwn_write_1(sc, R92C_QUEUE_CTRL,
rtwn_read_1(sc, R92C_QUEUE_CTRL) & ~0x08);
}
/* Perform LO and IQ calibrations. */
rtwn_iq_calib(sc);
/* Perform LC calibration. */
rtwn_lc_calib(sc);
/* Fix USB interference issue. */
if (sc->chip & RTWN_CHIP_USB) {
if (!(sc->chip &
(RTWN_CHIP_88E | RTWN_CHIP_88F | RTWN_CHIP_92E))) {
rtwn_write_1(sc, 0xfe40, 0xe0);
rtwn_write_1(sc, 0xfe41, 0x8d);
rtwn_write_1(sc, 0xfe42, 0x80);
rtwn_pa_bias_init(sc);
}
}
/* Initialize GPIO setting. */
rtwn_write_1(sc, R92C_GPIO_MUXCFG,
rtwn_read_1(sc, R92C_GPIO_MUXCFG) & ~R92C_GPIO_MUXCFG_ENBT);
/* Fix for lower temperature. */
if (!(sc->chip & (RTWN_CHIP_88E | RTWN_CHIP_88F | RTWN_CHIP_92E)))
rtwn_write_1(sc, 0x15, 0xe9);
/* Set default channel. */
ic->ic_bss->ni_chan = ic->ic_ibss_chan;
rtwn_set_chan(sc, ic->ic_ibss_chan, NULL);
if (sc->chip & RTWN_CHIP_PCI)
rtwn_enable_intr(sc);
error = sc->sc_ops.init(sc->sc_ops.cookie);
if (error)
goto fail;
/* We're ready to go. */
ifq_clr_oactive(&ifp->if_snd);
ifp->if_flags |= IFF_RUNNING;
if ((ic->ic_flags & IEEE80211_F_WEPON) &&
(sc->chip & RTWN_CHIP_USB)) {
/* Install WEP keys. */
for (i = 0; i < IEEE80211_WEP_NKID; i++)
ic->ic_set_key(ic, NULL, &ic->ic_nw_keys[i]);
sc->sc_ops.wait_async(sc->sc_ops.cookie);
}
if (ic->ic_opmode == IEEE80211_M_MONITOR)
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
else
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
return (0);
fail:
rtwn_stop(ifp);
return (error);
}
void
rtwn_init_task(void *arg1)
{
struct rtwn_softc *sc = arg1;
struct ifnet *ifp = &sc->sc_ic.ic_if;
int s;
s = splnet();
while (sc->sc_flags & RTWN_FLAG_BUSY)
tsleep_nsec(&sc->sc_flags, 0, "rtwnpwr", INFSLP);
sc->sc_flags |= RTWN_FLAG_BUSY;
rtwn_stop(ifp);
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_UP)
rtwn_init(ifp);
sc->sc_flags &= ~RTWN_FLAG_BUSY;
wakeup(&sc->sc_flags);
splx(s);
}
void
rtwn_stop(struct ifnet *ifp)
{
struct rtwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int s;
sc->sc_tx_timer = 0;
ifp->if_timer = 0;
ifp->if_flags &= ~IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
s = splnet();
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
splx(s);
sc->sc_ops.wait_async(sc->sc_ops.cookie);
s = splnet();
sc->sc_ops.cancel_scan(sc->sc_ops.cookie);
sc->sc_ops.cancel_calib(sc->sc_ops.cookie);
task_del(systq, &sc->init_task);
splx(s);
sc->sc_ops.stop(sc->sc_ops.cookie);
}