src/sys/dev/pci/if_iwi.c

2313 lines
59 KiB
C

/* $OpenBSD: if_iwi.c,v 1.148 2023/03/08 04:43:08 guenther Exp $ */
/*-
* Copyright (c) 2004-2008
* Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Driver for Intel PRO/Wireless 2200BG/2915ABG 802.11 network adapters.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/rwlock.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/task.h>
#include <sys/endian.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/pci/if_iwireg.h>
#include <dev/pci/if_iwivar.h>
const struct pci_matchid iwi_devices[] = {
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_2200BG },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_2225BG },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_2915ABG_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_2915ABG_2 }
};
int iwi_match(struct device *, void *, void *);
void iwi_attach(struct device *, struct device *, void *);
int iwi_activate(struct device *, int);
void iwi_wakeup(struct iwi_softc *);
void iwi_init_task(void *);
int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *);
int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *,
int);
void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *);
int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *);
int iwi_media_change(struct ifnet *);
void iwi_media_status(struct ifnet *, struct ifmediareq *);
uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t);
int iwi_find_txnode(struct iwi_softc *, const uint8_t *);
int iwi_newstate(struct ieee80211com *, enum ieee80211_state, int);
uint8_t iwi_rate(int);
void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *,
struct iwi_frame *, struct mbuf_list *);
void iwi_notification_intr(struct iwi_softc *, struct iwi_rx_data *,
struct iwi_notif *);
void iwi_rx_intr(struct iwi_softc *);
void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *);
int iwi_intr(void *);
int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t, int);
int iwi_send_mgmt(struct ieee80211com *, struct ieee80211_node *,
int, int, int);
int iwi_tx_start(struct ifnet *, struct mbuf *,
struct ieee80211_node *);
void iwi_start(struct ifnet *);
void iwi_watchdog(struct ifnet *);
int iwi_ioctl(struct ifnet *, u_long, caddr_t);
void iwi_stop_master(struct iwi_softc *);
int iwi_reset(struct iwi_softc *);
int iwi_load_ucode(struct iwi_softc *, const char *, int);
int iwi_load_firmware(struct iwi_softc *, const char *, int);
int iwi_config(struct iwi_softc *);
void iwi_update_edca(struct ieee80211com *);
int iwi_set_chan(struct iwi_softc *, struct ieee80211_channel *);
int iwi_scan(struct iwi_softc *);
int iwi_auth_and_assoc(struct iwi_softc *);
int iwi_init(struct ifnet *);
void iwi_stop(struct ifnet *, int);
static __inline uint8_t
MEM_READ_1(struct iwi_softc *sc, uint32_t addr)
{
CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA);
}
static __inline uint32_t
MEM_READ_4(struct iwi_softc *sc, uint32_t addr)
{
CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr);
return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA);
}
#ifdef IWI_DEBUG
#define DPRINTF(x) do { if (iwi_debug > 0) printf x; } while (0)
#define DPRINTFN(n, x) do { if (iwi_debug >= (n)) printf x; } while (0)
int iwi_debug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
const struct cfattach iwi_ca = {
sizeof (struct iwi_softc), iwi_match, iwi_attach, NULL,
iwi_activate
};
int
iwi_match(struct device *parent, void *match, void *aux)
{
return pci_matchbyid((struct pci_attach_args *)aux, iwi_devices,
nitems(iwi_devices));
}
/* Base Address Register */
#define IWI_PCI_BAR0 0x10
void
iwi_attach(struct device *parent, struct device *self, void *aux)
{
struct iwi_softc *sc = (struct iwi_softc *)self;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct pci_attach_args *pa = aux;
const char *intrstr;
bus_space_tag_t memt;
bus_space_handle_t memh;
pci_intr_handle_t ih;
pcireg_t data;
uint16_t val;
int error, ac, i;
sc->sc_pct = pa->pa_pc;
sc->sc_pcitag = pa->pa_tag;
/* clear device specific PCI configuration register 0x41 */
data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
data &= ~0x0000ff00;
pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
/* map the register window */
error = pci_mapreg_map(pa, IWI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz, 0);
if (error != 0) {
printf(": can't map mem space\n");
return;
}
sc->sc_st = memt;
sc->sc_sh = memh;
sc->sc_dmat = pa->pa_dmat;
if (pci_intr_map(pa, &ih) != 0) {
printf(": can't map interrupt\n");
return;
}
intrstr = pci_intr_string(sc->sc_pct, ih);
sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwi_intr, sc,
sc->sc_dev.dv_xname);
if (sc->sc_ih == NULL) {
printf(": can't establish interrupt");
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
return;
}
printf(": %s", intrstr);
if (iwi_reset(sc) != 0) {
printf(": could not reset adapter\n");
return;
}
/*
* Allocate rings.
*/
if (iwi_alloc_cmd_ring(sc, &sc->cmdq) != 0) {
printf(": could not allocate Cmd ring\n");
return;
}
for (ac = 0; ac < EDCA_NUM_AC; ac++) {
if (iwi_alloc_tx_ring(sc, &sc->txq[ac], ac) != 0) {
printf(": could not allocate Tx ring %d\n", ac);
goto fail;
}
}
if (iwi_alloc_rx_ring(sc, &sc->rxq) != 0) {
printf(": could not allocate Rx ring\n");
goto fail;
}
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
/* set device capabilities */
ic->ic_caps =
#ifndef IEEE80211_STA_ONLY
IEEE80211_C_IBSS | /* IBSS mode supported */
#endif
IEEE80211_C_MONITOR | /* monitor mode supported */
IEEE80211_C_TXPMGT | /* tx power management */
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_SHSLOT | /* short slot time supported */
IEEE80211_C_WEP | /* s/w WEP */
IEEE80211_C_RSN | /* WPA/RSN supported */
IEEE80211_C_SCANALL; /* h/w scanning */
/* read MAC address from EEPROM */
val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0);
ic->ic_myaddr[0] = val & 0xff;
ic->ic_myaddr[1] = val >> 8;
val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1);
ic->ic_myaddr[2] = val & 0xff;
ic->ic_myaddr[3] = val >> 8;
val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2);
ic->ic_myaddr[4] = val & 0xff;
ic->ic_myaddr[5] = val >> 8;
printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
if (PCI_PRODUCT(pa->pa_id) >= PCI_PRODUCT_INTEL_PRO_WL_2915ABG_1) {
/* set supported .11a rates */
ic->ic_sup_rates[IEEE80211_MODE_11A] =
ieee80211_std_rateset_11a;
/* set supported .11a channels */
for (i = 36; i <= 64; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
for (i = 149; i <= 165; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
}
/* set supported .11b and .11g rates */
ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
/* set supported .11b and .11g channels (1 through 14) */
for (i = 1; i <= 14; i++) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_channels[i].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
/* IBSS channel undefined for now */
ic->ic_ibss_chan = &ic->ic_channels[0];
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = iwi_ioctl;
ifp->if_start = iwi_start;
ifp->if_watchdog = iwi_watchdog;
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
if_attach(ifp);
ieee80211_ifattach(ifp);
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = iwi_newstate;
ic->ic_send_mgmt = iwi_send_mgmt;
ieee80211_media_init(ifp, iwi_media_change, iwi_media_status);
#if NBPFILTER > 0
bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(IWI_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof sc->sc_txtapu;
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(IWI_TX_RADIOTAP_PRESENT);
#endif
rw_init(&sc->sc_rwlock, "iwilock");
task_set(&sc->init_task, iwi_init_task, sc);
return;
fail: while (--ac >= 0)
iwi_free_tx_ring(sc, &sc->txq[ac]);
iwi_free_cmd_ring(sc, &sc->cmdq);
}
int
iwi_activate(struct device *self, int act)
{
struct iwi_softc *sc = (struct iwi_softc *)self;
struct ifnet *ifp = &sc->sc_ic.ic_if;
switch (act) {
case DVACT_SUSPEND:
if (ifp->if_flags & IFF_RUNNING)
iwi_stop(ifp, 0);
break;
case DVACT_WAKEUP:
iwi_wakeup(sc);
break;
}
return 0;
}
void
iwi_wakeup(struct iwi_softc *sc)
{
pcireg_t data;
/* clear device specific PCI configuration register 0x41 */
data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
data &= ~0x0000ff00;
pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data);
iwi_init_task(sc);
}
void
iwi_init_task(void *arg1)
{
struct iwi_softc *sc = arg1;
struct ifnet *ifp = &sc->sc_ic.ic_if;
int s;
rw_enter_write(&sc->sc_rwlock);
s = splnet();
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_UP)
iwi_init(ifp);
splx(s);
rw_exit_write(&sc->sc_rwlock);
}
int
iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
{
int nsegs, error;
ring->queued = 0;
ring->cur = ring->next = 0;
error = bus_dmamap_create(sc->sc_dmat,
sizeof (struct iwi_cmd_desc) * IWI_CMD_RING_COUNT, 1,
sizeof (struct iwi_cmd_desc) * IWI_CMD_RING_COUNT, 0,
BUS_DMA_NOWAIT, &ring->map);
if (error != 0) {
printf("%s: could not create cmd ring DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat,
sizeof (struct iwi_cmd_desc) * IWI_CMD_RING_COUNT, PAGE_SIZE, 0,
&ring->seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
if (error != 0) {
printf("%s: could not allocate cmd ring DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
sizeof (struct iwi_cmd_desc) * IWI_CMD_RING_COUNT,
(caddr_t *)&ring->desc, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: can't map cmd ring DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
sizeof (struct iwi_cmd_desc) * IWI_CMD_RING_COUNT, NULL,
BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not load cmd ring DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
return 0;
fail: iwi_free_cmd_ring(sc, ring);
return error;
}
void
iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
{
ring->queued = 0;
ring->cur = ring->next = 0;
}
void
iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring)
{
if (ring->map != NULL) {
if (ring->desc != NULL) {
bus_dmamap_unload(sc->sc_dmat, ring->map);
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
sizeof (struct iwi_cmd_desc) * IWI_CMD_RING_COUNT);
bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
}
bus_dmamap_destroy(sc->sc_dmat, ring->map);
}
}
int
iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int ac)
{
struct iwi_tx_data *data;
int i, nsegs, error;
ring->queued = 0;
ring->cur = ring->next = 0;
ring->csr_ridx = IWI_CSR_TX_RIDX(ac);
ring->csr_widx = IWI_CSR_TX_WIDX(ac);
error = bus_dmamap_create(sc->sc_dmat,
sizeof (struct iwi_tx_desc) * IWI_TX_RING_COUNT, 1,
sizeof (struct iwi_tx_desc) * IWI_TX_RING_COUNT, 0, BUS_DMA_NOWAIT,
&ring->map);
if (error != 0) {
printf("%s: could not create tx ring DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat,
sizeof (struct iwi_tx_desc) * IWI_TX_RING_COUNT, PAGE_SIZE, 0,
&ring->seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
if (error != 0) {
printf("%s: could not allocate tx ring DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
sizeof (struct iwi_tx_desc) * IWI_TX_RING_COUNT,
(caddr_t *)&ring->desc, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: can't map tx ring DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
sizeof (struct iwi_tx_desc) * IWI_TX_RING_COUNT, NULL,
BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not load tx ring DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
for (i = 0; i < IWI_TX_RING_COUNT; i++) {
data = &ring->data[i];
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
IWI_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
if (error != 0) {
printf("%s: could not create tx buf DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
}
return 0;
fail: iwi_free_tx_ring(sc, ring);
return error;
}
void
iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
{
struct iwi_tx_data *data;
int i;
for (i = 0; i < IWI_TX_RING_COUNT; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
}
ring->queued = 0;
ring->cur = ring->next = 0;
}
void
iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring)
{
struct iwi_tx_data *data;
int i;
if (ring->map != NULL) {
if (ring->desc != NULL) {
bus_dmamap_unload(sc->sc_dmat, ring->map);
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
sizeof (struct iwi_tx_desc) * IWI_TX_RING_COUNT);
bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
}
bus_dmamap_destroy(sc->sc_dmat, ring->map);
}
for (i = 0; i < IWI_TX_RING_COUNT; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
}
bus_dmamap_destroy(sc->sc_dmat, data->map);
}
}
int
iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
{
struct iwi_rx_data *data;
int i, error;
ring->cur = 0;
for (i = 0; i < IWI_RX_RING_COUNT; i++) {
data = &sc->rxq.data[i];
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
0, BUS_DMA_NOWAIT, &data->map);
if (error != 0) {
printf("%s: could not create rx buf DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
MGETHDR(data->m, M_DONTWAIT, MT_DATA);
if (data->m == NULL) {
printf("%s: could not allocate rx mbuf\n",
sc->sc_dev.dv_xname);
error = ENOMEM;
goto fail;
}
MCLGET(data->m, M_DONTWAIT);
if (!(data->m->m_flags & M_EXT)) {
m_freem(data->m);
data->m = NULL;
printf("%s: could not allocate rx mbuf cluster\n",
sc->sc_dev.dv_xname);
error = ENOMEM;
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, data->map,
mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not load rx buf DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
data->reg = IWI_CSR_RX_BASE + i * 4;
}
return 0;
fail: iwi_free_rx_ring(sc, ring);
return error;
}
void
iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
{
ring->cur = 0;
}
void
iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring)
{
struct iwi_rx_data *data;
int i;
for (i = 0; i < IWI_RX_RING_COUNT; i++) {
data = &sc->rxq.data[i];
if (data->m != NULL) {
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
}
bus_dmamap_destroy(sc->sc_dmat, data->map);
}
}
int
iwi_media_change(struct ifnet *ifp)
{
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return error;
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
error = iwi_init(ifp);
return error;
}
void
iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
{
struct iwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint32_t val;
int rate;
imr->ifm_status = IFM_AVALID;
imr->ifm_active = IFM_IEEE80211;
if (ic->ic_state == IEEE80211_S_RUN)
imr->ifm_status |= IFM_ACTIVE;
/* read current transmission rate from adapter */
val = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE);
/* convert PLCP signal to 802.11 rate */
rate = iwi_rate(val);
imr->ifm_active |= ieee80211_rate2media(ic, rate, ic->ic_curmode);
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
break;
#ifndef IEEE80211_STA_ONLY
case IEEE80211_M_IBSS:
imr->ifm_active |= IFM_IEEE80211_ADHOC;
break;
#endif
case IEEE80211_M_MONITOR:
imr->ifm_active |= IFM_IEEE80211_MONITOR;
break;
default:
/* should not get there */
break;
}
}
#ifndef IEEE80211_STA_ONLY
/*
* This is only used for IBSS mode where the firmware expect an index to an
* internal node table instead of a destination address.
*/
int
iwi_find_txnode(struct iwi_softc *sc, const uint8_t *macaddr)
{
struct iwi_node node;
int i;
for (i = 0; i < sc->nsta; i++)
if (IEEE80211_ADDR_EQ(sc->sta[i], macaddr))
return i; /* already existing node */
if (i == IWI_MAX_NODE)
return -1; /* no place left in neighbor table */
/* save this new node in our softc table */
IEEE80211_ADDR_COPY(sc->sta[i], macaddr);
sc->nsta = i;
/* write node information into NIC memory */
bzero(&node, sizeof node);
IEEE80211_ADDR_COPY(node.bssid, macaddr);
CSR_WRITE_REGION_1(sc, IWI_CSR_NODE_BASE + i * sizeof node,
(uint8_t *)&node, sizeof node);
return i;
}
#endif
int
iwi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct iwi_softc *sc = ic->ic_softc;
struct ifnet *ifp = &ic->ic_if;
enum ieee80211_state ostate;
uint32_t tmp;
if (LINK_STATE_IS_UP(ifp->if_link_state))
ieee80211_set_link_state(ic, LINK_STATE_DOWN);
ostate = ic->ic_state;
switch (nstate) {
case IEEE80211_S_SCAN:
iwi_scan(sc);
break;
case IEEE80211_S_AUTH:
if (iwi_auth_and_assoc(sc)) {
ieee80211_begin_scan(&ic->ic_if);
return 0;
}
break;
case IEEE80211_S_RUN:
#ifndef IEEE80211_STA_ONLY
if (ic->ic_opmode == IEEE80211_M_IBSS) {
sc->nsta = 0; /* flush IBSS nodes */
ieee80211_new_state(ic, IEEE80211_S_AUTH, -1);
} else
#endif
if (ic->ic_opmode == IEEE80211_M_MONITOR)
iwi_set_chan(sc, ic->ic_ibss_chan);
/* assoc led on */
tmp = MEM_READ_4(sc, IWI_MEM_EVENT_CTL) & IWI_LED_MASK;
MEM_WRITE_4(sc, IWI_MEM_EVENT_CTL, tmp | IWI_LED_ASSOC);
if (!(ic->ic_flags & IEEE80211_F_RSNON)) {
/*
* NB: When RSN is enabled, we defer setting
* the link up until the port is valid.
*/
ieee80211_set_link_state(ic, LINK_STATE_UP);
}
break;
case IEEE80211_S_INIT:
if (ostate != IEEE80211_S_RUN)
break;
/* assoc led off */
tmp = MEM_READ_4(sc, IWI_MEM_EVENT_CTL) & IWI_LED_MASK;
MEM_WRITE_4(sc, IWI_MEM_EVENT_CTL, tmp & ~IWI_LED_ASSOC);
break;
case IEEE80211_S_ASSOC:
break;
}
ic->ic_state = nstate;
return 0;
}
/*
* Read 16 bits at address 'addr' from the serial EEPROM.
* DON'T PLAY WITH THIS CODE UNLESS YOU KNOW *EXACTLY* WHAT YOU'RE DOING!
*/
uint16_t
iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr)
{
uint32_t tmp;
uint16_t val;
int n;
/* clock C once before the first command */
IWI_EEPROM_CTL(sc, 0);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
/* write start bit (1) */
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
/* write READ opcode (10) */
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
/* write address A7-A0 */
for (n = 7; n >= 0; n--) {
IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
(((addr >> n) & 1) << IWI_EEPROM_SHIFT_D));
IWI_EEPROM_CTL(sc, IWI_EEPROM_S |
(((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C);
}
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
/* read data Q15-Q0 */
val = 0;
for (n = 15; n >= 0; n--) {
IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C);
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL);
val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n;
}
IWI_EEPROM_CTL(sc, 0);
/* clear Chip Select and clock C */
IWI_EEPROM_CTL(sc, IWI_EEPROM_S);
IWI_EEPROM_CTL(sc, 0);
IWI_EEPROM_CTL(sc, IWI_EEPROM_C);
return val;
}
uint8_t
iwi_rate(int plcp)
{
switch (plcp) {
/* CCK rates (values are device-dependent) */
case 10: return 2;
case 20: return 4;
case 55: return 11;
case 110: return 22;
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
case 0xd: return 12;
case 0xf: return 18;
case 0x5: return 24;
case 0x7: return 36;
case 0x9: return 48;
case 0xb: return 72;
case 0x1: return 96;
case 0x3: return 108;
/* unknown rate: should not happen */
default: return 0;
}
}
void
iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data,
struct iwi_frame *frame, struct mbuf_list *ml)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct mbuf *mnew, *m;
struct ieee80211_frame *wh;
struct ieee80211_rxinfo rxi;
struct ieee80211_node *ni;
int error;
DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u\n",
letoh16(frame->len), frame->chan, frame->rssi_dbm));
if (letoh16(frame->len) < sizeof (struct ieee80211_frame_min) ||
letoh16(frame->len) > MCLBYTES) {
DPRINTF(("%s: bad frame length\n", sc->sc_dev.dv_xname));
ifp->if_ierrors++;
return;
}
/*
* Try to allocate a new mbuf for this ring element and load it before
* processing the current mbuf. If the ring element cannot be loaded,
* drop the received packet and reuse the old mbuf. In the unlikely
* case that the old mbuf can't be reloaded either, explicitly panic.
*/
MGETHDR(mnew, M_DONTWAIT, MT_DATA);
if (mnew == NULL) {
ifp->if_ierrors++;
return;
}
MCLGET(mnew, M_DONTWAIT);
if (!(mnew->m_flags & M_EXT)) {
m_freem(mnew);
ifp->if_ierrors++;
return;
}
bus_dmamap_unload(sc->sc_dmat, data->map);
error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(mnew, void *),
MCLBYTES, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(mnew);
/* try to reload the old mbuf */
error = bus_dmamap_load(sc->sc_dmat, data->map,
mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
/* very unlikely that it will fail... */
panic("%s: could not load old rx mbuf",
sc->sc_dev.dv_xname);
}
CSR_WRITE_4(sc, data->reg, data->map->dm_segs[0].ds_addr);
ifp->if_ierrors++;
return;
}
m = data->m;
data->m = mnew;
CSR_WRITE_4(sc, data->reg, data->map->dm_segs[0].ds_addr);
/* finalize mbuf */
m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) +
sizeof (struct iwi_frame) + letoh16(frame->len);
m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame));
#if NBPFILTER > 0
if (sc->sc_drvbpf != NULL) {
struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
tap->wr_rate = iwi_rate(frame->rate);
tap->wr_chan_freq =
htole16(ic->ic_channels[frame->chan].ic_freq);
tap->wr_chan_flags =
htole16(ic->ic_channels[frame->chan].ic_flags);
tap->wr_antsignal = frame->signal;
tap->wr_antenna = frame->antenna & 0x3;
if (frame->antenna & 0x40)
tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_rxtap_len,
m, BPF_DIRECTION_IN);
}
#endif
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic, wh);
/* send the frame to the upper layer */
memset(&rxi, 0, sizeof(rxi));
rxi.rxi_rssi = frame->rssi_dbm;
ieee80211_inputm(ifp, m, ni, &rxi, ml);
/* node is no longer needed */
ieee80211_release_node(ic, ni);
}
void
iwi_notification_intr(struct iwi_softc *sc, struct iwi_rx_data *data,
struct iwi_notif *notif)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
struct ifnet *ifp = &ic->ic_if;
switch (notif->type) {
case IWI_NOTIF_TYPE_SCAN_CHANNEL:
{
#ifdef IWI_DEBUG
struct iwi_notif_scan_channel *chan =
(struct iwi_notif_scan_channel *)(notif + 1);
#endif
DPRINTFN(2, ("Scanning channel (%u)\n", chan->nchan));
break;
}
case IWI_NOTIF_TYPE_SCAN_COMPLETE:
{
#ifdef IWI_DEBUG
struct iwi_notif_scan_complete *scan =
(struct iwi_notif_scan_complete *)(notif + 1);
#endif
DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan,
scan->status));
/* monitor mode uses scan to set the channel ... */
if (ic->ic_opmode != IEEE80211_M_MONITOR)
ieee80211_end_scan(ifp);
else
iwi_set_chan(sc, ic->ic_ibss_chan);
break;
}
case IWI_NOTIF_TYPE_AUTHENTICATION:
{
struct iwi_notif_authentication *auth =
(struct iwi_notif_authentication *)(notif + 1);
DPRINTFN(2, ("Authentication (%u)\n", auth->state));
switch (auth->state) {
case IWI_AUTHENTICATED:
ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
break;
case IWI_DEAUTHENTICATED:
break;
default:
printf("%s: unknown authentication state %u\n",
sc->sc_dev.dv_xname, auth->state);
}
break;
}
case IWI_NOTIF_TYPE_ASSOCIATION:
{
struct iwi_notif_association *assoc =
(struct iwi_notif_association *)(notif + 1);
DPRINTFN(2, ("Association (%u, %u)\n", assoc->state,
assoc->status));
switch (assoc->state) {
case IWI_AUTHENTICATED:
/* re-association, do nothing */
break;
case IWI_ASSOCIATED:
if (ic->ic_flags & IEEE80211_F_RSNON)
ni->ni_rsn_supp_state = RSNA_SUPP_PTKSTART;
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
break;
case IWI_DEASSOCIATED:
ieee80211_begin_scan(ifp);
break;
default:
printf("%s: unknown association state %u\n",
sc->sc_dev.dv_xname, assoc->state);
}
break;
}
case IWI_NOTIF_TYPE_BEACON:
{
struct iwi_notif_beacon *beacon =
(struct iwi_notif_beacon *)(notif + 1);
if (letoh32(beacon->status) == IWI_BEACON_MISSED) {
/* XXX should roam when too many beacons missed */
DPRINTFN(2, ("%s: %u beacon(s) missed\n",
sc->sc_dev.dv_xname, letoh32(beacon->count)));
}
break;
}
case IWI_NOTIF_TYPE_BAD_LINK:
DPRINTFN(2, ("link deterioration detected\n"));
break;
case IWI_NOTIF_TYPE_NOISE:
DPRINTFN(5, ("Measured noise %u\n",
letoh32(*(uint32_t *)(notif + 1)) & 0xff));
break;
default:
DPRINTFN(5, ("Notification (%u)\n", notif->type));
}
}
void
iwi_rx_intr(struct iwi_softc *sc)
{
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
struct iwi_rx_data *data;
struct iwi_hdr *hdr;
uint32_t hw;
hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX);
for (; sc->rxq.cur != hw;) {
data = &sc->rxq.data[sc->rxq.cur];
bus_dmamap_sync(sc->sc_dmat, data->map, 0, MCLBYTES,
BUS_DMASYNC_POSTREAD);
hdr = mtod(data->m, struct iwi_hdr *);
switch (hdr->type) {
case IWI_HDR_TYPE_FRAME:
iwi_frame_intr(sc, data,
(struct iwi_frame *)(hdr + 1), &ml);
break;
case IWI_HDR_TYPE_NOTIF:
iwi_notification_intr(sc, data,
(struct iwi_notif *)(hdr + 1));
break;
default:
printf("%s: unknown hdr type %u\n",
sc->sc_dev.dv_xname, hdr->type);
}
sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT;
}
if_input(&sc->sc_ic.ic_if, &ml);
/* tell the firmware what we have processed */
hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1;
CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw);
}
void
iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct iwi_tx_data *data;
uint32_t hw;
hw = CSR_READ_4(sc, txq->csr_ridx);
for (; txq->next != hw;) {
data = &txq->data[txq->next];
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
data->m = NULL;
ieee80211_release_node(ic, data->ni);
data->ni = NULL;
txq->queued--;
txq->next = (txq->next + 1) % IWI_TX_RING_COUNT;
}
sc->sc_tx_timer = 0;
ifq_clr_oactive(&ifp->if_snd);
(*ifp->if_start)(ifp);
}
int
iwi_intr(void *arg)
{
struct iwi_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ic.ic_if;
uint32_t r;
if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff)
return 0;
/* disable interrupts */
CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
/* acknowledge interrupts */
CSR_WRITE_4(sc, IWI_CSR_INTR, r);
if (r & IWI_INTR_FATAL_ERROR) {
printf("%s: fatal firmware error\n", sc->sc_dev.dv_xname);
iwi_stop(ifp, 1);
task_add(systq, &sc->init_task);
return 1;
}
if (r & IWI_INTR_FW_INITED)
wakeup(sc);
if (r & IWI_INTR_RADIO_OFF) {
DPRINTF(("radio transmitter off\n"));
iwi_stop(ifp, 1);
return 1;
}
if (r & IWI_INTR_CMD_DONE) {
/* kick next pending command if any */
sc->cmdq.next = (sc->cmdq.next + 1) % IWI_CMD_RING_COUNT;
if (--sc->cmdq.queued > 0)
CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.next);
wakeup(sc);
}
if (r & IWI_INTR_TX1_DONE)
iwi_tx_intr(sc, &sc->txq[0]);
if (r & IWI_INTR_TX2_DONE)
iwi_tx_intr(sc, &sc->txq[1]);
if (r & IWI_INTR_TX3_DONE)
iwi_tx_intr(sc, &sc->txq[2]);
if (r & IWI_INTR_TX4_DONE)
iwi_tx_intr(sc, &sc->txq[3]);
if (r & IWI_INTR_RX_DONE)
iwi_rx_intr(sc);
/* re-enable interrupts */
CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
return 1;
}
int
iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len, int async)
{
struct iwi_cmd_desc *desc;
desc = &sc->cmdq.desc[sc->cmdq.cur];
desc->hdr.type = IWI_HDR_TYPE_COMMAND;
desc->hdr.flags = IWI_HDR_FLAG_IRQ;
desc->type = type;
desc->len = len;
bcopy(data, desc->data, len);
bus_dmamap_sync(sc->sc_dmat, sc->cmdq.map,
sc->cmdq.cur * sizeof (struct iwi_cmd_desc),
sizeof (struct iwi_cmd_desc), BUS_DMASYNC_PREWRITE);
DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur,
type, len));
sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT;
/* don't kick cmd immediately if another async command is pending */
if (++sc->cmdq.queued == 1) {
sc->cmdq.next = sc->cmdq.cur;
CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.next);
}
return async ? 0 : tsleep_nsec(sc, PCATCH, "iwicmd", SEC_TO_NSEC(1));
}
int
iwi_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni, int type,
int arg1, int arg2)
{
return EOPNOTSUPP;
}
int
iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni)
{
struct iwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
struct iwi_tx_data *data;
struct iwi_tx_desc *desc;
struct iwi_tx_ring *txq = &sc->txq[0];
int hdrlen, error, i, station = 0;
wh = mtod(m0, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
k = ieee80211_get_txkey(ic, wh, ni);
if ((m0 = ieee80211_encrypt(ic, m0, k)) == NULL)
return ENOBUFS;
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
#if NBPFILTER > 0
if (sc->sc_drvbpf != NULL) {
struct iwi_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_txtap_len,
m0, BPF_DIRECTION_OUT);
}
#endif
data = &txq->data[txq->cur];
desc = &txq->desc[txq->cur];
/* copy and trim IEEE802.11 header */
hdrlen = ieee80211_get_hdrlen(wh);
bcopy(wh, &desc->wh, hdrlen);
m_adj(m0, hdrlen);
#ifndef IEEE80211_STA_ONLY
if (ic->ic_opmode == IEEE80211_M_IBSS) {
station = iwi_find_txnode(sc, desc->wh.i_addr1);
if (station == -1) {
m_freem(m0);
ieee80211_release_node(ic, ni);
ifp->if_oerrors++;
return 0;
}
}
#endif
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
BUS_DMA_NOWAIT);
if (error != 0 && error != EFBIG) {
printf("%s: can't map mbuf (error %d)\n",
sc->sc_dev.dv_xname, error);
m_freem(m0);
return error;
}
if (error != 0) {
/* too many fragments, linearize */
if (m_defrag(m0, M_DONTWAIT)) {
m_freem(m0);
return ENOBUFS;
}
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: can't map mbuf (error %d)\n",
sc->sc_dev.dv_xname, error);
m_freem(m0);
return error;
}
}
data->m = m0;
data->ni = ni;
desc->hdr.type = IWI_HDR_TYPE_DATA;
desc->hdr.flags = IWI_HDR_FLAG_IRQ;
desc->cmd = IWI_DATA_CMD_TX;
desc->len = htole16(m0->m_pkthdr.len);
desc->station = station;
desc->flags = IWI_DATA_FLAG_NO_WEP;
desc->xflags = 0;
if (!IEEE80211_IS_MULTICAST(desc->wh.i_addr1))
desc->flags |= IWI_DATA_FLAG_NEED_ACK;
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
desc->flags |= IWI_DATA_FLAG_SHPREAMBLE;
if ((desc->wh.i_fc[0] &
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_QOS)) ==
(IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS))
desc->xflags |= IWI_DATA_XFLAG_QOS;
if (ic->ic_curmode == IEEE80211_MODE_11B)
desc->xflags |= IWI_DATA_XFLAG_CCK;
desc->nseg = htole32(data->map->dm_nsegs);
for (i = 0; i < data->map->dm_nsegs; i++) {
desc->seg_addr[i] = htole32(data->map->dm_segs[i].ds_addr);
desc->seg_len[i] = htole16(data->map->dm_segs[i].ds_len);
}
bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, txq->map,
txq->cur * sizeof (struct iwi_tx_desc),
sizeof (struct iwi_tx_desc), BUS_DMASYNC_PREWRITE);
DPRINTFN(5, ("sending data frame idx=%u len=%u nseg=%u\n", txq->cur,
letoh16(desc->len), data->map->dm_nsegs));
txq->queued++;
txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT;
CSR_WRITE_4(sc, txq->csr_widx, txq->cur);
return 0;
}
void
iwi_start(struct ifnet *ifp)
{
struct iwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct mbuf *m0;
struct ieee80211_node *ni;
if (ic->ic_state != IEEE80211_S_RUN)
return;
for (;;) {
if (sc->txq[0].queued + IWI_MAX_NSEG + 2 >= IWI_TX_RING_COUNT) {
ifq_set_oactive(&ifp->if_snd);
break;
}
m0 = ifq_dequeue(&ifp->if_snd);
if (m0 == NULL)
break;
#if NBPFILTER > 0
if (ifp->if_bpf != NULL)
bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
#endif
m0 = ieee80211_encap(ifp, m0, &ni);
if (m0 == NULL)
continue;
#if NBPFILTER > 0
if (ic->ic_rawbpf != NULL)
bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT);
#endif
if (iwi_tx_start(ifp, m0, ni) != 0) {
if (ni != NULL)
ieee80211_release_node(ic, ni);
ifp->if_oerrors++;
break;
}
/* start watchdog timer */
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
}
void
iwi_watchdog(struct ifnet *ifp)
{
struct iwi_softc *sc = ifp->if_softc;
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
printf("%s: device timeout\n", sc->sc_dev.dv_xname);
iwi_stop(ifp, 1);
ifp->if_oerrors++;
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(ifp);
}
int
iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct iwi_softc *sc = ifp->if_softc;
int s, error = 0;
error = rw_enter(&sc->sc_rwlock, RW_WRITE | RW_INTR);
if (error)
return error;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
/* FALLTHROUGH */
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_flags & IFF_RUNNING))
iwi_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
iwi_stop(ifp, 1);
}
break;
case SIOCG80211TXPOWER:
/*
* If the hardware radio transmitter switch is off, report a
* tx power of IEEE80211_TXPOWER_MIN to indicate that radio
* transmitter is killed.
*/
((struct ieee80211_txpower *)data)->i_val =
(CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) ?
sc->sc_ic.ic_txpower : IEEE80211_TXPOWER_MIN;
break;
default:
error = ieee80211_ioctl(ifp, cmd, data);
}
if (error == ENETRESET) {
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING))
iwi_init(ifp);
error = 0;
}
splx(s);
rw_exit_write(&sc->sc_rwlock);
return error;
}
void
iwi_stop_master(struct iwi_softc *sc)
{
uint32_t tmp;
int ntries;
/* disable interrupts */
CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0);
CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER);
for (ntries = 0; ntries < 5; ntries++) {
if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
break;
DELAY(10);
}
if (ntries == 5) {
printf("%s: timeout waiting for master\n",
sc->sc_dev.dv_xname);
}
tmp = CSR_READ_4(sc, IWI_CSR_RST);
CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET);
}
int
iwi_reset(struct iwi_softc *sc)
{
uint32_t tmp;
int i, ntries;
iwi_stop_master(sc);
/* move adapter to D0 state */
tmp = CSR_READ_4(sc, IWI_CSR_CTL);
CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST);
/* wait for clock stabilization */
for (ntries = 0; ntries < 1000; ntries++) {
if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY)
break;
DELAY(200);
}
if (ntries == 1000) {
printf("%s: timeout waiting for clock stabilization\n",
sc->sc_dev.dv_xname);
return ETIMEDOUT;
}
tmp = CSR_READ_4(sc, IWI_CSR_RST);
CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SW_RESET);
DELAY(10);
tmp = CSR_READ_4(sc, IWI_CSR_CTL);
CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT);
/* clear NIC memory */
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0);
for (i = 0; i < 0xc000; i++)
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
return 0;
}
int
iwi_load_ucode(struct iwi_softc *sc, const char *data, int size)
{
const uint16_t *w;
uint32_t tmp;
int ntries, i;
tmp = CSR_READ_4(sc, IWI_CSR_RST);
CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_STOP_MASTER);
for (ntries = 0; ntries < 5; ntries++) {
if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED)
break;
DELAY(10);
}
if (ntries == 5) {
printf("%s: timeout waiting for master\n",
sc->sc_dev.dv_xname);
return ETIMEDOUT;
}
MEM_WRITE_4(sc, 0x3000e0, 0x80000000);
DELAY(5000);
tmp = CSR_READ_4(sc, IWI_CSR_RST);
CSR_WRITE_4(sc, IWI_CSR_RST, tmp & ~IWI_RST_PRINCETON_RESET);
DELAY(5000);
MEM_WRITE_4(sc, 0x3000e0, 0);
DELAY(1000);
MEM_WRITE_4(sc, IWI_MEM_EVENT_CTL, 1);
DELAY(1000);
MEM_WRITE_4(sc, IWI_MEM_EVENT_CTL, 0);
DELAY(1000);
MEM_WRITE_1(sc, 0x200000, 0x00);
MEM_WRITE_1(sc, 0x200000, 0x40);
DELAY(1000);
/* adapter is buggy, we must set the address for each word */
for (w = (const uint16_t *)data; size > 0; w++, size -= 2)
MEM_WRITE_2(sc, 0x200010, htole16(*w));
MEM_WRITE_1(sc, 0x200000, 0x00);
MEM_WRITE_1(sc, 0x200000, 0x80);
/* wait until we get an answer */
for (ntries = 0; ntries < 100; ntries++) {
if (MEM_READ_1(sc, 0x200000) & 1)
break;
DELAY(100);
}
if (ntries == 100) {
printf("%s: timeout waiting for ucode to initialize\n",
sc->sc_dev.dv_xname);
return ETIMEDOUT;
}
/* read the answer or the firmware will not initialize properly */
for (i = 0; i < 7; i++)
MEM_READ_4(sc, 0x200004);
MEM_WRITE_1(sc, 0x200000, 0x00);
return 0;
}
/* macro to handle unaligned little endian data in firmware image */
#define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
int
iwi_load_firmware(struct iwi_softc *sc, const char *data, int size)
{
bus_dmamap_t map;
bus_dma_segment_t seg;
caddr_t virtaddr;
u_char *p, *end;
uint32_t sentinel, tmp, ctl, src, dst, sum, len, mlen;
int ntries, nsegs, error;
/* allocate DMA memory to store firmware image */
error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
BUS_DMA_NOWAIT, &map);
if (error != 0) {
printf("%s: could not create firmware DMA map\n",
sc->sc_dev.dv_xname);
goto fail1;
}
error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
&nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not allocate firmware DMA memory\n",
sc->sc_dev.dv_xname);
goto fail2;
}
error = bus_dmamem_map(sc->sc_dmat, &seg, nsegs, size, &virtaddr,
BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: can't map firmware DMA memory\n",
sc->sc_dev.dv_xname);
goto fail3;
}
error = bus_dmamap_load(sc->sc_dmat, map, virtaddr, size, NULL,
BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not load firmware DMA map\n",
sc->sc_dev.dv_xname);
goto fail4;
}
/* copy firmware image to DMA memory */
bcopy(data, virtaddr, size);
/* make sure the adapter will get up-to-date values */
bus_dmamap_sync(sc->sc_dmat, map, 0, size, BUS_DMASYNC_PREWRITE);
/* tell the adapter where the command blocks are stored */
MEM_WRITE_4(sc, 0x3000a0, 0x27000);
/*
* Store command blocks into adapter's internal memory using register
* indirections. The adapter will read the firmware image through DMA
* using information stored in command blocks.
*/
src = map->dm_segs[0].ds_addr;
p = virtaddr;
end = p + size;
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000);
while (p < end) {
dst = GETLE32(p); p += 4; src += 4;
len = GETLE32(p); p += 4; src += 4;
p += len;
while (len > 0) {
mlen = min(len, IWI_CB_MAXDATALEN);
ctl = IWI_CB_DEFAULT_CTL | mlen;
sum = ctl ^ src ^ dst;
/* write a command block */
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl);
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src);
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst);
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum);
src += mlen;
dst += mlen;
len -= mlen;
}
}
/* write a fictive final command block (sentinel) */
sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR);
CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0);
tmp = CSR_READ_4(sc, IWI_CSR_RST);
tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER);
CSR_WRITE_4(sc, IWI_CSR_RST, tmp);
/* tell the adapter to start processing command blocks */
MEM_WRITE_4(sc, 0x3000a4, 0x540100);
/* wait until the adapter has processed all command blocks */
for (ntries = 0; ntries < 400; ntries++) {
if (MEM_READ_4(sc, 0x3000d0) >= sentinel)
break;
DELAY(100);
}
if (ntries == 400) {
printf("%s: timeout processing cb\n", sc->sc_dev.dv_xname);
error = ETIMEDOUT;
goto fail5;
}
/* we're done with command blocks processing */
MEM_WRITE_4(sc, 0x3000a4, 0x540c00);
/* allow interrupts so we know when the firmware is inited */
CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK);
/* tell the adapter to initialize the firmware */
CSR_WRITE_4(sc, IWI_CSR_RST, 0);
tmp = CSR_READ_4(sc, IWI_CSR_CTL);
CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY);
/* wait at most one second for firmware initialization to complete */
if ((error = tsleep_nsec(sc, PCATCH, "iwiinit", SEC_TO_NSEC(1))) != 0) {
printf("%s: timeout waiting for firmware initialization to "
"complete\n", sc->sc_dev.dv_xname);
goto fail5;
}
fail5: bus_dmamap_sync(sc->sc_dmat, map, 0, size, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, map);
fail4: bus_dmamem_unmap(sc->sc_dmat, virtaddr, size);
fail3: bus_dmamem_free(sc->sc_dmat, &seg, 1);
fail2: bus_dmamap_destroy(sc->sc_dmat, map);
fail1: return error;
}
int
iwi_config(struct iwi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct iwi_configuration config;
struct iwi_rateset rs;
struct iwi_txpower power;
uint32_t data;
int error, nchan, i;
IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
DPRINTF(("Setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
IEEE80211_ADDR_LEN, 0);
if (error != 0)
return error;
bzero(&config, sizeof config);
config.multicast_enabled = 1;
config.silence_threshold = 30;
config.report_noise = 1;
config.answer_pbreq =
#ifndef IEEE80211_STA_ONLY
(ic->ic_opmode == IEEE80211_M_IBSS) ? 1 :
#endif
0;
DPRINTF(("Configuring adapter\n"));
error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config, 0);
if (error != 0)
return error;
data = htole32(IWI_POWER_MODE_CAM);
DPRINTF(("Setting power mode to %u\n", letoh32(data)));
error = iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data, 0);
if (error != 0)
return error;
data = htole32(ic->ic_rtsthreshold);
DPRINTF(("Setting RTS threshold to %u\n", letoh32(data)));
error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data, 0);
if (error != 0)
return error;
data = htole32(ic->ic_fragthreshold);
DPRINTF(("Setting fragmentation threshold to %u\n", letoh32(data)));
error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data, 0);
if (error != 0)
return error;
/*
* Set default Tx power for 802.11b/g and 802.11a channels.
*/
nchan = 0;
for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
if (!IEEE80211_IS_CHAN_2GHZ(&ic->ic_channels[i]))
continue;
power.chan[nchan].chan = i;
power.chan[nchan].power = IWI_TXPOWER_MAX;
nchan++;
}
power.nchan = nchan;
power.mode = IWI_MODE_11G;
DPRINTF(("Setting .11g channels tx power\n"));
error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power, 0);
if (error != 0)
return error;
power.mode = IWI_MODE_11B;
DPRINTF(("Setting .11b channels tx power\n"));
error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power, 0);
if (error != 0)
return error;
nchan = 0;
for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
if (!IEEE80211_IS_CHAN_5GHZ(&ic->ic_channels[i]))
continue;
power.chan[nchan].chan = i;
power.chan[nchan].power = IWI_TXPOWER_MAX;
nchan++;
}
power.nchan = nchan;
if (nchan > 0) { /* 2915ABG only */
power.mode = IWI_MODE_11A;
DPRINTF(("Setting .11a channels tx power\n"));
error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power,
0);
if (error != 0)
return error;
}
rs.mode = IWI_MODE_11G;
rs.type = IWI_RATESET_TYPE_SUPPORTED;
rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates;
bcopy(ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates, rs.rates,
rs.nrates);
DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates));
error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs, 0);
if (error != 0)
return error;
rs.mode = IWI_MODE_11A;
rs.type = IWI_RATESET_TYPE_SUPPORTED;
rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates;
bcopy(ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates, rs.rates,
rs.nrates);
DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates));
error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs, 0);
if (error != 0)
return error;
/* if we have a desired ESSID, set it now */
if (ic->ic_des_esslen != 0) {
#ifdef IWI_DEBUG
if (iwi_debug > 0) {
printf("Setting desired ESSID to ");
ieee80211_print_essid(ic->ic_des_essid,
ic->ic_des_esslen);
printf("\n");
}
#endif
error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ic->ic_des_essid,
ic->ic_des_esslen, 0);
if (error != 0)
return error;
}
arc4random_buf(&data, sizeof data);
DPRINTF(("Setting random seed to %u\n", data));
error = iwi_cmd(sc, IWI_CMD_SET_RANDOM_SEED, &data, sizeof data, 0);
if (error != 0)
return error;
/* enable adapter */
DPRINTF(("Enabling adapter\n"));
return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0, 0);
}
void
iwi_update_edca(struct ieee80211com *ic)
{
#define IWI_EXP2(v) htole16((1 << (v)) - 1)
#define IWI_TXOP(v) IEEE80211_TXOP_TO_US(v)
struct iwi_softc *sc = ic->ic_softc;
struct iwi_qos_cmd cmd;
struct iwi_qos_params *qos;
struct ieee80211_edca_ac_params *edca = ic->ic_edca_ac;
int aci;
/* set default QoS parameters for CCK */
qos = &cmd.cck;
for (aci = 0; aci < EDCA_NUM_AC; aci++) {
qos->cwmin[aci] = IWI_EXP2(iwi_cck[aci].ac_ecwmin);
qos->cwmax[aci] = IWI_EXP2(iwi_cck[aci].ac_ecwmax);
qos->txop [aci] = IWI_TXOP(iwi_cck[aci].ac_txoplimit);
qos->aifsn[aci] = iwi_cck[aci].ac_aifsn;
qos->acm [aci] = 0;
}
/* set default QoS parameters for OFDM */
qos = &cmd.ofdm;
for (aci = 0; aci < EDCA_NUM_AC; aci++) {
qos->cwmin[aci] = IWI_EXP2(iwi_ofdm[aci].ac_ecwmin);
qos->cwmax[aci] = IWI_EXP2(iwi_ofdm[aci].ac_ecwmax);
qos->txop [aci] = IWI_TXOP(iwi_ofdm[aci].ac_txoplimit);
qos->aifsn[aci] = iwi_ofdm[aci].ac_aifsn;
qos->acm [aci] = 0;
}
/* set current QoS parameters */
qos = &cmd.current;
for (aci = 0; aci < EDCA_NUM_AC; aci++) {
qos->cwmin[aci] = IWI_EXP2(edca[aci].ac_ecwmin);
qos->cwmax[aci] = IWI_EXP2(edca[aci].ac_ecwmax);
qos->txop [aci] = IWI_TXOP(edca[aci].ac_txoplimit);
qos->aifsn[aci] = edca[aci].ac_aifsn;
qos->acm [aci] = 0;
}
DPRINTF(("Setting QoS parameters\n"));
(void)iwi_cmd(sc, IWI_CMD_SET_QOS_PARAMS, &cmd, sizeof cmd, 1);
#undef IWI_EXP2
#undef IWI_TXOP
}
int
iwi_set_chan(struct iwi_softc *sc, struct ieee80211_channel *chan)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwi_scan scan;
bzero(&scan, sizeof scan);
memset(scan.type, IWI_SCAN_TYPE_PASSIVE, sizeof scan.type);
scan.passive = htole16(2000);
scan.channels[0] = 1 |
(IEEE80211_IS_CHAN_5GHZ(chan) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ);
scan.channels[1] = ieee80211_chan2ieee(ic, chan);
DPRINTF(("Setting channel to %u\n", ieee80211_chan2ieee(ic, chan)));
return iwi_cmd(sc, IWI_CMD_SCAN, &scan, sizeof scan, 1);
}
int
iwi_scan(struct iwi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwi_scan scan;
uint8_t *p;
int i, count;
bzero(&scan, sizeof scan);
if (ic->ic_des_esslen != 0) {
scan.bdirected = htole16(40);
memset(scan.type, IWI_SCAN_TYPE_BDIRECTED, sizeof scan.type);
} else {
scan.broadcast = htole16(40);
memset(scan.type, IWI_SCAN_TYPE_BROADCAST, sizeof scan.type);
}
p = scan.channels;
count = 0;
for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
if (IEEE80211_IS_CHAN_5GHZ(&ic->ic_channels[i])) {
*++p = i;
count++;
}
}
*(p - count) = IWI_CHAN_5GHZ | count;
p = (count > 0) ? p + 1 : scan.channels;
count = 0;
for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
if (IEEE80211_IS_CHAN_2GHZ(&ic->ic_channels[i])) {
*++p = i;
count++;
}
}
*(p - count) = IWI_CHAN_2GHZ | count;
DPRINTF(("Start scanning\n"));
return iwi_cmd(sc, IWI_CMD_SCAN, &scan, sizeof scan, 1);
}
int
iwi_auth_and_assoc(struct iwi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
struct iwi_configuration config;
struct iwi_associate assoc;
struct iwi_rateset rs;
uint8_t *frm;
uint32_t data;
uint16_t capinfo;
uint8_t buf[64]; /* XXX max WPA/RSN/WMM IE length */
int error;
/* update adapter configuration */
bzero(&config, sizeof config);
config.multicast_enabled = 1;
config.disable_unicast_decryption = 1;
config.disable_multicast_decryption = 1;
config.silence_threshold = 30;
config.report_noise = 1;
config.allow_mgt = 1;
config.answer_pbreq =
#ifndef IEEE80211_STA_ONLY
(ic->ic_opmode == IEEE80211_M_IBSS) ? 1 :
#endif
0;
if (ic->ic_curmode == IEEE80211_MODE_11G)
config.bg_autodetection = 1;
DPRINTF(("Configuring adapter\n"));
error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config, 1);
if (error != 0)
return error;
#ifdef IWI_DEBUG
if (iwi_debug > 0) {
printf("Setting ESSID to ");
ieee80211_print_essid(ni->ni_essid, ni->ni_esslen);
printf("\n");
}
#endif
error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen, 1);
if (error != 0)
return error;
/* the rate set has already been "negotiated" */
rs.mode = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? IWI_MODE_11A :
IWI_MODE_11G;
rs.type = IWI_RATESET_TYPE_NEGOTIATED;
rs.nrates = ni->ni_rates.rs_nrates;
if (rs.nrates > sizeof rs.rates) {
#ifdef DIAGNOSTIC
/* should not happen since the rates are negotiated */
printf("%s: XXX too many rates (count=%d, last=%d)\n",
sc->sc_dev.dv_xname, ni->ni_rates.rs_nrates,
ni->ni_rates.rs_rates[ni->ni_rates.rs_nrates - 1] &
IEEE80211_RATE_VAL);
#endif
rs.nrates = sizeof rs.rates;
}
bcopy(ni->ni_rates.rs_rates, rs.rates, rs.nrates);
DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates));
error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs, 1);
if (error != 0)
return error;
data = htole32(ni->ni_rssi);
DPRINTF(("Setting sensitivity to %d\n", (int8_t)ni->ni_rssi));
error = iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &data, sizeof data, 1);
if (error != 0)
return error;
if (ic->ic_flags & IEEE80211_F_QOS) {
iwi_update_edca(ic);
frm = ieee80211_add_qos_capability(buf, ic);
DPRINTF(("Setting QoS Capability IE length %d\n", frm - buf));
error = iwi_cmd(sc, IWI_CMD_SET_QOS_CAP, buf, frm - buf, 1);
if (error != 0)
return error;
}
if (ic->ic_flags & IEEE80211_F_RSNON) {
/* tell firmware to add WPA/RSN IE to (re)assoc request */
if (ni->ni_rsnprotos == IEEE80211_PROTO_RSN)
frm = ieee80211_add_rsn(buf, ic, ni);
else
frm = ieee80211_add_wpa(buf, ic, ni);
DPRINTF(("Setting RSN IE length %d\n", frm - buf));
error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, buf, frm - buf, 1);
if (error != 0)
return error;
}
bzero(&assoc, sizeof assoc);
#ifndef IEEE80211_STA_ONLY
if (ic->ic_flags & IEEE80211_F_SIBSS)
assoc.type = IWI_ASSOC_SIBSS;
else
#endif
assoc.type = IWI_ASSOC_ASSOCIATE;
assoc.policy = 0;
if (ic->ic_flags & IEEE80211_F_RSNON)
assoc.policy |= htole16(IWI_ASSOC_POLICY_RSN);
if (ic->ic_flags & IEEE80211_F_QOS)
assoc.policy |= htole16(IWI_ASSOC_POLICY_QOS);
if (ic->ic_curmode == IEEE80211_MODE_11A)
assoc.mode = IWI_MODE_11A;
else if (ic->ic_curmode == IEEE80211_MODE_11B)
assoc.mode = IWI_MODE_11B;
else /* assume 802.11b/g */
assoc.mode = IWI_MODE_11G;
assoc.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
assoc.plen = IWI_ASSOC_SHPREAMBLE;
bcopy(ni->ni_tstamp, assoc.tstamp, 8);
capinfo = IEEE80211_CAPINFO_ESS;
if (ic->ic_flags & IEEE80211_F_WEPON)
capinfo |= IEEE80211_CAPINFO_PRIVACY;
if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
if (ic->ic_caps & IEEE80211_C_SHSLOT)
capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
assoc.capinfo = htole16(capinfo);
assoc.lintval = htole16(ic->ic_lintval);
assoc.intval = htole16(ni->ni_intval);
IEEE80211_ADDR_COPY(assoc.bssid, ni->ni_bssid);
#ifndef IEEE80211_STA_ONLY
if (ic->ic_opmode == IEEE80211_M_IBSS)
IEEE80211_ADDR_COPY(assoc.dst, etherbroadcastaddr);
else
#endif
IEEE80211_ADDR_COPY(assoc.dst, ni->ni_bssid);
DPRINTF(("Trying to associate to %s channel %u auth %u\n",
ether_sprintf(assoc.bssid), assoc.chan, assoc.auth));
return iwi_cmd(sc, IWI_CMD_ASSOCIATE, &assoc, sizeof assoc, 1);
}
int
iwi_init(struct ifnet *ifp)
{
struct iwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct iwi_firmware_hdr *hdr;
const char *name, *fw;
u_char *data;
size_t size;
int i, ac, error;
iwi_stop(ifp, 0);
if ((error = iwi_reset(sc)) != 0) {
printf("%s: could not reset adapter\n", sc->sc_dev.dv_xname);
goto fail1;
}
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
name = "iwi-bss";
break;
#ifndef IEEE80211_STA_ONLY
case IEEE80211_M_IBSS:
case IEEE80211_M_AHDEMO:
name = "iwi-ibss";
break;
#endif
case IEEE80211_M_MONITOR:
name = "iwi-monitor";
break;
default:
/* should not get there */
error = EINVAL;
goto fail1;
}
if ((error = loadfirmware(name, &data, &size)) != 0) {
printf("%s: error %d, could not read firmware %s\n",
sc->sc_dev.dv_xname, error, name);
goto fail1;
}
if (size < sizeof (struct iwi_firmware_hdr)) {
printf("%s: firmware image too short: %zu bytes\n",
sc->sc_dev.dv_xname, size);
error = EINVAL;
goto fail2;
}
hdr = (struct iwi_firmware_hdr *)data;
if (hdr->vermaj < 3 || hdr->bootsz == 0 || hdr->ucodesz == 0 ||
hdr->mainsz == 0) {
printf("%s: firmware image too old (need at least 3.0)\n",
sc->sc_dev.dv_xname);
error = EINVAL;
goto fail2;
}
if (size < sizeof (struct iwi_firmware_hdr) + letoh32(hdr->bootsz) +
letoh32(hdr->ucodesz) + letoh32(hdr->mainsz)) {
printf("%s: firmware image too short: %zu bytes\n",
sc->sc_dev.dv_xname, size);
error = EINVAL;
goto fail2;
}
fw = (const char *)data + sizeof (struct iwi_firmware_hdr);
if ((error = iwi_load_firmware(sc, fw, letoh32(hdr->bootsz))) != 0) {
printf("%s: could not load boot firmware\n",
sc->sc_dev.dv_xname);
goto fail2;
}
fw = (const char *)data + sizeof (struct iwi_firmware_hdr) +
letoh32(hdr->bootsz);
if ((error = iwi_load_ucode(sc, fw, letoh32(hdr->ucodesz))) != 0) {
printf("%s: could not load microcode\n", sc->sc_dev.dv_xname);
goto fail2;
}
iwi_stop_master(sc);
CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.map->dm_segs[0].ds_addr);
CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, IWI_CMD_RING_COUNT);
CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur);
for (ac = 0; ac < EDCA_NUM_AC; ac++) {
CSR_WRITE_4(sc, IWI_CSR_TX_BASE(ac),
sc->txq[ac].map->dm_segs[0].ds_addr);
CSR_WRITE_4(sc, IWI_CSR_TX_SIZE(ac), IWI_TX_RING_COUNT);
CSR_WRITE_4(sc, IWI_CSR_TX_WIDX(ac), sc->txq[ac].cur);
}
for (i = 0; i < IWI_RX_RING_COUNT; i++) {
struct iwi_rx_data *data = &sc->rxq.data[i];
CSR_WRITE_4(sc, data->reg, data->map->dm_segs[0].ds_addr);
}
CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, IWI_RX_RING_COUNT - 1);
fw = (const char *)data + sizeof (struct iwi_firmware_hdr) +
letoh32(hdr->bootsz) + letoh32(hdr->ucodesz);
if ((error = iwi_load_firmware(sc, fw, letoh32(hdr->mainsz))) != 0) {
printf("%s: could not load main firmware\n",
sc->sc_dev.dv_xname);
goto fail2;
}
free(data, M_DEVBUF, size);
if ((error = iwi_config(sc)) != 0) {
printf("%s: device configuration failed\n",
sc->sc_dev.dv_xname);
goto fail1;
}
ifq_clr_oactive(&ifp->if_snd);
ifp->if_flags |= IFF_RUNNING;
if (ic->ic_opmode != IEEE80211_M_MONITOR)
ieee80211_begin_scan(ifp);
else
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
return 0;
fail2: free(data, M_DEVBUF, size);
fail1: iwi_stop(ifp, 0);
return error;
}
void
iwi_stop(struct ifnet *ifp, int disable)
{
struct iwi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int ac;
sc->sc_tx_timer = 0;
ifp->if_timer = 0;
ifp->if_flags &= ~IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
iwi_stop_master(sc);
CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SW_RESET);
/* reset rings */
iwi_reset_cmd_ring(sc, &sc->cmdq);
for (ac = 0; ac < EDCA_NUM_AC; ac++)
iwi_reset_tx_ring(sc, &sc->txq[ac]);
iwi_reset_rx_ring(sc, &sc->rxq);
}
struct cfdriver iwi_cd = {
NULL, "iwi", DV_IFNET
};