src/sys/dev/pci/if_jme.c

2309 lines
60 KiB
C

/* $OpenBSD: if_jme.c,v 1.57 2023/11/10 15:51:20 bluhm Exp $ */
/*-
* Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD: src/sys/dev/jme/if_jme.c,v 1.2 2008/07/18 04:20:48 yongari Exp $
* $DragonFly: src/sys/dev/netif/jme/if_jme.c,v 1.7 2008/09/13 04:04:39 sephe Exp $
*/
#include "bpfilter.h"
#include "vlan.h"
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/queue.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/timeout.h>
#include <sys/socket.h>
#include <machine/bus.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <dev/mii/miivar.h>
#include <dev/mii/jmphyreg.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_jmereg.h>
#include <dev/pci/if_jmevar.h>
/* Define the following to disable printing Rx errors. */
#undef JME_SHOW_ERRORS
int jme_match(struct device *, void *, void *);
void jme_map_intr_vector(struct jme_softc *);
void jme_attach(struct device *, struct device *, void *);
int jme_detach(struct device *, int);
int jme_miibus_readreg(struct device *, int, int);
void jme_miibus_writereg(struct device *, int, int, int);
void jme_miibus_statchg(struct device *);
int jme_init(struct ifnet *);
int jme_ioctl(struct ifnet *, u_long, caddr_t);
void jme_start(struct ifnet *);
void jme_watchdog(struct ifnet *);
void jme_mediastatus(struct ifnet *, struct ifmediareq *);
int jme_mediachange(struct ifnet *);
int jme_intr(void *);
void jme_txeof(struct jme_softc *);
void jme_rxeof(struct jme_softc *);
int jme_dma_alloc(struct jme_softc *);
void jme_dma_free(struct jme_softc *);
int jme_init_rx_ring(struct jme_softc *);
void jme_init_tx_ring(struct jme_softc *);
void jme_init_ssb(struct jme_softc *);
int jme_newbuf(struct jme_softc *, struct jme_rxdesc *);
int jme_encap(struct jme_softc *, struct mbuf *);
void jme_rxpkt(struct jme_softc *);
void jme_tick(void *);
void jme_stop(struct jme_softc *);
void jme_reset(struct jme_softc *);
void jme_set_vlan(struct jme_softc *);
void jme_iff(struct jme_softc *);
void jme_stop_tx(struct jme_softc *);
void jme_stop_rx(struct jme_softc *);
void jme_mac_config(struct jme_softc *);
void jme_reg_macaddr(struct jme_softc *, uint8_t[]);
int jme_eeprom_macaddr(struct jme_softc *, uint8_t[]);
int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
void jme_discard_rxbufs(struct jme_softc *, int, int);
#ifdef notyet
void jme_setwol(struct jme_softc *);
void jme_setlinkspeed(struct jme_softc *);
#endif
/*
* Devices supported by this driver.
*/
const struct pci_matchid jme_devices[] = {
{ PCI_VENDOR_JMICRON, PCI_PRODUCT_JMICRON_JMC250 },
{ PCI_VENDOR_JMICRON, PCI_PRODUCT_JMICRON_JMC260 }
};
const struct cfattach jme_ca = {
sizeof (struct jme_softc), jme_match, jme_attach
};
struct cfdriver jme_cd = {
NULL, "jme", DV_IFNET
};
int jmedebug = 0;
#define DPRINTF(x) do { if (jmedebug) printf x; } while (0)
/*
* Read a PHY register on the MII of the JMC250.
*/
int
jme_miibus_readreg(struct device *dev, int phy, int reg)
{
struct jme_softc *sc = (struct jme_softc *)dev;
uint32_t val;
int i;
/* For FPGA version, PHY address 0 should be ignored. */
if ((sc->jme_caps & JME_CAP_FPGA) && phy == 0)
return (0);
CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
for (i = JME_PHY_TIMEOUT; i > 0; i--) {
DELAY(1);
if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
break;
}
if (i == 0) {
printf("%s: phy read timeout: phy %d, reg %d\n",
sc->sc_dev.dv_xname, phy, reg);
return (0);
}
return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
}
/*
* Write a PHY register on the MII of the JMC250.
*/
void
jme_miibus_writereg(struct device *dev, int phy, int reg, int val)
{
struct jme_softc *sc = (struct jme_softc *)dev;
int i;
/* For FPGA version, PHY address 0 should be ignored. */
if ((sc->jme_caps & JME_CAP_FPGA) && phy == 0)
return;
CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
for (i = JME_PHY_TIMEOUT; i > 0; i--) {
DELAY(1);
if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
break;
}
if (i == 0) {
printf("%s: phy write timeout: phy %d, reg %d\n",
sc->sc_dev.dv_xname, phy, reg);
}
}
/*
* Callback from MII layer when media changes.
*/
void
jme_miibus_statchg(struct device *dev)
{
struct jme_softc *sc = (struct jme_softc *)dev;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct mii_data *mii;
struct jme_txdesc *txd;
bus_addr_t paddr;
int i;
if ((ifp->if_flags & IFF_RUNNING) == 0)
return;
mii = &sc->sc_miibus;
sc->jme_flags &= ~JME_FLAG_LINK;
if ((mii->mii_media_status & IFM_AVALID) != 0) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
sc->jme_flags |= JME_FLAG_LINK;
break;
case IFM_1000_T:
if (sc->jme_caps & JME_CAP_FASTETH)
break;
sc->jme_flags |= JME_FLAG_LINK;
break;
default:
break;
}
}
/*
* Disabling Rx/Tx MACs have a side-effect of resetting
* JME_TXNDA/JME_RXNDA register to the first address of
* Tx/Rx descriptor address. So driver should reset its
* internal producer/consumer pointer and reclaim any
* allocated resources. Note, just saving the value of
* JME_TXNDA and JME_RXNDA registers before stopping MAC
* and restoring JME_TXNDA/JME_RXNDA register is not
* sufficient to make sure correct MAC state because
* stopping MAC operation can take a while and hardware
* might have updated JME_TXNDA/JME_RXNDA registers
* during the stop operation.
*/
/* Disable interrupts */
CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
/* Stop driver */
ifp->if_flags &= ~IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
ifp->if_timer = 0;
timeout_del(&sc->jme_tick_ch);
/* Stop receiver/transmitter. */
jme_stop_rx(sc);
jme_stop_tx(sc);
jme_rxeof(sc);
m_freem(sc->jme_cdata.jme_rxhead);
JME_RXCHAIN_RESET(sc);
jme_txeof(sc);
if (sc->jme_cdata.jme_tx_cnt != 0) {
/* Remove queued packets for transmit. */
for (i = 0; i < JME_TX_RING_CNT; i++) {
txd = &sc->jme_cdata.jme_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
txd->tx_ndesc = 0;
ifp->if_oerrors++;
}
}
}
/*
* Reuse configured Rx descriptors and reset
* producer/consumer index.
*/
sc->jme_cdata.jme_rx_cons = 0;
jme_init_tx_ring(sc);
/* Initialize shadow status block. */
jme_init_ssb(sc);
/* Program MAC with resolved speed/duplex/flow-control. */
if (sc->jme_flags & JME_FLAG_LINK) {
jme_mac_config(sc);
CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
/* Set Tx ring address to the hardware. */
paddr = JME_TX_RING_ADDR(sc, 0);
CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
/* Set Rx ring address to the hardware. */
paddr = JME_RX_RING_ADDR(sc, 0);
CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
/* Restart receiver/transmitter. */
CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
RXCSR_RXQ_START);
CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
}
ifp->if_flags |= IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
timeout_add_sec(&sc->jme_tick_ch, 1);
/* Reenable interrupts. */
CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
}
/*
* Get the current interface media status.
*/
void
jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct jme_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_miibus;
mii_pollstat(mii);
ifmr->ifm_status = mii->mii_media_status;
ifmr->ifm_active = mii->mii_media_active;
}
/*
* Set hardware to newly-selected media.
*/
int
jme_mediachange(struct ifnet *ifp)
{
struct jme_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_miibus;
int error;
if (mii->mii_instance != 0) {
struct mii_softc *miisc;
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
mii_phy_reset(miisc);
}
error = mii_mediachg(mii);
return (error);
}
int
jme_match(struct device *dev, void *match, void *aux)
{
return pci_matchbyid((struct pci_attach_args *)aux, jme_devices,
sizeof (jme_devices) / sizeof (jme_devices[0]));
}
int
jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
{
uint32_t reg;
int i;
*val = 0;
for (i = JME_TIMEOUT; i > 0; i--) {
reg = CSR_READ_4(sc, JME_SMBCSR);
if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
break;
DELAY(1);
}
if (i == 0) {
printf("%s: EEPROM idle timeout!\n", sc->sc_dev.dv_xname);
return (ETIMEDOUT);
}
reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
for (i = JME_TIMEOUT; i > 0; i--) {
DELAY(1);
reg = CSR_READ_4(sc, JME_SMBINTF);
if ((reg & SMBINTF_CMD_TRIGGER) == 0)
break;
}
if (i == 0) {
printf("%s: EEPROM read timeout!\n", sc->sc_dev.dv_xname);
return (ETIMEDOUT);
}
reg = CSR_READ_4(sc, JME_SMBINTF);
*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
return (0);
}
int
jme_eeprom_macaddr(struct jme_softc *sc, uint8_t eaddr[])
{
uint8_t fup, reg, val;
uint32_t offset;
int match;
offset = 0;
if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
fup != JME_EEPROM_SIG0)
return (ENOENT);
if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
fup != JME_EEPROM_SIG1)
return (ENOENT);
match = 0;
do {
if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
break;
if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
(fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
break;
if (reg >= JME_PAR0 &&
reg < JME_PAR0 + ETHER_ADDR_LEN) {
if (jme_eeprom_read_byte(sc, offset + 2,
&val) != 0)
break;
eaddr[reg - JME_PAR0] = val;
match++;
}
}
/* Check for the end of EEPROM descriptor. */
if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
break;
/* Try next eeprom descriptor. */
offset += JME_EEPROM_DESC_BYTES;
} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
if (match == ETHER_ADDR_LEN)
return (0);
return (ENOENT);
}
void
jme_reg_macaddr(struct jme_softc *sc, uint8_t eaddr[])
{
uint32_t par0, par1;
/* Read station address. */
par0 = CSR_READ_4(sc, JME_PAR0);
par1 = CSR_READ_4(sc, JME_PAR1);
par1 &= 0xFFFF;
eaddr[0] = (par0 >> 0) & 0xFF;
eaddr[1] = (par0 >> 8) & 0xFF;
eaddr[2] = (par0 >> 16) & 0xFF;
eaddr[3] = (par0 >> 24) & 0xFF;
eaddr[4] = (par1 >> 0) & 0xFF;
eaddr[5] = (par1 >> 8) & 0xFF;
}
void
jme_map_intr_vector(struct jme_softc *sc)
{
uint32_t map[MSINUM_NUM_INTR_SOURCE / JME_MSI_MESSAGES];
bzero(map, sizeof(map));
/* Map Tx interrupts source to MSI/MSIX vector 2. */
map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)] =
MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP);
map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)] |=
MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP);
map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)] |=
MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP);
map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)] |=
MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP);
map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP);
map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP);
map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)] |=
MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP);
map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)] |=
MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP);
map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)] |=
MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL);
map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)] |=
MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO);
/* Map Rx interrupts source to MSI/MSIX vector 1. */
map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP);
map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP);
map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP);
map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP);
map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY);
map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY);
map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY);
map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY);
map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL);
map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL);
map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL);
map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL);
map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO);
map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO);
map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO);
map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)] =
MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO);
/* Map all other interrupts source to MSI/MSIX vector 0. */
CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0]);
CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1]);
CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2]);
CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3]);
}
void
jme_attach(struct device *parent, struct device *self, void *aux)
{
struct jme_softc *sc = (struct jme_softc *)self;
struct pci_attach_args *pa = aux;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr;
pcireg_t memtype;
struct ifnet *ifp;
uint32_t reg;
int error = 0;
/*
* Allocate IO memory
*
* JMC250 supports both memory mapped and I/O register space
* access. Because I/O register access should use different
* BARs to access registers it's waste of time to use I/O
* register space access. JMC250 uses 16K to map entire memory
* space.
*/
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, JME_PCIR_BAR);
if (pci_mapreg_map(pa, JME_PCIR_BAR, memtype, 0, &sc->jme_mem_bt,
&sc->jme_mem_bh, NULL, &sc->jme_mem_size, 0)) {
printf(": can't map mem space\n");
return;
}
if (pci_intr_map_msi(pa, &ih) == 0)
jme_map_intr_vector(sc);
else if (pci_intr_map(pa, &ih) != 0) {
printf(": can't map interrupt\n");
return;
}
/*
* Allocate IRQ
*/
intrstr = pci_intr_string(pc, ih);
sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, jme_intr, sc,
sc->sc_dev.dv_xname);
if (sc->sc_irq_handle == NULL) {
printf(": could not establish interrupt");
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
return;
}
printf(": %s", intrstr);
sc->sc_dmat = pa->pa_dmat;
sc->jme_pct = pa->pa_pc;
sc->jme_pcitag = pa->pa_tag;
/*
* Extract FPGA revision
*/
reg = CSR_READ_4(sc, JME_CHIPMODE);
if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
CHIPMODE_NOT_FPGA) {
sc->jme_caps |= JME_CAP_FPGA;
if (jmedebug) {
printf("%s: FPGA revision : 0x%04x\n",
sc->sc_dev.dv_xname,
(reg & CHIPMODE_FPGA_REV_MASK) >>
CHIPMODE_FPGA_REV_SHIFT);
}
}
sc->jme_revfm = (reg & CHIPMODE_REVFM_MASK) >> CHIPMODE_REVFM_SHIFT;
if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_JMICRON_JMC250 &&
PCI_REVISION(pa->pa_class) == JME_REV_JMC250_A2)
sc->jme_workaround |= JME_WA_CRCERRORS | JME_WA_PACKETLOSS;
/* Reset the ethernet controller. */
jme_reset(sc);
/* Get station address. */
reg = CSR_READ_4(sc, JME_SMBCSR);
if (reg & SMBCSR_EEPROM_PRESENT)
error = jme_eeprom_macaddr(sc, sc->sc_arpcom.ac_enaddr);
if (error != 0 || (reg & SMBCSR_EEPROM_PRESENT) == 0) {
if (error != 0 && (jmedebug)) {
printf("%s: ethernet hardware address "
"not found in EEPROM.\n", sc->sc_dev.dv_xname);
}
jme_reg_macaddr(sc, sc->sc_arpcom.ac_enaddr);
}
printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
/*
* Save PHY address.
* Integrated JR0211 has fixed PHY address whereas FPGA version
* requires PHY probing to get correct PHY address.
*/
if ((sc->jme_caps & JME_CAP_FPGA) == 0) {
sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
GPREG0_PHY_ADDR_MASK;
if (jmedebug) {
printf("%s: PHY is at address %d.\n",
sc->sc_dev.dv_xname, sc->jme_phyaddr);
}
} else {
sc->jme_phyaddr = 0;
}
/* Set max allowable DMA size. */
sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
#ifdef notyet
if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0)
sc->jme_caps |= JME_CAP_PMCAP;
#endif
/* Allocate DMA stuffs */
error = jme_dma_alloc(sc);
if (error)
goto fail;
ifp = &sc->sc_arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = jme_ioctl;
ifp->if_start = jme_start;
ifp->if_watchdog = jme_watchdog;
ifq_init_maxlen(&ifp->if_snd, JME_TX_RING_CNT - 1);
strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_CSUM_IPv4 |
IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4 | IFCAP_CSUM_TCPv6 |
IFCAP_CSUM_UDPv6;
#if NVLAN > 0
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
#endif
/* Set up MII bus. */
sc->sc_miibus.mii_ifp = ifp;
sc->sc_miibus.mii_readreg = jme_miibus_readreg;
sc->sc_miibus.mii_writereg = jme_miibus_writereg;
sc->sc_miibus.mii_statchg = jme_miibus_statchg;
ifmedia_init(&sc->sc_miibus.mii_media, 0, jme_mediachange,
jme_mediastatus);
mii_attach(self, &sc->sc_miibus, 0xffffffff,
sc->jme_caps & JME_CAP_FPGA ? MII_PHY_ANY : sc->jme_phyaddr,
MII_OFFSET_ANY, MIIF_DOPAUSE);
if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
0, NULL);
ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
} else
ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
/*
* Save PHYADDR for FPGA mode PHY not handled, not production hw
*/
if_attach(ifp);
ether_ifattach(ifp);
timeout_set(&sc->jme_tick_ch, jme_tick, sc);
return;
fail:
jme_detach(&sc->sc_dev, 0);
}
int
jme_detach(struct device *self, int flags)
{
struct jme_softc *sc = (struct jme_softc *)self;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
int s;
s = splnet();
jme_stop(sc);
splx(s);
mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
/* Delete all remaining media. */
ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
ether_ifdetach(ifp);
if_detach(ifp);
jme_dma_free(sc);
if (sc->sc_irq_handle != NULL) {
pci_intr_disestablish(sc->jme_pct, sc->sc_irq_handle);
sc->sc_irq_handle = NULL;
}
return (0);
}
int
jme_dma_alloc(struct jme_softc *sc)
{
struct jme_txdesc *txd;
struct jme_rxdesc *rxd;
int error, i, nsegs;
/*
* Create DMA stuffs for TX ring
*/
error = bus_dmamap_create(sc->sc_dmat, JME_TX_RING_SIZE, 1,
JME_TX_RING_SIZE, 0, BUS_DMA_NOWAIT,
&sc->jme_cdata.jme_tx_ring_map);
if (error)
return (ENOBUFS);
/* Allocate DMA'able memory for TX ring */
error = bus_dmamem_alloc(sc->sc_dmat, JME_TX_RING_SIZE, ETHER_ALIGN, 0,
&sc->jme_rdata.jme_tx_ring_seg, 1, &nsegs,
BUS_DMA_WAITOK);
/* XXX zero */
if (error) {
printf("%s: could not allocate DMA'able memory for Tx ring.\n",
sc->sc_dev.dv_xname);
return error;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->jme_rdata.jme_tx_ring_seg,
nsegs, JME_TX_RING_SIZE, (caddr_t *)&sc->jme_rdata.jme_tx_ring,
BUS_DMA_NOWAIT);
if (error)
return (ENOBUFS);
/* Load the DMA map for Tx ring. */
error = bus_dmamap_load(sc->sc_dmat,
sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring,
JME_TX_RING_SIZE, NULL, BUS_DMA_NOWAIT);
if (error) {
printf("%s: could not load DMA'able memory for Tx ring.\n",
sc->sc_dev.dv_xname);
bus_dmamem_free(sc->sc_dmat,
(bus_dma_segment_t *)&sc->jme_rdata.jme_tx_ring, 1);
return error;
}
sc->jme_rdata.jme_tx_ring_paddr =
sc->jme_cdata.jme_tx_ring_map->dm_segs[0].ds_addr;
/*
* Create DMA stuffs for RX ring
*/
error = bus_dmamap_create(sc->sc_dmat, JME_RX_RING_SIZE, 1,
JME_RX_RING_SIZE, 0, BUS_DMA_NOWAIT,
&sc->jme_cdata.jme_rx_ring_map);
if (error)
return (ENOBUFS);
/* Allocate DMA'able memory for RX ring */
error = bus_dmamem_alloc(sc->sc_dmat, JME_RX_RING_SIZE, ETHER_ALIGN, 0,
&sc->jme_rdata.jme_rx_ring_seg, 1, &nsegs,
BUS_DMA_WAITOK | BUS_DMA_ZERO);
/* XXX zero */
if (error) {
printf("%s: could not allocate DMA'able memory for Rx ring.\n",
sc->sc_dev.dv_xname);
return error;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->jme_rdata.jme_rx_ring_seg,
nsegs, JME_RX_RING_SIZE, (caddr_t *)&sc->jme_rdata.jme_rx_ring,
BUS_DMA_NOWAIT);
if (error)
return (ENOBUFS);
/* Load the DMA map for Rx ring. */
error = bus_dmamap_load(sc->sc_dmat,
sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring,
JME_RX_RING_SIZE, NULL, BUS_DMA_NOWAIT);
if (error) {
printf("%s: could not load DMA'able memory for Rx ring.\n",
sc->sc_dev.dv_xname);
bus_dmamem_free(sc->sc_dmat,
(bus_dma_segment_t *)sc->jme_rdata.jme_rx_ring, 1);
return error;
}
sc->jme_rdata.jme_rx_ring_paddr =
sc->jme_cdata.jme_rx_ring_map->dm_segs[0].ds_addr;
#if 0
/* Tx/Rx descriptor queue should reside within 4GB boundary. */
tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr + JME_TX_RING_SIZE;
rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr + JME_RX_RING_SIZE;
if ((JME_ADDR_HI(tx_ring_end) !=
JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) ||
(JME_ADDR_HI(rx_ring_end) !=
JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) {
printf("%s: 4GB boundary crossed, switching to 32bit "
"DMA address mode.\n", sc->sc_dev.dv_xname);
jme_dma_free(sc);
/* Limit DMA address space to 32bit and try again. */
lowaddr = BUS_SPACE_MAXADDR_32BIT;
goto again;
}
#endif
/*
* Create DMA stuffs for shadow status block
*/
error = bus_dmamap_create(sc->sc_dmat, JME_SSB_SIZE, 1,
JME_SSB_SIZE, 0, BUS_DMA_NOWAIT, &sc->jme_cdata.jme_ssb_map);
if (error)
return (ENOBUFS);
/* Allocate DMA'able memory for shared status block. */
error = bus_dmamem_alloc(sc->sc_dmat, JME_SSB_SIZE, 1, 0,
&sc->jme_rdata.jme_ssb_block_seg, 1, &nsegs, BUS_DMA_WAITOK);
if (error) {
printf("%s: could not allocate DMA'able "
"memory for shared status block.\n", sc->sc_dev.dv_xname);
return error;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->jme_rdata.jme_ssb_block_seg,
nsegs, JME_SSB_SIZE, (caddr_t *)&sc->jme_rdata.jme_ssb_block,
BUS_DMA_NOWAIT);
if (error)
return (ENOBUFS);
/* Load the DMA map for shared status block */
error = bus_dmamap_load(sc->sc_dmat,
sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block,
JME_SSB_SIZE, NULL, BUS_DMA_NOWAIT);
if (error) {
printf("%s: could not load DMA'able memory "
"for shared status block.\n", sc->sc_dev.dv_xname);
bus_dmamem_free(sc->sc_dmat,
(bus_dma_segment_t *)sc->jme_rdata.jme_ssb_block, 1);
return error;
}
sc->jme_rdata.jme_ssb_block_paddr =
sc->jme_cdata.jme_ssb_map->dm_segs[0].ds_addr;
/*
* Create DMA stuffs for TX buffers
*/
/* Create DMA maps for Tx buffers. */
for (i = 0; i < JME_TX_RING_CNT; i++) {
txd = &sc->jme_cdata.jme_txdesc[i];
error = bus_dmamap_create(sc->sc_dmat, JME_TSO_MAXSIZE,
JME_MAXTXSEGS, JME_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
&txd->tx_dmamap);
if (error) {
int j;
printf("%s: could not create %dth Tx dmamap.\n",
sc->sc_dev.dv_xname, i);
for (j = 0; j < i; ++j) {
txd = &sc->jme_cdata.jme_txdesc[j];
bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
}
return error;
}
}
/*
* Create DMA stuffs for RX buffers
*/
/* Create DMA maps for Rx buffers. */
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
0, BUS_DMA_NOWAIT, &sc->jme_cdata.jme_rx_sparemap);
if (error) {
printf("%s: could not create spare Rx dmamap.\n",
sc->sc_dev.dv_xname);
return error;
}
for (i = 0; i < JME_RX_RING_CNT; i++) {
rxd = &sc->jme_cdata.jme_rxdesc[i];
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
if (error) {
int j;
printf("%s: could not create %dth Rx dmamap.\n",
sc->sc_dev.dv_xname, i);
for (j = 0; j < i; ++j) {
rxd = &sc->jme_cdata.jme_rxdesc[j];
bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
}
bus_dmamap_destroy(sc->sc_dmat,
sc->jme_cdata.jme_rx_sparemap);
sc->jme_cdata.jme_rx_tag = NULL;
return error;
}
}
return 0;
}
void
jme_dma_free(struct jme_softc *sc)
{
struct jme_txdesc *txd;
struct jme_rxdesc *rxd;
int i;
/* Tx ring */
bus_dmamap_unload(sc->sc_dmat,
sc->jme_cdata.jme_tx_ring_map);
bus_dmamem_free(sc->sc_dmat,
(bus_dma_segment_t *)sc->jme_rdata.jme_tx_ring, 1);
/* Rx ring */
bus_dmamap_unload(sc->sc_dmat,
sc->jme_cdata.jme_rx_ring_map);
bus_dmamem_free(sc->sc_dmat,
(bus_dma_segment_t *)sc->jme_rdata.jme_rx_ring, 1);
/* Tx buffers */
for (i = 0; i < JME_TX_RING_CNT; i++) {
txd = &sc->jme_cdata.jme_txdesc[i];
bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
}
/* Rx buffers */
for (i = 0; i < JME_RX_RING_CNT; i++) {
rxd = &sc->jme_cdata.jme_rxdesc[i];
bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
}
bus_dmamap_destroy(sc->sc_dmat,
sc->jme_cdata.jme_rx_sparemap);
/* Shadow status block. */
bus_dmamap_unload(sc->sc_dmat,
sc->jme_cdata.jme_ssb_map);
bus_dmamem_free(sc->sc_dmat,
(bus_dma_segment_t *)sc->jme_rdata.jme_ssb_block, 1);
}
#ifdef notyet
/*
* Unlike other ethernet controllers, JMC250 requires
* explicit resetting link speed to 10/100Mbps as gigabit
* link will consume more power than 375mA.
* Note, we reset the link speed to 10/100Mbps with
* auto-negotiation but we don't know whether that operation
* would succeed or not as we have no control after powering
* off. If the renegotiation fail WOL may not work. Running
* at 1Gbps draws more power than 375mA at 3.3V which is
* specified in PCI specification and that would result in
* a complete shutdown of power to the ethernet controller.
*
* TODO
* Save current negotiated media speed/duplex/flow-control
* to softc and restore the same link again after resuming.
* PHY handling such as power down/resetting to 100Mbps
* may be better handled in suspend method in phy driver.
*/
void
jme_setlinkspeed(struct jme_softc *sc)
{
struct mii_data *mii;
int aneg, i;
JME_LOCK_ASSERT(sc);
mii = &sc->sc_miibus;
mii_pollstat(mii);
aneg = 0;
if ((mii->mii_media_status & IFM_AVALID) != 0) {
switch IFM_SUBTYPE(mii->mii_media_active) {
case IFM_10_T:
case IFM_100_TX:
return;
case IFM_1000_T:
aneg++;
default:
break;
}
}
jme_miibus_writereg(&sc->sc_dev, sc->jme_phyaddr, MII_100T2CR, 0);
jme_miibus_writereg(&sc->sc_dev, sc->jme_phyaddr, MII_ANAR,
ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
jme_miibus_writereg(&sc->sc_dev, sc->jme_phyaddr, MII_BMCR,
BMCR_AUTOEN | BMCR_STARTNEG);
DELAY(1000);
if (aneg != 0) {
/* Poll link state until jme(4) get a 10/100 link. */
for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
mii_pollstat(mii);
if ((mii->mii_media_status & IFM_AVALID) != 0) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
jme_mac_config(sc);
return;
default:
break;
}
}
JME_UNLOCK(sc);
pause("jmelnk", hz);
JME_LOCK(sc);
}
if (i == MII_ANEGTICKS_GIGE)
printf("%s: establishing link failed, "
"WOL may not work!\n", sc->sc_dev.dv_xname);
}
/*
* No link, force MAC to have 100Mbps, full-duplex link.
* This is the last resort and may/may not work.
*/
mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
jme_mac_config(sc);
}
void
jme_setwol(struct jme_softc *sc)
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
uint32_t gpr, pmcs;
uint16_t pmstat;
int pmc;
if (pci_find_extcap(sc->sc_dev, PCIY_PMG, &pmc) != 0) {
/* No PME capability, PHY power down. */
jme_miibus_writereg(&sc->sc_dev, sc->jme_phyaddr,
MII_BMCR, BMCR_PDOWN);
return;
}
gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
pmcs = CSR_READ_4(sc, JME_PMCS);
pmcs &= ~PMCS_WOL_ENB_MASK;
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
/* Enable PME message. */
gpr |= GPREG0_PME_ENB;
/* For gigabit controllers, reset link speed to 10/100. */
if ((sc->jme_caps & JME_CAP_FASTETH) == 0)
jme_setlinkspeed(sc);
}
CSR_WRITE_4(sc, JME_PMCS, pmcs);
CSR_WRITE_4(sc, JME_GPREG0, gpr);
/* Request PME. */
pmstat = pci_read_config(sc->sc_dev, pmc + PCIR_POWER_STATUS, 2);
pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
if ((ifp->if_capenable & IFCAP_WOL) != 0)
pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->sc_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
if ((ifp->if_capenable & IFCAP_WOL) == 0) {
/* No WOL, PHY power down. */
jme_miibus_writereg(&sc->sc_dev, sc->jme_phyaddr,
MII_BMCR, BMCR_PDOWN);
}
}
#endif
int
jme_encap(struct jme_softc *sc, struct mbuf *m)
{
struct jme_txdesc *txd;
struct jme_desc *desc;
int error, i, prod;
uint32_t cflags;
prod = sc->jme_cdata.jme_tx_prod;
txd = &sc->jme_cdata.jme_txdesc[prod];
error = bus_dmamap_load_mbuf(sc->sc_dmat, txd->tx_dmamap,
m, BUS_DMA_NOWAIT);
if (error != 0 && error != EFBIG)
goto drop;
if (error != 0) {
if (m_defrag(m, M_DONTWAIT)) {
error = ENOBUFS;
goto drop;
}
error = bus_dmamap_load_mbuf(sc->sc_dmat, txd->tx_dmamap,
m, BUS_DMA_NOWAIT);
if (error != 0)
goto drop;
}
cflags = 0;
/* Configure checksum offload. */
if (m->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
cflags |= JME_TD_IPCSUM;
if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
cflags |= JME_TD_TCPCSUM;
if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
cflags |= JME_TD_UDPCSUM;
#if NVLAN > 0
/* Configure VLAN. */
if (m->m_flags & M_VLANTAG) {
cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK);
cflags |= JME_TD_VLAN_TAG;
}
#endif
desc = &sc->jme_rdata.jme_tx_ring[prod];
desc->flags = htole32(cflags);
desc->buflen = 0;
desc->addr_hi = htole32(m->m_pkthdr.len);
desc->addr_lo = 0;
sc->jme_cdata.jme_tx_cnt++;
JME_DESC_INC(prod, JME_TX_RING_CNT);
for (i = 0; i < txd->tx_dmamap->dm_nsegs; i++) {
desc = &sc->jme_rdata.jme_tx_ring[prod];
desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
desc->buflen = htole32(txd->tx_dmamap->dm_segs[i].ds_len);
desc->addr_hi =
htole32(JME_ADDR_HI(txd->tx_dmamap->dm_segs[i].ds_addr));
desc->addr_lo =
htole32(JME_ADDR_LO(txd->tx_dmamap->dm_segs[i].ds_addr));
sc->jme_cdata.jme_tx_cnt++;
JME_DESC_INC(prod, JME_TX_RING_CNT);
}
/* Update producer index. */
sc->jme_cdata.jme_tx_prod = prod;
/*
* Finally request interrupt and give the first descriptor
* ownership to hardware.
*/
desc = txd->tx_desc;
desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
txd->tx_m = m;
txd->tx_ndesc = txd->tx_dmamap->dm_nsegs + JME_TXD_RSVD;
/* Sync descriptors. */
bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, sc->jme_cdata.jme_tx_ring_map, 0,
sc->jme_cdata.jme_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
return (0);
drop:
m_freem(m);
return (error);
}
void
jme_start(struct ifnet *ifp)
{
struct jme_softc *sc = ifp->if_softc;
struct mbuf *m;
int enq = 0;
/* Reclaim transmitted frames. */
if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT)
jme_txeof(sc);
if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
return;
if ((sc->jme_flags & JME_FLAG_LINK) == 0)
return;
if (ifq_empty(&ifp->if_snd))
return;
for (;;) {
/*
* Check number of available TX descs, always
* leave JME_TXD_RSVD free TX descs.
*/
if (sc->jme_cdata.jme_tx_cnt + JME_TXD_RSVD >
JME_TX_RING_CNT - JME_TXD_RSVD) {
ifq_set_oactive(&ifp->if_snd);
break;
}
m = ifq_dequeue(&ifp->if_snd);
if (m == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (jme_encap(sc, m) != 0) {
ifp->if_oerrors++;
continue;
}
enq++;
#if NBPFILTER > 0
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf != NULL)
bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_OUT);
#endif
}
if (enq > 0) {
/*
* Reading TXCSR takes very long time under heavy load
* so cache TXCSR value and writes the ORed value with
* the kick command to the TXCSR. This saves one register
* access cycle.
*/
CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
TXCSR_TXQ_N_START(TXCSR_TXQ0));
/* Set a timeout in case the chip goes out to lunch. */
ifp->if_timer = JME_TX_TIMEOUT;
}
}
void
jme_watchdog(struct ifnet *ifp)
{
struct jme_softc *sc = ifp->if_softc;
if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
printf("%s: watchdog timeout (missed link)\n",
sc->sc_dev.dv_xname);
ifp->if_oerrors++;
jme_init(ifp);
return;
}
jme_txeof(sc);
if (sc->jme_cdata.jme_tx_cnt == 0) {
printf("%s: watchdog timeout (missed Tx interrupts) "
"-- recovering\n", sc->sc_dev.dv_xname);
jme_start(ifp);
return;
}
printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
ifp->if_oerrors++;
jme_init(ifp);
jme_start(ifp);
}
int
jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct jme_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_miibus;
struct ifreq *ifr = (struct ifreq *)data;
int error = 0, s;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
if (!(ifp->if_flags & IFF_RUNNING))
jme_init(ifp);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING)
error = ENETRESET;
else
jme_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
jme_stop(sc);
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
break;
default:
error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
}
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
jme_iff(sc);
error = 0;
}
splx(s);
return (error);
}
void
jme_mac_config(struct jme_softc *sc)
{
struct mii_data *mii;
uint32_t ghc, rxmac, txmac, txpause, gp1;
int phyconf = JMPHY_CONF_DEFFIFO, hdx = 0;
mii = &sc->sc_miibus;
CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
DELAY(10);
CSR_WRITE_4(sc, JME_GHC, 0);
ghc = 0;
rxmac = CSR_READ_4(sc, JME_RXMAC);
rxmac &= ~RXMAC_FC_ENB;
txmac = CSR_READ_4(sc, JME_TXMAC);
txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
txpause = CSR_READ_4(sc, JME_TXPFC);
txpause &= ~TXPFC_PAUSE_ENB;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
ghc |= GHC_FULL_DUPLEX;
rxmac &= ~RXMAC_COLL_DET_ENB;
txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
TXMAC_FRAME_BURST);
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
txpause |= TXPFC_PAUSE_ENB;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
rxmac |= RXMAC_FC_ENB;
/* Disable retry transmit timer/retry limit. */
CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
} else {
rxmac |= RXMAC_COLL_DET_ENB;
txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
/* Enable retry transmit timer/retry limit. */
CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
}
/*
* Reprogram Tx/Rx MACs with resolved speed/duplex.
*/
gp1 = CSR_READ_4(sc, JME_GPREG1);
gp1 &= ~GPREG1_HALF_PATCH;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
hdx = 1;
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
ghc |= GHC_SPEED_10;
if (hdx)
gp1 |= GPREG1_HALF_PATCH;
break;
case IFM_100_TX:
ghc |= GHC_SPEED_100;
if (hdx)
gp1 |= GPREG1_HALF_PATCH;
/*
* Use extended FIFO depth to workaround CRC errors
* emitted by chips before JMC250B
*/
phyconf = JMPHY_CONF_EXTFIFO;
break;
case IFM_1000_T:
if (sc->jme_caps & JME_CAP_FASTETH)
break;
ghc |= GHC_SPEED_1000;
if (hdx)
txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
break;
default:
break;
}
if (sc->jme_revfm >= 2) {
/* set clock sources for tx mac and offload engine */
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
ghc |= GHC_TCPCK_1000 | GHC_TXCK_1000;
else
ghc |= GHC_TCPCK_10_100 | GHC_TXCK_10_100;
}
CSR_WRITE_4(sc, JME_GHC, ghc);
CSR_WRITE_4(sc, JME_RXMAC, rxmac);
CSR_WRITE_4(sc, JME_TXMAC, txmac);
CSR_WRITE_4(sc, JME_TXPFC, txpause);
if (sc->jme_workaround & JME_WA_CRCERRORS) {
jme_miibus_writereg(&sc->sc_dev, sc->jme_phyaddr,
JMPHY_CONF, phyconf);
}
if (sc->jme_workaround & JME_WA_PACKETLOSS)
CSR_WRITE_4(sc, JME_GPREG1, gp1);
}
int
jme_intr(void *xsc)
{
struct jme_softc *sc = xsc;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
uint32_t status;
int claimed = 0;
status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
if (status == 0 || status == 0xFFFFFFFF)
return (0);
/* Disable interrupts. */
CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
status = CSR_READ_4(sc, JME_INTR_STATUS);
if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
goto back;
/* Reset PCC counter/timer and Ack interrupts. */
status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
if (status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO))
status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
if (status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO))
status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
CSR_WRITE_4(sc, JME_INTR_STATUS, status);
if (ifp->if_flags & IFF_RUNNING) {
if (status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO))
jme_rxeof(sc);
if (status & INTR_RXQ_DESC_EMPTY) {
/*
* Notify hardware availability of new Rx buffers.
* Reading RXCSR takes very long time under heavy
* load so cache RXCSR value and writes the ORed
* value with the kick command to the RXCSR. This
* saves one register access cycle.
*/
CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
RXCSR_RX_ENB | RXCSR_RXQ_START);
}
if (status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) {
jme_txeof(sc);
jme_start(ifp);
}
}
claimed = 1;
back:
/* Reenable interrupts. */
CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
return (claimed);
}
void
jme_txeof(struct jme_softc *sc)
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct jme_txdesc *txd;
uint32_t status;
int cons, nsegs;
cons = sc->jme_cdata.jme_tx_cons;
if (cons == sc->jme_cdata.jme_tx_prod)
return;
bus_dmamap_sync(sc->sc_dmat, sc->jme_cdata.jme_tx_ring_map, 0,
sc->jme_cdata.jme_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
/*
* Go through our Tx list and free mbufs for those
* frames which have been transmitted.
*/
while (cons != sc->jme_cdata.jme_tx_prod) {
txd = &sc->jme_cdata.jme_txdesc[cons];
if (txd->tx_m == NULL)
panic("%s: freeing NULL mbuf!", sc->sc_dev.dv_xname);
status = letoh32(txd->tx_desc->flags);
if ((status & JME_TD_OWN) == JME_TD_OWN)
break;
if (status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) {
ifp->if_oerrors++;
} else {
if (status & JME_TD_COLLISION) {
ifp->if_collisions +=
letoh32(txd->tx_desc->buflen) &
JME_TD_BUF_LEN_MASK;
}
}
/*
* Only the first descriptor of multi-descriptor
* transmission is updated so driver have to skip entire
* chained buffers for the transmitted frame. In other
* words, JME_TD_OWN bit is valid only at the first
* descriptor of a multi-descriptor transmission.
*/
for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
sc->jme_rdata.jme_tx_ring[cons].flags = 0;
JME_DESC_INC(cons, JME_TX_RING_CNT);
}
/* Reclaim transferred mbufs. */
bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc;
if (sc->jme_cdata.jme_tx_cnt < 0)
panic("%s: Active Tx desc counter was garbled",
sc->sc_dev.dv_xname);
txd->tx_ndesc = 0;
}
sc->jme_cdata.jme_tx_cons = cons;
if (sc->jme_cdata.jme_tx_cnt == 0)
ifp->if_timer = 0;
if (sc->jme_cdata.jme_tx_cnt + JME_TXD_RSVD <=
JME_TX_RING_CNT - JME_TXD_RSVD)
ifq_clr_oactive(&ifp->if_snd);
bus_dmamap_sync(sc->sc_dmat, sc->jme_cdata.jme_tx_ring_map, 0,
sc->jme_cdata.jme_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
}
void
jme_discard_rxbufs(struct jme_softc *sc, int cons, int count)
{
int i;
for (i = 0; i < count; ++i) {
struct jme_desc *desc = &sc->jme_rdata.jme_rx_ring[cons];
desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
desc->buflen = htole32(MCLBYTES);
JME_DESC_INC(cons, JME_RX_RING_CNT);
}
}
/* Receive a frame. */
void
jme_rxpkt(struct jme_softc *sc)
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct jme_desc *desc;
struct jme_rxdesc *rxd;
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
struct mbuf *mp, *m;
uint32_t flags, status;
int cons, count, nsegs;
cons = sc->jme_cdata.jme_rx_cons;
desc = &sc->jme_rdata.jme_rx_ring[cons];
flags = letoh32(desc->flags);
status = letoh32(desc->buflen);
nsegs = JME_RX_NSEGS(status);
if (status & JME_RX_ERR_STAT) {
ifp->if_ierrors++;
jme_discard_rxbufs(sc, cons, nsegs);
#ifdef JME_SHOW_ERRORS
printf("%s : receive error = 0x%b\n",
sc->sc_dev.dv_xname, JME_RX_ERR(status), JME_RX_ERR_BITS);
#endif
sc->jme_cdata.jme_rx_cons += nsegs;
sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
return;
}
sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
for (count = 0; count < nsegs; count++,
JME_DESC_INC(cons, JME_RX_RING_CNT)) {
rxd = &sc->jme_cdata.jme_rxdesc[cons];
mp = rxd->rx_m;
/* Add a new receive buffer to the ring. */
if (jme_newbuf(sc, rxd) != 0) {
ifp->if_iqdrops++;
/* Reuse buffer. */
jme_discard_rxbufs(sc, cons, nsegs - count);
if (sc->jme_cdata.jme_rxhead != NULL) {
m_freem(sc->jme_cdata.jme_rxhead);
JME_RXCHAIN_RESET(sc);
}
break;
}
/*
* Assume we've received a full sized frame.
* Actual size is fixed when we encounter the end of
* multi-segmented frame.
*/
mp->m_len = MCLBYTES;
/* Chain received mbufs. */
if (sc->jme_cdata.jme_rxhead == NULL) {
sc->jme_cdata.jme_rxhead = mp;
sc->jme_cdata.jme_rxtail = mp;
} else {
/*
* Receive processor can receive a maximum frame
* size of 65535 bytes.
*/
mp->m_flags &= ~M_PKTHDR;
sc->jme_cdata.jme_rxtail->m_next = mp;
sc->jme_cdata.jme_rxtail = mp;
}
if (count == nsegs - 1) {
/* Last desc. for this frame. */
m = sc->jme_cdata.jme_rxhead;
/* XXX assert PKTHDR? */
m->m_flags |= M_PKTHDR;
m->m_pkthdr.len = sc->jme_cdata.jme_rxlen;
if (nsegs > 1) {
/* Set first mbuf size. */
m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
/* Set last mbuf size. */
mp->m_len = sc->jme_cdata.jme_rxlen -
((MCLBYTES - JME_RX_PAD_BYTES) +
(MCLBYTES * (nsegs - 2)));
} else {
m->m_len = sc->jme_cdata.jme_rxlen;
}
/*
* Account for 10bytes auto padding which is used
* to align IP header on 32bit boundary. Also note,
* CRC bytes is automatically removed by the
* hardware.
*/
m->m_data += JME_RX_PAD_BYTES;
/* Set checksum information. */
if (flags & (JME_RD_IPV4|JME_RD_IPV6)) {
if ((flags & JME_RD_IPV4) &&
(flags & JME_RD_IPCSUM))
m->m_pkthdr.csum_flags |=
M_IPV4_CSUM_IN_OK;
if ((flags & JME_RD_MORE_FRAG) == 0 &&
((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
(JME_RD_TCP | JME_RD_TCPCSUM) ||
(flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
(JME_RD_UDP | JME_RD_UDPCSUM))) {
m->m_pkthdr.csum_flags |=
M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
}
}
#if NVLAN > 0
/* Check for VLAN tagged packets. */
if (flags & JME_RD_VLAN_TAG) {
m->m_pkthdr.ether_vtag = flags & JME_RD_VLAN_MASK;
m->m_flags |= M_VLANTAG;
}
#endif
ml_enqueue(&ml, m);
/* Reset mbuf chains. */
JME_RXCHAIN_RESET(sc);
}
}
if_input(ifp, &ml);
sc->jme_cdata.jme_rx_cons += nsegs;
sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
}
void
jme_rxeof(struct jme_softc *sc)
{
struct jme_desc *desc;
int nsegs, prog, pktlen;
bus_dmamap_sync(sc->sc_dmat, sc->jme_cdata.jme_rx_ring_map, 0,
sc->jme_cdata.jme_rx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
prog = 0;
for (;;) {
desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons];
if ((letoh32(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
break;
if ((letoh32(desc->buflen) & JME_RD_VALID) == 0)
break;
/*
* Check number of segments against received bytes.
* Non-matching value would indicate that hardware
* is still trying to update Rx descriptors. I'm not
* sure whether this check is needed.
*/
nsegs = JME_RX_NSEGS(letoh32(desc->buflen));
pktlen = JME_RX_BYTES(letoh32(desc->buflen));
if (nsegs != howmany(pktlen, MCLBYTES)) {
printf("%s: RX fragment count(%d) "
"and packet size(%d) mismatch\n",
sc->sc_dev.dv_xname, nsegs, pktlen);
break;
}
/* Received a frame. */
jme_rxpkt(sc);
prog++;
}
if (prog > 0) {
bus_dmamap_sync(sc->sc_dmat, sc->jme_cdata.jme_rx_ring_map, 0,
sc->jme_cdata.jme_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
}
}
void
jme_tick(void *xsc)
{
struct jme_softc *sc = xsc;
struct mii_data *mii = &sc->sc_miibus;
int s;
s = splnet();
mii_tick(mii);
timeout_add_sec(&sc->jme_tick_ch, 1);
splx(s);
}
void
jme_reset(struct jme_softc *sc)
{
#ifdef foo
/* Stop receiver, transmitter. */
jme_stop_rx(sc);
jme_stop_tx(sc);
#endif
CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
DELAY(10);
CSR_WRITE_4(sc, JME_GHC, 0);
}
int
jme_init(struct ifnet *ifp)
{
struct jme_softc *sc = ifp->if_softc;
struct mii_data *mii;
uint8_t eaddr[ETHER_ADDR_LEN];
bus_addr_t paddr;
uint32_t reg;
int error;
/*
* Cancel any pending I/O.
*/
jme_stop(sc);
/*
* Reset the chip to a known state.
*/
jme_reset(sc);
/* Init descriptors. */
error = jme_init_rx_ring(sc);
if (error != 0) {
printf("%s: initialization failed: no memory for Rx buffers.\n",
sc->sc_dev.dv_xname);
jme_stop(sc);
return (error);
}
jme_init_tx_ring(sc);
/* Initialize shadow status block. */
jme_init_ssb(sc);
/* Reprogram the station address. */
bcopy(LLADDR(ifp->if_sadl), eaddr, ETHER_ADDR_LEN);
CSR_WRITE_4(sc, JME_PAR0,
eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
/*
* Configure Tx queue.
* Tx priority queue weight value : 0
* Tx FIFO threshold for processing next packet : 16QW
* Maximum Tx DMA length : 512
* Allow Tx DMA burst.
*/
sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
sc->jme_txcsr |= sc->jme_tx_dma_size;
sc->jme_txcsr |= TXCSR_DMA_BURST;
CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
/* Set Tx descriptor counter. */
CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT);
/* Set Tx ring address to the hardware. */
paddr = JME_TX_RING_ADDR(sc, 0);
CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
/* Configure TxMAC parameters. */
reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
reg |= TXMAC_THRESH_1_PKT;
reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
CSR_WRITE_4(sc, JME_TXMAC, reg);
/*
* Configure Rx queue.
* FIFO full threshold for transmitting Tx pause packet : 128T
* FIFO threshold for processing next packet : 128QW
* Rx queue 0 select
* Max Rx DMA length : 128
* Rx descriptor retry : 32
* Rx descriptor retry time gap : 256ns
* Don't receive runt/bad frame.
*/
sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
/*
* Since Rx FIFO size is 4K bytes, receiving frames larger
* than 4K bytes will suffer from Rx FIFO overruns. So
* decrease FIFO threshold to reduce the FIFO overruns for
* frames larger than 4000 bytes.
* For best performance of standard MTU sized frames use
* maximum allowable FIFO threshold, which is 32QW for
* chips with a full mask >= 2 otherwise 128QW. FIFO
* thresholds of 64QW and 128QW are not valid for chips
* with a full mask >= 2.
*/
if (sc->jme_revfm >= 2)
sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
else {
if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN +
ETHER_VLAN_ENCAP_LEN) > JME_RX_FIFO_SIZE)
sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
else
sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
}
sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
/* XXX TODO DROP_BAD */
CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
/* Set Rx descriptor counter. */
CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT);
/* Set Rx ring address to the hardware. */
paddr = JME_RX_RING_ADDR(sc, 0);
CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
/* Clear receive filter. */
CSR_WRITE_4(sc, JME_RXMAC, 0);
/* Set up the receive filter. */
jme_iff(sc);
jme_set_vlan(sc);
/*
* Disable all WOL bits as WOL can interfere normal Rx
* operation. Also clear WOL detection status bits.
*/
reg = CSR_READ_4(sc, JME_PMCS);
reg &= ~PMCS_WOL_ENB_MASK;
CSR_WRITE_4(sc, JME_PMCS, reg);
/*
* Pad 10bytes right before received frame. This will greatly
* help Rx performance on strict-alignment architectures as
* it does not need to copy the frame to align the payload.
*/
reg = CSR_READ_4(sc, JME_RXMAC);
reg |= RXMAC_PAD_10BYTES;
reg |= RXMAC_CSUM_ENB;
CSR_WRITE_4(sc, JME_RXMAC, reg);
/* Configure general purpose reg0 */
reg = CSR_READ_4(sc, JME_GPREG0);
reg &= ~GPREG0_PCC_UNIT_MASK;
/* Set PCC timer resolution to micro-seconds unit. */
reg |= GPREG0_PCC_UNIT_US;
/*
* Disable all shadow register posting as we have to read
* JME_INTR_STATUS register in jme_intr. Also it seems
* that it's hard to synchronize interrupt status between
* hardware and software with shadow posting due to
* requirements of bus_dmamap_sync(9).
*/
reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
/* Disable posting of DW0. */
reg &= ~GPREG0_POST_DW0_ENB;
/* Clear PME message. */
reg &= ~GPREG0_PME_ENB;
/* Set PHY address. */
reg &= ~GPREG0_PHY_ADDR_MASK;
reg |= sc->jme_phyaddr;
CSR_WRITE_4(sc, JME_GPREG0, reg);
/* Configure Tx queue 0 packet completion coalescing. */
sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
PCCTX_COAL_TO_MASK;
sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
PCCTX_COAL_PKT_MASK;
reg |= PCCTX_COAL_TXQ0;
CSR_WRITE_4(sc, JME_PCCTX, reg);
/* Configure Rx queue 0 packet completion coalescing. */
sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
PCCRX_COAL_TO_MASK;
sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
PCCRX_COAL_PKT_MASK;
CSR_WRITE_4(sc, JME_PCCRX0, reg);
/* Configure shadow status block but don't enable posting. */
paddr = sc->jme_rdata.jme_ssb_block_paddr;
CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
/* Disable Timer 1 and Timer 2. */
CSR_WRITE_4(sc, JME_TIMER1, 0);
CSR_WRITE_4(sc, JME_TIMER2, 0);
/* Configure retry transmit period, retry limit value. */
CSR_WRITE_4(sc, JME_TXTRHD,
((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
TXTRHD_RT_PERIOD_MASK) |
((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
TXTRHD_RT_LIMIT_SHIFT));
/* Disable RSS. */
CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
/* Initialize the interrupt mask. */
CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
/*
* Enabling Tx/Rx DMA engines and Rx queue processing is
* done after detection of valid link in jme_miibus_statchg.
*/
sc->jme_flags &= ~JME_FLAG_LINK;
/* Set the current media. */
mii = &sc->sc_miibus;
mii_mediachg(mii);
timeout_add_sec(&sc->jme_tick_ch, 1);
ifp->if_flags |= IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
return (0);
}
void
jme_stop(struct jme_softc *sc)
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct jme_txdesc *txd;
struct jme_rxdesc *rxd;
int i;
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp->if_flags &= ~IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
ifp->if_timer = 0;
timeout_del(&sc->jme_tick_ch);
sc->jme_flags &= ~JME_FLAG_LINK;
/*
* Disable interrupts.
*/
CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
/* Disable updating shadow status block. */
CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
/* Stop receiver, transmitter. */
jme_stop_rx(sc);
jme_stop_tx(sc);
#ifdef foo
/* Reclaim Rx/Tx buffers that have been completed. */
jme_rxeof(sc);
m_freem(sc->jme_cdata.jme_rxhead);
JME_RXCHAIN_RESET(sc);
jme_txeof(sc);
#endif
/*
* Free partial finished RX segments
*/
m_freem(sc->jme_cdata.jme_rxhead);
JME_RXCHAIN_RESET(sc);
/*
* Free RX and TX mbufs still in the queues.
*/
for (i = 0; i < JME_RX_RING_CNT; i++) {
rxd = &sc->jme_cdata.jme_rxdesc[i];
if (rxd->rx_m != NULL) {
bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
m_freem(rxd->rx_m);
rxd->rx_m = NULL;
}
}
for (i = 0; i < JME_TX_RING_CNT; i++) {
txd = &sc->jme_cdata.jme_txdesc[i];
if (txd->tx_m != NULL) {
bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
txd->tx_ndesc = 0;
}
}
}
void
jme_stop_tx(struct jme_softc *sc)
{
uint32_t reg;
int i;
reg = CSR_READ_4(sc, JME_TXCSR);
if ((reg & TXCSR_TX_ENB) == 0)
return;
reg &= ~TXCSR_TX_ENB;
CSR_WRITE_4(sc, JME_TXCSR, reg);
for (i = JME_TIMEOUT; i > 0; i--) {
DELAY(1);
if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
break;
}
if (i == 0)
printf("%s: stopping transmitter timeout!\n",
sc->sc_dev.dv_xname);
}
void
jme_stop_rx(struct jme_softc *sc)
{
uint32_t reg;
int i;
reg = CSR_READ_4(sc, JME_RXCSR);
if ((reg & RXCSR_RX_ENB) == 0)
return;
reg &= ~RXCSR_RX_ENB;
CSR_WRITE_4(sc, JME_RXCSR, reg);
for (i = JME_TIMEOUT; i > 0; i--) {
DELAY(1);
if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
break;
}
if (i == 0)
printf("%s: stopping receiver timeout!\n", sc->sc_dev.dv_xname);
}
void
jme_init_tx_ring(struct jme_softc *sc)
{
struct jme_ring_data *rd;
struct jme_txdesc *txd;
int i;
sc->jme_cdata.jme_tx_prod = 0;
sc->jme_cdata.jme_tx_cons = 0;
sc->jme_cdata.jme_tx_cnt = 0;
rd = &sc->jme_rdata;
bzero(rd->jme_tx_ring, JME_TX_RING_SIZE);
for (i = 0; i < JME_TX_RING_CNT; i++) {
txd = &sc->jme_cdata.jme_txdesc[i];
txd->tx_m = NULL;
txd->tx_desc = &rd->jme_tx_ring[i];
txd->tx_ndesc = 0;
}
bus_dmamap_sync(sc->sc_dmat, sc->jme_cdata.jme_tx_ring_map, 0,
sc->jme_cdata.jme_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
}
void
jme_init_ssb(struct jme_softc *sc)
{
struct jme_ring_data *rd;
rd = &sc->jme_rdata;
bzero(rd->jme_ssb_block, JME_SSB_SIZE);
bus_dmamap_sync(sc->sc_dmat, sc->jme_cdata.jme_ssb_map, 0,
sc->jme_cdata.jme_ssb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
}
int
jme_init_rx_ring(struct jme_softc *sc)
{
struct jme_ring_data *rd;
struct jme_rxdesc *rxd;
int i;
KASSERT(sc->jme_cdata.jme_rxhead == NULL &&
sc->jme_cdata.jme_rxtail == NULL &&
sc->jme_cdata.jme_rxlen == 0);
sc->jme_cdata.jme_rx_cons = 0;
rd = &sc->jme_rdata;
bzero(rd->jme_rx_ring, JME_RX_RING_SIZE);
for (i = 0; i < JME_RX_RING_CNT; i++) {
int error;
rxd = &sc->jme_cdata.jme_rxdesc[i];
rxd->rx_m = NULL;
rxd->rx_desc = &rd->jme_rx_ring[i];
error = jme_newbuf(sc, rxd);
if (error)
return (error);
}
bus_dmamap_sync(sc->sc_dmat, sc->jme_cdata.jme_rx_ring_map, 0,
sc->jme_cdata.jme_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
return (0);
}
int
jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd)
{
struct jme_desc *desc;
struct mbuf *m;
bus_dmamap_t map;
int error;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
MCLGET(m, M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
m_freem(m);
return (ENOBUFS);
}
/*
* JMC250 has 64bit boundary alignment limitation so jme(4)
* takes advantage of 10 bytes padding feature of hardware
* in order not to copy entire frame to align IP header on
* 32bit boundary.
*/
m->m_len = m->m_pkthdr.len = MCLBYTES;
error = bus_dmamap_load_mbuf(sc->sc_dmat,
sc->jme_cdata.jme_rx_sparemap, m, BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(m);
printf("%s: can't load RX mbuf\n", sc->sc_dev.dv_xname);
return (error);
}
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
}
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap;
sc->jme_cdata.jme_rx_sparemap = map;
rxd->rx_m = m;
desc = rxd->rx_desc;
desc->buflen = htole32(rxd->rx_dmamap->dm_segs[0].ds_len);
desc->addr_lo =
htole32(JME_ADDR_LO(rxd->rx_dmamap->dm_segs[0].ds_addr));
desc->addr_hi =
htole32(JME_ADDR_HI(rxd->rx_dmamap->dm_segs[0].ds_addr));
desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
return (0);
}
void
jme_set_vlan(struct jme_softc *sc)
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
uint32_t reg;
reg = CSR_READ_4(sc, JME_RXMAC);
reg &= ~RXMAC_VLAN_ENB;
if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
reg |= RXMAC_VLAN_ENB;
CSR_WRITE_4(sc, JME_RXMAC, reg);
}
void
jme_iff(struct jme_softc *sc)
{
struct arpcom *ac = &sc->sc_arpcom;
struct ifnet *ifp = &ac->ac_if;
struct ether_multi *enm;
struct ether_multistep step;
uint32_t crc;
uint32_t mchash[2];
uint32_t rxcfg;
rxcfg = CSR_READ_4(sc, JME_RXMAC);
rxcfg &= ~(RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
RXMAC_ALLMULTI);
ifp->if_flags &= ~IFF_ALLMULTI;
/*
* Always accept frames destined to our station address.
* Always accept broadcast frames.
*/
rxcfg |= RXMAC_UNICAST | RXMAC_BROADCAST;
if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
ifp->if_flags |= IFF_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC)
rxcfg |= RXMAC_PROMISC;
else
rxcfg |= RXMAC_ALLMULTI;
mchash[0] = mchash[1] = 0xFFFFFFFF;
} else {
/*
* Set up the multicast address filter by passing all
* multicast addresses through a CRC generator, and then
* using the low-order 6 bits as an index into the 64 bit
* multicast hash table. The high order bits select the
* register, while the rest of the bits select the bit
* within the register.
*/
rxcfg |= RXMAC_MULTICAST;
bzero(mchash, sizeof(mchash));
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
/* Just want the 6 least significant bits. */
crc &= 0x3f;
/* Set the corresponding bit in the hash table. */
mchash[crc >> 5] |= 1 << (crc & 0x1f);
ETHER_NEXT_MULTI(step, enm);
}
}
CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
}