293 lines
7.7 KiB
C
293 lines
7.7 KiB
C
/* $OpenBSD: primes.c,v 1.24 2017/11/02 10:37:11 tb Exp $ */
|
|
/* $NetBSD: primes.c,v 1.5 1995/04/24 12:24:47 cgd Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Landon Curt Noll.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* primes - generate a table of primes between two values
|
|
*
|
|
* By: Landon Curt Noll chongo@toad.com, ...!{sun,tolsoft}!hoptoad!chongo
|
|
*
|
|
* chongo <for a good prime call: 391581 * 2^216193 - 1> /\oo/\
|
|
*
|
|
* usage:
|
|
* primes [start [stop]]
|
|
*
|
|
* Print primes >= start and < stop. If stop is omitted,
|
|
* the value 4294967295 (2^32-1) is assumed. If start is
|
|
* omitted, start is read from standard input.
|
|
*
|
|
* validation check: there are 664579 primes between 0 and 10^7
|
|
*/
|
|
|
|
#include <ctype.h>
|
|
#include <err.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
|
|
#include "primes.h"
|
|
|
|
/*
|
|
* Eratosthenes sieve table
|
|
*
|
|
* We only sieve the odd numbers. The base of our sieve windows is always odd.
|
|
* If the base of the table is 1, table[i] represents 2*i-1. After the sieve,
|
|
* table[i] == 1 if and only if 2*i-1 is prime.
|
|
*
|
|
* We make TABSIZE large to reduce the overhead of inner loop setup.
|
|
*/
|
|
char table[TABSIZE]; /* Eratosthenes sieve of odd numbers */
|
|
|
|
/*
|
|
* prime[i] is the (i+1)th prime.
|
|
*
|
|
* We are able to sieve 2^32-1 because this byte table yields all primes
|
|
* up to 65537 and 65537^2 > 2^32-1.
|
|
*/
|
|
extern const ubig prime[];
|
|
extern const ubig *pr_limit; /* largest prime in the prime array */
|
|
|
|
/*
|
|
* To avoid excessive sieves for small factors, we use the table below to
|
|
* setup our sieve blocks. Each element represents an odd number starting
|
|
* with 1. All non-zero elements are coprime to 3, 5, 7, 11 and 13.
|
|
*/
|
|
extern const char pattern[];
|
|
extern const int pattern_size; /* length of pattern array */
|
|
|
|
void primes(ubig, ubig);
|
|
ubig read_num_buf(void);
|
|
__dead void usage(void);
|
|
|
|
int
|
|
main(int argc, char *argv[])
|
|
{
|
|
const char *errstr;
|
|
ubig start; /* where to start generating */
|
|
ubig stop; /* don't generate at or above this value */
|
|
int ch;
|
|
|
|
if (pledge("stdio", NULL) == -1)
|
|
err(1, "pledge");
|
|
|
|
while ((ch = getopt(argc, argv, "h")) != -1) {
|
|
switch (ch) {
|
|
case 'h':
|
|
default:
|
|
usage();
|
|
}
|
|
}
|
|
argc -= optind;
|
|
argv += optind;
|
|
|
|
start = 0;
|
|
stop = BIG;
|
|
|
|
switch (argc) {
|
|
case 2:
|
|
stop = strtonum(argv[1], 0, BIG, &errstr);
|
|
if (errstr)
|
|
errx(1, "stop is %s: %s", errstr, argv[1]);
|
|
case 1: /* FALLTHROUGH */
|
|
start = strtonum(argv[0], 0, BIG, &errstr);
|
|
if (errstr)
|
|
errx(1, "start is %s: %s", errstr, argv[0]);
|
|
break;
|
|
case 0:
|
|
start = read_num_buf();
|
|
break;
|
|
default:
|
|
usage();
|
|
}
|
|
|
|
if (start > stop)
|
|
errx(1, "start value must be less than stop value.");
|
|
primes(start, stop);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* read_num_buf --
|
|
* This routine returns a number n, where 0 <= n && n <= BIG.
|
|
*/
|
|
ubig
|
|
read_num_buf(void)
|
|
{
|
|
const char *errstr;
|
|
ubig val;
|
|
char *p, buf[100]; /* > max number of digits. */
|
|
|
|
for (;;) {
|
|
if (fgets(buf, sizeof(buf), stdin) == NULL) {
|
|
if (ferror(stdin))
|
|
err(1, "stdin");
|
|
exit(0);
|
|
}
|
|
buf[strcspn(buf, "\n")] = '\0';
|
|
for (p = buf; isblank((unsigned char)*p); ++p)
|
|
;
|
|
if (*p == '\0')
|
|
continue;
|
|
val = strtonum(buf, 0, BIG, &errstr);
|
|
if (errstr)
|
|
errx(1, "start is %s: %s", errstr, buf);
|
|
return (val);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* primes - sieve and print primes from start up to and but not including stop
|
|
* start: where to start generating
|
|
* stop : don't generate at or above this value
|
|
*/
|
|
void
|
|
primes(ubig start, ubig stop)
|
|
{
|
|
char *q; /* sieve spot */
|
|
ubig factor; /* index and factor */
|
|
char *tab_lim; /* the limit to sieve on the table */
|
|
const ubig *p; /* prime table pointer */
|
|
ubig fact_lim; /* highest prime for current block */
|
|
ubig mod;
|
|
|
|
/*
|
|
* A number of systems can not convert double values into unsigned
|
|
* longs when the values are larger than the largest signed value.
|
|
* We don't have this problem, so we can go all the way to BIG.
|
|
*/
|
|
if (start < 3) {
|
|
start = (ubig)2;
|
|
}
|
|
if (stop < 3) {
|
|
stop = (ubig)2;
|
|
}
|
|
if (stop <= start) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* be sure that the values are odd, or 2
|
|
*/
|
|
if (start != 2 && (start&0x1) == 0) {
|
|
++start;
|
|
}
|
|
if (stop != 2 && (stop&0x1) == 0) {
|
|
++stop;
|
|
}
|
|
|
|
/*
|
|
* quick list of primes <= pr_limit
|
|
*/
|
|
if (start <= *pr_limit) {
|
|
/* skip primes up to the start value */
|
|
for (p = &prime[0], factor = prime[0];
|
|
factor < stop && p <= pr_limit; factor = *(++p)) {
|
|
if (factor >= start) {
|
|
printf("%lu\n", (unsigned long) factor);
|
|
}
|
|
}
|
|
/* return early if we are done */
|
|
if (p <= pr_limit) {
|
|
return;
|
|
}
|
|
start = *pr_limit+2;
|
|
}
|
|
|
|
/*
|
|
* we shall sieve a bytemap window, note primes and move the window
|
|
* upward until we pass the stop point
|
|
*/
|
|
while (start < stop) {
|
|
/*
|
|
* factor out 3, 5, 7, 11 and 13
|
|
*/
|
|
/* initial pattern copy */
|
|
factor = (start%(2*3*5*7*11*13))/2; /* starting copy spot */
|
|
memcpy(table, &pattern[factor], pattern_size-factor);
|
|
/* main block pattern copies */
|
|
for (fact_lim=pattern_size-factor;
|
|
fact_lim+pattern_size<=TABSIZE; fact_lim+=pattern_size) {
|
|
memcpy(&table[fact_lim], pattern, pattern_size);
|
|
}
|
|
/* final block pattern copy */
|
|
memcpy(&table[fact_lim], pattern, TABSIZE-fact_lim);
|
|
|
|
/*
|
|
* sieve for primes 17 and higher
|
|
*/
|
|
/* note highest useful factor and sieve spot */
|
|
if (stop-start > TABSIZE+TABSIZE) {
|
|
tab_lim = &table[TABSIZE]; /* sieve it all */
|
|
fact_lim = (int)sqrt(
|
|
(double)(start)+TABSIZE+TABSIZE+1.0);
|
|
} else {
|
|
tab_lim = &table[(stop-start)/2]; /* partial sieve */
|
|
fact_lim = (int)sqrt((double)(stop)+1.0);
|
|
}
|
|
/* sieve for factors >= 17 */
|
|
factor = 17; /* 17 is first prime to use */
|
|
p = &prime[7]; /* 19 is next prime, pi(19)=7 */
|
|
do {
|
|
/* determine the factor's initial sieve point */
|
|
mod = start % factor;
|
|
if (mod & 0x1)
|
|
q = &table[(factor - mod)/2];
|
|
else
|
|
q = &table[mod ? factor-(mod/2) : 0];
|
|
/* sieve for our current factor */
|
|
for ( ; q < tab_lim; q += factor) {
|
|
*q = '\0'; /* sieve out a spot */
|
|
}
|
|
} while ((factor=(ubig)(*(p++))) <= fact_lim);
|
|
|
|
/*
|
|
* print generated primes
|
|
*/
|
|
for (q = table; q < tab_lim; ++q, start+=2) {
|
|
if (*q) {
|
|
printf("%lu\n", (unsigned long) start);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
usage(void)
|
|
{
|
|
(void)fprintf(stderr, "usage: %s [start [stop]]\n", getprogname());
|
|
exit(1);
|
|
}
|