src/sys/dev/ic/rtl81x9.c

1378 lines
33 KiB
C

/* $OpenBSD: rtl81x9.c,v 1.98 2020/07/10 13:26:37 patrick Exp $ */
/*
* Copyright (c) 1997, 1998
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Realtek 8129/8139 PCI NIC driver
*
* Supports several extremely cheap PCI 10/100 adapters based on
* the Realtek chipset. Datasheets can be obtained from
* www.realtek.com.tw.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The Realtek 8139 PCI NIC redefines the meaning of 'low end.' This is
* probably the worst PCI ethernet controller ever made, with the possible
* exception of the FEAST chip made by SMC. The 8139 supports bus-master
* DMA, but it has a terrible interface that nullifies any performance
* gains that bus-master DMA usually offers.
*
* For transmission, the chip offers a series of four TX descriptor
* registers. Each transmit frame must be in a contiguous buffer, aligned
* on a longword (32-bit) boundary. This means we almost always have to
* do mbuf copies in order to transmit a frame, except in the unlikely
* case where a) the packet fits into a single mbuf, and b) the packet
* is 32-bit aligned within the mbuf's data area. The presence of only
* four descriptor registers means that we can never have more than four
* packets queued for transmission at any one time.
*
* Reception is not much better. The driver has to allocate a single large
* buffer area (up to 64K in size) into which the chip will DMA received
* frames. Because we don't know where within this region received packets
* will begin or end, we have no choice but to copy data from the buffer
* area into mbufs in order to pass the packets up to the higher protocol
* levels.
*
* It's impossible given this rotten design to really achieve decent
* performance at 100Mbps, unless you happen to have a 400MHz PII or
* some equally overmuscled CPU to drive it.
*
* On the bright side, the 8139 does have a built-in PHY, although
* rather than using an MDIO serial interface like most other NICs, the
* PHY registers are directly accessible through the 8139's register
* space. The 8139 supports autonegotiation, as well as a 64-bit multicast
* filter.
*
* The 8129 chip is an older version of the 8139 that uses an external PHY
* chip. The 8129 has a serial MDIO interface for accessing the MII where
* the 8139 lets you directly access the on-board PHY registers. We need
* to select which interface to use depending on the chip type.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/device.h>
#include <sys/timeout.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net/if_media.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <machine/bus.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/ic/rtl81x9reg.h>
/*
* Various supported PHY vendors/types and their names. Note that
* this driver will work with pretty much any MII-compliant PHY,
* so failure to positively identify the chip is not a fatal error.
*/
void rl_tick(void *);
int rl_encap(struct rl_softc *, struct mbuf * );
void rl_rxeof(struct rl_softc *);
void rl_txeof(struct rl_softc *);
void rl_start(struct ifnet *);
int rl_ioctl(struct ifnet *, u_long, caddr_t);
void rl_init(void *);
void rl_stop(struct rl_softc *);
void rl_watchdog(struct ifnet *);
int rl_ifmedia_upd(struct ifnet *);
void rl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
void rl_eeprom_getword(struct rl_softc *, int, int, u_int16_t *);
void rl_eeprom_putbyte(struct rl_softc *, int, int);
void rl_read_eeprom(struct rl_softc *, caddr_t, int, int, int, int);
void rl_mii_sync(struct rl_softc *);
void rl_mii_send(struct rl_softc *, u_int32_t, int);
int rl_mii_readreg(struct rl_softc *, struct rl_mii_frame *);
int rl_mii_writereg(struct rl_softc *, struct rl_mii_frame *);
int rl_miibus_readreg(struct device *, int, int);
void rl_miibus_writereg(struct device *, int, int, int);
void rl_miibus_statchg(struct device *);
void rl_iff(struct rl_softc *);
void rl_reset(struct rl_softc *);
int rl_list_tx_init(struct rl_softc *);
#define EE_SET(x) \
CSR_WRITE_1(sc, RL_EECMD, \
CSR_READ_1(sc, RL_EECMD) | x)
#define EE_CLR(x) \
CSR_WRITE_1(sc, RL_EECMD, \
CSR_READ_1(sc, RL_EECMD) & ~x)
/*
* Send a read command and address to the EEPROM, check for ACK.
*/
void
rl_eeprom_putbyte(struct rl_softc *sc, int addr, int addr_len)
{
int d, i;
d = (RL_EECMD_READ << addr_len) | addr;
/*
* Feed in each bit and strobe the clock.
*/
for (i = RL_EECMD_LEN + addr_len; i; i--) {
if (d & (1 << (i - 1)))
EE_SET(RL_EE_DATAIN);
else
EE_CLR(RL_EE_DATAIN);
DELAY(100);
EE_SET(RL_EE_CLK);
DELAY(150);
EE_CLR(RL_EE_CLK);
DELAY(100);
}
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
void
rl_eeprom_getword(struct rl_softc *sc, int addr, int addr_len,
u_int16_t *dest)
{
int i;
u_int16_t word = 0;
/* Enter EEPROM access mode. */
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
/*
* Send address of word we want to read.
*/
rl_eeprom_putbyte(sc, addr, addr_len);
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
/*
* Start reading bits from EEPROM.
*/
for (i = 16; i > 0; i--) {
EE_SET(RL_EE_CLK);
DELAY(100);
if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
word |= 1 << (i - 1);
EE_CLR(RL_EE_CLK);
DELAY(100);
}
/* Turn off EEPROM access mode. */
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
*dest = word;
}
/*
* Read a sequence of words from the EEPROM.
*/
void
rl_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int addr_len,
int cnt, int swap)
{
int i;
u_int16_t word = 0, *ptr;
for (i = 0; i < cnt; i++) {
rl_eeprom_getword(sc, off + i, addr_len, &word);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = letoh16(word);
else
*ptr = word;
}
}
/*
* MII access routines are provided for the 8129, which
* doesn't have a built-in PHY. For the 8139, we fake things
* up by diverting rl_phy_readreg()/rl_phy_writereg() to the
* direct access PHY registers.
*/
#define MII_SET(x) \
CSR_WRITE_1(sc, RL_MII, \
CSR_READ_1(sc, RL_MII) | x)
#define MII_CLR(x) \
CSR_WRITE_1(sc, RL_MII, \
CSR_READ_1(sc, RL_MII) & ~x)
/*
* Sync the PHYs by setting data bit and strobing the clock 32 times.
*/
void
rl_mii_sync(struct rl_softc *sc)
{
int i;
MII_SET(RL_MII_DIR|RL_MII_DATAOUT);
for (i = 0; i < 32; i++) {
MII_SET(RL_MII_CLK);
DELAY(1);
MII_CLR(RL_MII_CLK);
DELAY(1);
}
}
/*
* Clock a series of bits through the MII.
*/
void
rl_mii_send(struct rl_softc *sc, u_int32_t bits, int cnt)
{
int i;
MII_CLR(RL_MII_CLK);
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
if (bits & i)
MII_SET(RL_MII_DATAOUT);
else
MII_CLR(RL_MII_DATAOUT);
DELAY(1);
MII_CLR(RL_MII_CLK);
DELAY(1);
MII_SET(RL_MII_CLK);
}
}
/*
* Read an PHY register through the MII.
*/
int
rl_mii_readreg(struct rl_softc *sc, struct rl_mii_frame *frame)
{
int i, ack, s;
s = splnet();
/*
* Set up frame for RX.
*/
frame->mii_stdelim = RL_MII_STARTDELIM;
frame->mii_opcode = RL_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
CSR_WRITE_2(sc, RL_MII, 0);
/*
* Turn on data xmit.
*/
MII_SET(RL_MII_DIR);
rl_mii_sync(sc);
/*
* Send command/address info.
*/
rl_mii_send(sc, frame->mii_stdelim, 2);
rl_mii_send(sc, frame->mii_opcode, 2);
rl_mii_send(sc, frame->mii_phyaddr, 5);
rl_mii_send(sc, frame->mii_regaddr, 5);
/* Idle bit */
MII_CLR((RL_MII_CLK|RL_MII_DATAOUT));
DELAY(1);
MII_SET(RL_MII_CLK);
DELAY(1);
/* Turn off xmit. */
MII_CLR(RL_MII_DIR);
/* Check for ack */
MII_CLR(RL_MII_CLK);
DELAY(1);
ack = CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN;
MII_SET(RL_MII_CLK);
DELAY(1);
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHY(s) in sync.
*/
if (ack) {
for(i = 0; i < 16; i++) {
MII_CLR(RL_MII_CLK);
DELAY(1);
MII_SET(RL_MII_CLK);
DELAY(1);
}
goto fail;
}
for (i = 0x8000; i; i >>= 1) {
MII_CLR(RL_MII_CLK);
DELAY(1);
if (!ack) {
if (CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN)
frame->mii_data |= i;
DELAY(1);
}
MII_SET(RL_MII_CLK);
DELAY(1);
}
fail:
MII_CLR(RL_MII_CLK);
DELAY(1);
MII_SET(RL_MII_CLK);
DELAY(1);
splx(s);
if (ack)
return(1);
return(0);
}
/*
* Write to a PHY register through the MII.
*/
int
rl_mii_writereg(struct rl_softc *sc, struct rl_mii_frame *frame)
{
int s;
s = splnet();
/*
* Set up frame for TX.
*/
frame->mii_stdelim = RL_MII_STARTDELIM;
frame->mii_opcode = RL_MII_WRITEOP;
frame->mii_turnaround = RL_MII_TURNAROUND;
/*
* Turn on data output.
*/
MII_SET(RL_MII_DIR);
rl_mii_sync(sc);
rl_mii_send(sc, frame->mii_stdelim, 2);
rl_mii_send(sc, frame->mii_opcode, 2);
rl_mii_send(sc, frame->mii_phyaddr, 5);
rl_mii_send(sc, frame->mii_regaddr, 5);
rl_mii_send(sc, frame->mii_turnaround, 2);
rl_mii_send(sc, frame->mii_data, 16);
/* Idle bit. */
MII_SET(RL_MII_CLK);
DELAY(1);
MII_CLR(RL_MII_CLK);
DELAY(1);
/*
* Turn off xmit.
*/
MII_CLR(RL_MII_DIR);
splx(s);
return(0);
}
void
rl_iff(struct rl_softc *sc)
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
int h = 0;
u_int32_t hashes[2];
struct arpcom *ac = &sc->sc_arpcom;
struct ether_multi *enm;
struct ether_multistep step;
u_int32_t rxfilt;
rxfilt = CSR_READ_4(sc, RL_RXCFG);
rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_BROAD |
RL_RXCFG_RX_INDIV | RL_RXCFG_RX_MULTI);
ifp->if_flags &= ~IFF_ALLMULTI;
/*
* Always accept frames destined to our station address.
* Always accept broadcast frames.
*/
rxfilt |= RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD;
if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
ifp ->if_flags |= IFF_ALLMULTI;
rxfilt |= RL_RXCFG_RX_MULTI;
if (ifp->if_flags & IFF_PROMISC)
rxfilt |= RL_RXCFG_RX_ALLPHYS;
hashes[0] = hashes[1] = 0xFFFFFFFF;
} else {
rxfilt |= RL_RXCFG_RX_MULTI;
/* Program new filter. */
bzero(hashes, sizeof(hashes));
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
h = ether_crc32_be(enm->enm_addrlo,
ETHER_ADDR_LEN) >> 26;
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
ETHER_NEXT_MULTI(step, enm);
}
}
CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
}
void
rl_reset(struct rl_softc *sc)
{
int i;
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
for (i = 0; i < RL_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
break;
}
if (i == RL_TIMEOUT)
printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
}
/*
* Initialize the transmit descriptors.
*/
int
rl_list_tx_init(struct rl_softc *sc)
{
struct rl_chain_data *cd = &sc->rl_cdata;
int i;
for (i = 0; i < RL_TX_LIST_CNT; i++) {
cd->rl_tx_chain[i] = NULL;
CSR_WRITE_4(sc,
RL_TXADDR0 + (i * sizeof(u_int32_t)), 0x0000000);
}
sc->rl_cdata.cur_tx = 0;
sc->rl_cdata.last_tx = 0;
return(0);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*
* You know there's something wrong with a PCI bus-master chip design
* when you have to use m_devget().
*
* The receive operation is badly documented in the datasheet, so I'll
* attempt to document it here. The driver provides a buffer area and
* places its base address in the RX buffer start address register.
* The chip then begins copying frames into the RX buffer. Each frame
* is preceded by a 32-bit RX status word which specifies the length
* of the frame and certain other status bits. Each frame (starting with
* the status word) is also 32-bit aligned. The frame length is in the
* first 16 bits of the status word; the lower 15 bits correspond with
* the 'rx status register' mentioned in the datasheet.
*
* Note: to make the Alpha happy, the frame payload needs to be aligned
* on a 32-bit boundary. To achieve this, we cheat a bit by copying from
* the ring buffer starting at an address two bytes before the actual
* data location. We can then shave off the first two bytes using m_adj().
* The reason we do this is because m_devget() doesn't let us specify an
* offset into the mbuf storage space, so we have to artificially create
* one. The ring is allocated in such a way that there are a few unused
* bytes of space preceding it so that it will be safe for us to do the
* 2-byte backstep even if reading from the ring at offset 0.
*/
void
rl_rxeof(struct rl_softc *sc)
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct mbuf *m;
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
int total_len;
u_int32_t rxstat;
caddr_t rxbufpos;
int wrap = 0;
u_int16_t cur_rx;
u_int16_t limit;
u_int16_t rx_bytes = 0, max_bytes;
cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
/* Do not try to read past this point. */
limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
if (limit < cur_rx)
max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
else
max_bytes = limit - cur_rx;
while ((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_dmamap,
0, sc->sc_rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
rxstat = *(u_int32_t *)rxbufpos;
/*
* Here's a totally undocumented fact for you. When the
* Realtek chip is in the process of copying a packet into
* RAM for you, the length will be 0xfff0. If you spot a
* packet header with this value, you need to stop. The
* datasheet makes absolutely no mention of this and
* Realtek should be shot for this.
*/
rxstat = htole32(rxstat);
total_len = rxstat >> 16;
if (total_len == RL_RXSTAT_UNFINISHED) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_dmamap,
0, sc->sc_rx_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD);
break;
}
if (!(rxstat & RL_RXSTAT_RXOK) ||
total_len < ETHER_MIN_LEN ||
total_len > ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN) {
ifp->if_ierrors++;
rl_init(sc);
bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_dmamap,
0, sc->sc_rx_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD);
return;
}
/* No errors; receive the packet. */
rx_bytes += total_len + 4;
/*
* XXX The Realtek chip includes the CRC with every
* received frame, and there's no way to turn this
* behavior off (at least, I can't find anything in
* the manual that explains how to do it) so we have
* to trim off the CRC manually.
*/
total_len -= ETHER_CRC_LEN;
/*
* Avoid trying to read more bytes than we know
* the chip has prepared for us.
*/
if (rx_bytes > max_bytes) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_dmamap,
0, sc->sc_rx_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD);
break;
}
rxbufpos = sc->rl_cdata.rl_rx_buf +
((cur_rx + sizeof(u_int32_t)) % RL_RXBUFLEN);
if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
rxbufpos = sc->rl_cdata.rl_rx_buf;
wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
if (total_len > wrap) {
m = m_devget(rxbufpos, wrap, ETHER_ALIGN);
if (m != NULL) {
m_copyback(m, wrap, total_len - wrap,
sc->rl_cdata.rl_rx_buf, M_NOWAIT);
if (m->m_pkthdr.len < total_len) {
m_freem(m);
m = NULL;
}
}
cur_rx = (total_len - wrap + ETHER_CRC_LEN);
} else {
m = m_devget(rxbufpos, total_len, ETHER_ALIGN);
cur_rx += total_len + 4 + ETHER_CRC_LEN;
}
/*
* Round up to 32-bit boundary.
*/
cur_rx = (cur_rx + 3) & ~3;
CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
if (m == NULL) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_dmamap,
0, sc->sc_rx_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD);
ifp->if_ierrors++;
continue;
}
ml_enqueue(&ml, m);
bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_dmamap,
0, sc->sc_rx_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
}
if_input(ifp, &ml);
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
void
rl_txeof(struct rl_softc *sc)
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
u_int32_t txstat;
/*
* Go through our tx list and free mbufs for those
* frames that have been uploaded.
*/
do {
if (RL_LAST_TXMBUF(sc) == NULL)
break;
txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
if (!(txstat & (RL_TXSTAT_TX_OK|
RL_TXSTAT_TX_UNDERRUN|RL_TXSTAT_TXABRT)))
break;
ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24;
bus_dmamap_sync(sc->sc_dmat, RL_LAST_TXMAP(sc),
0, RL_LAST_TXMAP(sc)->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, RL_LAST_TXMAP(sc));
m_freem(RL_LAST_TXMBUF(sc));
RL_LAST_TXMBUF(sc) = NULL;
/*
* If there was a transmit underrun, bump the TX threshold.
* Make sure not to overflow the 63 * 32byte we can address
* with the 6 available bit.
*/
if ((txstat & RL_TXSTAT_TX_UNDERRUN) &&
(sc->rl_txthresh < 2016))
sc->rl_txthresh += 32;
if (!ISSET(txstat, RL_TXSTAT_TX_OK)) {
int oldthresh;
ifp->if_oerrors++;
if ((txstat & RL_TXSTAT_TXABRT) ||
(txstat & RL_TXSTAT_OUTOFWIN))
CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
oldthresh = sc->rl_txthresh;
/* error recovery */
rl_init(sc);
/* restore original threshold */
sc->rl_txthresh = oldthresh;
return;
}
RL_INC(sc->rl_cdata.last_tx);
ifq_clr_oactive(&ifp->if_snd);
} while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
if (RL_LAST_TXMBUF(sc) == NULL)
ifp->if_timer = 0;
else if (ifp->if_timer == 0)
ifp->if_timer = 5;
}
int
rl_intr(void *arg)
{
struct rl_softc *sc = arg;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
int claimed = 0;
u_int16_t status;
/* Disable interrupts. */
CSR_WRITE_2(sc, RL_IMR, 0x0000);
for (;;) {
status = CSR_READ_2(sc, RL_ISR);
/* If the card has gone away, the read returns 0xffff. */
if (status == 0xffff)
break;
if (status != 0)
CSR_WRITE_2(sc, RL_ISR, status);
if ((status & RL_INTRS) == 0)
break;
if ((status & RL_ISR_RX_OK) || (status & RL_ISR_RX_ERR))
rl_rxeof(sc);
if ((status & RL_ISR_TX_OK) || (status & RL_ISR_TX_ERR))
rl_txeof(sc);
if (status & RL_ISR_SYSTEM_ERR)
rl_init(sc);
claimed = 1;
}
/* Re-enable interrupts. */
CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
if (!ifq_empty(&ifp->if_snd))
rl_start(ifp);
return (claimed);
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
int
rl_encap(struct rl_softc *sc, struct mbuf *m_head)
{
struct mbuf *m_new;
/*
* The Realtek is brain damaged and wants longword-aligned
* TX buffers, plus we can only have one fragment buffer
* per packet. We have to copy pretty much all the time.
*/
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
m_freem(m_head);
return(1);
}
if (m_head->m_pkthdr.len > MHLEN) {
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
m_freem(m_head);
return(1);
}
}
m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t));
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
/* Pad frames to at least 60 bytes. */
if (m_new->m_pkthdr.len < RL_MIN_FRAMELEN) {
/*
* Make security-conscious people happy: zero out the
* bytes in the pad area, since we don't know what
* this mbuf cluster buffer's previous user might
* have left in it.
*/
bzero(mtod(m_new, char *) + m_new->m_pkthdr.len,
RL_MIN_FRAMELEN - m_new->m_pkthdr.len);
m_new->m_pkthdr.len +=
(RL_MIN_FRAMELEN - m_new->m_pkthdr.len);
m_new->m_len = m_new->m_pkthdr.len;
}
if (bus_dmamap_load_mbuf(sc->sc_dmat, RL_CUR_TXMAP(sc),
m_new, BUS_DMA_NOWAIT) != 0) {
m_freem(m_new);
m_freem(m_head);
return (1);
}
m_freem(m_head);
RL_CUR_TXMBUF(sc) = m_new;
bus_dmamap_sync(sc->sc_dmat, RL_CUR_TXMAP(sc), 0,
RL_CUR_TXMAP(sc)->dm_mapsize, BUS_DMASYNC_PREWRITE);
return(0);
}
/*
* Main transmit routine.
*/
void
rl_start(struct ifnet *ifp)
{
struct rl_softc *sc = ifp->if_softc;
struct mbuf *m_head = NULL;
int pkts = 0;
while (RL_CUR_TXMBUF(sc) == NULL) {
m_head = ifq_dequeue(&ifp->if_snd);
if (m_head == NULL)
break;
/* Pack the data into the descriptor. */
if (rl_encap(sc, m_head))
break;
pkts++;
#if NBPFILTER > 0
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, RL_CUR_TXMBUF(sc),
BPF_DIRECTION_OUT);
#endif
/*
* Transmit the frame.
*/
CSR_WRITE_4(sc, RL_CUR_TXADDR(sc),
RL_CUR_TXMAP(sc)->dm_segs[0].ds_addr);
CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
RL_TXTHRESH(sc->rl_txthresh) |
RL_CUR_TXMAP(sc)->dm_segs[0].ds_len);
RL_INC(sc->rl_cdata.cur_tx);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
}
if (pkts == 0)
return;
/*
* We broke out of the loop because all our TX slots are
* full. Mark the NIC as busy until it drains some of the
* packets from the queue.
*/
if (RL_CUR_TXMBUF(sc) != NULL)
ifq_set_oactive(&ifp->if_snd);
}
void
rl_init(void *xsc)
{
struct rl_softc *sc = xsc;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
int s;
s = splnet();
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
rl_stop(sc);
/* Put controller into known state. */
rl_reset(sc);
/*
* Init our MAC address. Even though the chipset
* documentation doesn't mention it, we need to enter "Config
* register write enable" mode to modify the ID registers.
*/
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
CSR_WRITE_RAW_4(sc, RL_IDR0,
(u_int8_t *)(&sc->sc_arpcom.ac_enaddr[0]));
CSR_WRITE_RAW_4(sc, RL_IDR4,
(u_int8_t *)(&sc->sc_arpcom.ac_enaddr[4]));
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
/* Init the RX buffer pointer register. */
CSR_WRITE_4(sc, RL_RXADDR, sc->rl_cdata.rl_rx_buf_pa);
/* Init TX descriptors. */
rl_list_tx_init(sc);
/*
* Enable transmit and receive.
*/
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
/*
* Set the initial TX and RX configuration.
*/
CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
/*
* Program promiscuous mode and multicast filters.
*/
rl_iff(sc);
/*
* Enable interrupts.
*/
CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
/* Set initial TX threshold */
sc->rl_txthresh = RL_TX_THRESH_INIT;
/* Start RX/TX process. */
CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
/* Enable receiver and transmitter. */
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
mii_mediachg(&sc->sc_mii);
CSR_WRITE_1(sc, sc->rl_cfg1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
ifp->if_flags |= IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
splx(s);
timeout_add_sec(&sc->sc_tick_tmo, 1);
}
/*
* Set media options.
*/
int
rl_ifmedia_upd(struct ifnet *ifp)
{
struct rl_softc *sc = (struct rl_softc *)ifp->if_softc;
mii_mediachg(&sc->sc_mii);
return (0);
}
/*
* Report current media status.
*/
void
rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct rl_softc *sc = ifp->if_softc;
mii_pollstat(&sc->sc_mii);
ifmr->ifm_status = sc->sc_mii.mii_media_status;
ifmr->ifm_active = sc->sc_mii.mii_media_active;
}
int
rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct rl_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
s = splnet();
switch(command) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
if (!(ifp->if_flags & IFF_RUNNING))
rl_init(sc);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING)
error = ENETRESET;
else
rl_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
rl_stop(sc);
}
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
break;
default:
error = ether_ioctl(ifp, &sc->sc_arpcom, command, data);
}
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
rl_iff(sc);
error = 0;
}
splx(s);
return(error);
}
void
rl_watchdog(struct ifnet *ifp)
{
struct rl_softc *sc = ifp->if_softc;
printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
ifp->if_oerrors++;
rl_txeof(sc);
rl_rxeof(sc);
rl_init(sc);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
void
rl_stop(struct rl_softc *sc)
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
int i;
ifp->if_timer = 0;
timeout_del(&sc->sc_tick_tmo);
ifp->if_flags &= ~IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
CSR_WRITE_1(sc, RL_COMMAND, 0x00);
CSR_WRITE_2(sc, RL_IMR, 0x0000);
/*
* Free the TX list buffers.
*/
for (i = 0; i < RL_TX_LIST_CNT; i++) {
if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
bus_dmamap_sync(sc->sc_dmat,
sc->rl_cdata.rl_tx_dmamap[i], 0,
sc->rl_cdata.rl_tx_dmamap[i]->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat,
sc->rl_cdata.rl_tx_dmamap[i]);
m_freem(sc->rl_cdata.rl_tx_chain[i]);
sc->rl_cdata.rl_tx_chain[i] = NULL;
CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(u_int32_t)),
0x00000000);
}
}
}
int
rl_attach(struct rl_softc *sc)
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
int rseg, i;
u_int16_t rl_id;
caddr_t kva;
int addr_len;
sc->rl_cfg0 = RL_8139_CFG0;
sc->rl_cfg1 = RL_8139_CFG1;
sc->rl_cfg2 = 0;
sc->rl_cfg3 = RL_8139_CFG3;
sc->rl_cfg4 = RL_8139_CFG4;
sc->rl_cfg5 = RL_8139_CFG5;
rl_reset(sc);
/*
* Check EEPROM type 9346 or 9356.
*/
rl_read_eeprom(sc, (caddr_t)&rl_id, RL_EE_ID, RL_EEADDR_LEN1, 1, 0);
if (rl_id == 0x8129)
addr_len = RL_EEADDR_LEN1;
else
addr_len = RL_EEADDR_LEN0;
/*
* Get station address.
*/
rl_read_eeprom(sc, (caddr_t)sc->sc_arpcom.ac_enaddr, RL_EE_EADDR,
addr_len, 3, 1);
printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
if (bus_dmamem_alloc(sc->sc_dmat, RL_RXBUFLEN + 32, PAGE_SIZE, 0,
&sc->sc_rx_seg, 1, &rseg, BUS_DMA_NOWAIT | BUS_DMA_ZERO)) {
printf("\n%s: can't alloc rx buffers\n", sc->sc_dev.dv_xname);
return (1);
}
if (bus_dmamem_map(sc->sc_dmat, &sc->sc_rx_seg, rseg,
RL_RXBUFLEN + 32, &kva, BUS_DMA_NOWAIT)) {
printf("%s: can't map dma buffers (%d bytes)\n",
sc->sc_dev.dv_xname, RL_RXBUFLEN + 32);
bus_dmamem_free(sc->sc_dmat, &sc->sc_rx_seg, rseg);
return (1);
}
if (bus_dmamap_create(sc->sc_dmat, RL_RXBUFLEN + 32, 1,
RL_RXBUFLEN + 32, 0, BUS_DMA_NOWAIT, &sc->sc_rx_dmamap)) {
printf("%s: can't create dma map\n", sc->sc_dev.dv_xname);
bus_dmamem_unmap(sc->sc_dmat, kva, RL_RXBUFLEN + 32);
bus_dmamem_free(sc->sc_dmat, &sc->sc_rx_seg, rseg);
return (1);
}
if (bus_dmamap_load(sc->sc_dmat, sc->sc_rx_dmamap, kva,
RL_RXBUFLEN + 32, NULL, BUS_DMA_NOWAIT)) {
printf("%s: can't load dma map\n", sc->sc_dev.dv_xname);
bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamap);
bus_dmamem_unmap(sc->sc_dmat, kva, RL_RXBUFLEN + 32);
bus_dmamem_free(sc->sc_dmat, &sc->sc_rx_seg, rseg);
return (1);
}
sc->rl_cdata.rl_rx_buf = kva;
sc->rl_cdata.rl_rx_buf_pa = sc->sc_rx_dmamap->dm_segs[0].ds_addr;
bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_dmamap,
0, sc->sc_rx_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
for (i = 0; i < RL_TX_LIST_CNT; i++) {
if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
BUS_DMA_NOWAIT, &sc->rl_cdata.rl_tx_dmamap[i]) != 0) {
printf("%s: can't create tx maps\n",
sc->sc_dev.dv_xname);
/* XXX free any allocated... */
return (1);
}
}
/* Leave a few bytes before the start of the RX ring buffer. */
sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
sc->rl_cdata.rl_rx_buf += sizeof(u_int64_t);
sc->rl_cdata.rl_rx_buf_pa += sizeof(u_int64_t);
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = rl_ioctl;
ifp->if_start = rl_start;
ifp->if_watchdog = rl_watchdog;
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
ifp->if_capabilities = IFCAP_VLAN_MTU;
timeout_set(&sc->sc_tick_tmo, rl_tick, sc);
/*
* Initialize our media structures and probe the MII.
*/
sc->sc_mii.mii_ifp = ifp;
sc->sc_mii.mii_readreg = rl_miibus_readreg;
sc->sc_mii.mii_writereg = rl_miibus_writereg;
sc->sc_mii.mii_statchg = rl_miibus_statchg;
ifmedia_init(&sc->sc_mii.mii_media, 0, rl_ifmedia_upd, rl_ifmedia_sts);
mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, 0);
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
} else
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
/*
* Attach us everywhere
*/
if_attach(ifp);
ether_ifattach(ifp);
return (0);
}
int
rl_activate(struct device *self, int act)
{
struct rl_softc *sc = (struct rl_softc *)self;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
int rv = 0;
switch (act) {
case DVACT_SUSPEND:
if (ifp->if_flags & IFF_RUNNING)
rl_stop(sc);
rv = config_activate_children(self, act);
break;
case DVACT_RESUME:
if (ifp->if_flags & IFF_UP)
rl_init(sc);
break;
default:
rv = config_activate_children(self, act);
break;
}
return (rv);
}
int
rl_miibus_readreg(struct device *self, int phy, int reg)
{
struct rl_softc *sc = (struct rl_softc *)self;
struct rl_mii_frame frame;
u_int16_t rl8139_reg;
if (sc->rl_type == RL_8139) {
/*
* The RTL8139 PHY is mapped into PCI registers, unfortunately
* it has no phyid, or phyaddr, so assume it is phyaddr 0.
*/
if (phy != 0)
return(0);
switch (reg) {
case MII_BMCR:
rl8139_reg = RL_BMCR;
break;
case MII_BMSR:
rl8139_reg = RL_BMSR;
break;
case MII_ANAR:
rl8139_reg = RL_ANAR;
break;
case MII_ANER:
rl8139_reg = RL_ANER;
break;
case MII_ANLPAR:
rl8139_reg = RL_LPAR;
break;
case RL_MEDIASTAT:
return (CSR_READ_1(sc, RL_MEDIASTAT));
case MII_PHYIDR1:
case MII_PHYIDR2:
default:
return (0);
}
return (CSR_READ_2(sc, rl8139_reg));
}
bzero(&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
rl_mii_readreg(sc, &frame);
return(frame.mii_data);
}
void
rl_miibus_writereg(struct device *self, int phy, int reg, int val)
{
struct rl_softc *sc = (struct rl_softc *)self;
struct rl_mii_frame frame;
u_int16_t rl8139_reg = 0;
if (sc->rl_type == RL_8139) {
if (phy)
return;
switch (reg) {
case MII_BMCR:
rl8139_reg = RL_BMCR;
break;
case MII_BMSR:
rl8139_reg = RL_BMSR;
break;
case MII_ANAR:
rl8139_reg = RL_ANAR;
break;
case MII_ANER:
rl8139_reg = RL_ANER;
break;
case MII_ANLPAR:
rl8139_reg = RL_LPAR;
break;
case MII_PHYIDR1:
case MII_PHYIDR2:
return;
}
CSR_WRITE_2(sc, rl8139_reg, val);
return;
}
bzero(&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
frame.mii_data = val;
rl_mii_writereg(sc, &frame);
}
void
rl_miibus_statchg(struct device *self)
{
}
void
rl_tick(void *v)
{
struct rl_softc *sc = v;
int s;
s = splnet();
mii_tick(&sc->sc_mii);
splx(s);
timeout_add_sec(&sc->sc_tick_tmo, 1);
}
int
rl_detach(struct rl_softc *sc)
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
/* Unhook our tick handler. */
timeout_del(&sc->sc_tick_tmo);
/* Detach any PHYs we might have. */
if (LIST_FIRST(&sc->sc_mii.mii_phys) != NULL)
mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
/* Delete any remaining media. */
ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
ether_ifdetach(ifp);
if_detach(ifp);
return (0);
}
struct cfdriver rl_cd = {
0, "rl", DV_IFNET
};