src/sys/arch/arm64/dev/simplebus.c

502 lines
14 KiB
C

/* $OpenBSD: simplebus.c,v 1.17 2023/07/19 20:26:11 kettenis Exp $ */
/*
* Copyright (c) 2016 Patrick Wildt <patrick@blueri.se>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <machine/fdt.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/fdt.h>
#include <dev/ofw/ofw_misc.h>
#include <arm64/fdt.h>
#include <arm64/dev/simplebusvar.h>
int simplebus_match(struct device *, void *, void *);
void simplebus_attach(struct device *, struct device *, void *);
void simplebus_attach_node(struct device *, int);
int simplebus_bs_map(bus_space_tag_t, bus_addr_t, bus_size_t, int,
bus_space_handle_t *);
paddr_t simplebus_bs_mmap(bus_space_tag_t, bus_addr_t, off_t, int, int);
int simplebus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
bus_size_t, struct proc *, int, paddr_t *, int *, int);
int simplebus_dmamap_load_raw(bus_dma_tag_t, bus_dmamap_t,
bus_dma_segment_t *, int, bus_size_t, int);
const struct cfattach simplebus_ca = {
sizeof(struct simplebus_softc), simplebus_match, simplebus_attach
};
struct cfdriver simplebus_cd = {
NULL, "simplebus", DV_DULL
};
/*
* Simplebus is a generic bus with no special casings.
*/
int
simplebus_match(struct device *parent, void *cfdata, void *aux)
{
struct fdt_attach_args *fa = (struct fdt_attach_args *)aux;
if (fa->fa_node == 0)
return (0);
/* Qualcomm GENI can mostly be treated as simple-bus. */
if (OF_is_compatible(fa->fa_node, "qcom,geni-se-qup"))
return (1);
if (!OF_is_compatible(fa->fa_node, "simple-bus"))
return (0);
return (1);
}
void
simplebus_attach(struct device *parent, struct device *self, void *aux)
{
struct simplebus_softc *sc = (struct simplebus_softc *)self;
struct fdt_attach_args *fa = (struct fdt_attach_args *)aux;
char name[32];
int node;
sc->sc_node = fa->fa_node;
sc->sc_iot = fa->fa_iot;
sc->sc_dmat = fa->fa_dmat;
sc->sc_acells = OF_getpropint(sc->sc_node, "#address-cells",
fa->fa_acells);
sc->sc_scells = OF_getpropint(sc->sc_node, "#size-cells",
fa->fa_scells);
sc->sc_pacells = fa->fa_acells;
sc->sc_pscells = fa->fa_scells;
if (OF_getprop(sc->sc_node, "name", name, sizeof(name)) > 0) {
name[sizeof(name) - 1] = 0;
printf(": \"%s\"", name);
}
printf("\n");
memcpy(&sc->sc_bus, sc->sc_iot, sizeof(sc->sc_bus));
sc->sc_bus.bus_private = sc;
sc->sc_bus._space_map = simplebus_bs_map;
sc->sc_bus._space_mmap = simplebus_bs_mmap;
sc->sc_rangeslen = OF_getproplen(sc->sc_node, "ranges");
if (sc->sc_rangeslen > 0 &&
(sc->sc_rangeslen % sizeof(uint32_t)) == 0) {
sc->sc_ranges = malloc(sc->sc_rangeslen, M_TEMP, M_WAITOK);
OF_getpropintarray(sc->sc_node, "ranges", sc->sc_ranges,
sc->sc_rangeslen);
}
memcpy(&sc->sc_dma, sc->sc_dmat, sizeof(sc->sc_dma));
sc->sc_dma._dmamap_load_buffer = simplebus_dmamap_load_buffer;
sc->sc_dma._dmamap_load_raw = simplebus_dmamap_load_raw;
sc->sc_dma._cookie = sc;
sc->sc_dmarangeslen = OF_getproplen(sc->sc_node, "dma-ranges");
if (sc->sc_dmarangeslen > 0 &&
(sc->sc_dmarangeslen % sizeof(uint32_t)) == 0) {
sc->sc_dmaranges = malloc(sc->sc_dmarangeslen,
M_TEMP, M_WAITOK);
OF_getpropintarray(sc->sc_node, "dma-ranges",
sc->sc_dmaranges, sc->sc_dmarangeslen);
}
/*
* The device tree provided by the Raspberry Pi firmware lacks
* a "dma-ranges" option. So provide the information until
* that gets fixed.
*/
if (sc->sc_dmaranges == NULL) {
node = OF_parent(sc->sc_node);
if (OF_is_compatible(node, "brcm,bcm2709")) {
sc->sc_dmarangeslen = 3 * sizeof(uint32_t);
sc->sc_dmaranges = malloc(sc->sc_dmarangeslen,
M_TEMP, M_WAITOK);
sc->sc_dmaranges[0] = 0xc0000000;
sc->sc_dmaranges[1] = 0x00000000;
sc->sc_dmaranges[2] = 0x3f000000;
}
}
/* Scan the whole tree. */
for (sc->sc_early = 2; sc->sc_early >= 0; sc->sc_early--) {
for (node = OF_child(sc->sc_node); node; node = OF_peer(node))
simplebus_attach_node(self, node);
}
}
int
simplebus_submatch(struct device *self, void *match, void *aux)
{
struct simplebus_softc *sc = (struct simplebus_softc *)self;
struct cfdata *cf = match;
if (cf->cf_loc[0] == sc->sc_early)
return (*cf->cf_attach->ca_match)(self, match, aux);
return 0;
}
int
simplebus_print(void *aux, const char *pnp)
{
struct fdt_attach_args *fa = aux;
char name[32];
if (!pnp)
return (QUIET);
if (OF_getprop(fa->fa_node, "name", name, sizeof(name)) > 0) {
name[sizeof(name) - 1] = 0;
printf("\"%s\"", name);
} else
printf("node %u", fa->fa_node);
printf(" at %s", pnp);
return (UNCONF);
}
/*
* Look for a driver that wants to be attached to this node.
*/
void
simplebus_attach_node(struct device *self, int node)
{
struct simplebus_softc *sc = (struct simplebus_softc *)self;
struct fdt_attach_args fa;
char buf[32];
int i, len, line;
uint32_t *cell, *reg;
struct device *child;
if (OF_getproplen(node, "compatible") <= 0)
return;
if (OF_getprop(node, "status", buf, sizeof(buf)) > 0 &&
strcmp(buf, "disabled") == 0)
return;
/* Skip if already attached early. */
for (i = 0; i < nitems(sc->sc_early_nodes); i++) {
if (sc->sc_early_nodes[i] == node)
return;
if (sc->sc_early_nodes[i] == 0)
break;
}
memset(&fa, 0, sizeof(fa));
fa.fa_name = "";
fa.fa_node = node;
fa.fa_iot = &sc->sc_bus;
fa.fa_dmat = &sc->sc_dma;
fa.fa_acells = sc->sc_acells;
fa.fa_scells = sc->sc_scells;
len = OF_getproplen(node, "reg");
line = (sc->sc_acells + sc->sc_scells) * sizeof(uint32_t);
if (len > 0 && line > 0 && (len % line) == 0) {
reg = malloc(len, M_TEMP, M_WAITOK);
OF_getpropintarray(node, "reg", reg, len);
fa.fa_reg = malloc((len / line) * sizeof(struct fdt_reg),
M_DEVBUF, M_WAITOK | M_ZERO);
fa.fa_nreg = (len / line);
for (i = 0, cell = reg; i < len / line; i++) {
if (sc->sc_acells >= 1)
fa.fa_reg[i].addr = cell[0];
if (sc->sc_acells == 2) {
fa.fa_reg[i].addr <<= 32;
fa.fa_reg[i].addr |= cell[1];
}
cell += sc->sc_acells;
if (sc->sc_scells >= 1)
fa.fa_reg[i].size = cell[0];
if (sc->sc_scells == 2) {
fa.fa_reg[i].size <<= 32;
fa.fa_reg[i].size |= cell[1];
}
cell += sc->sc_scells;
}
free(reg, M_TEMP, len);
}
len = OF_getproplen(node, "interrupts");
if (len > 0 && (len % sizeof(uint32_t)) == 0) {
fa.fa_intr = malloc(len, M_DEVBUF, M_WAITOK);
fa.fa_nintr = len / sizeof(uint32_t);
OF_getpropintarray(node, "interrupts", fa.fa_intr, len);
}
if (OF_getproplen(node, "dma-coherent") >= 0) {
fa.fa_dmat = malloc(sizeof(sc->sc_dma),
M_DEVBUF, M_WAITOK | M_ZERO);
memcpy(fa.fa_dmat, &sc->sc_dma, sizeof(sc->sc_dma));
fa.fa_dmat->_flags |= BUS_DMA_COHERENT;
}
fa.fa_dmat = iommu_device_map(fa.fa_node, fa.fa_dmat);
child = config_found_sm(self, &fa, sc->sc_early ? NULL :
simplebus_print, simplebus_submatch);
/* Record nodes that we attach early. */
if (child && sc->sc_early) {
for (i = 0; i < nitems(sc->sc_early_nodes); i++) {
if (sc->sc_early_nodes[i] != 0)
continue;
sc->sc_early_nodes[i] = node;
break;
}
}
free(fa.fa_reg, M_DEVBUF, fa.fa_nreg * sizeof(struct fdt_reg));
free(fa.fa_intr, M_DEVBUF, fa.fa_nintr * sizeof(uint32_t));
}
/*
* Translate memory address if needed.
*/
int
simplebus_bs_map(bus_space_tag_t t, bus_addr_t bpa, bus_size_t size,
int flag, bus_space_handle_t *bshp)
{
struct simplebus_softc *sc = t->bus_private;
uint64_t addr, rfrom, rto, rsize;
uint32_t *range;
int parent, rlen, rone;
addr = bpa;
parent = OF_parent(sc->sc_node);
if (parent == 0)
return bus_space_map(sc->sc_iot, addr, size, flag, bshp);
if (sc->sc_rangeslen < 0)
return EINVAL;
if (sc->sc_rangeslen == 0)
return bus_space_map(sc->sc_iot, addr, size, flag, bshp);
rlen = sc->sc_rangeslen / sizeof(uint32_t);
rone = sc->sc_pacells + sc->sc_acells + sc->sc_scells;
/* For each range. */
for (range = sc->sc_ranges; rlen >= rone; rlen -= rone, range += rone) {
/* Extract from and size, so we can see if we fit. */
rfrom = range[0];
if (sc->sc_acells == 2)
rfrom = (rfrom << 32) + range[1];
rsize = range[sc->sc_acells + sc->sc_pacells];
if (sc->sc_scells == 2)
rsize = (rsize << 32) +
range[sc->sc_acells + sc->sc_pacells + 1];
/* Try next, if we're not in the range. */
if (addr < rfrom || (addr + size) > (rfrom + rsize))
continue;
/* All good, extract to address and translate. */
rto = range[sc->sc_acells];
if (sc->sc_pacells == 2)
rto = (rto << 32) + range[sc->sc_acells + 1];
addr -= rfrom;
addr += rto;
return bus_space_map(sc->sc_iot, addr, size, flag, bshp);
}
return ESRCH;
}
paddr_t
simplebus_bs_mmap(bus_space_tag_t t, bus_addr_t bpa, off_t off,
int prot, int flags)
{
struct simplebus_softc *sc = t->bus_private;
uint64_t addr, rfrom, rto, rsize;
uint32_t *range;
int parent, rlen, rone;
addr = bpa;
parent = OF_parent(sc->sc_node);
if (parent == 0)
return bus_space_mmap(sc->sc_iot, addr, off, prot, flags);
if (sc->sc_rangeslen < 0)
return EINVAL;
if (sc->sc_rangeslen == 0)
return bus_space_mmap(sc->sc_iot, addr, off, prot, flags);
rlen = sc->sc_rangeslen / sizeof(uint32_t);
rone = sc->sc_pacells + sc->sc_acells + sc->sc_scells;
/* For each range. */
for (range = sc->sc_ranges; rlen >= rone; rlen -= rone, range += rone) {
/* Extract from and size, so we can see if we fit. */
rfrom = range[0];
if (sc->sc_acells == 2)
rfrom = (rfrom << 32) + range[1];
rsize = range[sc->sc_acells + sc->sc_pacells];
if (sc->sc_scells == 2)
rsize = (rsize << 32) +
range[sc->sc_acells + sc->sc_pacells + 1];
/* Try next, if we're not in the range. */
if (addr < rfrom || addr >= (rfrom + rsize))
continue;
/* All good, extract to address and translate. */
rto = range[sc->sc_acells];
if (sc->sc_pacells == 2)
rto = (rto << 32) + range[sc->sc_acells + 1];
addr -= rfrom;
addr += rto;
return bus_space_mmap(sc->sc_iot, addr, off, prot, flags);
}
return -1;
}
int
simplebus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
bus_size_t buflen, struct proc *p, int flags, paddr_t *lastaddrp,
int *segp, int first)
{
struct simplebus_softc *sc = t->_cookie;
int rlen, rone, seg;
int firstseg = *segp;
int error;
error = sc->sc_dmat->_dmamap_load_buffer(sc->sc_dmat, map, buf, buflen,
p, flags, lastaddrp, segp, first);
if (error)
return error;
if (sc->sc_dmaranges == NULL)
return 0;
rlen = sc->sc_dmarangeslen / sizeof(uint32_t);
rone = sc->sc_pacells + sc->sc_acells + sc->sc_scells;
/* For each segment. */
for (seg = firstseg; seg <= *segp; seg++) {
uint64_t addr, size, rfrom, rto, rsize;
uint32_t *range;
addr = map->dm_segs[seg].ds_addr;
size = map->dm_segs[seg].ds_len;
/* For each range. */
for (range = sc->sc_dmaranges; rlen >= rone;
rlen -= rone, range += rone) {
/* Extract from and size, so we can see if we fit. */
rfrom = range[sc->sc_acells];
if (sc->sc_pacells == 2)
rfrom = (rfrom << 32) + range[sc->sc_acells + 1];
rsize = range[sc->sc_acells + sc->sc_pacells];
if (sc->sc_scells == 2)
rsize = (rsize << 32) +
range[sc->sc_acells + sc->sc_pacells + 1];
/* Try next, if we're not in the range. */
if (addr < rfrom || (addr + size) > (rfrom + rsize))
continue;
/* All good, extract to address and translate. */
rto = range[0];
if (sc->sc_acells == 2)
rto = (rto << 32) + range[1];
map->dm_segs[seg].ds_addr -= rfrom;
map->dm_segs[seg].ds_addr += rto;
break;
}
}
return 0;
}
int
simplebus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
bus_dma_segment_t *segs, int nsegs, bus_size_t size, int flags)
{
struct simplebus_softc *sc = t->_cookie;
int rlen, rone, seg;
int error;
error = sc->sc_dmat->_dmamap_load_raw(sc->sc_dmat, map,
segs, nsegs, size, flags);
if (error)
return error;
if (sc->sc_dmaranges == NULL)
return 0;
rlen = sc->sc_dmarangeslen / sizeof(uint32_t);
rone = sc->sc_pacells + sc->sc_acells + sc->sc_scells;
/* For each segment. */
for (seg = 0; seg < map->dm_nsegs; seg++) {
uint64_t addr, size, rfrom, rto, rsize;
uint32_t *range;
addr = map->dm_segs[seg].ds_addr;
size = map->dm_segs[seg].ds_len;
/* For each range. */
for (range = sc->sc_dmaranges; rlen >= rone;
rlen -= rone, range += rone) {
/* Extract from and size, so we can see if we fit. */
rfrom = range[sc->sc_acells];
if (sc->sc_pacells == 2)
rfrom = (rfrom << 32) + range[sc->sc_acells + 1];
rsize = range[sc->sc_acells + sc->sc_pacells];
if (sc->sc_scells == 2)
rsize = (rsize << 32) +
range[sc->sc_acells + sc->sc_pacells + 1];
/* Try next, if we're not in the range. */
if (addr < rfrom || (addr + size) > (rfrom + rsize))
continue;
/* All good, extract to address and translate. */
rto = range[0];
if (sc->sc_acells == 2)
rto = (rto << 32) + range[1];
map->dm_segs[seg].ds_addr -= rfrom;
map->dm_segs[seg].ds_addr += rto;
break;
}
}
return 0;
}