src/lib/libcrypto/x509/x509_addr.c

2065 lines
47 KiB
C

/* $OpenBSD: x509_addr.c,v 1.91 2023/10/29 13:22:37 tb Exp $ */
/*
* Contributed to the OpenSSL Project by the American Registry for
* Internet Numbers ("ARIN").
*/
/* ====================================================================
* Copyright (c) 2006-2016 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*/
/*
* Implementation of RFC 3779 section 2.2.
*/
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/asn1.h>
#include <openssl/asn1t.h>
#include <openssl/buffer.h>
#include <openssl/conf.h>
#include <openssl/err.h>
#include <openssl/x509.h>
#include <openssl/x509v3.h>
#include "asn1_local.h"
#include "bytestring.h"
#include "x509_local.h"
#ifndef OPENSSL_NO_RFC3779
/*
* OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
*/
static const ASN1_TEMPLATE IPAddressRange_seq_tt[] = {
{
.flags = 0,
.tag = 0,
.offset = offsetof(IPAddressRange, min),
.field_name = "min",
.item = &ASN1_BIT_STRING_it,
},
{
.flags = 0,
.tag = 0,
.offset = offsetof(IPAddressRange, max),
.field_name = "max",
.item = &ASN1_BIT_STRING_it,
},
};
const ASN1_ITEM IPAddressRange_it = {
.itype = ASN1_ITYPE_SEQUENCE,
.utype = V_ASN1_SEQUENCE,
.templates = IPAddressRange_seq_tt,
.tcount = sizeof(IPAddressRange_seq_tt) / sizeof(ASN1_TEMPLATE),
.funcs = NULL,
.size = sizeof(IPAddressRange),
.sname = "IPAddressRange",
};
static const ASN1_TEMPLATE IPAddressOrRange_ch_tt[] = {
{
.flags = 0,
.tag = 0,
.offset = offsetof(IPAddressOrRange, u.addressPrefix),
.field_name = "u.addressPrefix",
.item = &ASN1_BIT_STRING_it,
},
{
.flags = 0,
.tag = 0,
.offset = offsetof(IPAddressOrRange, u.addressRange),
.field_name = "u.addressRange",
.item = &IPAddressRange_it,
},
};
const ASN1_ITEM IPAddressOrRange_it = {
.itype = ASN1_ITYPE_CHOICE,
.utype = offsetof(IPAddressOrRange, type),
.templates = IPAddressOrRange_ch_tt,
.tcount = sizeof(IPAddressOrRange_ch_tt) / sizeof(ASN1_TEMPLATE),
.funcs = NULL,
.size = sizeof(IPAddressOrRange),
.sname = "IPAddressOrRange",
};
static const ASN1_TEMPLATE IPAddressChoice_ch_tt[] = {
{
.flags = 0,
.tag = 0,
.offset = offsetof(IPAddressChoice, u.inherit),
.field_name = "u.inherit",
.item = &ASN1_NULL_it,
},
{
.flags = ASN1_TFLG_SEQUENCE_OF,
.tag = 0,
.offset = offsetof(IPAddressChoice, u.addressesOrRanges),
.field_name = "u.addressesOrRanges",
.item = &IPAddressOrRange_it,
},
};
const ASN1_ITEM IPAddressChoice_it = {
.itype = ASN1_ITYPE_CHOICE,
.utype = offsetof(IPAddressChoice, type),
.templates = IPAddressChoice_ch_tt,
.tcount = sizeof(IPAddressChoice_ch_tt) / sizeof(ASN1_TEMPLATE),
.funcs = NULL,
.size = sizeof(IPAddressChoice),
.sname = "IPAddressChoice",
};
static const ASN1_TEMPLATE IPAddressFamily_seq_tt[] = {
{
.flags = 0,
.tag = 0,
.offset = offsetof(IPAddressFamily, addressFamily),
.field_name = "addressFamily",
.item = &ASN1_OCTET_STRING_it,
},
{
.flags = 0,
.tag = 0,
.offset = offsetof(IPAddressFamily, ipAddressChoice),
.field_name = "ipAddressChoice",
.item = &IPAddressChoice_it,
},
};
const ASN1_ITEM IPAddressFamily_it = {
.itype = ASN1_ITYPE_SEQUENCE,
.utype = V_ASN1_SEQUENCE,
.templates = IPAddressFamily_seq_tt,
.tcount = sizeof(IPAddressFamily_seq_tt) / sizeof(ASN1_TEMPLATE),
.funcs = NULL,
.size = sizeof(IPAddressFamily),
.sname = "IPAddressFamily",
};
static const ASN1_TEMPLATE IPAddrBlocks_item_tt = {
.flags = ASN1_TFLG_SEQUENCE_OF,
.tag = 0,
.offset = 0,
.field_name = "IPAddrBlocks",
.item = &IPAddressFamily_it,
};
static const ASN1_ITEM IPAddrBlocks_it = {
.itype = ASN1_ITYPE_PRIMITIVE,
.utype = -1,
.templates = &IPAddrBlocks_item_tt,
.tcount = 0,
.funcs = NULL,
.size = 0,
.sname = "IPAddrBlocks",
};
IPAddressRange *
d2i_IPAddressRange(IPAddressRange **a, const unsigned char **in, long len)
{
return (IPAddressRange *)ASN1_item_d2i((ASN1_VALUE **)a, in, len,
&IPAddressRange_it);
}
LCRYPTO_ALIAS(d2i_IPAddressRange);
int
i2d_IPAddressRange(IPAddressRange *a, unsigned char **out)
{
return ASN1_item_i2d((ASN1_VALUE *)a, out, &IPAddressRange_it);
}
LCRYPTO_ALIAS(i2d_IPAddressRange);
IPAddressRange *
IPAddressRange_new(void)
{
return (IPAddressRange *)ASN1_item_new(&IPAddressRange_it);
}
LCRYPTO_ALIAS(IPAddressRange_new);
void
IPAddressRange_free(IPAddressRange *a)
{
ASN1_item_free((ASN1_VALUE *)a, &IPAddressRange_it);
}
LCRYPTO_ALIAS(IPAddressRange_free);
IPAddressOrRange *
d2i_IPAddressOrRange(IPAddressOrRange **a, const unsigned char **in, long len)
{
return (IPAddressOrRange *)ASN1_item_d2i((ASN1_VALUE **)a, in, len,
&IPAddressOrRange_it);
}
LCRYPTO_ALIAS(d2i_IPAddressOrRange);
int
i2d_IPAddressOrRange(IPAddressOrRange *a, unsigned char **out)
{
return ASN1_item_i2d((ASN1_VALUE *)a, out, &IPAddressOrRange_it);
}
LCRYPTO_ALIAS(i2d_IPAddressOrRange);
IPAddressOrRange *
IPAddressOrRange_new(void)
{
return (IPAddressOrRange *)ASN1_item_new(&IPAddressOrRange_it);
}
LCRYPTO_ALIAS(IPAddressOrRange_new);
void
IPAddressOrRange_free(IPAddressOrRange *a)
{
ASN1_item_free((ASN1_VALUE *)a, &IPAddressOrRange_it);
}
LCRYPTO_ALIAS(IPAddressOrRange_free);
IPAddressChoice *
d2i_IPAddressChoice(IPAddressChoice **a, const unsigned char **in, long len)
{
return (IPAddressChoice *)ASN1_item_d2i((ASN1_VALUE **)a, in, len,
&IPAddressChoice_it);
}
LCRYPTO_ALIAS(d2i_IPAddressChoice);
int
i2d_IPAddressChoice(IPAddressChoice *a, unsigned char **out)
{
return ASN1_item_i2d((ASN1_VALUE *)a, out, &IPAddressChoice_it);
}
LCRYPTO_ALIAS(i2d_IPAddressChoice);
IPAddressChoice *
IPAddressChoice_new(void)
{
return (IPAddressChoice *)ASN1_item_new(&IPAddressChoice_it);
}
LCRYPTO_ALIAS(IPAddressChoice_new);
void
IPAddressChoice_free(IPAddressChoice *a)
{
ASN1_item_free((ASN1_VALUE *)a, &IPAddressChoice_it);
}
LCRYPTO_ALIAS(IPAddressChoice_free);
IPAddressFamily *
d2i_IPAddressFamily(IPAddressFamily **a, const unsigned char **in, long len)
{
return (IPAddressFamily *)ASN1_item_d2i((ASN1_VALUE **)a, in, len,
&IPAddressFamily_it);
}
LCRYPTO_ALIAS(d2i_IPAddressFamily);
int
i2d_IPAddressFamily(IPAddressFamily *a, unsigned char **out)
{
return ASN1_item_i2d((ASN1_VALUE *)a, out, &IPAddressFamily_it);
}
LCRYPTO_ALIAS(i2d_IPAddressFamily);
IPAddressFamily *
IPAddressFamily_new(void)
{
return (IPAddressFamily *)ASN1_item_new(&IPAddressFamily_it);
}
LCRYPTO_ALIAS(IPAddressFamily_new);
void
IPAddressFamily_free(IPAddressFamily *a)
{
ASN1_item_free((ASN1_VALUE *)a, &IPAddressFamily_it);
}
LCRYPTO_ALIAS(IPAddressFamily_free);
/*
* Convenience accessors for IPAddressFamily.
*/
static int
IPAddressFamily_type(IPAddressFamily *af)
{
/* XXX - can af->ipAddressChoice == NULL actually happen? */
if (af == NULL || af->ipAddressChoice == NULL)
return -1;
switch (af->ipAddressChoice->type) {
case IPAddressChoice_inherit:
case IPAddressChoice_addressesOrRanges:
return af->ipAddressChoice->type;
default:
return -1;
}
}
static IPAddressOrRanges *
IPAddressFamily_addressesOrRanges(IPAddressFamily *af)
{
if (IPAddressFamily_type(af) == IPAddressChoice_addressesOrRanges)
return af->ipAddressChoice->u.addressesOrRanges;
return NULL;
}
static ASN1_NULL *
IPAddressFamily_inheritance(IPAddressFamily *af)
{
if (IPAddressFamily_type(af) == IPAddressChoice_inherit)
return af->ipAddressChoice->u.inherit;
return NULL;
}
static int
IPAddressFamily_set_inheritance(IPAddressFamily *af)
{
if (IPAddressFamily_addressesOrRanges(af) != NULL)
return 0;
if (IPAddressFamily_inheritance(af) != NULL)
return 1;
if ((af->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
return 0;
af->ipAddressChoice->type = IPAddressChoice_inherit;
return 1;
}
/*
* How much buffer space do we need for a raw address?
*/
#define ADDR_RAW_BUF_LEN 16
/*
* What's the address length associated with this AFI?
*/
static int
length_from_afi(const unsigned afi, int *length)
{
switch (afi) {
case IANA_AFI_IPV4:
*length = 4;
return 1;
case IANA_AFI_IPV6:
*length = 16;
return 1;
default:
*length = 0;
return 0;
}
}
/*
* Get AFI and optional SAFI from an IPAddressFamily. All three out arguments
* are optional; if |out_safi| is non-NULL, |safi_is_set| must be non-NULL.
*/
static int
IPAddressFamily_afi_safi(const IPAddressFamily *af, uint16_t *out_afi,
uint8_t *out_safi, int *safi_is_set)
{
CBS cbs;
uint16_t afi;
uint8_t safi = 0;
int got_safi = 0;
if (out_afi != NULL)
*out_afi = 0;
if (out_safi != NULL) {
*out_safi = 0;
*safi_is_set = 0;
}
CBS_init(&cbs, af->addressFamily->data, af->addressFamily->length);
if (!CBS_get_u16(&cbs, &afi))
return 0;
if (afi != IANA_AFI_IPV4 && afi != IANA_AFI_IPV6)
return 0;
/* Fetch the optional SAFI. */
if (CBS_len(&cbs) != 0) {
if (!CBS_get_u8(&cbs, &safi))
return 0;
got_safi = 1;
}
/* If there's anything left, it's garbage. */
if (CBS_len(&cbs) != 0)
return 0;
/* XXX - error on reserved AFI/SAFI? */
if (out_afi != NULL)
*out_afi = afi;
if (out_safi != NULL) {
*out_safi = safi;
*safi_is_set = got_safi;
}
return 1;
}
static int
IPAddressFamily_afi(const IPAddressFamily *af, uint16_t *out_afi)
{
return IPAddressFamily_afi_safi(af, out_afi, NULL, NULL);
}
static int
IPAddressFamily_afi_is_valid(const IPAddressFamily *af)
{
return IPAddressFamily_afi_safi(af, NULL, NULL, NULL);
}
static int
IPAddressFamily_afi_length(const IPAddressFamily *af, int *out_length)
{
uint16_t afi;
*out_length = 0;
if (!IPAddressFamily_afi(af, &afi))
return 0;
return length_from_afi(afi, out_length);
}
#define MINIMUM(a, b) (((a) < (b)) ? (a) : (b))
/*
* Sort comparison function for a sequence of IPAddressFamily.
*
* The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
* the ordering: I can read it as meaning that IPv6 without a SAFI
* comes before IPv4 with a SAFI, which seems pretty weird. The
* examples in appendix B suggest that the author intended the
* null-SAFI rule to apply only within a single AFI, which is what I
* would have expected and is what the following code implements.
*/
static int
IPAddressFamily_cmp(const IPAddressFamily *const *a_,
const IPAddressFamily *const *b_)
{
const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
int len, cmp;
len = MINIMUM(a->length, b->length);
if ((cmp = memcmp(a->data, b->data, len)) != 0)
return cmp;
return a->length - b->length;
}
static IPAddressFamily *
IPAddressFamily_find_in_parent(IPAddrBlocks *parent, IPAddressFamily *child_af)
{
int index;
(void)sk_IPAddressFamily_set_cmp_func(parent, IPAddressFamily_cmp);
if ((index = sk_IPAddressFamily_find(parent, child_af)) < 0)
return NULL;
return sk_IPAddressFamily_value(parent, index);
}
/*
* Extract the AFI from an IPAddressFamily.
*
* This is public API. It uses the reserved AFI 0 as an in-band error
* while it doesn't care about the reserved AFI 65535...
*/
unsigned int
X509v3_addr_get_afi(const IPAddressFamily *af)
{
uint16_t afi;
/*
* XXX are these NULL checks really sensible? If af is non-NULL, it
* should have both addressFamily and ipAddressChoice...
*/
if (af == NULL || af->addressFamily == NULL ||
af->addressFamily->data == NULL)
return 0;
if (!IPAddressFamily_afi(af, &afi))
return 0;
return afi;
}
LCRYPTO_ALIAS(X509v3_addr_get_afi);
/*
* Expand the bitstring form (RFC 3779, section 2.1.2) of an address into
* a raw byte array. At the moment this is coded for simplicity, not speed.
*
* Unused bits in the last octet of |bs| and all bits in subsequent bytes
* of |addr| are set to 0 or 1 depending on whether |fill| is 0 or not.
*/
static int
addr_expand(unsigned char *addr, const ASN1_BIT_STRING *bs, const int length,
uint8_t fill)
{
if (bs->length < 0 || bs->length > length)
return 0;
if (fill != 0)
fill = 0xff;
if (bs->length > 0) {
/* XXX - shouldn't this check ASN1_STRING_FLAG_BITS_LEFT? */
uint8_t unused_bits = bs->flags & 7;
uint8_t mask = (1 << unused_bits) - 1;
memcpy(addr, bs->data, bs->length);
if (fill == 0)
addr[bs->length - 1] &= ~mask;
else
addr[bs->length - 1] |= mask;
}
memset(addr + bs->length, fill, length - bs->length);
return 1;
}
/*
* Extract the prefix length from a bitstring: 8 * length - unused bits.
*/
#define addr_prefix_len(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
/*
* i2r handler for one address bitstring.
*/
static int
i2r_address(BIO *out, const unsigned afi, const unsigned char fill,
const ASN1_BIT_STRING *bs)
{
unsigned char addr[ADDR_RAW_BUF_LEN];
int i, n;
if (bs->length < 0)
return 0;
switch (afi) {
case IANA_AFI_IPV4:
if (!addr_expand(addr, bs, 4, fill))
return 0;
BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2],
addr[3]);
break;
case IANA_AFI_IPV6:
if (!addr_expand(addr, bs, 16, fill))
return 0;
for (n = 16;
n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00; n -= 2)
continue;
for (i = 0; i < n; i += 2)
BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
(i < 14 ? ":" : ""));
if (i < 16)
BIO_puts(out, ":");
if (i == 0)
BIO_puts(out, ":");
break;
default:
for (i = 0; i < bs->length; i++)
BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""),
bs->data[i]);
BIO_printf(out, "[%d]", (int)(bs->flags & 7));
break;
}
return 1;
}
/*
* i2r handler for a sequence of addresses and ranges.
*/
static int
i2r_IPAddressOrRanges(BIO *out, const int indent,
const IPAddressOrRanges *aors, const unsigned afi)
{
const IPAddressOrRange *aor;
const ASN1_BIT_STRING *prefix;
const IPAddressRange *range;
int i;
for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
aor = sk_IPAddressOrRange_value(aors, i);
BIO_printf(out, "%*s", indent, "");
switch (aor->type) {
case IPAddressOrRange_addressPrefix:
prefix = aor->u.addressPrefix;
if (!i2r_address(out, afi, 0x00, prefix))
return 0;
BIO_printf(out, "/%d\n", addr_prefix_len(prefix));
continue;
case IPAddressOrRange_addressRange:
range = aor->u.addressRange;
if (!i2r_address(out, afi, 0x00, range->min))
return 0;
BIO_puts(out, "-");
if (!i2r_address(out, afi, 0xff, range->max))
return 0;
BIO_puts(out, "\n");
continue;
}
}
return 1;
}
/*
* i2r handler for an IPAddrBlocks extension.
*/
static int
i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method, void *ext, BIO *out,
int indent)
{
const IPAddrBlocks *addr = ext;
IPAddressFamily *af;
uint16_t afi;
uint8_t safi;
int i, safi_is_set;
for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
af = sk_IPAddressFamily_value(addr, i);
if (!IPAddressFamily_afi_safi(af, &afi, &safi, &safi_is_set))
goto print_addresses;
switch (afi) {
case IANA_AFI_IPV4:
BIO_printf(out, "%*sIPv4", indent, "");
break;
case IANA_AFI_IPV6:
BIO_printf(out, "%*sIPv6", indent, "");
break;
default:
BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
break;
}
if (safi_is_set) {
switch (safi) {
case 1:
BIO_puts(out, " (Unicast)");
break;
case 2:
BIO_puts(out, " (Multicast)");
break;
case 3:
BIO_puts(out, " (Unicast/Multicast)");
break;
case 4:
BIO_puts(out, " (MPLS)");
break;
case 64:
BIO_puts(out, " (Tunnel)");
break;
case 65:
BIO_puts(out, " (VPLS)");
break;
case 66:
BIO_puts(out, " (BGP MDT)");
break;
case 128:
BIO_puts(out, " (MPLS-labeled VPN)");
break;
default:
BIO_printf(out, " (Unknown SAFI %u)", safi);
break;
}
}
print_addresses:
switch (IPAddressFamily_type(af)) {
case IPAddressChoice_inherit:
BIO_puts(out, ": inherit\n");
break;
case IPAddressChoice_addressesOrRanges:
BIO_puts(out, ":\n");
if (!i2r_IPAddressOrRanges(out, indent + 2,
IPAddressFamily_addressesOrRanges(af), afi))
return 0;
break;
/* XXX - how should we handle -1 here? */
}
}
return 1;
}
/*
* Sort comparison function for a sequence of IPAddressOrRange
* elements.
*
* There's no sane answer we can give if addr_expand() fails, and an
* assertion failure on externally supplied data is seriously uncool,
* so we just arbitrarily declare that if given invalid inputs this
* function returns -1. If this messes up your preferred sort order
* for garbage input, tough noogies.
*/
static int
IPAddressOrRange_cmp(const IPAddressOrRange *a, const IPAddressOrRange *b,
const int length)
{
unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
int prefix_len_a = 0, prefix_len_b = 0;
int r;
switch (a->type) {
case IPAddressOrRange_addressPrefix:
if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
return -1;
prefix_len_a = addr_prefix_len(a->u.addressPrefix);
break;
case IPAddressOrRange_addressRange:
if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
return -1;
prefix_len_a = length * 8;
break;
}
switch (b->type) {
case IPAddressOrRange_addressPrefix:
if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
return -1;
prefix_len_b = addr_prefix_len(b->u.addressPrefix);
break;
case IPAddressOrRange_addressRange:
if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
return -1;
prefix_len_b = length * 8;
break;
}
if ((r = memcmp(addr_a, addr_b, length)) != 0)
return r;
else
return prefix_len_a - prefix_len_b;
}
/*
* IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
* comparison routines are only allowed two arguments.
*/
static int
v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
const IPAddressOrRange *const *b)
{
return IPAddressOrRange_cmp(*a, *b, 4);
}
/*
* IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
* comparison routines are only allowed two arguments.
*/
static int
v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
const IPAddressOrRange *const *b)
{
return IPAddressOrRange_cmp(*a, *b, 16);
}
/*
* Calculate whether a range collapses to a prefix.
* See last paragraph of RFC 3779 2.2.3.7.
*
* It's the caller's responsibility to ensure that min <= max.
*/
static int
range_should_be_prefix(const unsigned char *min, const unsigned char *max,
const int length)
{
unsigned char mask;
int i, j;
for (i = 0; i < length && min[i] == max[i]; i++)
continue;
for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xff; j--)
continue;
if (i < j)
return -1;
if (i > j)
return i * 8;
mask = min[i] ^ max[i];
switch (mask) {
case 0x01:
j = 7;
break;
case 0x03:
j = 6;
break;
case 0x07:
j = 5;
break;
case 0x0f:
j = 4;
break;
case 0x1f:
j = 3;
break;
case 0x3f:
j = 2;
break;
case 0x7f:
j = 1;
break;
default:
return -1;
}
if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
return -1;
else
return i * 8 + j;
}
/*
* Fill IPAddressOrRange with bit string encoding of a prefix - RFC 3779, 2.1.1.
*/
static int
make_addressPrefix(IPAddressOrRange **out_aor, uint8_t *addr, uint32_t afi,
int prefix_len)
{
IPAddressOrRange *aor = NULL;
int afi_len, num_bits, num_octets;
uint8_t unused_bits;
if (prefix_len < 0)
goto err;
if (!length_from_afi(afi, &afi_len))
goto err;
if (prefix_len > 8 * afi_len)
goto err;
num_octets = (prefix_len + 7) / 8;
num_bits = prefix_len % 8;
unused_bits = 0;
if (num_bits > 0)
unused_bits = 8 - num_bits;
if ((aor = IPAddressOrRange_new()) == NULL)
goto err;
aor->type = IPAddressOrRange_addressPrefix;
if ((aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
goto err;
if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, num_octets))
goto err;
if (!asn1_abs_set_unused_bits(aor->u.addressPrefix, unused_bits))
goto err;
*out_aor = aor;
return 1;
err:
IPAddressOrRange_free(aor);
return 0;
}
static uint8_t
count_trailing_zeroes(uint8_t octet)
{
uint8_t count = 0;
if (octet == 0)
return 8;
while ((octet & (1 << count)) == 0)
count++;
return count;
}
static int
trim_end_u8(CBS *cbs, uint8_t trim)
{
uint8_t octet;
while (CBS_len(cbs) > 0) {
if (!CBS_peek_last_u8(cbs, &octet))
return 0;
if (octet != trim)
return 1;
if (!CBS_get_last_u8(cbs, &octet))
return 0;
}
return 1;
}
/*
* Populate IPAddressOrRange with bit string encoding of a range, see
* RFC 3779, 2.1.2.
*/
static int
make_addressRange(IPAddressOrRange **out_aor, uint8_t *min, uint8_t *max,
uint32_t afi, int length)
{
IPAddressOrRange *aor = NULL;
IPAddressRange *range;
int prefix_len;
CBS cbs;
size_t max_len, min_len;
uint8_t unused_bits_min, unused_bits_max;
uint8_t octet;
if (memcmp(min, max, length) > 0)
goto err;
/*
* RFC 3779, 2.2.3.6 - a range that can be expressed as a prefix
* must be encoded as a prefix.
*/
if ((prefix_len = range_should_be_prefix(min, max, length)) >= 0)
return make_addressPrefix(out_aor, min, afi, prefix_len);
/*
* The bit string representing min is formed by removing all its
* trailing zero bits, so remove all trailing zero octets and count
* the trailing zero bits of the last octet.
*/
CBS_init(&cbs, min, length);
if (!trim_end_u8(&cbs, 0x00))
goto err;
unused_bits_min = 0;
if ((min_len = CBS_len(&cbs)) > 0) {
if (!CBS_peek_last_u8(&cbs, &octet))
goto err;
unused_bits_min = count_trailing_zeroes(octet);
}
/*
* The bit string representing max is formed by removing all its
* trailing one bits, so remove all trailing 0xff octets and count
* the trailing ones of the last octet.
*/
CBS_init(&cbs, max, length);
if (!trim_end_u8(&cbs, 0xff))
goto err;
unused_bits_max = 0;
if ((max_len = CBS_len(&cbs)) > 0) {
if (!CBS_peek_last_u8(&cbs, &octet))
goto err;
unused_bits_max = count_trailing_zeroes(octet + 1);
}
/*
* Populate IPAddressOrRange.
*/
if ((aor = IPAddressOrRange_new()) == NULL)
goto err;
aor->type = IPAddressOrRange_addressRange;
if ((range = aor->u.addressRange = IPAddressRange_new()) == NULL)
goto err;
if (!ASN1_BIT_STRING_set(range->min, min, min_len))
goto err;
if (!asn1_abs_set_unused_bits(range->min, unused_bits_min))
goto err;
if (!ASN1_BIT_STRING_set(range->max, max, max_len))
goto err;
if (!asn1_abs_set_unused_bits(range->max, unused_bits_max))
goto err;
*out_aor = aor;
return 1;
err:
IPAddressOrRange_free(aor);
return 0;
}
/*
* Construct a new address family or find an existing one.
*/
static IPAddressFamily *
make_IPAddressFamily(IPAddrBlocks *addr, const unsigned afi,
const unsigned *safi)
{
IPAddressFamily *af = NULL;
CBB cbb;
CBS cbs;
uint8_t *key = NULL;
size_t keylen;
int i;
if (!CBB_init(&cbb, 0))
goto err;
if (afi != IANA_AFI_IPV4 && afi != IANA_AFI_IPV6)
goto err;
if (!CBB_add_u16(&cbb, afi))
goto err;
if (safi != NULL) {
if (*safi > 255)
goto err;
if (!CBB_add_u8(&cbb, *safi))
goto err;
}
if (!CBB_finish(&cbb, &key, &keylen))
goto err;
for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
af = sk_IPAddressFamily_value(addr, i);
CBS_init(&cbs, af->addressFamily->data,
af->addressFamily->length);
if (CBS_mem_equal(&cbs, key, keylen))
goto done;
}
if ((af = IPAddressFamily_new()) == NULL)
goto err;
if (!ASN1_OCTET_STRING_set(af->addressFamily, key, keylen))
goto err;
if (!sk_IPAddressFamily_push(addr, af))
goto err;
done:
free(key);
return af;
err:
CBB_cleanup(&cbb);
free(key);
IPAddressFamily_free(af);
return NULL;
}
/*
* Add an inheritance element.
*/
int
X509v3_addr_add_inherit(IPAddrBlocks *addr, const unsigned afi,
const unsigned *safi)
{
IPAddressFamily *af;
if ((af = make_IPAddressFamily(addr, afi, safi)) == NULL)
return 0;
return IPAddressFamily_set_inheritance(af);
}
LCRYPTO_ALIAS(X509v3_addr_add_inherit);
/*
* Construct an IPAddressOrRange sequence, or return an existing one.
*/
static IPAddressOrRanges *
make_prefix_or_range(IPAddrBlocks *addr, const unsigned afi,
const unsigned *safi)
{
IPAddressFamily *af;
IPAddressOrRanges *aors = NULL;
if ((af = make_IPAddressFamily(addr, afi, safi)) == NULL)
return NULL;
if (IPAddressFamily_inheritance(af) != NULL)
return NULL;
if ((aors = IPAddressFamily_addressesOrRanges(af)) != NULL)
return aors;
if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
return NULL;
switch (afi) {
case IANA_AFI_IPV4:
(void)sk_IPAddressOrRange_set_cmp_func(aors,
v4IPAddressOrRange_cmp);
break;
case IANA_AFI_IPV6:
(void)sk_IPAddressOrRange_set_cmp_func(aors,
v6IPAddressOrRange_cmp);
break;
}
af->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
af->ipAddressChoice->u.addressesOrRanges = aors;
return aors;
}
/*
* Add a prefix.
*/
int
X509v3_addr_add_prefix(IPAddrBlocks *addr, const unsigned afi,
const unsigned *safi, unsigned char *a, const int prefix_len)
{
IPAddressOrRanges *aors;
IPAddressOrRange *aor;
if ((aors = make_prefix_or_range(addr, afi, safi)) == NULL)
return 0;
if (!make_addressPrefix(&aor, a, afi, prefix_len))
return 0;
if (sk_IPAddressOrRange_push(aors, aor) <= 0) {
IPAddressOrRange_free(aor);
return 0;
}
return 1;
}
LCRYPTO_ALIAS(X509v3_addr_add_prefix);
/*
* Add a range.
*/
int
X509v3_addr_add_range(IPAddrBlocks *addr, const unsigned afi,
const unsigned *safi, unsigned char *min, unsigned char *max)
{
IPAddressOrRanges *aors;
IPAddressOrRange *aor;
int length;
if ((aors = make_prefix_or_range(addr, afi, safi)) == NULL)
return 0;
if (!length_from_afi(afi, &length))
return 0;
if (!make_addressRange(&aor, min, max, afi, length))
return 0;
if (sk_IPAddressOrRange_push(aors, aor) <= 0) {
IPAddressOrRange_free(aor);
return 0;
}
return 1;
}
LCRYPTO_ALIAS(X509v3_addr_add_range);
static int
extract_min_max_bitstr(IPAddressOrRange *aor, ASN1_BIT_STRING **out_min,
ASN1_BIT_STRING **out_max)
{
switch (aor->type) {
case IPAddressOrRange_addressPrefix:
*out_min = *out_max = aor->u.addressPrefix;
return 1;
case IPAddressOrRange_addressRange:
*out_min = aor->u.addressRange->min;
*out_max = aor->u.addressRange->max;
return 1;
default:
return 0;
}
}
/*
* Extract min and max values from an IPAddressOrRange.
*/
static int
extract_min_max(IPAddressOrRange *aor, unsigned char *min, unsigned char *max,
int length)
{
ASN1_BIT_STRING *min_bitstr, *max_bitstr;
if (aor == NULL || min == NULL || max == NULL)
return 0;
if (!extract_min_max_bitstr(aor, &min_bitstr, &max_bitstr))
return 0;
if (!addr_expand(min, min_bitstr, length, 0))
return 0;
return addr_expand(max, max_bitstr, length, 1);
}
/*
* Public wrapper for extract_min_max().
*/
int
X509v3_addr_get_range(IPAddressOrRange *aor, const unsigned afi,
unsigned char *min, unsigned char *max, const int length)
{
int afi_len;
if (!length_from_afi(afi, &afi_len))
return 0;
if (length < afi_len)
return 0;
if (!extract_min_max(aor, min, max, afi_len))
return 0;
return afi_len;
}
LCRYPTO_ALIAS(X509v3_addr_get_range);
/*
* Check whether an IPAddrBLocks is in canonical form.
*/
int
X509v3_addr_is_canonical(IPAddrBlocks *addr)
{
unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
IPAddressFamily *af;
IPAddressOrRanges *aors;
IPAddressOrRange *aor, *aor_a, *aor_b;
int i, j, k, length;
/*
* Empty extension is canonical.
*/
if (addr == NULL)
return 1;
/*
* Check whether the top-level list is in order.
*/
for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
/* Check that both have valid AFIs before comparing them. */
if (!IPAddressFamily_afi_is_valid(a))
return 0;
if (!IPAddressFamily_afi_is_valid(b))
return 0;
if (IPAddressFamily_cmp(&a, &b) >= 0)
return 0;
}
/*
* Top level's ok, now check each address family.
*/
for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
af = sk_IPAddressFamily_value(addr, i);
if (!IPAddressFamily_afi_length(af, &length))
return 0;
/*
* If this family has an inheritance element, it is canonical.
*/
if (IPAddressFamily_inheritance(af) != NULL)
continue;
/*
* If this family has neither an inheritance element nor an
* addressesOrRanges, we don't know what this is.
*/
if ((aors = IPAddressFamily_addressesOrRanges(af)) == NULL)
return 0;
if (sk_IPAddressOrRange_num(aors) == 0)
return 0;
for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
aor_a = sk_IPAddressOrRange_value(aors, j);
aor_b = sk_IPAddressOrRange_value(aors, j + 1);
if (!extract_min_max(aor_a, a_min, a_max, length) ||
!extract_min_max(aor_b, b_min, b_max, length))
return 0;
/*
* Punt misordered list, overlapping start, or inverted
* range.
*/
if (memcmp(a_min, b_min, length) >= 0 ||
memcmp(a_min, a_max, length) > 0 ||
memcmp(b_min, b_max, length) > 0)
return 0;
/*
* Punt if adjacent or overlapping. Check for adjacency
* by subtracting one from b_min first.
*/
for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--)
continue;
if (memcmp(a_max, b_min, length) >= 0)
return 0;
/*
* Check for range that should be expressed as a prefix.
*/
if (aor_a->type == IPAddressOrRange_addressPrefix)
continue;
if (range_should_be_prefix(a_min, a_max, length) >= 0)
return 0;
}
/*
* Check final range to see if it's inverted or should be a
* prefix.
*/
aor = sk_IPAddressOrRange_value(aors, j);
if (aor->type == IPAddressOrRange_addressRange) {
if (!extract_min_max(aor, a_min, a_max, length))
return 0;
if (memcmp(a_min, a_max, length) > 0)
return 0;
if (range_should_be_prefix(a_min, a_max, length) >= 0)
return 0;
}
}
/*
* If we made it through all that, we're happy.
*/
return 1;
}
LCRYPTO_ALIAS(X509v3_addr_is_canonical);
/*
* Whack an IPAddressOrRanges into canonical form.
*/
static int
IPAddressOrRanges_canonize(IPAddressOrRanges *aors, const unsigned afi)
{
IPAddressOrRange *a, *b, *merged;
unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
int i, j, length;
if (!length_from_afi(afi, &length))
return 0;
/*
* Sort the IPAddressOrRanges sequence.
*/
sk_IPAddressOrRange_sort(aors);
/*
* Clean up representation issues, punt on duplicates or overlaps.
*/
for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
a = sk_IPAddressOrRange_value(aors, i);
b = sk_IPAddressOrRange_value(aors, i + 1);
if (!extract_min_max(a, a_min, a_max, length) ||
!extract_min_max(b, b_min, b_max, length))
return 0;
/*
* Punt inverted ranges.
*/
if (memcmp(a_min, a_max, length) > 0 ||
memcmp(b_min, b_max, length) > 0)
return 0;
/*
* Punt overlaps.
*/
if (memcmp(a_max, b_min, length) >= 0)
return 0;
/*
* Merge if a and b are adjacent. We check for
* adjacency by subtracting one from b_min first.
*/
for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--)
continue;
if (memcmp(a_max, b_min, length) != 0)
continue;
if (!make_addressRange(&merged, a_min, b_max, afi, length))
return 0;
sk_IPAddressOrRange_set(aors, i, merged);
(void)sk_IPAddressOrRange_delete(aors, i + 1);
IPAddressOrRange_free(a);
IPAddressOrRange_free(b);
i--;
}
/*
* Check for inverted final range.
*/
a = sk_IPAddressOrRange_value(aors, i);
if (a != NULL && a->type == IPAddressOrRange_addressRange) {
if (!extract_min_max(a, a_min, a_max, length))
return 0;
if (memcmp(a_min, a_max, length) > 0)
return 0;
}
return 1;
}
/*
* Whack an IPAddrBlocks extension into canonical form.
*/
int
X509v3_addr_canonize(IPAddrBlocks *addr)
{
IPAddressFamily *af;
IPAddressOrRanges *aors;
uint16_t afi;
int i;
for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
af = sk_IPAddressFamily_value(addr, i);
/* Check AFI/SAFI here - IPAddressFamily_cmp() can't error. */
if (!IPAddressFamily_afi(af, &afi))
return 0;
if ((aors = IPAddressFamily_addressesOrRanges(af)) == NULL)
continue;
if (!IPAddressOrRanges_canonize(aors, afi))
return 0;
}
(void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
sk_IPAddressFamily_sort(addr);
return X509v3_addr_is_canonical(addr);
}
LCRYPTO_ALIAS(X509v3_addr_canonize);
/*
* v2i handler for the IPAddrBlocks extension.
*/
static void *
v2i_IPAddrBlocks(const struct v3_ext_method *method, struct v3_ext_ctx *ctx,
STACK_OF(CONF_VALUE)*values)
{
static const char v4addr_chars[] = "0123456789.";
static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
IPAddrBlocks *addr = NULL;
char *s = NULL, *t;
int i;
if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
X509V3error(ERR_R_MALLOC_FAILURE);
return NULL;
}
for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
unsigned afi, *safi = NULL, safi_;
const char *addr_chars = NULL;
const char *errstr;
int prefix_len, i1, i2, delim, length;
if (!name_cmp(val->name, "IPv4")) {
afi = IANA_AFI_IPV4;
} else if (!name_cmp(val->name, "IPv6")) {
afi = IANA_AFI_IPV6;
} else if (!name_cmp(val->name, "IPv4-SAFI")) {
afi = IANA_AFI_IPV4;
safi = &safi_;
} else if (!name_cmp(val->name, "IPv6-SAFI")) {
afi = IANA_AFI_IPV6;
safi = &safi_;
} else {
X509V3error(X509V3_R_EXTENSION_NAME_ERROR);
X509V3_conf_err(val);
goto err;
}
switch (afi) {
case IANA_AFI_IPV4:
addr_chars = v4addr_chars;
break;
case IANA_AFI_IPV6:
addr_chars = v6addr_chars;
break;
}
if (!length_from_afi(afi, &length))
goto err;
/*
* Handle SAFI, if any, and strdup() so we can null-terminate
* the other input values.
*/
if (safi != NULL) {
unsigned long parsed_safi;
int saved_errno = errno;
errno = 0;
parsed_safi = strtoul(val->value, &t, 0);
/* Value must be present, then a tab, space or colon. */
if (val->value[0] == '\0' ||
(*t != '\t' && *t != ' ' && *t != ':')) {
X509V3error(X509V3_R_INVALID_SAFI);
X509V3_conf_err(val);
goto err;
}
/* Range and overflow check. */
if ((errno == ERANGE && parsed_safi == ULONG_MAX) ||
parsed_safi > 0xff) {
X509V3error(X509V3_R_INVALID_SAFI);
X509V3_conf_err(val);
goto err;
}
errno = saved_errno;
*safi = parsed_safi;
/* Check possible whitespace is followed by a colon. */
t += strspn(t, " \t");
if (*t != ':') {
X509V3error(X509V3_R_INVALID_SAFI);
X509V3_conf_err(val);
goto err;
}
/* Skip over colon. */
t++;
/* Then over any trailing whitespace. */
t += strspn(t, " \t");
s = strdup(t);
} else {
s = strdup(val->value);
}
if (s == NULL) {
X509V3error(ERR_R_MALLOC_FAILURE);
goto err;
}
/*
* Check for inheritance. Not worth additional complexity to
* optimize this (seldom-used) case.
*/
if (strcmp(s, "inherit") == 0) {
if (!X509v3_addr_add_inherit(addr, afi, safi)) {
X509V3error(X509V3_R_INVALID_INHERITANCE);
X509V3_conf_err(val);
goto err;
}
free(s);
s = NULL;
continue;
}
i1 = strspn(s, addr_chars);
i2 = i1 + strspn(s + i1, " \t");
delim = s[i2++];
s[i1] = '\0';
if (a2i_ipadd(min, s) != length) {
X509V3error(X509V3_R_INVALID_IPADDRESS);
X509V3_conf_err(val);
goto err;
}
switch (delim) {
case '/':
/* length contains the size of the address in bytes. */
if (length != 4 && length != 16)
goto err;
prefix_len = strtonum(s + i2, 0, 8 * length, &errstr);
if (errstr != NULL) {
X509V3error(X509V3_R_EXTENSION_VALUE_ERROR);
X509V3_conf_err(val);
goto err;
}
if (!X509v3_addr_add_prefix(addr, afi, safi, min,
prefix_len)) {
X509V3error(ERR_R_MALLOC_FAILURE);
goto err;
}
break;
case '-':
i1 = i2 + strspn(s + i2, " \t");
i2 = i1 + strspn(s + i1, addr_chars);
if (i1 == i2 || s[i2] != '\0') {
X509V3error(X509V3_R_EXTENSION_VALUE_ERROR);
X509V3_conf_err(val);
goto err;
}
if (a2i_ipadd(max, s + i1) != length) {
X509V3error(X509V3_R_INVALID_IPADDRESS);
X509V3_conf_err(val);
goto err;
}
if (memcmp(min, max, length) > 0) {
X509V3error(X509V3_R_EXTENSION_VALUE_ERROR);
X509V3_conf_err(val);
goto err;
}
if (!X509v3_addr_add_range(addr, afi, safi, min, max)) {
X509V3error(ERR_R_MALLOC_FAILURE);
goto err;
}
break;
case '\0':
if (!X509v3_addr_add_prefix(addr, afi, safi, min,
length * 8)) {
X509V3error(ERR_R_MALLOC_FAILURE);
goto err;
}
break;
default:
X509V3error(X509V3_R_EXTENSION_VALUE_ERROR);
X509V3_conf_err(val);
goto err;
}
free(s);
s = NULL;
}
/*
* Canonize the result, then we're done.
*/
if (!X509v3_addr_canonize(addr))
goto err;
return addr;
err:
free(s);
sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
return NULL;
}
/*
* OpenSSL dispatch
*/
const X509V3_EXT_METHOD v3_addr = {
.ext_nid = NID_sbgp_ipAddrBlock,
.ext_flags = 0,
.it = &IPAddrBlocks_it,
.ext_new = NULL,
.ext_free = NULL,
.d2i = NULL,
.i2d = NULL,
.i2s = NULL,
.s2i = NULL,
.i2v = NULL,
.v2i = v2i_IPAddrBlocks,
.i2r = i2r_IPAddrBlocks,
.r2i = NULL,
.usr_data = NULL,
};
/*
* Figure out whether extension uses inheritance.
*/
int
X509v3_addr_inherits(IPAddrBlocks *addr)
{
IPAddressFamily *af;
int i;
if (addr == NULL)
return 0;
for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
af = sk_IPAddressFamily_value(addr, i);
if (IPAddressFamily_inheritance(af) != NULL)
return 1;
}
return 0;
}
LCRYPTO_ALIAS(X509v3_addr_inherits);
/*
* Figure out whether parent contains child.
*
* This only works correctly if both parent and child are in canonical form.
*/
static int
addr_contains(IPAddressOrRanges *parent, IPAddressOrRanges *child, int length)
{
IPAddressOrRange *child_aor, *parent_aor;
uint8_t parent_min[ADDR_RAW_BUF_LEN], parent_max[ADDR_RAW_BUF_LEN];
uint8_t child_min[ADDR_RAW_BUF_LEN], child_max[ADDR_RAW_BUF_LEN];
int p, c;
if (child == NULL || parent == child)
return 1;
if (parent == NULL)
return 0;
p = 0;
for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
child_aor = sk_IPAddressOrRange_value(child, c);
if (!extract_min_max(child_aor, child_min, child_max, length))
return 0;
for (;; p++) {
if (p >= sk_IPAddressOrRange_num(parent))
return 0;
parent_aor = sk_IPAddressOrRange_value(parent, p);
if (!extract_min_max(parent_aor, parent_min, parent_max,
length))
return 0;
if (memcmp(parent_max, child_max, length) < 0)
continue;
if (memcmp(parent_min, child_min, length) > 0)
return 0;
break;
}
}
return 1;
}
/*
* Test whether |child| is a subset of |parent|.
*/
int
X509v3_addr_subset(IPAddrBlocks *child, IPAddrBlocks *parent)
{
IPAddressFamily *child_af, *parent_af;
IPAddressOrRanges *child_aor, *parent_aor;
int i, length;
if (child == NULL || child == parent)
return 1;
if (parent == NULL)
return 0;
if (X509v3_addr_inherits(child) || X509v3_addr_inherits(parent))
return 0;
for (i = 0; i < sk_IPAddressFamily_num(child); i++) {
child_af = sk_IPAddressFamily_value(child, i);
parent_af = IPAddressFamily_find_in_parent(parent, child_af);
if (parent_af == NULL)
return 0;
if (!IPAddressFamily_afi_length(parent_af, &length))
return 0;
child_aor = IPAddressFamily_addressesOrRanges(child_af);
parent_aor = IPAddressFamily_addressesOrRanges(parent_af);
if (!addr_contains(parent_aor, child_aor, length))
return 0;
}
return 1;
}
LCRYPTO_ALIAS(X509v3_addr_subset);
static int
verify_error(X509_STORE_CTX *ctx, X509 *cert, int error, int depth)
{
if (ctx == NULL)
return 0;
ctx->current_cert = cert;
ctx->error = error;
ctx->error_depth = depth;
return ctx->verify_cb(0, ctx);
}
/*
* Core code for RFC 3779 2.3 path validation.
*
* Returns 1 for success, 0 on error.
*
* When returning 0, ctx->error MUST be set to an appropriate value other than
* X509_V_OK.
*/
static int
addr_validate_path_internal(X509_STORE_CTX *ctx, STACK_OF(X509) *chain,
IPAddrBlocks *ext)
{
IPAddrBlocks *child = NULL, *parent = NULL;
IPAddressFamily *child_af, *parent_af;
IPAddressOrRanges *child_aor, *parent_aor;
X509 *cert = NULL;
int depth = -1;
int i;
unsigned int length;
int ret = 1;
/* We need a non-empty chain to test against. */
if (sk_X509_num(chain) <= 0)
goto err;
/* We need either a store ctx or an extension to work with. */
if (ctx == NULL && ext == NULL)
goto err;
/* If there is a store ctx, it needs a verify_cb. */
if (ctx != NULL && ctx->verify_cb == NULL)
goto err;
/*
* Figure out where to start. If we don't have an extension to check,
* (either extracted from the leaf or passed by the caller), we're done.
* Otherwise, check canonical form and set up for walking up the chain.
*/
if (ext == NULL) {
depth = 0;
cert = sk_X509_value(chain, depth);
if ((X509_get_extension_flags(cert) & EXFLAG_INVALID) != 0) {
if ((ret = verify_error(ctx, cert,
X509_V_ERR_INVALID_EXTENSION, depth)) == 0)
goto done;
}
if ((ext = cert->rfc3779_addr) == NULL)
goto done;
} else if (!X509v3_addr_is_canonical(ext)) {
if ((ret = verify_error(ctx, cert,
X509_V_ERR_INVALID_EXTENSION, depth)) == 0)
goto done;
}
(void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
X509V3error(ERR_R_MALLOC_FAILURE);
if (ctx != NULL)
ctx->error = X509_V_ERR_OUT_OF_MEM;
ret = 0;
goto done;
}
/*
* Now walk up the chain. No cert may list resources that its parent
* doesn't list.
*/
for (depth++; depth < sk_X509_num(chain); depth++) {
cert = sk_X509_value(chain, depth);
if ((X509_get_extension_flags(cert) & EXFLAG_INVALID) != 0) {
if ((ret = verify_error(ctx, cert,
X509_V_ERR_INVALID_EXTENSION, depth)) == 0)
goto done;
}
if ((parent = cert->rfc3779_addr) == NULL) {
for (i = 0; i < sk_IPAddressFamily_num(child); i++) {
child_af = sk_IPAddressFamily_value(child, i);
if (IPAddressFamily_inheritance(child_af) !=
NULL)
continue;
if ((ret = verify_error(ctx, cert,
X509_V_ERR_UNNESTED_RESOURCE, depth)) == 0)
goto done;
break;
}
continue;
}
/*
* Check that the child's resources are covered by the parent.
* Each covered resource is replaced with the parent's resource
* covering it, so the next iteration will check that the
* parent's resources are covered by the grandparent.
*/
for (i = 0; i < sk_IPAddressFamily_num(child); i++) {
child_af = sk_IPAddressFamily_value(child, i);
if ((parent_af = IPAddressFamily_find_in_parent(parent,
child_af)) == NULL) {
/*
* If we have no match in the parent and the
* child inherits, that's fine.
*/
if (IPAddressFamily_inheritance(child_af) !=
NULL)
continue;
/* Otherwise the child isn't covered. */
if ((ret = verify_error(ctx, cert,
X509_V_ERR_UNNESTED_RESOURCE, depth)) == 0)
goto done;
break;
}
/* Parent inherits, nothing to do. */
if (IPAddressFamily_inheritance(parent_af) != NULL)
continue;
/* Child inherits. Use parent's address family. */
if (IPAddressFamily_inheritance(child_af) != NULL) {
sk_IPAddressFamily_set(child, i, parent_af);
continue;
}
child_aor = IPAddressFamily_addressesOrRanges(child_af);
parent_aor =
IPAddressFamily_addressesOrRanges(parent_af);
/*
* Child and parent are canonical and neither inherits.
* If either addressesOrRanges is NULL, something's
* very wrong.
*/
if (child_aor == NULL || parent_aor == NULL)
goto err;
if (!IPAddressFamily_afi_length(child_af, &length))
goto err;
/* Now check containment and replace or error. */
if (addr_contains(parent_aor, child_aor, length)) {
sk_IPAddressFamily_set(child, i, parent_af);
continue;
}
if ((ret = verify_error(ctx, cert,
X509_V_ERR_UNNESTED_RESOURCE, depth)) == 0)
goto done;
}
}
/*
* Trust anchor can't inherit.
*/
if ((parent = cert->rfc3779_addr) != NULL) {
for (i = 0; i < sk_IPAddressFamily_num(parent); i++) {
parent_af = sk_IPAddressFamily_value(parent, i);
if (IPAddressFamily_inheritance(parent_af) == NULL)
continue;
if ((ret = verify_error(ctx, cert,
X509_V_ERR_UNNESTED_RESOURCE, depth)) == 0)
goto done;
}
}
done:
sk_IPAddressFamily_free(child);
return ret;
err:
sk_IPAddressFamily_free(child);
if (ctx != NULL)
ctx->error = X509_V_ERR_UNSPECIFIED;
return 0;
}
/*
* RFC 3779 2.3 path validation -- called from X509_verify_cert().
*/
int
X509v3_addr_validate_path(X509_STORE_CTX *ctx)
{
if (sk_X509_num(ctx->chain) <= 0 || ctx->verify_cb == NULL) {
ctx->error = X509_V_ERR_UNSPECIFIED;
return 0;
}
return addr_validate_path_internal(ctx, ctx->chain, NULL);
}
LCRYPTO_ALIAS(X509v3_addr_validate_path);
/*
* RFC 3779 2.3 path validation of an extension.
* Test whether chain covers extension.
*/
int
X509v3_addr_validate_resource_set(STACK_OF(X509) *chain, IPAddrBlocks *ext,
int allow_inheritance)
{
if (ext == NULL)
return 1;
if (sk_X509_num(chain) <= 0)
return 0;
if (!allow_inheritance && X509v3_addr_inherits(ext))
return 0;
return addr_validate_path_internal(NULL, chain, ext);
}
LCRYPTO_ALIAS(X509v3_addr_validate_resource_set);
#endif /* OPENSSL_NO_RFC3779 */