src/sys/dev/sbus/magma.c

1739 lines
40 KiB
C

/* $OpenBSD: magma.c,v 1.36 2024/04/24 09:30:30 claudio Exp $ */
/*-
* Copyright (c) 1998 Iain Hibbert
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* #define MAGMA_DEBUG */
/*
* Driver for Magma SBus Serial/Parallel cards using the Cirrus Logic
* CD1400 & CD1190 chips
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/device.h>
#include <sys/fcntl.h>
#include <sys/ioctl.h>
#include <sys/malloc.h>
#include <sys/tty.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/syslog.h>
#include <sys/conf.h>
#include <sys/errno.h>
#include <machine/autoconf.h>
#include <machine/conf.h>
#include <machine/bus.h>
#include <machine/bppioctl.h>
#include <dev/sbus/sbusvar.h>
#include <dev/ic/cd1400reg.h>
#include <dev/ic/cd1190reg.h>
#include <dev/sbus/magmareg.h>
/* supported cards
*
* The table below lists the cards that this driver is likely to
* be able to support.
*
* Cards with parallel ports: except for the LC2+1Sp, they all use
* the CD1190 chip which I know nothing about. I've tried to leave
* hooks for it so it shouldn't be too hard to add support later.
* (I think somebody is working on this separately)
*
* Thanks to Bruce at Magma for telling me the hardware offsets.
*/
static const struct magma_board_info supported_cards[] = {
{
"MAGMA_Sp", "MAGMA,4_Sp", "Magma 4 Sp", 4, 0,
1, 0xa000, 0xc000, 0xe000, { 0x8000, 0, 0, 0 },
0, { 0, 0 }
},
{
"MAGMA_Sp", "MAGMA,8_Sp", "Magma 8 Sp", 8, 0,
2, 0xa000, 0xc000, 0xe000, { 0x4000, 0x6000, 0, 0 },
0, { 0, 0 }
},
{
"MAGMA_Sp", "MAGMA,_8HS_Sp", "Magma Fast 8 Sp", 8, 0,
2, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0, 0 },
0, { 0, 0 }
},
{
"MAGMA_Sp", "MAGMA,_8SP_422", "Magma 8 Sp - 422", 8, 0,
2, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0, 0 },
0, { 0, 0 }
},
{
"MAGMA_Sp", "MAGMA,12_Sp", "Magma 12 Sp", 12, 0,
3, 0xa000, 0xc000, 0xe000, { 0x2000, 0x4000, 0x6000, 0 },
0, { 0, 0 }
},
{
"MAGMA_Sp", "MAGMA,16_Sp", "Magma 16 Sp", 16, 0,
4, 0xd000, 0xe000, 0xf000, { 0x8000, 0x9000, 0xa000, 0xb000 },
0, { 0, 0 }
},
{
"MAGMA_Sp", "MAGMA,16_Sp_2", "Magma 16 Sp", 16, 0,
4, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0xc000, 0xe000 },
0, { 0, 0 }
},
{
"MAGMA_Sp", "MAGMA,16HS_Sp", "Magma Fast 16 Sp", 16, 0,
4, 0x2000, 0x4000, 0x6000, { 0x8000, 0xa000, 0xc000, 0xe000 },
0, { 0, 0 }
},
{
"MAGMA_Sp", "MAGMA,21_Sp", "Magma LC 2+1 Sp", 2, 1,
1, 0xa000, 0xc000, 0xe000, { 0x8000, 0, 0, 0 },
0, { 0, 0 }
},
{
"MAGMA_Sp", "MAGMA,21HS_Sp", "Magma 2+1 Sp", 2, 1,
1, 0xa000, 0xc000, 0xe000, { 0x4000, 0, 0, 0 },
1, { 0x6000, 0 }
},
{
"MAGMA_Sp", "MAGMA,41_Sp", "Magma 4+1 Sp", 4, 1,
1, 0xa000, 0xc000, 0xe000, { 0x4000, 0, 0, 0 },
1, { 0x6000, 0 }
},
{
"MAGMA_Sp", "MAGMA,82_Sp", "Magma 8+2 Sp", 8, 2,
2, 0xd000, 0xe000, 0xf000, { 0x8000, 0x9000, 0, 0 },
2, { 0xa000, 0xb000 }
},
{
"MAGMA_Sp", "MAGMA,P1_Sp", "Magma P1 Sp", 0, 1,
0, 0, 0, 0, { 0, 0, 0, 0 },
1, { 0x8000, 0 }
},
{
"MAGMA_Sp", "MAGMA,P2_Sp", "Magma P2 Sp", 0, 2,
0, 0, 0, 0, { 0, 0, 0, 0 },
2, { 0x4000, 0x8000 }
},
{
"MAGMA 2+1HS Sp", "", "Magma 2+1HS Sp", 2, 0,
1, 0xa000, 0xc000, 0xe000, { 0x4000, 0, 0, 0 },
1, { 0x8000, 0 }
},
{
NULL, NULL, NULL, 0, 0,
0, 0, 0, 0, { 0, 0, 0, 0 },
0, { 0, 0 }
}
};
/************************************************************************
*
* Autoconfig Stuff
*/
const struct cfattach magma_ca = {
sizeof(struct magma_softc), magma_match, magma_attach
};
struct cfdriver magma_cd = {
NULL, "magma", DV_DULL
};
const struct cfattach mtty_ca = {
sizeof(struct mtty_softc), mtty_match, mtty_attach
};
struct cfdriver mtty_cd = {
NULL, "mtty", DV_TTY
};
const struct cfattach mbpp_ca = {
sizeof(struct mbpp_softc), mbpp_match, mbpp_attach
};
struct cfdriver mbpp_cd = {
NULL, "mbpp", DV_DULL
};
/************************************************************************
*
* CD1400 Routines
*
* cd1400_compute_baud calculate COR/BPR register values
* cd1400_write_ccr write a value to CD1400 ccr
* cd1400_enable_transmitter enable transmitting on CD1400 channel
*/
/*
* compute the bpr/cor pair for any baud rate
* returns 0 for success, 1 for failure
*/
int
cd1400_compute_baud(speed_t speed, int clock, int *cor, int *bpr)
{
int c, co, br;
if (speed < 50 || speed > 150000)
return (1);
for (c = 0, co = 8 ; co <= 2048 ; co <<= 2, c++) {
br = ((clock * 1000000) + (co * speed) / 2) / (co * speed);
if (br < 0x100) {
*bpr = br;
*cor = c;
return (0);
}
}
return (1);
}
#define CD1400_READ_REG(cd,reg) \
bus_space_read_1((cd)->cd_regt, (cd)->cd_regh, (reg))
#define CD1400_WRITE_REG(cd,reg,value) \
bus_space_write_1((cd)->cd_regt, (cd)->cd_regh, (reg), (value))
/*
* Write a CD1400 channel command, should have a timeout?
*/
static inline void
cd1400_write_ccr(struct cd1400 *cd, u_char cmd)
{
while (CD1400_READ_REG(cd, CD1400_CCR))
continue;
CD1400_WRITE_REG(cd, CD1400_CCR, cmd);
}
/*
* enable transmit service requests for cd1400 channel
*/
void
cd1400_enable_transmitter(struct cd1400 *cd, int channel)
{
int s, srer;
s = spltty();
CD1400_WRITE_REG(cd, CD1400_CAR, channel);
srer = CD1400_READ_REG(cd, CD1400_SRER);
SET(srer, CD1400_SRER_TXRDY);
CD1400_WRITE_REG(cd, CD1400_SRER, srer);
splx(s);
}
/************************************************************************
*
* CD1190 Routines
*/
/* well, there are none yet */
/************************************************************************
*
* Magma Routines
*
* magma_match reports if we have a magma board available
* magma_attach attaches magma boards to the sbus
* magma_hard hardware level interrupt routine
* magma_soft software level interrupt routine
*/
int
magma_match(struct device *parent, void *vcf, void *aux)
{
struct sbus_attach_args *sa = aux;
const struct magma_board_info *card;
/* See if we support this device */
for (card = supported_cards; ; card++) {
if (card->mb_sbusname == NULL)
/* End of table: no match */
return (0);
if (strcmp(sa->sa_name, card->mb_sbusname) == 0)
break;
}
return (1);
}
void
magma_attach(struct device *parent, struct device *dev, void *aux)
{
struct sbus_attach_args *sa = aux;
struct magma_softc *sc = (struct magma_softc *)dev;
const struct magma_board_info *card;
char magma_prom[40], *clockstr;
int chip, cd_clock;
getpropstringA(sa->sa_node, "magma_prom", magma_prom);
for (card = supported_cards; card->mb_name != NULL; card++) {
if (strcmp(sa->sa_name, card->mb_sbusname) != 0)
continue;
if (strcmp(magma_prom, card->mb_name) == 0)
break;
}
if (card->mb_name == NULL) {
printf(": %s (unsupported)\n", magma_prom);
return;
}
sc->sc_bustag = sa->sa_bustag;
clockstr = getpropstring(sa->sa_node, "clock");
if (strlen(clockstr) == 0)
cd_clock = 25;
else {
cd_clock = 0;
while (*clockstr != '\0')
cd_clock = cd_clock * 10 + *clockstr++ - '0';
}
if (sbus_bus_map(sa->sa_bustag, sa->sa_reg[0].sbr_slot,
sa->sa_reg[0].sbr_offset, sa->sa_reg[0].sbr_size,
0, 0, &sc->sc_iohandle) != 0) {
printf(": can't map registers\n");
return;
}
if (sa->sa_nintr < 1) {
printf(": can't find interrupt\n");
return;
}
sc->sc_ih = bus_intr_establish(sa->sa_bustag, sa->sa_pri, IPL_TTY, 0,
magma_hard, sc, dev->dv_xname);
if (sc->sc_ih == NULL) {
printf(": couldn't establish interrupt, pri %d\n",
INTLEV(sa->sa_pri));
bus_space_unmap(sc->sc_bustag, sc->sc_iohandle,
sa->sa_reg[0].sbr_size);
return;
}
sc->sc_sih = softintr_establish(IPL_TTY, magma_soft, sc);
if (sc->sc_sih == NULL) {
printf(": can't get soft intr\n");
bus_space_unmap(sc->sc_bustag, sc->sc_iohandle,
sa->sa_reg[0].sbr_size);
return;
}
printf(": %s\n", card->mb_realname);
sc->ms_board = card;
sc->ms_ncd1400 = card->mb_ncd1400;
sc->ms_ncd1190 = card->mb_ncd1190;
/* the SVCACK* lines are daisychained */
if (bus_space_subregion(sc->sc_bustag, sc->sc_iohandle,
card->mb_svcackr, 1, &sc->sc_svcackrh)) {
printf(": failed to map svcackr\n");
return;
}
if (bus_space_subregion(sc->sc_bustag, sc->sc_iohandle,
card->mb_svcackt, 1, &sc->sc_svcackth)) {
printf(": failed to map svcackt\n");
return;
}
if (bus_space_subregion(sc->sc_bustag, sc->sc_iohandle,
card->mb_svcackm, 1, &sc->sc_svcackmh)) {
printf(": failed to map svcackm\n");
return;
}
/* init the cd1400 chips */
for (chip = 0 ; chip < card->mb_ncd1400 ; chip++) {
struct cd1400 *cd = &sc->ms_cd1400[chip];
cd->cd_clock = cd_clock;
if (bus_space_subregion(sc->sc_bustag, sc->sc_iohandle,
card->mb_cd1400[chip], CD1400_REGMAPSIZE, &cd->cd_regh)) {
printf(": failed to map cd1400 regs\n");
return;
}
cd->cd_regt = sc->sc_bustag;
/* getpropstring(sa->sa_node, "chiprev"); */
/* seemingly the Magma drivers just ignore the propstring */
cd->cd_chiprev = CD1400_READ_REG(cd, CD1400_GFRCR);
dprintf(("%s attach CD1400 %d addr 0x%x rev %x clock %dMHz\n",
sc->ms_dev.dv_xname, chip, cd->cd_reg,
cd->cd_chiprev, cd->cd_clock));
/* clear GFRCR */
CD1400_WRITE_REG(cd, CD1400_GFRCR, 0x00);
/* reset whole chip */
cd1400_write_ccr(cd,
CD1400_CCR_CMDRESET | CD1400_CCR_FULLRESET);
/* wait for revision code to be restored */
while (CD1400_READ_REG(cd, CD1400_GFRCR) != cd->cd_chiprev)
;
/* set the Prescaler Period Register to tick at 1ms */
CD1400_WRITE_REG(cd, CD1400_PPR,
((cd->cd_clock * 1000000 / CD1400_PPR_PRESCALER + 500)
/ 1000));
/*
* The LC2+1Sp card is the only card that doesn't have a
* CD1190 for the parallel port, but uses channel 0 of the
* CD1400, so we make a note of it for later and set up the
* CD1400 for parallel mode operation.
*/
if (card->mb_npar && card->mb_ncd1190 == 0) {
CD1400_WRITE_REG(cd, CD1400_GCR, CD1400_GCR_PARALLEL);
cd->cd_parmode = 1;
}
}
/* init the cd1190 chips */
for (chip = 0 ; chip < card->mb_ncd1190 ; chip++) {
struct cd1190 *cd = &sc->ms_cd1190[chip];
if (bus_space_subregion(sc->sc_bustag, sc->sc_iohandle,
card->mb_cd1190[chip], CD1190_REGMAPSIZE, &cd->cd_regh)) {
printf(": failed to map cd1190 regs\n");
return;
}
cd->cd_regt = sc->sc_bustag;
dprintf(("%s attach CD1190 %d addr 0x%x (failed)\n",
sc->ms_dev.dv_xname, chip, cd->cd_reg));
/* XXX don't know anything about these chips yet */
}
/* configure the children */
(void)config_found(dev, mtty_match, NULL);
(void)config_found(dev, mbpp_match, NULL);
}
/*
* hard interrupt routine
*
* returns 1 if it handled it, otherwise 0
*
* runs at interrupt priority
*/
int
magma_hard(void *arg)
{
struct magma_softc *sc = arg;
struct cd1400 *cd;
int chip, status = 0;
int serviced = 0;
int needsoftint = 0;
/*
* check status of all the CD1400 chips
*/
for (chip = 0 ; chip < sc->ms_ncd1400 ; chip++)
status |= CD1400_READ_REG(&sc->ms_cd1400[chip], CD1400_SVRR);
if (ISSET(status, CD1400_SVRR_RXRDY)) {
/* enter rx service context */
u_int8_t rivr = bus_space_read_1(sc->sc_bustag, sc->sc_svcackrh, 0);
int port = rivr >> 4;
if (rivr & (1<<3)) { /* parallel port */
struct mbpp_port *mbpp;
int n_chars;
mbpp = &sc->ms_mbpp->ms_port[port];
cd = mbpp->mp_cd1400;
/* don't think we have to handle exceptions */
n_chars = CD1400_READ_REG(cd, CD1400_RDCR);
while (n_chars--) {
if (mbpp->mp_cnt == 0) {
SET(mbpp->mp_flags, MBPPF_WAKEUP);
needsoftint = 1;
break;
}
*mbpp->mp_ptr = CD1400_READ_REG(cd, CD1400_RDSR);
mbpp->mp_ptr++;
mbpp->mp_cnt--;
}
} else { /* serial port */
struct mtty_port *mtty;
u_char *ptr, n_chars, line_stat;
mtty = &sc->ms_mtty->ms_port[port];
cd = mtty->mp_cd1400;
if (ISSET(rivr, CD1400_RIVR_EXCEPTION)) {
line_stat = CD1400_READ_REG(cd, CD1400_RDSR);
n_chars = 1;
} else { /* no exception, received data OK */
line_stat = 0;
n_chars = CD1400_READ_REG(cd, CD1400_RDCR);
}
ptr = mtty->mp_rput;
while (n_chars--) {
*ptr++ = line_stat;
*ptr++ = CD1400_READ_REG(cd, CD1400_RDSR);
if (ptr == mtty->mp_rend)
ptr = mtty->mp_rbuf;
if (ptr == mtty->mp_rget) {
if (ptr == mtty->mp_rbuf)
ptr = mtty->mp_rend;
ptr -= 2;
SET(mtty->mp_flags,
MTTYF_RING_OVERFLOW);
break;
}
}
mtty->mp_rput = ptr;
needsoftint = 1;
}
CD1400_WRITE_REG(cd, CD1400_EOSRR, 0); /* end service context */
serviced = 1;
} /* if(rx_service...) */
if (ISSET(status, CD1400_SVRR_MDMCH)) {
u_int8_t mivr = bus_space_read_1(sc->sc_bustag, sc->sc_svcackmh, 0);
int port = mivr >> 4;
struct mtty_port *mtty;
int carrier;
u_char msvr;
/*
* Handle CD (LC2+1Sp = DSR) changes.
*/
mtty = &sc->ms_mtty->ms_port[port];
cd = mtty->mp_cd1400;
msvr = CD1400_READ_REG(cd, CD1400_MSVR2);
carrier = ISSET(msvr, cd->cd_parmode ? CD1400_MSVR2_DSR : CD1400_MSVR2_CD);
if (mtty->mp_carrier != carrier) {
SET(mtty->mp_flags, MTTYF_CARRIER_CHANGED);
mtty->mp_carrier = carrier;
needsoftint = 1;
}
CD1400_WRITE_REG(cd, CD1400_EOSRR, 0); /* end service context */
serviced = 1;
} /* if(mdm_service...) */
if (ISSET(status, CD1400_SVRR_TXRDY)) {
/* enter tx service context */
u_int8_t tivr = bus_space_read_1(sc->sc_bustag, sc->sc_svcackth, 0);
int port = tivr >> 4;
if (tivr & (1<<3)) { /* parallel port */
struct mbpp_port *mbpp;
mbpp = &sc->ms_mbpp->ms_port[port];
cd = mbpp->mp_cd1400;
if (mbpp->mp_cnt) {
int count = 0;
/* fill the fifo */
while (mbpp->mp_cnt && count++ < CD1400_PAR_FIFO_SIZE) {
CD1400_WRITE_REG(cd, CD1400_TDR, *mbpp->mp_ptr);
mbpp->mp_ptr++;
mbpp->mp_cnt--;
}
} else {
/* fifo is empty and we got no more data to send, so shut
* off interrupts and signal for a wakeup, which can't be
* done here in case we beat mbpp_send to the tsleep call
* (we are running at >spltty)
*/
CD1400_WRITE_REG(cd, CD1400_SRER, 0);
SET(mbpp->mp_flags, MBPPF_WAKEUP);
needsoftint = 1;
}
} else { /* serial port */
struct mtty_port *mtty;
struct tty *tp;
mtty = &sc->ms_mtty->ms_port[port];
cd = mtty->mp_cd1400;
tp = mtty->mp_tty;
if (!ISSET(mtty->mp_flags, MTTYF_STOP)) {
int count = 0;
/* check if we should start/stop a break */
if (ISSET(mtty->mp_flags, MTTYF_SET_BREAK)) {
CD1400_WRITE_REG(cd, CD1400_TDR, 0);
CD1400_WRITE_REG(cd, CD1400_TDR, 0x81);
/* should we delay too? */
CLR(mtty->mp_flags, MTTYF_SET_BREAK);
count += 2;
}
if (ISSET(mtty->mp_flags, MTTYF_CLR_BREAK)) {
CD1400_WRITE_REG(cd, CD1400_TDR, 0);
CD1400_WRITE_REG(cd, CD1400_TDR, 0x83);
CLR(mtty->mp_flags, MTTYF_CLR_BREAK);
count += 2;
}
/* I don't quite fill the fifo in case the last one is a
* NULL which I have to double up because its the escape
* code for embedded transmit characters.
*/
while (mtty->mp_txc > 0 && count < CD1400_TX_FIFO_SIZE - 1) {
u_char ch;
ch = *mtty->mp_txp;
mtty->mp_txc--;
mtty->mp_txp++;
if (ch == 0) {
CD1400_WRITE_REG(cd, CD1400_TDR, ch);
count++;
}
CD1400_WRITE_REG(cd, CD1400_TDR, ch);
count++;
}
}
/* if we ran out of work or are requested to STOP then
* shut off the txrdy interrupts and signal DONE to flush
* out the chars we have sent.
*/
if (mtty->mp_txc == 0 || ISSET(mtty->mp_flags, MTTYF_STOP)) {
int srer;
srer = CD1400_READ_REG(cd, CD1400_SRER);
CLR(srer, CD1400_SRER_TXRDY);
CD1400_WRITE_REG(cd, CD1400_SRER, srer);
CLR(mtty->mp_flags, MTTYF_STOP);
SET(mtty->mp_flags, MTTYF_DONE);
needsoftint = 1;
}
}
CD1400_WRITE_REG(cd, CD1400_EOSRR, 0); /* end service context */
serviced = 1;
} /* if(tx_service...) */
/* XXX service CD1190 interrupts too
for (chip = 0 ; chip < sc->ms_ncd1190 ; chip++) {
}
*/
if (needsoftint)
softintr_schedule(sc->sc_sih);
return (serviced);
}
/*
* magma soft interrupt handler
*
* returns 1 if it handled it, 0 otherwise
*
* runs at spltty()
*/
void
magma_soft(void *arg)
{
struct magma_softc *sc = arg;
struct mtty_softc *mtty = sc->ms_mtty;
struct mbpp_softc *mbpp = sc->ms_mbpp;
int port;
int serviced = 0;
int s, flags;
/*
* check the tty ports (if any) to see what needs doing
*/
if (mtty) {
for (port = 0 ; port < mtty->ms_nports ; port++) {
struct mtty_port *mp = &mtty->ms_port[port];
struct tty *tp = mp->mp_tty;
if (!ISSET(tp->t_state, TS_ISOPEN))
continue;
/*
* handle any received data
*/
while (mp->mp_rget != mp->mp_rput) {
u_char stat;
int data;
stat = mp->mp_rget[0];
data = mp->mp_rget[1];
mp->mp_rget = ((mp->mp_rget + 2) == mp->mp_rend) ? mp->mp_rbuf : (mp->mp_rget + 2);
if (stat & (CD1400_RDSR_BREAK | CD1400_RDSR_FE))
data |= TTY_FE;
if (stat & CD1400_RDSR_PE)
data |= TTY_PE;
if (stat & CD1400_RDSR_OE)
log(LOG_WARNING, "%s%x: fifo overflow\n", mtty->ms_dev.dv_xname, port);
(*linesw[tp->t_line].l_rint)(data, tp);
serviced = 1;
}
s = splhigh(); /* block out hard interrupt routine */
flags = mp->mp_flags;
CLR(mp->mp_flags, MTTYF_DONE | MTTYF_CARRIER_CHANGED | MTTYF_RING_OVERFLOW);
splx(s); /* ok */
if (ISSET(flags, MTTYF_CARRIER_CHANGED)) {
dprintf(("%s%x: cd %s\n", mtty->ms_dev.dv_xname, port, mp->mp_carrier ? "on" : "off"));
(*linesw[tp->t_line].l_modem)(tp, mp->mp_carrier);
serviced = 1;
}
if (ISSET(flags, MTTYF_RING_OVERFLOW)) {
log(LOG_WARNING, "%s%x: ring buffer overflow\n", mtty->ms_dev.dv_xname, port);
serviced = 1;
}
if (ISSET(flags, MTTYF_DONE)) {
ndflush(&tp->t_outq, mp->mp_txp - tp->t_outq.c_cf);
CLR(tp->t_state, TS_BUSY);
(*linesw[tp->t_line].l_start)(tp); /* might be some more */
serviced = 1;
}
} /* for (each mtty...) */
}
/*
* check the bpp ports (if any) to see what needs doing
*/
if (mbpp) {
for (port = 0 ; port < mbpp->ms_nports ; port++) {
struct mbpp_port *mp = &mbpp->ms_port[port];
if (!ISSET(mp->mp_flags, MBPPF_OPEN))
continue;
s = splhigh(); /* block out hard intr routine */
flags = mp->mp_flags;
CLR(mp->mp_flags, MBPPF_WAKEUP);
splx(s);
if (ISSET(flags, MBPPF_WAKEUP)) {
wakeup(mp);
serviced = 1;
}
} /* for (each mbpp...) */
}
}
/************************************************************************
*
* MTTY Routines
*
* mtty_match match one mtty device
* mtty_attach attach mtty devices
* mttyopen open mtty device
* mttyclose close mtty device
* mttyread read from mtty
* mttywrite write to mtty
* mttyioctl do ioctl on mtty
* mttytty return tty pointer for mtty
* mttystop stop mtty device
* mtty_start start mtty device
* mtty_param set mtty parameters
* mtty_modem_control set modem control lines
*/
int
mtty_match(struct device *parent, void *vcf, void *args)
{
struct magma_softc *sc = (struct magma_softc *)parent;
return (args == mtty_match && sc->ms_board->mb_nser &&
sc->ms_mtty == NULL);
}
void
mtty_attach(struct device *parent, struct device *dev, void *args)
{
struct magma_softc *sc = (struct magma_softc *)parent;
struct mtty_softc *ms = (struct mtty_softc *)dev;
int port, chip, chan;
sc->ms_mtty = ms;
dprintf((" addr 0x%x", ms));
for (port = 0, chip = 0, chan = 0;
port < sc->ms_board->mb_nser; port++) {
struct mtty_port *mp = &ms->ms_port[port];
struct tty *tp;
mp->mp_cd1400 = &sc->ms_cd1400[chip];
if (mp->mp_cd1400->cd_parmode && chan == 0) {
/* skip channel 0 if parmode */
chan = 1;
}
mp->mp_channel = chan;
tp = ttymalloc(0);
tp->t_oproc = mtty_start;
tp->t_param = mtty_param;
mp->mp_tty = tp;
mp->mp_rbuf = malloc(MTTY_RBUF_SIZE, M_DEVBUF, M_NOWAIT);
if (mp->mp_rbuf == NULL)
break;
mp->mp_rend = mp->mp_rbuf + MTTY_RBUF_SIZE;
chan = (chan + 1) % CD1400_NO_OF_CHANNELS;
if (chan == 0)
chip++;
}
ms->ms_nports = port;
printf(": %d tty%s\n", port, port == 1 ? "" : "s");
}
/*
* open routine. returns zero if successful, else error code
*/
int
mttyopen(dev_t dev, int flags, int mode, struct proc *p)
{
int card = MAGMA_CARD(dev);
int port = MAGMA_PORT(dev);
struct mtty_softc *ms;
struct mtty_port *mp;
struct tty *tp;
struct cd1400 *cd;
int s;
if (card >= mtty_cd.cd_ndevs || (ms = mtty_cd.cd_devs[card]) == NULL
|| port >= ms->ms_nports)
return (ENXIO); /* device not configured */
mp = &ms->ms_port[port];
tp = mp->mp_tty;
tp->t_dev = dev;
if (!ISSET(tp->t_state, TS_ISOPEN)) {
SET(tp->t_state, TS_WOPEN);
/* set defaults */
ttychars(tp);
tp->t_iflag = TTYDEF_IFLAG;
tp->t_oflag = TTYDEF_OFLAG;
tp->t_cflag = TTYDEF_CFLAG;
if (ISSET(mp->mp_openflags, TIOCFLAG_CLOCAL))
SET(tp->t_cflag, CLOCAL);
if (ISSET(mp->mp_openflags, TIOCFLAG_CRTSCTS))
SET(tp->t_cflag, CRTSCTS);
if (ISSET(mp->mp_openflags, TIOCFLAG_MDMBUF))
SET(tp->t_cflag, MDMBUF);
tp->t_lflag = TTYDEF_LFLAG;
tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
/* init ring buffer */
mp->mp_rput = mp->mp_rget = mp->mp_rbuf;
s = spltty();
/* reset CD1400 channel */
cd = mp->mp_cd1400;
CD1400_WRITE_REG(cd, CD1400_CAR, mp->mp_channel);
cd1400_write_ccr(cd, CD1400_CCR_CMDRESET);
/* encode the port number in top half of LIVR */
CD1400_WRITE_REG(cd, CD1400_LIVR, port << 4);
/* sets parameters and raises DTR */
(void)mtty_param(tp, &tp->t_termios);
/* set tty watermarks */
ttsetwater(tp);
/* enable service requests */
CD1400_WRITE_REG(cd, CD1400_SRER, CD1400_SRER_RXDATA | CD1400_SRER_MDMCH);
/* tell the tty about the carrier status */
if (ISSET(mp->mp_openflags, TIOCFLAG_SOFTCAR) || mp->mp_carrier)
SET(tp->t_state, TS_CARR_ON);
else
CLR(tp->t_state, TS_CARR_ON);
} else if (ISSET(tp->t_state, TS_XCLUDE) && suser(p) != 0) {
return (EBUSY); /* superuser can break exclusive access */
} else {
s = spltty();
}
/* wait for carrier if necessary */
if (!ISSET(flags, O_NONBLOCK)) {
while (!ISSET(tp->t_cflag, CLOCAL) && !ISSET(tp->t_state, TS_CARR_ON)) {
int error;
SET(tp->t_state, TS_WOPEN);
error = ttysleep(tp, &tp->t_rawq, TTIPRI | PCATCH,
ttopen);
if (error != 0) {
splx(s);
CLR(tp->t_state, TS_WOPEN);
return (error);
}
}
}
splx(s);
return ((*linesw[tp->t_line].l_open)(dev, tp, p));
}
/*
* close routine. returns zero if successful, else error code
*/
int
mttyclose(dev_t dev, int flag, int mode, struct proc *p)
{
struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
struct tty *tp = mp->mp_tty;
int s;
(*linesw[tp->t_line].l_close)(tp, flag, p);
s = spltty();
/* if HUPCL is set, and the tty is no longer open
* shut down the port
*/
if (ISSET(tp->t_cflag, HUPCL) || !ISSET(tp->t_state, TS_ISOPEN)) {
/* XXX wait until FIFO is empty before turning off the channel
struct cd1400 *cd = mp->mp_cd1400;
*/
/* drop DTR and RTS */
(void)mtty_modem_control(mp, 0, DMSET);
/* turn off the channel
CD1400_WRITE_REG(cd, CD1400_CAR, mp->mp_channel);
cd1400_write_ccr(cd, CD1400_CCR_CMDRESET);
*/
}
splx(s);
ttyclose(tp);
return (0);
}
/*
* Read routine
*/
int
mttyread(dev_t dev, struct uio *uio, int flags)
{
struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
struct tty *tp = mp->mp_tty;
return ((*linesw[tp->t_line].l_read)(tp, uio, flags));
}
/*
* Write routine
*/
int
mttywrite(dev_t dev, struct uio *uio, int flags)
{
struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
struct tty *tp = mp->mp_tty;
return ((*linesw[tp->t_line].l_write)(tp, uio, flags));
}
/*
* return tty pointer
*/
struct tty *
mttytty(dev_t dev)
{
struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
return (mp->mp_tty);
}
/*
* ioctl routine
*/
int
mttyioctl(dev_t dev, u_long cmd, caddr_t data, int flags, struct proc *p)
{
struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(dev)];
struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
struct tty *tp = mp->mp_tty;
int error;
error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flags, p);
if (error >= 0)
return (error);
error = ttioctl(tp, cmd, data, flags, p);
if (error >= 0)
return (error);
error = 0;
switch(cmd) {
case TIOCSBRK: /* set break */
SET(mp->mp_flags, MTTYF_SET_BREAK);
cd1400_enable_transmitter(mp->mp_cd1400, mp->mp_channel);
break;
case TIOCCBRK: /* clear break */
SET(mp->mp_flags, MTTYF_CLR_BREAK);
cd1400_enable_transmitter(mp->mp_cd1400, mp->mp_channel);
break;
case TIOCSDTR: /* set DTR */
mtty_modem_control(mp, TIOCM_DTR, DMBIS);
break;
case TIOCCDTR: /* clear DTR */
mtty_modem_control(mp, TIOCM_DTR, DMBIC);
break;
case TIOCMSET: /* set modem lines */
mtty_modem_control(mp, *((int *)data), DMSET);
break;
case TIOCMBIS: /* bit set modem lines */
mtty_modem_control(mp, *((int *)data), DMBIS);
break;
case TIOCMBIC: /* bit clear modem lines */
mtty_modem_control(mp, *((int *)data), DMBIC);
break;
case TIOCMGET: /* get modem lines */
*((int *)data) = mtty_modem_control(mp, 0, DMGET);
break;
case TIOCGFLAGS:
*((int *)data) = mp->mp_openflags;
break;
case TIOCSFLAGS:
if (suser(p))
error = EPERM;
else
mp->mp_openflags = *((int *)data) &
(TIOCFLAG_SOFTCAR | TIOCFLAG_CLOCAL |
TIOCFLAG_CRTSCTS | TIOCFLAG_MDMBUF);
break;
default:
error = ENOTTY;
}
return (error);
}
/*
* Stop output, e.g., for ^S or output flush.
*/
int
mttystop(struct tty *tp, int flags)
{
struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(tp->t_dev)];
struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(tp->t_dev)];
int s;
s = spltty();
if (ISSET(tp->t_state, TS_BUSY)) {
if (!ISSET(tp->t_state, TS_TTSTOP))
SET(tp->t_state, TS_FLUSH);
/*
* the transmit interrupt routine will disable transmit when it
* notices that MTTYF_STOP has been set.
*/
SET(mp->mp_flags, MTTYF_STOP);
}
splx(s);
return (0);
}
/*
* Start output, after a stop.
*/
void
mtty_start(struct tty *tp)
{
struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(tp->t_dev)];
struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(tp->t_dev)];
int s;
s = spltty();
/* we only need to do something if we are not already busy
* or delaying or stopped
*/
if (!ISSET(tp->t_state, TS_TTSTOP | TS_TIMEOUT | TS_BUSY)) {
/* if we are sleeping and output has drained below
* low water mark, awaken
*/
ttwakeupwr(tp);
/* if something to send, start transmitting
*/
if (tp->t_outq.c_cc) {
mp->mp_txc = ndqb(&tp->t_outq, 0);
mp->mp_txp = tp->t_outq.c_cf;
SET(tp->t_state, TS_BUSY);
cd1400_enable_transmitter(mp->mp_cd1400, mp->mp_channel);
}
}
splx(s);
}
/*
* set/get modem line status
*
* bits can be: TIOCM_DTR, TIOCM_RTS, TIOCM_CTS, TIOCM_CD, TIOCM_RI, TIOCM_DSR
*
* note that DTR and RTS lines are exchanged, and that DSR is
* not available on the LC2+1Sp card (used as CD)
*
* only let them fiddle with RTS if CRTSCTS is not enabled
*/
int
mtty_modem_control(struct mtty_port *mp, int bits, int howto)
{
struct cd1400 *cd = mp->mp_cd1400;
struct tty *tp = mp->mp_tty;
int s, msvr;
s = spltty();
CD1400_WRITE_REG(cd, CD1400_CAR, mp->mp_channel);
switch(howto) {
case DMGET: /* get bits */
bits = 0;
bits |= TIOCM_LE;
msvr = CD1400_READ_REG(cd, CD1400_MSVR1);
if (msvr & CD1400_MSVR1_RTS)
bits |= TIOCM_DTR;
msvr = CD1400_READ_REG(cd, CD1400_MSVR2);
if (msvr & CD1400_MSVR2_DTR)
bits |= TIOCM_RTS;
if (msvr & CD1400_MSVR2_CTS)
bits |= TIOCM_CTS;
if (msvr & CD1400_MSVR2_RI)
bits |= TIOCM_RI;
if (msvr & CD1400_MSVR2_DSR)
bits |= (cd->cd_parmode ? TIOCM_CD : TIOCM_DSR);
if (msvr & CD1400_MSVR2_CD)
bits |= (cd->cd_parmode ? 0 : TIOCM_CD);
break;
case DMSET: /* reset bits */
if (!ISSET(tp->t_cflag, CRTSCTS))
CD1400_WRITE_REG(cd, CD1400_MSVR2,
((bits & TIOCM_RTS) ? CD1400_MSVR2_DTR : 0));
CD1400_WRITE_REG(cd, CD1400_MSVR1,
((bits & TIOCM_DTR) ? CD1400_MSVR1_RTS : 0));
break;
case DMBIS: /* set bits */
if ((bits & TIOCM_RTS) && !ISSET(tp->t_cflag, CRTSCTS))
CD1400_WRITE_REG(cd, CD1400_MSVR2, CD1400_MSVR2_DTR);
if (bits & TIOCM_DTR)
CD1400_WRITE_REG(cd, CD1400_MSVR1, CD1400_MSVR1_RTS);
break;
case DMBIC: /* clear bits */
if ((bits & TIOCM_RTS) && !ISSET(tp->t_cflag, CRTSCTS))
CD1400_WRITE_REG(cd, CD1400_MSVR2, 0);
if (bits & TIOCM_DTR)
CD1400_WRITE_REG(cd, CD1400_MSVR1, 0);
break;
}
splx(s);
return (bits);
}
/*
* Set tty parameters, returns error or 0 on success
*/
int
mtty_param(struct tty *tp, struct termios *t)
{
struct mtty_softc *ms = mtty_cd.cd_devs[MAGMA_CARD(tp->t_dev)];
struct mtty_port *mp = &ms->ms_port[MAGMA_PORT(tp->t_dev)];
struct cd1400 *cd = mp->mp_cd1400;
int rbpr, tbpr, rcor, tcor;
u_char mcor1 = 0, mcor2 = 0;
int s, opt;
if (t->c_ospeed &&
cd1400_compute_baud(t->c_ospeed, cd->cd_clock, &tcor, &tbpr))
return (EINVAL);
if (t->c_ispeed &&
cd1400_compute_baud(t->c_ispeed, cd->cd_clock, &rcor, &rbpr))
return (EINVAL);
s = spltty();
/* hang up the line if ospeed is zero, else raise DTR */
(void)mtty_modem_control(mp, TIOCM_DTR,
(t->c_ospeed == 0 ? DMBIC : DMBIS));
/* select channel, done in mtty_modem_control() */
/* CD1400_WRITE_REG(cd, CD1400_CAR, mp->mp_channel); */
/* set transmit speed */
if (t->c_ospeed) {
CD1400_WRITE_REG(cd, CD1400_TCOR, tcor);
CD1400_WRITE_REG(cd, CD1400_TBPR, tbpr);
}
/* set receive speed */
if (t->c_ispeed) {
CD1400_WRITE_REG(cd, CD1400_RCOR, rcor);
CD1400_WRITE_REG(cd, CD1400_RBPR, rbpr);
}
/* enable transmitting and receiving on this channel */
opt = CD1400_CCR_CMDCHANCTL | CD1400_CCR_XMTEN | CD1400_CCR_RCVEN;
cd1400_write_ccr(cd, opt);
/* set parity, data and stop bits */
opt = 0;
if (ISSET(t->c_cflag, PARENB))
opt |= (ISSET(t->c_cflag, PARODD) ? CD1400_COR1_PARODD : CD1400_COR1_PARNORMAL);
if (!ISSET(t->c_iflag, INPCK))
opt |= CD1400_COR1_NOINPCK; /* no parity checking */
if (ISSET(t->c_cflag, CSTOPB))
opt |= CD1400_COR1_STOP2;
switch( t->c_cflag & CSIZE) {
case CS5:
opt |= CD1400_COR1_CS5;
break;
case CS6:
opt |= CD1400_COR1_CS6;
break;
case CS7:
opt |= CD1400_COR1_CS7;
break;
default:
opt |= CD1400_COR1_CS8;
break;
}
CD1400_WRITE_REG(cd, CD1400_COR1, opt);
/*
* enable Embedded Transmit Commands (for breaks)
* use the CD1400 automatic CTS flow control if CRTSCTS is set
*/
opt = CD1400_COR2_ETC;
if (ISSET(t->c_cflag, CRTSCTS))
opt |= CD1400_COR2_CCTS_OFLOW;
CD1400_WRITE_REG(cd, CD1400_COR2, opt);
CD1400_WRITE_REG(cd, CD1400_COR3, MTTY_RX_FIFO_THRESHOLD);
cd1400_write_ccr(cd, CD1400_CCR_CMDCORCHG | CD1400_CCR_COR1 | CD1400_CCR_COR2 | CD1400_CCR_COR3);
CD1400_WRITE_REG(cd, CD1400_COR4, CD1400_COR4_PFO_EXCEPTION);
CD1400_WRITE_REG(cd, CD1400_COR5, 0);
/*
* if automatic RTS handshaking enabled, set DTR threshold
* (RTS and DTR lines are switched, CD1400 thinks its DTR)
*/
if (ISSET(t->c_cflag, CRTSCTS))
mcor1 = MTTY_RX_DTR_THRESHOLD;
/* set up `carrier detect' interrupts */
if (cd->cd_parmode) {
SET(mcor1, CD1400_MCOR1_DSRzd);
SET(mcor2, CD1400_MCOR2_DSRod);
} else {
SET(mcor1, CD1400_MCOR1_CDzd);
SET(mcor2, CD1400_MCOR2_CDod);
}
CD1400_WRITE_REG(cd, CD1400_MCOR1, mcor1);
CD1400_WRITE_REG(cd, CD1400_MCOR2, mcor2);
/* receive timeout 2ms */
CD1400_WRITE_REG(cd, CD1400_RTPR, 2);
splx(s);
return (0);
}
/************************************************************************
*
* MBPP Routines
*
* mbpp_match match one mbpp device
* mbpp_attach attach mbpp devices
* mbppopen open mbpp device
* mbppclose close mbpp device
* mbppread read from mbpp
* mbppwrite write to mbpp
* mbppioctl do ioctl on mbpp
* mbppkqfilter kqueue on mbpp
* mbpp_rw general rw routine
* mbpp_timeout rw timeout
* mbpp_start rw start after delay
* mbpp_send send data
* mbpp_recv recv data
*/
int
mbpp_match(struct device *parent, void *vcf, void *args)
{
struct magma_softc *sc = (struct magma_softc *)parent;
return (args == mbpp_match && sc->ms_board->mb_npar &&
sc->ms_mbpp == NULL);
}
void
mbpp_attach(struct device *parent, struct device *dev, void *args)
{
struct magma_softc *sc = (struct magma_softc *)parent;
struct mbpp_softc *ms = (struct mbpp_softc *)dev;
struct mbpp_port *mp;
int port;
sc->ms_mbpp = ms;
dprintf((" addr 0x%x", ms));
for (port = 0 ; port < sc->ms_board->mb_npar ; port++) {
mp = &ms->ms_port[port];
if (sc->ms_ncd1190)
mp->mp_cd1190 = &sc->ms_cd1190[port];
else
mp->mp_cd1400 = &sc->ms_cd1400[0];
timeout_set(&mp->mp_timeout_tmo, mbpp_timeout, mp);
timeout_set(&mp->mp_start_tmo, mbpp_start, mp);
}
ms->ms_nports = port;
printf(": %d port%s\n", port, port == 1 ? "" : "s");
}
/*
* open routine. returns zero if successful, else error code
*/
int
mbppopen(dev_t dev, int flags, int mode, struct proc *p)
{
int card = MAGMA_CARD(dev);
int port = MAGMA_PORT(dev);
struct mbpp_softc *ms;
struct mbpp_port *mp;
int s;
if (card >= mbpp_cd.cd_ndevs || (ms = mbpp_cd.cd_devs[card]) == NULL || port >= ms->ms_nports)
return (ENXIO);
mp = &ms->ms_port[port];
s = spltty();
if (ISSET(mp->mp_flags, MBPPF_OPEN)) {
splx(s);
return (EBUSY);
}
SET(mp->mp_flags, MBPPF_OPEN);
splx(s);
/* set defaults */
mp->mp_burst = BPP_BURST;
mp->mp_timeout = BPP_TIMEOUT;
mp->mp_delay = BPP_DELAY;
/* init chips */
if (mp->mp_cd1400) { /* CD1400 */
struct cd1400 *cd = mp->mp_cd1400;
/* set up CD1400 channel */
s = spltty();
CD1400_WRITE_REG(cd, CD1400_CAR, 0);
cd1400_write_ccr(cd, CD1400_CCR_CMDRESET);
CD1400_WRITE_REG(cd, CD1400_LIVR, (1<<3));
splx(s);
} else { /* CD1190 */
mp->mp_flags = 0;
return (ENXIO);
}
return (0);
}
/*
* close routine. returns zero if successful, else error code
*/
int
mbppclose(dev_t dev, int flag, int mode, struct proc *p)
{
struct mbpp_softc *ms = mbpp_cd.cd_devs[MAGMA_CARD(dev)];
struct mbpp_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
mp->mp_flags = 0;
return (0);
}
/*
* Read routine
*/
int
mbppread(dev_t dev, struct uio *uio, int flags)
{
return (mbpp_rw(dev, uio));
}
/*
* Write routine
*/
int
mbppwrite(dev_t dev, struct uio *uio, int flags)
{
return (mbpp_rw(dev, uio));
}
/*
* ioctl routine
*/
int
mbppioctl(dev_t dev, u_long cmd, caddr_t data, int flags, struct proc *p)
{
struct mbpp_softc *ms = mbpp_cd.cd_devs[MAGMA_CARD(dev)];
struct mbpp_port *mp = &ms->ms_port[MAGMA_PORT(dev)];
struct bpp_param *bp;
int error = 0;
int s;
switch(cmd) {
case BPPIOCSPARAM:
bp = (struct bpp_param *)data;
if (bp->bp_burst < BPP_BURST_MIN || bp->bp_burst > BPP_BURST_MAX ||
bp->bp_delay < BPP_DELAY_MIN || bp->bp_delay > BPP_DELAY_MIN) {
error = EINVAL;
} else {
mp->mp_burst = bp->bp_burst;
mp->mp_timeout = bp->bp_timeout;
mp->mp_delay = bp->bp_delay;
}
break;
case BPPIOCGPARAM:
bp = (struct bpp_param *)data;
bp->bp_burst = mp->mp_burst;
bp->bp_timeout = mp->mp_timeout;
bp->bp_delay = mp->mp_delay;
break;
case BPPIOCGSTAT:
/* XXX make this more generic */
s = spltty();
CD1400_WRITE_REG(mp->mp_cd1400, CD1400_CAR, 0);
*(int *)data = CD1400_READ_REG(mp->mp_cd1400, CD1400_PSVR);
splx(s);
break;
default:
error = ENOTTY;
}
return (error);
}
int
mbppkqfilter(dev_t dev, struct knote *kn)
{
return (seltrue_kqfilter(dev, kn));
}
int
mbpp_rw(dev_t dev, struct uio *uio)
{
int card = MAGMA_CARD(dev);
int port = MAGMA_PORT(dev);
struct mbpp_softc *ms = mbpp_cd.cd_devs[card];
struct mbpp_port *mp = &ms->ms_port[port];
caddr_t buffer, ptr;
size_t buflen, cnt, len;
int s, error = 0;
int gotdata = 0;
if (uio->uio_resid == 0)
return (0);
buflen = ulmin(uio->uio_resid, mp->mp_burst);
buffer = malloc(buflen, M_DEVBUF, M_WAITOK);
SET(mp->mp_flags, MBPPF_UIO);
/*
* start timeout, if needed
*/
if (mp->mp_timeout > 0) {
SET(mp->mp_flags, MBPPF_TIMEOUT);
timeout_add_msec(&mp->mp_timeout_tmo, mp->mp_timeout);
}
len = cnt = 0;
while (uio->uio_resid > 0) {
len = ulmin(buflen, uio->uio_resid);
ptr = buffer;
if (uio->uio_rw == UIO_WRITE) {
error = uiomove(ptr, len, uio);
if (error)
break;
}
again: /* goto bad */
/* timed out? */
if (!ISSET(mp->mp_flags, MBPPF_UIO))
break;
/*
* perform the operation
*/
if (uio->uio_rw == UIO_WRITE) {
cnt = mbpp_send(mp, ptr, len);
} else {
cnt = mbpp_recv(mp, ptr, len);
}
if (uio->uio_rw == UIO_READ) {
if (cnt) {
error = uiomove(ptr, cnt, uio);
if (error)
break;
gotdata++;
}
else if (gotdata) /* consider us done */
break;
}
/* timed out? */
if (!ISSET(mp->mp_flags, MBPPF_UIO))
break;
/*
* poll delay?
*/
if (mp->mp_delay > 0) {
s = spltty(); /* XXX */
SET(mp->mp_flags, MBPPF_DELAY);
timeout_add_msec(&mp->mp_start_tmo, mp->mp_delay);
error = tsleep_nsec(mp, PCATCH | PZERO, "mbppdelay",
INFSLP);
splx(s);
if (error)
break;
}
/*
* don't call uiomove again until we used all the data we grabbed
*/
if (uio->uio_rw == UIO_WRITE && cnt != len) {
ptr += cnt;
len -= cnt;
cnt = 0;
goto again;
}
}
/*
* clear timeouts
*/
s = spltty(); /* XXX */
if (ISSET(mp->mp_flags, MBPPF_TIMEOUT)) {
timeout_del(&mp->mp_timeout_tmo);
CLR(mp->mp_flags, MBPPF_TIMEOUT);
}
if (ISSET(mp->mp_flags, MBPPF_DELAY)) {
timeout_del(&mp->mp_start_tmo);
CLR(mp->mp_flags, MBPPF_DELAY);
}
splx(s);
/*
* adjust for those chars that we uiomoved but never actually wrote
*/
if (uio->uio_rw == UIO_WRITE && cnt != len) {
uio->uio_resid += (len - cnt);
}
free(buffer, M_DEVBUF, 0);
return (error);
}
void
mbpp_timeout(void *arg)
{
struct mbpp_port *mp = arg;
CLR(mp->mp_flags, MBPPF_UIO | MBPPF_TIMEOUT);
wakeup(mp);
}
void
mbpp_start(void *arg)
{
struct mbpp_port *mp = arg;
CLR(mp->mp_flags, MBPPF_DELAY);
wakeup(mp);
}
int
mbpp_send(struct mbpp_port *mp, caddr_t ptr, int len)
{
int s;
struct cd1400 *cd = mp->mp_cd1400;
/* set up io information */
mp->mp_ptr = ptr;
mp->mp_cnt = len;
/* start transmitting */
s = spltty();
if (cd) {
CD1400_WRITE_REG(cd, CD1400_CAR, 0);
/* output strobe width ~1microsecond */
CD1400_WRITE_REG(cd, CD1400_TBPR, 10);
/* enable channel */
cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_XMTEN);
CD1400_WRITE_REG(cd, CD1400_SRER, CD1400_SRER_TXRDY);
}
/* ZZzzz... */
tsleep_nsec(mp, PCATCH | PZERO, "mbpp_send", INFSLP);
/* stop transmitting */
if (cd) {
CD1400_WRITE_REG(cd, CD1400_CAR, 0);
/* disable transmitter */
CD1400_WRITE_REG(cd, CD1400_SRER, 0);
cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_XMTDIS);
/* flush fifo */
cd1400_write_ccr(cd, CD1400_CCR_CMDRESET | CD1400_CCR_FTF);
}
splx(s);
/* return number of chars sent */
return (len - mp->mp_cnt);
}
int
mbpp_recv(struct mbpp_port *mp, caddr_t ptr, int len)
{
int s;
struct cd1400 *cd = mp->mp_cd1400;
/* set up io information */
mp->mp_ptr = ptr;
mp->mp_cnt = len;
/* start receiving */
s = spltty();
if (cd) {
int rcor, rbpr;
CD1400_WRITE_REG(cd, CD1400_CAR, 0);
/* input strobe at 100kbaud (10microseconds) */
cd1400_compute_baud(100000, cd->cd_clock, &rcor, &rbpr);
CD1400_WRITE_REG(cd, CD1400_RCOR, rcor);
CD1400_WRITE_REG(cd, CD1400_RBPR, rbpr);
/* rx threshold */
CD1400_WRITE_REG(cd, CD1400_COR3, MBPP_RX_FIFO_THRESHOLD);
cd1400_write_ccr(cd, CD1400_CCR_CMDCORCHG | CD1400_CCR_COR3);
/* enable channel */
cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_RCVEN);
CD1400_WRITE_REG(cd, CD1400_SRER, CD1400_SRER_RXDATA);
}
/* ZZzzz... */
tsleep_nsec(mp, PCATCH | PZERO, "mbpp_recv", INFSLP);
/* stop receiving */
if (cd) {
CD1400_WRITE_REG(cd, CD1400_CAR, 0);
/* disable receiving */
CD1400_WRITE_REG(cd, CD1400_SRER, 0);
cd1400_write_ccr(cd, CD1400_CCR_CMDCHANCTL | CD1400_CCR_RCVDIS);
}
splx(s);
/* return number of chars received */
return (len - mp->mp_cnt);
}