src/sys/dev/ic/ti.c

2312 lines
59 KiB
C

/* $OpenBSD: ti.c,v 1.29 2022/01/09 05:42:42 jsg Exp $ */
/*
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD: src/sys/pci/if_ti.c,v 1.25 2000/01/18 00:26:29 wpaul Exp $
*/
/*
* Alteon Networks Tigon PCI gigabit ethernet driver for OpenBSD.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The Alteon Networks Tigon chip contains an embedded R4000 CPU,
* gigabit MAC, dual DMA channels and a PCI interface unit. NICs
* using the Tigon may have anywhere from 512K to 2MB of SRAM. The
* Tigon supports hardware IP, TCP and UCP checksumming, multicast
* filtering and jumbo (9014 byte) frames. The hardware is largely
* controlled by firmware, which must be loaded into the NIC during
* initialization.
*
* The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
* revision, which supports new features such as extended commands,
* extended jumbo receive ring descriptors and a mini receive ring.
*
* Alteon Networks is to be commended for releasing such a vast amount
* of development material for the Tigon NIC without requiring an NDA
* (although they really should have done it a long time ago). With
* any luck, the other vendors will finally wise up and follow Alteon's
* stellar example.
*
* The following people deserve special thanks:
* - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
* for testing
* - Raymond Lee of Netgear, for providing a pair of Netgear
* GA620 Tigon 2 boards for testing
* - Ulf Zimmermann, for bringing the GA260 to my attention and
* convincing me to write this driver.
* - Andrew Gallatin for providing FreeBSD/Alpha support.
*/
#include "bpfilter.h"
#include "vlan.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/device.h>
#include <sys/queue.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net/if_media.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <machine/bus.h>
#include <dev/ic/tireg.h>
#include <dev/ic/tivar.h>
#include <dev/pci/pcireg.h>
struct cfdriver ti_cd = {
NULL, "ti", DV_IFNET
};
void ti_txeof_tigon1(struct ti_softc *);
void ti_txeof_tigon2(struct ti_softc *);
void ti_rxeof(struct ti_softc *);
void ti_stats_update(struct ti_softc *);
int ti_encap_tigon1(struct ti_softc *, struct mbuf *, u_int32_t *);
int ti_encap_tigon2(struct ti_softc *, struct mbuf *, u_int32_t *);
int ti_intr(void *);
void ti_start(struct ifnet *);
int ti_ioctl(struct ifnet *, u_long, caddr_t);
void ti_init(void *);
void ti_init2(struct ti_softc *);
void ti_stop(struct ti_softc *);
void ti_watchdog(struct ifnet *);
int ti_ifmedia_upd(struct ifnet *);
void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
u_int8_t ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
void ti_add_mcast(struct ti_softc *, struct ether_addr *);
void ti_del_mcast(struct ti_softc *, struct ether_addr *);
void ti_iff(struct ti_softc *);
void ti_mem_read(struct ti_softc *, u_int32_t, u_int32_t, void *);
void ti_mem_write(struct ti_softc *, u_int32_t, u_int32_t, const void*);
void ti_mem_set(struct ti_softc *, u_int32_t, u_int32_t);
void ti_loadfw(struct ti_softc *);
void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *,
caddr_t, int);
void ti_handle_events(struct ti_softc *);
int ti_newbuf_std(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
int ti_init_rx_ring_std(struct ti_softc *);
void ti_free_rx_ring_std(struct ti_softc *);
int ti_init_rx_ring_jumbo(struct ti_softc *);
void ti_free_rx_ring_jumbo(struct ti_softc *);
int ti_init_rx_ring_mini(struct ti_softc *);
void ti_free_rx_ring_mini(struct ti_softc *);
void ti_free_tx_ring(struct ti_softc *);
int ti_init_tx_ring(struct ti_softc *);
int ti_64bitslot_war(struct ti_softc *);
int ti_chipinit(struct ti_softc *);
void ti_chipinit_pci(struct ti_softc *);
void ti_chipinit_sbus(struct ti_softc *);
int ti_gibinit(struct ti_softc *);
/*
* Send an instruction or address to the EEPROM, check for ACK.
*/
u_int32_t
ti_eeprom_putbyte(struct ti_softc *sc, int byte)
{
int i, ack = 0;
/*
* Make sure we're in TX mode.
*/
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
/*
* Feed in each bit and strobe the clock.
*/
for (i = 0x80; i; i >>= 1) {
if (byte & i)
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
else
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
DELAY(1);
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
DELAY(1);
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
}
/*
* Turn off TX mode.
*/
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
/*
* Check for ack.
*/
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
return (ack);
}
/*
* Read a byte of data stored in the EEPROM at address 'addr.'
* We have to send two address bytes since the EEPROM can hold
* more than 256 bytes of data.
*/
u_int8_t
ti_eeprom_getbyte(struct ti_softc *sc, int addr, u_int8_t *dest)
{
int i;
u_int8_t byte = 0;
EEPROM_START;
/*
* Send write control code to EEPROM.
*/
if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
printf("%s: failed to send write command, status: %x\n",
sc->sc_dv.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
return (1);
}
/*
* Send first byte of address of byte we want to read.
*/
if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
printf("%s: failed to send address, status: %x\n",
sc->sc_dv.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
return (1);
}
/*
* Send second byte address of byte we want to read.
*/
if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
printf("%s: failed to send address, status: %x\n",
sc->sc_dv.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
return (1);
}
EEPROM_STOP;
EEPROM_START;
/*
* Send read control code to EEPROM.
*/
if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
printf("%s: failed to send read command, status: %x\n",
sc->sc_dv.dv_xname, CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
return (1);
}
/*
* Start reading bits from EEPROM.
*/
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
for (i = 0x80; i; i >>= 1) {
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
DELAY(1);
if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
byte |= i;
TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
DELAY(1);
}
EEPROM_STOP;
/*
* No ACK generated for read, so just return byte.
*/
*dest = byte;
return (0);
}
/*
* Read a sequence of bytes from the EEPROM.
*/
int
ti_read_eeprom(struct ti_softc *sc, caddr_t dest, int off, int cnt)
{
int err = 0, i;
u_int8_t byte = 0;
for (i = 0; i < cnt; i++) {
err = ti_eeprom_getbyte(sc, off + i, &byte);
if (err)
break;
*(dest + i) = byte;
}
return (err ? 1 : 0);
}
/*
* NIC memory read function.
* Can be used to copy data from NIC local memory.
*/
void
ti_mem_read(struct ti_softc *sc, u_int32_t addr, u_int32_t len, void *buf)
{
int segptr, segsize, cnt;
caddr_t ptr;
segptr = addr;
cnt = len;
ptr = buf;
while(cnt) {
if (cnt < TI_WINLEN)
segsize = cnt;
else
segsize = TI_WINLEN - (segptr % TI_WINLEN);
CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
bus_space_read_region_4(sc->ti_btag, sc->ti_bhandle,
TI_WINDOW + (segptr & (TI_WINLEN - 1)), (u_int32_t *)ptr,
segsize / 4);
ptr += segsize;
segptr += segsize;
cnt -= segsize;
}
}
/*
* NIC memory write function.
* Can be used to copy data into NIC local memory.
*/
void
ti_mem_write(struct ti_softc *sc, u_int32_t addr, u_int32_t len,
const void *buf)
{
int segptr, segsize, cnt;
const char *ptr;
segptr = addr;
cnt = len;
ptr = buf;
while(cnt) {
if (cnt < TI_WINLEN)
segsize = cnt;
else
segsize = TI_WINLEN - (segptr % TI_WINLEN);
CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
TI_WINDOW + (segptr & (TI_WINLEN - 1)), (u_int32_t *)ptr,
segsize / 4);
ptr += segsize;
segptr += segsize;
cnt -= segsize;
}
}
/*
* NIC memory write function.
* Can be used to clear a section of NIC local memory.
*/
void
ti_mem_set(struct ti_softc *sc, u_int32_t addr, u_int32_t len)
{
int segptr, segsize, cnt;
segptr = addr;
cnt = len;
while(cnt) {
if (cnt < TI_WINLEN)
segsize = cnt;
else
segsize = TI_WINLEN - (segptr % TI_WINLEN);
CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4);
segptr += segsize;
cnt -= segsize;
}
}
/*
* Load firmware image into the NIC. Check that the firmware revision
* is acceptable and see if we want the firmware for the Tigon 1 or
* Tigon 2.
*/
void
ti_loadfw(struct ti_softc *sc)
{
struct tigon_firmware *tf;
u_char *buf = NULL;
u_int32_t *b;
size_t buflen, i, cnt;
char *name;
int error;
switch(sc->ti_hwrev) {
case TI_HWREV_TIGON:
name = "tigon1";
break;
case TI_HWREV_TIGON_II:
name = "tigon2";
break;
default:
printf("%s: can't load firmware: unknown hardware rev\n",
sc->sc_dv.dv_xname);
return;
}
error = loadfirmware(name, &buf, &buflen);
if (error)
return;
/* convert firmware to host byte order */
b = (u_int32_t *)buf;
cnt = buflen / sizeof(u_int32_t);
for (i = 0; i < cnt; i++)
b[i] = letoh32(b[i]);
tf = (struct tigon_firmware *)buf;
if (tf->FwReleaseMajor != TI_FIRMWARE_MAJOR ||
tf->FwReleaseMinor != TI_FIRMWARE_MINOR ||
tf->FwReleaseFix != TI_FIRMWARE_FIX) {
printf("%s: firmware revision mismatch; want "
"%d.%d.%d, got %d.%d.%d\n", sc->sc_dv.dv_xname,
TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
TI_FIRMWARE_FIX, tf->FwReleaseMajor,
tf->FwReleaseMinor, tf->FwReleaseFix);
free(buf, M_DEVBUF, buflen);
return;
}
ti_mem_write(sc, tf->FwTextAddr, tf->FwTextLen,
(caddr_t)&tf->data[tf->FwTextOffset]);
ti_mem_write(sc, tf->FwRodataAddr, tf->FwRodataLen,
(caddr_t)&tf->data[tf->FwRodataOffset]);
ti_mem_write(sc, tf->FwDataAddr, tf->FwDataLen,
(caddr_t)&tf->data[tf->FwDataOffset]);
ti_mem_set(sc, tf->FwBssAddr, tf->FwBssLen);
ti_mem_set(sc, tf->FwSbssAddr, tf->FwSbssLen);
CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tf->FwStartAddr);
free(buf, M_DEVBUF, buflen);
}
/*
* Send the NIC a command via the command ring.
*/
void
ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
{
u_int32_t index;
index = sc->ti_cmd_saved_prodidx;
CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
TI_INC(index, TI_CMD_RING_CNT);
CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
sc->ti_cmd_saved_prodidx = index;
}
/*
* Send the NIC an extended command. The 'len' parameter specifies the
* number of command slots to include after the initial command.
*/
void
ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, caddr_t arg,
int len)
{
u_int32_t index;
int i;
index = sc->ti_cmd_saved_prodidx;
CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
TI_INC(index, TI_CMD_RING_CNT);
for (i = 0; i < len; i++) {
CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
*(u_int32_t *)(&arg[i * 4]));
TI_INC(index, TI_CMD_RING_CNT);
}
CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
sc->ti_cmd_saved_prodidx = index;
}
/*
* Handle events that have triggered interrupts.
*/
void
ti_handle_events(struct ti_softc *sc)
{
struct ti_event_desc *e;
struct ifnet *ifp = &sc->arpcom.ac_if;
while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
switch (TI_EVENT_EVENT(e)) {
case TI_EV_LINKSTAT_CHANGED:
sc->ti_linkstat = TI_EVENT_CODE(e);
switch (sc->ti_linkstat) {
case TI_EV_CODE_LINK_UP:
case TI_EV_CODE_GIG_LINK_UP:
{
struct ifmediareq ifmr;
bzero(&ifmr, sizeof(ifmr));
ti_ifmedia_sts(ifp, &ifmr);
if (ifmr.ifm_active & IFM_FDX) {
ifp->if_link_state =
LINK_STATE_FULL_DUPLEX;
} else {
ifp->if_link_state =
LINK_STATE_HALF_DUPLEX;
}
if_link_state_change(ifp);
ifp->if_baudrate =
ifmedia_baudrate(ifmr.ifm_active);
break;
}
case TI_EV_CODE_LINK_DOWN:
ifp->if_link_state = LINK_STATE_DOWN;
if_link_state_change(ifp);
ifp->if_baudrate = 0;
break;
default:
printf("%s: unknown link state code %d\n",
sc->sc_dv.dv_xname, sc->ti_linkstat);
}
break;
case TI_EV_ERROR:
if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
printf("%s: invalid command\n",
sc->sc_dv.dv_xname);
else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
printf("%s: unknown command\n",
sc->sc_dv.dv_xname);
else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
printf("%s: bad config data\n",
sc->sc_dv.dv_xname);
break;
case TI_EV_FIRMWARE_UP:
ti_init2(sc);
break;
case TI_EV_STATS_UPDATED:
ti_stats_update(sc);
break;
case TI_EV_RESET_JUMBO_RING:
case TI_EV_MCAST_UPDATED:
/* Who cares. */
break;
default:
printf("%s: unknown event: %d\n", sc->sc_dv.dv_xname,
TI_EVENT_EVENT(e));
break;
}
/* Advance the consumer index. */
TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
}
}
/*
* Initialize a standard receive ring descriptor.
*/
int
ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m,
bus_dmamap_t dmamap)
{
struct mbuf *m_new = NULL;
struct ti_rx_desc *r;
if (dmamap == NULL) {
/* if (m) panic() */
if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, MCLBYTES,
0, BUS_DMA_NOWAIT, &dmamap)) {
printf("%s: can't create recv map\n",
sc->sc_dv.dv_xname);
return (ENOMEM);
}
} else if (m == NULL)
bus_dmamap_unload(sc->sc_dmatag, dmamap);
sc->ti_cdata.ti_rx_std_map[i] = dmamap;
if (m == NULL) {
m_new = MCLGETL(NULL, M_DONTWAIT, MCLBYTES);
if (m_new == NULL)
return (ENOBUFS);
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_adj(m_new, ETHER_ALIGN);
if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m_new,
BUS_DMA_NOWAIT)) {
m_freem(m_new);
return (ENOBUFS);
}
} else {
/*
* We're re-using a previously allocated mbuf;
* be sure to re-init pointers and lengths to
* default values.
*/
m_new = m;
m_new->m_data = m_new->m_ext.ext_buf;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_adj(m_new, ETHER_ALIGN);
}
sc->ti_cdata.ti_rx_std_chain[i] = m_new;
r = &sc->ti_rdata->ti_rx_std_ring[i];
TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
r->ti_type = TI_BDTYPE_RECV_BD;
r->ti_flags = TI_BDFLAG_IP_CKSUM;
r->ti_len = dmamap->dm_segs[0].ds_len;
r->ti_idx = i;
return (0);
}
/*
* Initialize a mini receive ring descriptor. This only applies to
* the Tigon 2.
*/
int
ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m,
bus_dmamap_t dmamap)
{
struct mbuf *m_new = NULL;
struct ti_rx_desc *r;
if (dmamap == NULL) {
/* if (m) panic() */
if (bus_dmamap_create(sc->sc_dmatag, MHLEN, 1, MHLEN,
0, BUS_DMA_NOWAIT, &dmamap)) {
printf("%s: can't create recv map\n",
sc->sc_dv.dv_xname);
return (ENOMEM);
}
} else if (m == NULL)
bus_dmamap_unload(sc->sc_dmatag, dmamap);
sc->ti_cdata.ti_rx_mini_map[i] = dmamap;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL)
return (ENOBUFS);
m_new->m_len = m_new->m_pkthdr.len = MHLEN;
m_adj(m_new, ETHER_ALIGN);
if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m_new,
BUS_DMA_NOWAIT)) {
m_freem(m_new);
return (ENOBUFS);
}
} else {
/*
* We're re-using a previously allocated mbuf;
* be sure to re-init pointers and lengths to
* default values.
*/
m_new = m;
m_new->m_data = m_new->m_pktdat;
m_new->m_len = m_new->m_pkthdr.len = MHLEN;
}
r = &sc->ti_rdata->ti_rx_mini_ring[i];
sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
r->ti_type = TI_BDTYPE_RECV_BD;
r->ti_flags = TI_BDFLAG_MINI_RING | TI_BDFLAG_IP_CKSUM;
r->ti_len = dmamap->dm_segs[0].ds_len;
r->ti_idx = i;
return (0);
}
/*
* Initialize a jumbo receive ring descriptor. This allocates
* a jumbo buffer from the pool managed internally by the driver.
*/
int
ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m,
bus_dmamap_t dmamap)
{
struct mbuf *m_new = NULL;
struct ti_rx_desc *r;
if (dmamap == NULL) {
/* if (m) panic() */
if (bus_dmamap_create(sc->sc_dmatag, TI_JUMBO_FRAMELEN, 1,
TI_JUMBO_FRAMELEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
printf("%s: can't create recv map\n",
sc->sc_dv.dv_xname);
return (ENOMEM);
}
} else if (m == NULL)
bus_dmamap_unload(sc->sc_dmatag, dmamap);
if (m == NULL) {
m_new = MCLGETL(NULL, M_DONTWAIT, TI_JUMBO_FRAMELEN);
if (m_new == NULL)
return (ENOBUFS);
m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
m_adj(m_new, ETHER_ALIGN);
if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m_new,
BUS_DMA_NOWAIT)) {
m_freem(m_new);
return (ENOBUFS);
}
} else {
/*
* We're re-using a previously allocated mbuf;
* be sure to re-init pointers and lengths to
* default values.
*/
m_new = m;
m_new->m_data = m_new->m_ext.ext_buf;
m_new->m_len = m_new->m_pkthdr.len = TI_JUMBO_FRAMELEN;
m_adj(m_new, ETHER_ALIGN);
}
/* Set up the descriptor. */
r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
r->ti_flags = TI_BDFLAG_JUMBO_RING | TI_BDFLAG_IP_CKSUM;
r->ti_len = m_new->m_len;
r->ti_idx = i;
return (0);
}
/*
* The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
* that's 1MB of memory, which is a lot. For now, we fill only the first
* 256 ring entries and hope that our CPU is fast enough to keep up with
* the NIC.
*/
int
ti_init_rx_ring_std(struct ti_softc *sc)
{
int i;
struct ti_cmd_desc cmd;
for (i = 0; i < TI_SSLOTS; i++) {
if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
return (ENOBUFS);
}
TI_UPDATE_STDPROD(sc, i - 1);
sc->ti_std = i - 1;
return (0);
}
void
ti_free_rx_ring_std(struct ti_softc *sc)
{
int i;
for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
sc->ti_cdata.ti_rx_std_chain[i] = NULL;
bus_dmamap_destroy(sc->sc_dmatag,
sc->ti_cdata.ti_rx_std_map[i]);
sc->ti_cdata.ti_rx_std_map[i] = 0;
}
bzero(&sc->ti_rdata->ti_rx_std_ring[i],
sizeof(struct ti_rx_desc));
}
}
int
ti_init_rx_ring_jumbo(struct ti_softc *sc)
{
int i;
struct ti_cmd_desc cmd;
for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
if (ti_newbuf_jumbo(sc, i, NULL, 0) == ENOBUFS)
return (ENOBUFS);
};
TI_UPDATE_JUMBOPROD(sc, i - 1);
sc->ti_jumbo = i - 1;
return (0);
}
void
ti_free_rx_ring_jumbo(struct ti_softc *sc)
{
int i;
for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
}
bzero(&sc->ti_rdata->ti_rx_jumbo_ring[i],
sizeof(struct ti_rx_desc));
}
}
int
ti_init_rx_ring_mini(struct ti_softc *sc)
{
int i;
for (i = 0; i < TI_MSLOTS; i++) {
if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
return (ENOBUFS);
};
TI_UPDATE_MINIPROD(sc, i - 1);
sc->ti_mini = i - 1;
return (0);
}
void
ti_free_rx_ring_mini(struct ti_softc *sc)
{
int i;
for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
bus_dmamap_destroy(sc->sc_dmatag,
sc->ti_cdata.ti_rx_mini_map[i]);
sc->ti_cdata.ti_rx_mini_map[i] = 0;
}
bzero(&sc->ti_rdata->ti_rx_mini_ring[i],
sizeof(struct ti_rx_desc));
}
}
void
ti_free_tx_ring(struct ti_softc *sc)
{
int i;
struct ti_txmap_entry *entry;
for (i = 0; i < TI_TX_RING_CNT; i++) {
if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
m_freem(sc->ti_cdata.ti_tx_chain[i]);
sc->ti_cdata.ti_tx_chain[i] = NULL;
SLIST_INSERT_HEAD(&sc->ti_tx_map_listhead,
sc->ti_cdata.ti_tx_map[i], link);
sc->ti_cdata.ti_tx_map[i] = 0;
}
bzero(&sc->ti_rdata->ti_tx_ring[i],
sizeof(struct ti_tx_desc));
}
while ((entry = SLIST_FIRST(&sc->ti_tx_map_listhead))) {
SLIST_REMOVE_HEAD(&sc->ti_tx_map_listhead, link);
bus_dmamap_destroy(sc->sc_dmatag, entry->dmamap);
free(entry, M_DEVBUF, sizeof *entry);
}
}
int
ti_init_tx_ring(struct ti_softc *sc)
{
int i;
bus_dmamap_t dmamap;
struct ti_txmap_entry *entry;
sc->ti_txcnt = 0;
sc->ti_tx_saved_considx = 0;
sc->ti_tx_saved_prodidx = 0;
CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
SLIST_INIT(&sc->ti_tx_map_listhead);
for (i = 0; i < TI_TX_RING_CNT; i++) {
if (bus_dmamap_create(sc->sc_dmatag, TI_JUMBO_FRAMELEN,
TI_NTXSEG, MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap))
return (ENOBUFS);
entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
if (!entry) {
bus_dmamap_destroy(sc->sc_dmatag, dmamap);
return (ENOBUFS);
}
entry->dmamap = dmamap;
SLIST_INSERT_HEAD(&sc->ti_tx_map_listhead, entry, link);
}
return (0);
}
/*
* The Tigon 2 firmware has a new way to add/delete multicast addresses,
* but we have to support the old way too so that Tigon 1 cards will
* work.
*/
void
ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
{
struct ti_cmd_desc cmd;
u_int16_t *m;
u_int32_t ext[2] = {0, 0};
m = (u_int16_t *)&addr->ether_addr_octet[0];
switch(sc->ti_hwrev) {
case TI_HWREV_TIGON:
CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
break;
case TI_HWREV_TIGON_II:
ext[0] = htons(m[0]);
ext[1] = (htons(m[1]) << 16) | htons(m[2]);
TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
break;
default:
printf("%s: unknown hwrev\n", sc->sc_dv.dv_xname);
break;
}
}
void
ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
{
struct ti_cmd_desc cmd;
u_int16_t *m;
u_int32_t ext[2] = {0, 0};
m = (u_int16_t *)&addr->ether_addr_octet[0];
switch(sc->ti_hwrev) {
case TI_HWREV_TIGON:
CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
break;
case TI_HWREV_TIGON_II:
ext[0] = htons(m[0]);
ext[1] = (htons(m[1]) << 16) | htons(m[2]);
TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
break;
default:
printf("%s: unknown hwrev\n", sc->sc_dv.dv_xname);
break;
}
}
/*
* Configure the Tigon's multicast address filter.
*
* The actual multicast table management is a bit of a pain, thanks to
* slight brain damage on the part of both Alteon and us. With our
* multicast code, we are only alerted when the multicast address table
* changes and at that point we only have the current list of addresses:
* we only know the current state, not the previous state, so we don't
* actually know what addresses were removed or added. The firmware has
* state, but we can't get our grubby mits on it, and there is no 'delete
* all multicast addresses' command. Hence, we have to maintain our own
* state so we know what addresses have been programmed into the NIC at
* any given time.
*/
void
ti_iff(struct ti_softc *sc)
{
struct ifnet *ifp = &sc->arpcom.ac_if;
struct arpcom *ac = &sc->arpcom;
struct ether_multi *enm;
struct ether_multistep step;
struct ti_cmd_desc cmd;
struct ti_mc_entry *mc;
u_int32_t intrs;
TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
ifp->if_flags &= ~IFF_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
ifp->if_flags |= IFF_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC) {
TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
TI_CMD_CODE_PROMISC_ENB, 0);
} else {
TI_DO_CMD(TI_CMD_SET_ALLMULTI,
TI_CMD_CODE_ALLMULTI_ENB, 0);
}
} else {
/* Disable interrupts. */
intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
/* First, zot all the existing filters. */
while (SLIST_FIRST(&sc->ti_mc_listhead) != NULL) {
mc = SLIST_FIRST(&sc->ti_mc_listhead);
ti_del_mcast(sc, &mc->mc_addr);
SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
free(mc, M_DEVBUF, sizeof *mc);
}
/* Now program new ones. */
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
M_NOWAIT);
if (mc == NULL)
panic("ti_iff");
bcopy(enm->enm_addrlo, &mc->mc_addr,
ETHER_ADDR_LEN);
SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc,
mc_entries);
ti_add_mcast(sc, &mc->mc_addr);
ETHER_NEXT_MULTI(step, enm);
}
/* Re-enable interrupts. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
}
}
/*
* Check to see if the BIOS has configured us for a 64 bit slot when
* we aren't actually in one. If we detect this condition, we can work
* around it on the Tigon 2 by setting a bit in the PCI state register,
* but for the Tigon 1 we must give up and abort the interface attach.
*/
int
ti_64bitslot_war(struct ti_softc *sc)
{
if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
CSR_WRITE_4(sc, 0x600, 0);
CSR_WRITE_4(sc, 0x604, 0);
CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
if (sc->ti_hwrev == TI_HWREV_TIGON)
return (EINVAL);
else {
TI_SETBIT(sc, TI_PCI_STATE,
TI_PCISTATE_32BIT_BUS);
return (0);
}
}
}
return (0);
}
/*
* Do endian, PCI and DMA initialization. Also check the on-board ROM
* self-test results.
*/
int
ti_chipinit(struct ti_softc *sc)
{
u_int32_t chip_rev;
/* Initialize link to down state. */
sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
/* Set endianness before we access any non-PCI registers. */
CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
/* Check the ROM failed bit to see if self-tests passed. */
if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
printf("%s: board self-diagnostics failed!\n",
sc->sc_dv.dv_xname);
return (ENODEV);
}
/* Halt the CPU. */
TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
/* Figure out the hardware revision. */
chip_rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK;
switch(chip_rev) {
case TI_REV_TIGON_I:
sc->ti_hwrev = TI_HWREV_TIGON;
break;
case TI_REV_TIGON_II:
sc->ti_hwrev = TI_HWREV_TIGON_II;
break;
default:
printf("\n");
printf("%s: unsupported chip revision: %x\n",
sc->sc_dv.dv_xname, chip_rev);
return (ENODEV);
}
/* Do special setup for Tigon 2. */
if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
}
if (sc->ti_sbus)
ti_chipinit_sbus(sc);
else
ti_chipinit_pci(sc);
/* Recommended settings from Tigon manual. */
CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
if (ti_64bitslot_war(sc)) {
printf("%s: bios thinks we're in a 64 bit slot, "
"but we aren't", sc->sc_dv.dv_xname);
return (EINVAL);
}
return (0);
}
void
ti_chipinit_pci(struct ti_softc *sc)
{
u_int32_t cacheline;
u_int32_t pci_writemax = 0;
/* Set up the PCI state register. */
CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD | TI_PCI_WRITE_CMD);
if (sc->ti_hwrev == TI_HWREV_TIGON_II)
TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
/* Clear the read/write max DMA parameters. */
TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
TI_PCISTATE_READ_MAXDMA));
/* Get cache line size. */
cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
/*
* If the system has set enabled the PCI memory write
* and invalidate command in the command register, set
* the write max parameter accordingly. This is necessary
* to use MWI with the Tigon 2.
*/
if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCI_COMMAND_INVALIDATE_ENABLE) {
switch(cacheline) {
case 1:
case 4:
case 8:
case 16:
case 32:
case 64:
break;
default:
/* Disable PCI memory write and invalidate. */
CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
TI_PCI_CMDSTAT) & ~PCI_COMMAND_INVALIDATE_ENABLE);
break;
}
}
#ifdef __brokenalpha__
/*
* From the Alteon sample driver:
* Must insure that we do not cross an 8K (bytes) boundary
* for DMA reads. Our highest limit is 1K bytes. This is a
* restriction on some ALPHA platforms with early revision
* 21174 PCI chipsets, such as the AlphaPC 164lx
*/
TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
#else
TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
#endif
/* This sets the min dma param all the way up (0xff). */
TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
/* Configure DMA variables. */
CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_DMA_SWAP_OPTIONS |
TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
TI_OPMODE_DONT_FRAG_JUMBO);
}
void
ti_chipinit_sbus(struct ti_softc *sc)
{
/* Set up the PCI state register. */
CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD | TI_PCI_WRITE_CMD |
TI_PCISTATE_NO_SWAP_READ_DMA | TI_PCISTATE_NO_SWAP_WRITE_DMA |
TI_PCI_WRITEMAX_64 | TI_PCI_READMAX_64 |
TI_PCISTATE_PROVIDE_LEN);
/* Configure DMA variables. */
CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_WORDSWAP_BD |
TI_OPMODE_1_DMA_ACTIVE | TI_OPMODE_SBUS |
TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
TI_OPMODE_DONT_FRAG_JUMBO);
}
/*
* Initialize the general information block and firmware, and
* start the CPU(s) running.
*/
int
ti_gibinit(struct ti_softc *sc)
{
struct ti_rcb *rcb;
int i;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
/* Disable interrupts for now. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
/*
* Tell the chip where to find the general information block.
* While this struct could go into >4GB memory, we allocate it in a
* single slab with the other descriptors, and those don't seem to
* support being located in a 64-bit region.
*/
CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
CSR_WRITE_4(sc, TI_GCR_GENINFO_LO,
TI_RING_DMA_ADDR(sc, ti_info) & 0xffffffff);
/* Load the firmware into SRAM. */
ti_loadfw(sc);
/* Set up the contents of the general info and ring control blocks. */
/* Set up the event ring and producer pointer. */
rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
TI_HOSTADDR(rcb->ti_hostaddr) = TI_RING_DMA_ADDR(sc, ti_event_ring);
rcb->ti_flags = 0;
TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
TI_RING_DMA_ADDR(sc, ti_ev_prodidx_r);
sc->ti_ev_prodidx.ti_idx = 0;
CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
sc->ti_ev_saved_considx = 0;
/* Set up the command ring and producer mailbox. */
rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
rcb->ti_flags = 0;
rcb->ti_max_len = 0;
for (i = 0; i < TI_CMD_RING_CNT; i++) {
CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
}
CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
sc->ti_cmd_saved_prodidx = 0;
/*
* Assign the address of the stats refresh buffer.
* We re-use the current stats buffer for this to
* conserve memory.
*/
TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
TI_RING_DMA_ADDR(sc, ti_info.ti_stats);
/* Set up the standard receive ring. */
rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
TI_HOSTADDR(rcb->ti_hostaddr) =
TI_RING_DMA_ADDR(sc, ti_rx_std_ring);
rcb->ti_max_len = ETHER_MAX_LEN;
rcb->ti_flags = 0;
rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
#if NVLAN > 0
if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
#endif
/* Set up the jumbo receive ring. */
rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
TI_HOSTADDR(rcb->ti_hostaddr) = TI_RING_DMA_ADDR(sc, ti_rx_jumbo_ring);
rcb->ti_max_len = TI_JUMBO_FRAMELEN;
rcb->ti_flags = 0;
rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
#if NVLAN > 0
if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
#endif
/*
* Set up the mini ring. Only activated on the
* Tigon 2 but the slot in the config block is
* still there on the Tigon 1.
*/
rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
TI_HOSTADDR(rcb->ti_hostaddr) = TI_RING_DMA_ADDR(sc, ti_rx_mini_ring);
rcb->ti_max_len = MHLEN - ETHER_ALIGN;
if (sc->ti_hwrev == TI_HWREV_TIGON)
rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
else
rcb->ti_flags = 0;
rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
#if NVLAN > 0
if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
#endif
/*
* Set up the receive return ring.
*/
rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
TI_HOSTADDR(rcb->ti_hostaddr) = TI_RING_DMA_ADDR(sc,ti_rx_return_ring);
rcb->ti_flags = 0;
rcb->ti_max_len = TI_RETURN_RING_CNT;
TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
TI_RING_DMA_ADDR(sc, ti_return_prodidx_r);
/*
* Set up the tx ring. Note: for the Tigon 2, we have the option
* of putting the transmit ring in the host's address space and
* letting the chip DMA it instead of leaving the ring in the NIC's
* memory and accessing it through the shared memory region. We
* do this for the Tigon 2, but it doesn't work on the Tigon 1,
* so we have to revert to the shared memory scheme if we detect
* a Tigon 1 chip.
*/
CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
bzero(sc->ti_rdata->ti_tx_ring,
TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
if (sc->ti_hwrev == TI_HWREV_TIGON)
rcb->ti_flags = 0;
else
rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
#if NVLAN > 0
if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
#endif
rcb->ti_max_len = TI_TX_RING_CNT;
if (sc->ti_hwrev == TI_HWREV_TIGON)
TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
else
TI_HOSTADDR(rcb->ti_hostaddr) =
TI_RING_DMA_ADDR(sc, ti_tx_ring);
TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
TI_RING_DMA_ADDR(sc, ti_tx_considx_r);
TI_RING_DMASYNC(sc, ti_info, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/* Set up tuneables */
CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, (sc->ti_rx_coal_ticks / 10));
CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
/* Turn interrupts on. */
CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
/* Start CPU. */
TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
return (0);
}
int
ti_attach(struct ti_softc *sc)
{
bus_dma_segment_t seg;
int rseg;
struct ifnet *ifp;
caddr_t kva;
if (ti_chipinit(sc)) {
printf("%s: chip initialization failed\n", sc->sc_dv.dv_xname);
return (1);
}
/* Zero out the NIC's on-board SRAM. */
ti_mem_set(sc, 0x2000, 0x100000 - 0x2000);
/* Init again -- zeroing memory may have clobbered some registers. */
if (ti_chipinit(sc)) {
printf("%s: chip initialization failed\n", sc->sc_dv.dv_xname);
return (1);
}
/*
* Get station address from the EEPROM. Note: the manual states
* that the MAC address is at offset 0x8c, however the data is
* stored as two longwords (since that's how it's loaded into
* the NIC). This means the MAC address is actually preceded
* by two zero bytes. We need to skip over those.
*/
if (ti_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
printf("%s: failed to read station address\n",
sc->sc_dv.dv_xname);
return (1);
}
/*
* A Tigon chip was detected. Inform the world.
*/
printf(", address %s\n", ether_sprintf(sc->arpcom.ac_enaddr));
/* Allocate the general information block and ring buffers. */
if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct ti_ring_data),
PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname);
return (1);
}
if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
sizeof(struct ti_ring_data), &kva, BUS_DMA_NOWAIT)) {
printf("%s: can't map dma buffers (%zu bytes)\n",
sc->sc_dv.dv_xname, sizeof(struct ti_ring_data));
goto fail_1;
}
if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct ti_ring_data), 1,
sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
&sc->ti_ring_map)) {
printf("%s: can't create dma map\n", sc->sc_dv.dv_xname);
goto fail_2;
}
if (bus_dmamap_load(sc->sc_dmatag, sc->ti_ring_map, kva,
sizeof(struct ti_ring_data), NULL, BUS_DMA_NOWAIT)) {
goto fail_3;
}
sc->ti_rdata = (struct ti_ring_data *)kva;
bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
/* Set default tuneable values. */
sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
sc->ti_rx_max_coal_bds = 64;
sc->ti_tx_max_coal_bds = 128;
sc->ti_tx_buf_ratio = 21;
/* Set up ifnet structure */
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = ti_ioctl;
ifp->if_start = ti_start;
ifp->if_watchdog = ti_watchdog;
ifp->if_hardmtu = TI_JUMBO_FRAMELEN - ETHER_HDR_LEN;
ifq_set_maxlen(&ifp->if_snd, TI_TX_RING_CNT - 1);
bcopy(sc->sc_dv.dv_xname, ifp->if_xname, IFNAMSIZ);
ifp->if_capabilities = IFCAP_VLAN_MTU;
#if NVLAN > 0
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
#endif
/* Set up ifmedia support. */
ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
if (sc->ti_copper) {
/*
* Copper cards allow manual 10/100 mode selection,
* but not manual 1000baseTX mode selection. Why?
* Because currently there's no way to specify the
* master/slave setting through the firmware interface,
* so Alteon decided to just bag it and handle it
* via autonegotiation.
*/
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
} else {
/* Fiber cards don't support 10/100 modes. */
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
}
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
/*
* Call MI attach routines.
*/
if_attach(ifp);
ether_ifattach(ifp);
return (0);
fail_3:
bus_dmamap_destroy(sc->sc_dmatag, sc->ti_ring_map);
fail_2:
bus_dmamem_unmap(sc->sc_dmatag, kva,
sizeof(struct ti_ring_data));
fail_1:
bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
return (1);
}
/*
* Frame reception handling. This is called if there's a frame
* on the receive return list.
*
* Note: we have to be able to handle three possibilities here:
* 1) the frame is from the mini receive ring (can only happen)
* on Tigon 2 boards)
* 2) the frame is from the jumbo receive ring
* 3) the frame is from the standard receive ring
*/
void
ti_rxeof(struct ti_softc *sc)
{
struct ifnet *ifp;
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
struct ti_cmd_desc cmd;
ifp = &sc->arpcom.ac_if;
while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
struct ti_rx_desc *cur_rx;
u_int32_t rxidx;
struct mbuf *m = NULL;
bus_dmamap_t dmamap;
cur_rx =
&sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
rxidx = cur_rx->ti_idx;
TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
dmamap = sc->ti_cdata.ti_rx_jumbo_map[rxidx];
sc->ti_cdata.ti_rx_jumbo_map[rxidx] = 0;
if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
ifp->if_ierrors++;
ti_newbuf_jumbo(sc, sc->ti_jumbo, m, dmamap);
continue;
}
if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL, dmamap)
== ENOBUFS) {
ifp->if_ierrors++;
ti_newbuf_jumbo(sc, sc->ti_jumbo, m, dmamap);
continue;
}
} else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
dmamap = sc->ti_cdata.ti_rx_mini_map[rxidx];
sc->ti_cdata.ti_rx_mini_map[rxidx] = 0;
if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
ifp->if_ierrors++;
ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
continue;
}
if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
== ENOBUFS) {
ifp->if_ierrors++;
ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
continue;
}
} else {
TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
m = sc->ti_cdata.ti_rx_std_chain[rxidx];
sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
dmamap = sc->ti_cdata.ti_rx_std_map[rxidx];
sc->ti_cdata.ti_rx_std_map[rxidx] = 0;
if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
ifp->if_ierrors++;
ti_newbuf_std(sc, sc->ti_std, m, dmamap);
continue;
}
if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
== ENOBUFS) {
ifp->if_ierrors++;
ti_newbuf_std(sc, sc->ti_std, m, dmamap);
continue;
}
}
if (m == NULL)
panic("%s: couldn't get mbuf", sc->sc_dv.dv_xname);
m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
#if NVLAN > 0
if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
m->m_pkthdr.ether_vtag = cur_rx->ti_vlan_tag;
m->m_flags |= M_VLANTAG;
}
#endif
if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
ml_enqueue(&ml, m);
}
/* Only necessary on the Tigon 1. */
if (sc->ti_hwrev == TI_HWREV_TIGON)
CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
sc->ti_rx_saved_considx);
TI_UPDATE_STDPROD(sc, sc->ti_std);
TI_UPDATE_MINIPROD(sc, sc->ti_mini);
TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
if_input(ifp, &ml);
}
void
ti_txeof_tigon1(struct ti_softc *sc)
{
struct ifnet *ifp;
struct ti_txmap_entry *entry;
int active = 1;
ifp = &sc->arpcom.ac_if;
/*
* Go through our tx ring and free mbufs for those
* frames that have been sent.
*/
while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
u_int32_t idx = 0;
struct ti_tx_desc txdesc;
idx = sc->ti_tx_saved_considx;
ti_mem_read(sc, TI_TX_RING_BASE + idx * sizeof(txdesc),
sizeof(txdesc), (caddr_t)&txdesc);
if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
m_freem(sc->ti_cdata.ti_tx_chain[idx]);
sc->ti_cdata.ti_tx_chain[idx] = NULL;
entry = sc->ti_cdata.ti_tx_map[idx];
bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
SLIST_INSERT_HEAD(&sc->ti_tx_map_listhead, entry,
link);
sc->ti_cdata.ti_tx_map[idx] = NULL;
}
sc->ti_txcnt--;
TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
ifp->if_timer = 0;
active = 0;
}
if (!active)
ifq_clr_oactive(&ifp->if_snd);
}
void
ti_txeof_tigon2(struct ti_softc *sc)
{
struct ti_tx_desc *cur_tx = NULL;
struct ifnet *ifp;
struct ti_txmap_entry *entry;
ifp = &sc->arpcom.ac_if;
/*
* Go through our tx ring and free mbufs for those
* frames that have been sent.
*/
while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
u_int32_t idx = 0;
idx = sc->ti_tx_saved_considx;
cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
m_freem(sc->ti_cdata.ti_tx_chain[idx]);
sc->ti_cdata.ti_tx_chain[idx] = NULL;
entry = sc->ti_cdata.ti_tx_map[idx];
bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
SLIST_INSERT_HEAD(&sc->ti_tx_map_listhead, entry,
link);
sc->ti_cdata.ti_tx_map[idx] = NULL;
}
sc->ti_txcnt--;
TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
ifp->if_timer = 0;
}
if (cur_tx != NULL)
ifq_clr_oactive(&ifp->if_snd);
}
int
ti_intr(void *xsc)
{
struct ti_softc *sc;
struct ifnet *ifp;
sc = xsc;
ifp = &sc->arpcom.ac_if;
/* XXX checking this register is expensive. */
/* Make sure this is really our interrupt. */
if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
return (0);
/* Ack interrupt and stop others from occurring. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
if (ifp->if_flags & IFF_RUNNING) {
/* Check RX return ring producer/consumer */
ti_rxeof(sc);
/* Check TX ring producer/consumer */
if (sc->ti_hwrev == TI_HWREV_TIGON)
ti_txeof_tigon1(sc);
else
ti_txeof_tigon2(sc);
}
ti_handle_events(sc);
/* Re-enable interrupts. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
if (ifp->if_flags & IFF_RUNNING && !ifq_empty(&ifp->if_snd))
ti_start(ifp);
return (1);
}
void
ti_stats_update(struct ti_softc *sc)
{
struct ifnet *ifp;
struct ti_stats *stats = &sc->ti_rdata->ti_info.ti_stats;
ifp = &sc->arpcom.ac_if;
TI_RING_DMASYNC(sc, ti_info.ti_stats, BUS_DMASYNC_POSTREAD);
ifp->if_collisions += stats->dot3StatsSingleCollisionFrames +
stats->dot3StatsMultipleCollisionFrames +
stats->dot3StatsExcessiveCollisions +
stats->dot3StatsLateCollisions -
ifp->if_collisions;
TI_RING_DMASYNC(sc, ti_info.ti_stats, BUS_DMASYNC_PREREAD);
}
/*
* Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
* pointers to descriptors.
*/
int
ti_encap_tigon1(struct ti_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
{
u_int32_t frag, cur;
struct ti_txmap_entry *entry;
bus_dmamap_t txmap;
struct ti_tx_desc txdesc;
int i = 0;
entry = SLIST_FIRST(&sc->ti_tx_map_listhead);
if (entry == NULL)
return (ENOBUFS);
txmap = entry->dmamap;
cur = frag = *txidx;
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
BUS_DMA_NOWAIT))
return (ENOBUFS);
/*
* Sanity check: avoid coming within 16 descriptors
* of the end of the ring.
*/
if (txmap->dm_nsegs > (TI_TX_RING_CNT - sc->ti_txcnt - 16))
goto fail_unload;
for (i = 0; i < txmap->dm_nsegs; i++) {
if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
break;
memset(&txdesc, 0, sizeof(txdesc));
TI_HOSTADDR(txdesc.ti_addr) = txmap->dm_segs[i].ds_addr;
txdesc.ti_len = txmap->dm_segs[i].ds_len & 0xffff;
txdesc.ti_flags = 0;
txdesc.ti_vlan_tag = 0;
#if NVLAN > 0
if (m_head->m_flags & M_VLANTAG) {
txdesc.ti_flags |= TI_BDFLAG_VLAN_TAG;
txdesc.ti_vlan_tag = m_head->m_pkthdr.ether_vtag;
}
#endif
ti_mem_write(sc, TI_TX_RING_BASE + frag * sizeof(txdesc),
sizeof(txdesc), (caddr_t)&txdesc);
cur = frag;
TI_INC(frag, TI_TX_RING_CNT);
}
if (frag == sc->ti_tx_saved_considx)
goto fail_unload;
txdesc.ti_flags |= TI_BDFLAG_END;
ti_mem_write(sc, TI_TX_RING_BASE + cur * sizeof(txdesc),
sizeof(txdesc), (caddr_t)&txdesc);
bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
sc->ti_cdata.ti_tx_chain[cur] = m_head;
SLIST_REMOVE_HEAD(&sc->ti_tx_map_listhead, link);
sc->ti_cdata.ti_tx_map[cur] = entry;
sc->ti_txcnt += txmap->dm_nsegs;
*txidx = frag;
return (0);
fail_unload:
bus_dmamap_unload(sc->sc_dmatag, txmap);
return (ENOBUFS);
}
/*
* Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
* pointers to descriptors.
*/
int
ti_encap_tigon2(struct ti_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
{
struct ti_tx_desc *f = NULL;
u_int32_t frag, cur;
struct ti_txmap_entry *entry;
bus_dmamap_t txmap;
int i = 0;
entry = SLIST_FIRST(&sc->ti_tx_map_listhead);
if (entry == NULL)
return (ENOBUFS);
txmap = entry->dmamap;
cur = frag = *txidx;
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
BUS_DMA_NOWAIT))
return (ENOBUFS);
/*
* Sanity check: avoid coming within 16 descriptors
* of the end of the ring.
*/
if (txmap->dm_nsegs > (TI_TX_RING_CNT - sc->ti_txcnt - 16))
goto fail_unload;
for (i = 0; i < txmap->dm_nsegs; i++) {
f = &sc->ti_rdata->ti_tx_ring[frag];
if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
break;
TI_HOSTADDR(f->ti_addr) = txmap->dm_segs[i].ds_addr;
f->ti_len = txmap->dm_segs[i].ds_len & 0xffff;
f->ti_flags = 0;
f->ti_vlan_tag = 0;
#if NVLAN > 0
if (m_head->m_flags & M_VLANTAG) {
f->ti_flags |= TI_BDFLAG_VLAN_TAG;
f->ti_vlan_tag = m_head->m_pkthdr.ether_vtag;
}
#endif
cur = frag;
TI_INC(frag, TI_TX_RING_CNT);
}
if (frag == sc->ti_tx_saved_considx)
goto fail_unload;
sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
TI_RING_DMASYNC(sc, ti_tx_ring[cur], BUS_DMASYNC_POSTREAD);
sc->ti_cdata.ti_tx_chain[cur] = m_head;
SLIST_REMOVE_HEAD(&sc->ti_tx_map_listhead, link);
sc->ti_cdata.ti_tx_map[cur] = entry;
sc->ti_txcnt += txmap->dm_nsegs;
*txidx = frag;
return (0);
fail_unload:
bus_dmamap_unload(sc->sc_dmatag, txmap);
return (ENOBUFS);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit descriptors.
*/
void
ti_start(struct ifnet *ifp)
{
struct ti_softc *sc;
struct mbuf *m_head = NULL;
u_int32_t prodidx;
int pkts = 0, error;
sc = ifp->if_softc;
prodidx = sc->ti_tx_saved_prodidx;
while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
m_head = ifq_deq_begin(&ifp->if_snd);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (sc->ti_hwrev == TI_HWREV_TIGON)
error = ti_encap_tigon1(sc, m_head, &prodidx);
else
error = ti_encap_tigon2(sc, m_head, &prodidx);
if (error) {
ifq_deq_rollback(&ifp->if_snd, m_head);
ifq_set_oactive(&ifp->if_snd);
break;
}
/* now we are committed to transmit the packet */
ifq_deq_commit(&ifp->if_snd, m_head);
pkts++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
#endif
}
if (pkts == 0)
return;
/* Transmit */
sc->ti_tx_saved_prodidx = prodidx;
CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
}
void
ti_init(void *xsc)
{
struct ti_softc *sc = xsc;
int s;
s = splnet();
/* Cancel pending I/O and flush buffers. */
ti_stop(sc);
/* Init the gen info block, ring control blocks and firmware. */
if (ti_gibinit(sc)) {
printf("%s: initialization failure\n", sc->sc_dv.dv_xname);
splx(s);
return;
}
splx(s);
}
void
ti_init2(struct ti_softc *sc)
{
struct ti_cmd_desc cmd;
struct ifnet *ifp;
u_int16_t *m;
struct ifmedia *ifm;
int tmp;
ifp = &sc->arpcom.ac_if;
/* Specify MTU and interface index. */
CSR_WRITE_4(sc, TI_GCR_IFINDEX, sc->sc_dv.dv_unit);
CSR_WRITE_4(sc, TI_GCR_IFMTU,
TI_JUMBO_FRAMELEN + ETHER_VLAN_ENCAP_LEN);
TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
/* Load our MAC address. */
m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
/* Program promiscuous mode and multicast filters. */
ti_iff(sc);
/*
* If this is a Tigon 1, we should tell the
* firmware to use software packet filtering.
*/
if (sc->ti_hwrev == TI_HWREV_TIGON)
TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
/* Init RX ring. */
if (ti_init_rx_ring_std(sc) == ENOBUFS)
panic("not enough mbufs for rx ring");
/* Init jumbo RX ring. */
ti_init_rx_ring_jumbo(sc);
/*
* If this is a Tigon 2, we can also configure the
* mini ring.
*/
if (sc->ti_hwrev == TI_HWREV_TIGON_II)
ti_init_rx_ring_mini(sc);
CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
sc->ti_rx_saved_considx = 0;
/* Init TX ring. */
ti_init_tx_ring(sc);
/* Tell firmware we're alive. */
TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
/* Enable host interrupts. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
ifp->if_flags |= IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
/*
* Make sure to set media properly. We have to do this
* here since we have to issue commands in order to set
* the link negotiation and we can't issue commands until
* the firmware is running.
*/
ifm = &sc->ifmedia;
tmp = ifm->ifm_media;
ifm->ifm_media = ifm->ifm_cur->ifm_media;
ti_ifmedia_upd(ifp);
ifm->ifm_media = tmp;
}
/*
* Set media options.
*/
int
ti_ifmedia_upd(struct ifnet *ifp)
{
struct ti_softc *sc;
struct ifmedia *ifm;
struct ti_cmd_desc cmd;
sc = ifp->if_softc;
ifm = &sc->ifmedia;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return(EINVAL);
switch(IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_AUTO:
CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
TI_LNK_AUTONEGENB|TI_LNK_ENB);
TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
TI_CMD_CODE_NEGOTIATE_BOTH, 0);
break;
case IFM_1000_SX:
case IFM_1000_T:
CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
CSR_WRITE_4(sc, TI_GCR_LINK, 0);
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
}
TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
break;
case IFM_100_FX:
case IFM_10_FL:
case IFM_100_TX:
case IFM_10_T:
CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
} else {
TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
}
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
} else {
TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
}
TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
TI_CMD_CODE_NEGOTIATE_10_100, 0);
break;
}
return (0);
}
/*
* Report current media status.
*/
void
ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct ti_softc *sc;
u_int32_t media = 0;
sc = ifp->if_softc;
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) {
ifmr->ifm_active |= IFM_NONE;
return;
}
ifmr->ifm_status |= IFM_ACTIVE;
if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
if (sc->ti_copper)
ifmr->ifm_active |= IFM_1000_T;
else
ifmr->ifm_active |= IFM_1000_SX;
if (media & TI_GLNK_FULL_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
} else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
if (sc->ti_copper) {
if (media & TI_LNK_100MB)
ifmr->ifm_active |= IFM_100_TX;
if (media & TI_LNK_10MB)
ifmr->ifm_active |= IFM_10_T;
} else {
if (media & TI_LNK_100MB)
ifmr->ifm_active |= IFM_100_FX;
if (media & TI_LNK_10MB)
ifmr->ifm_active |= IFM_10_FL;
}
if (media & TI_LNK_FULL_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
if (media & TI_LNK_HALF_DUPLEX)
ifmr->ifm_active |= IFM_HDX;
}
}
int
ti_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct ti_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
s = splnet();
switch(command) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
if ((ifp->if_flags & IFF_RUNNING) == 0)
ti_init(sc);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING)
error = ENETRESET;
else
ti_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
ti_stop(sc);
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
break;
default:
error = ether_ioctl(ifp, &sc->arpcom, command, data);
}
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
ti_iff(sc);
error = 0;
}
splx(s);
return (error);
}
void
ti_watchdog(struct ifnet *ifp)
{
struct ti_softc *sc;
sc = ifp->if_softc;
printf("%s: watchdog timeout -- resetting\n", sc->sc_dv.dv_xname);
ti_stop(sc);
ti_init(sc);
ifp->if_oerrors++;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
void
ti_stop(struct ti_softc *sc)
{
struct ifnet *ifp;
struct ti_cmd_desc cmd;
ifp = &sc->arpcom.ac_if;
ifp->if_flags &= ~IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
/* Disable host interrupts. */
CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
/*
* Tell firmware we're shutting down.
*/
TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
/* Halt and reinitialize. */
ti_chipinit(sc);
ti_mem_set(sc, 0x2000, 0x100000 - 0x2000);
ti_chipinit(sc);
/* Free the RX lists. */
ti_free_rx_ring_std(sc);
/* Free jumbo RX list. */
ti_free_rx_ring_jumbo(sc);
/* Free mini RX list. */
ti_free_rx_ring_mini(sc);
/* Free TX buffers. */
ti_free_tx_ring(sc);
sc->ti_ev_prodidx.ti_idx = 0;
sc->ti_return_prodidx.ti_idx = 0;
sc->ti_tx_considx.ti_idx = 0;
sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
}