src/sys/dev/pci/if_iwn.c

7242 lines
204 KiB
C

/* $OpenBSD: if_iwn.c,v 1.260 2022/06/19 18:27:06 stsp Exp $ */
/*-
* Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
* adapters.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/rwlock.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/task.h>
#include <sys/endian.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_amrr.h>
#include <net80211/ieee80211_ra.h>
#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_priv.h> /* for SEQ_LT */
#undef DPRINTF /* defined in ieee80211_priv.h */
#include <dev/pci/if_iwnreg.h>
#include <dev/pci/if_iwnvar.h>
static const struct pci_matchid iwn_devices[] = {
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_4965_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_4965_2 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5100_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5100_2 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5150_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5150_2 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5300_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5300_2 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5350_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5350_2 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1000_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1000_2 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6300_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6300_2 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6200_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6200_2 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6050_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6050_2 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6005_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6005_2 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6030_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6030_2 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1030_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1030_2 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_100_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_100_2 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_130_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_130_2 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6235_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6235_2 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_2230_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_2230_2 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_2200_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_2200_2 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_135_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_135_2 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_105_1 },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_105_2 },
};
int iwn_match(struct device *, void *, void *);
void iwn_attach(struct device *, struct device *, void *);
int iwn4965_attach(struct iwn_softc *, pci_product_id_t);
int iwn5000_attach(struct iwn_softc *, pci_product_id_t);
#if NBPFILTER > 0
void iwn_radiotap_attach(struct iwn_softc *);
#endif
int iwn_detach(struct device *, int);
int iwn_activate(struct device *, int);
void iwn_wakeup(struct iwn_softc *);
void iwn_init_task(void *);
int iwn_nic_lock(struct iwn_softc *);
int iwn_eeprom_lock(struct iwn_softc *);
int iwn_init_otprom(struct iwn_softc *);
int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
void **, bus_size_t, bus_size_t);
void iwn_dma_contig_free(struct iwn_dma_info *);
int iwn_alloc_sched(struct iwn_softc *);
void iwn_free_sched(struct iwn_softc *);
int iwn_alloc_kw(struct iwn_softc *);
void iwn_free_kw(struct iwn_softc *);
int iwn_alloc_ict(struct iwn_softc *);
void iwn_free_ict(struct iwn_softc *);
int iwn_alloc_fwmem(struct iwn_softc *);
void iwn_free_fwmem(struct iwn_softc *);
int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
int);
void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
void iwn5000_ict_reset(struct iwn_softc *);
int iwn_read_eeprom(struct iwn_softc *);
void iwn4965_read_eeprom(struct iwn_softc *);
void iwn4965_print_power_group(struct iwn_softc *, int);
void iwn5000_read_eeprom(struct iwn_softc *);
void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
void iwn_read_eeprom_enhinfo(struct iwn_softc *);
struct ieee80211_node *iwn_node_alloc(struct ieee80211com *);
void iwn_newassoc(struct ieee80211com *, struct ieee80211_node *,
int);
int iwn_media_change(struct ifnet *);
int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
void iwn_iter_func(void *, struct ieee80211_node *);
void iwn_calib_timeout(void *);
int iwn_ccmp_decap(struct iwn_softc *, struct mbuf *,
struct ieee80211_node *);
void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
struct iwn_rx_data *);
void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
struct iwn_rx_data *, struct mbuf_list *);
void iwn_ra_choose(struct iwn_softc *, struct ieee80211_node *);
void iwn_ampdu_rate_control(struct iwn_softc *, struct ieee80211_node *,
struct iwn_tx_ring *, uint16_t, uint16_t);
void iwn_ht_single_rate_control(struct iwn_softc *,
struct ieee80211_node *, uint8_t, uint8_t, uint8_t, int);
void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
struct iwn_rx_data *);
void iwn5000_rx_calib_results(struct iwn_softc *,
struct iwn_rx_desc *, struct iwn_rx_data *);
void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
struct iwn_rx_data *);
void iwn_ampdu_txq_advance(struct iwn_softc *, struct iwn_tx_ring *,
int, int);
void iwn_ampdu_tx_done(struct iwn_softc *, struct iwn_tx_ring *,
struct iwn_rx_desc *, uint16_t, uint8_t, uint8_t, uint8_t,
int, uint32_t, struct iwn_txagg_status *);
void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
struct iwn_rx_data *);
void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
struct iwn_rx_data *);
void iwn_tx_done_free_txdata(struct iwn_softc *,
struct iwn_tx_data *);
void iwn_clear_oactive(struct iwn_softc *, struct iwn_tx_ring *);
void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
uint8_t, uint8_t, uint8_t, int, int, uint16_t);
void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
void iwn_notif_intr(struct iwn_softc *);
void iwn_wakeup_intr(struct iwn_softc *);
void iwn_fatal_intr(struct iwn_softc *);
int iwn_intr(void *);
void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
uint16_t);
void iwn4965_reset_sched(struct iwn_softc *, int, int);
void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
uint16_t);
void iwn5000_reset_sched(struct iwn_softc *, int, int);
int iwn_tx(struct iwn_softc *, struct mbuf *,
struct ieee80211_node *);
int iwn_rval2ridx(int);
void iwn_start(struct ifnet *);
void iwn_watchdog(struct ifnet *);
int iwn_ioctl(struct ifnet *, u_long, caddr_t);
int iwn_cmd(struct iwn_softc *, int, const void *, int, int);
int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
int);
int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
int);
int iwn_set_link_quality(struct iwn_softc *,
struct ieee80211_node *);
int iwn_add_broadcast_node(struct iwn_softc *, int, int);
void iwn_updateedca(struct ieee80211com *);
void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
int iwn_set_critical_temp(struct iwn_softc *);
int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
void iwn4965_power_calibration(struct iwn_softc *, int);
int iwn4965_set_txpower(struct iwn_softc *, int);
int iwn5000_set_txpower(struct iwn_softc *, int);
int iwn4965_get_rssi(const struct iwn_rx_stat *);
int iwn5000_get_rssi(const struct iwn_rx_stat *);
int iwn_get_noise(const struct iwn_rx_general_stats *);
int iwn4965_get_temperature(struct iwn_softc *);
int iwn5000_get_temperature(struct iwn_softc *);
int iwn_init_sensitivity(struct iwn_softc *);
void iwn_collect_noise(struct iwn_softc *,
const struct iwn_rx_general_stats *);
int iwn4965_init_gains(struct iwn_softc *);
int iwn5000_init_gains(struct iwn_softc *);
int iwn4965_set_gains(struct iwn_softc *);
int iwn5000_set_gains(struct iwn_softc *);
void iwn_tune_sensitivity(struct iwn_softc *,
const struct iwn_rx_stats *);
int iwn_send_sensitivity(struct iwn_softc *);
int iwn_set_pslevel(struct iwn_softc *, int, int, int);
int iwn_send_temperature_offset(struct iwn_softc *);
int iwn_send_btcoex(struct iwn_softc *);
int iwn_send_advanced_btcoex(struct iwn_softc *);
int iwn5000_runtime_calib(struct iwn_softc *);
int iwn_config(struct iwn_softc *);
uint16_t iwn_get_active_dwell_time(struct iwn_softc *, uint16_t, uint8_t);
uint16_t iwn_limit_dwell(struct iwn_softc *, uint16_t);
uint16_t iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
int iwn_scan(struct iwn_softc *, uint16_t, int);
void iwn_scan_abort(struct iwn_softc *);
int iwn_bgscan(struct ieee80211com *);
void iwn_rxon_configure_ht40(struct ieee80211com *,
struct ieee80211_node *);
int iwn_rxon_ht40_enabled(struct iwn_softc *);
int iwn_auth(struct iwn_softc *, int);
int iwn_run(struct iwn_softc *);
int iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
struct ieee80211_key *);
void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
struct ieee80211_key *);
void iwn_updatechan(struct ieee80211com *);
void iwn_updateprot(struct ieee80211com *);
void iwn_updateslot(struct ieee80211com *);
void iwn_update_rxon_restore_power(struct iwn_softc *);
void iwn5000_update_rxon(struct iwn_softc *);
void iwn4965_update_rxon(struct iwn_softc *);
int iwn_ampdu_rx_start(struct ieee80211com *,
struct ieee80211_node *, uint8_t);
void iwn_ampdu_rx_stop(struct ieee80211com *,
struct ieee80211_node *, uint8_t);
int iwn_ampdu_tx_start(struct ieee80211com *,
struct ieee80211_node *, uint8_t);
void iwn_ampdu_tx_stop(struct ieee80211com *,
struct ieee80211_node *, uint8_t);
void iwn4965_ampdu_tx_start(struct iwn_softc *,
struct ieee80211_node *, uint8_t, uint16_t);
void iwn4965_ampdu_tx_stop(struct iwn_softc *,
uint8_t, uint16_t);
void iwn5000_ampdu_tx_start(struct iwn_softc *,
struct ieee80211_node *, uint8_t, uint16_t);
void iwn5000_ampdu_tx_stop(struct iwn_softc *,
uint8_t, uint16_t);
int iwn5000_query_calibration(struct iwn_softc *);
int iwn5000_send_calibration(struct iwn_softc *);
int iwn5000_send_wimax_coex(struct iwn_softc *);
int iwn5000_crystal_calib(struct iwn_softc *);
int iwn6000_temp_offset_calib(struct iwn_softc *);
int iwn2000_temp_offset_calib(struct iwn_softc *);
int iwn4965_post_alive(struct iwn_softc *);
int iwn5000_post_alive(struct iwn_softc *);
int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
int);
int iwn4965_load_firmware(struct iwn_softc *);
int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
const uint8_t *, int);
int iwn5000_load_firmware(struct iwn_softc *);
int iwn_read_firmware_leg(struct iwn_softc *,
struct iwn_fw_info *);
int iwn_read_firmware_tlv(struct iwn_softc *,
struct iwn_fw_info *, uint16_t);
int iwn_read_firmware(struct iwn_softc *);
int iwn_clock_wait(struct iwn_softc *);
int iwn_apm_init(struct iwn_softc *);
void iwn_apm_stop_master(struct iwn_softc *);
void iwn_apm_stop(struct iwn_softc *);
int iwn4965_nic_config(struct iwn_softc *);
int iwn5000_nic_config(struct iwn_softc *);
int iwn_hw_prepare(struct iwn_softc *);
int iwn_hw_init(struct iwn_softc *);
void iwn_hw_stop(struct iwn_softc *);
int iwn_init(struct ifnet *);
void iwn_stop(struct ifnet *);
#ifdef IWN_DEBUG
#define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0)
#define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0)
int iwn_debug = 1;
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
struct cfdriver iwn_cd = {
NULL, "iwn", DV_IFNET
};
const struct cfattach iwn_ca = {
sizeof (struct iwn_softc), iwn_match, iwn_attach, iwn_detach,
iwn_activate
};
int
iwn_match(struct device *parent, void *match, void *aux)
{
return pci_matchbyid((struct pci_attach_args *)aux, iwn_devices,
nitems(iwn_devices));
}
void
iwn_attach(struct device *parent, struct device *self, void *aux)
{
struct iwn_softc *sc = (struct iwn_softc *)self;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct pci_attach_args *pa = aux;
const char *intrstr;
pci_intr_handle_t ih;
pcireg_t memtype, reg;
int i, error;
sc->sc_pct = pa->pa_pc;
sc->sc_pcitag = pa->pa_tag;
sc->sc_dmat = pa->pa_dmat;
/*
* Get the offset of the PCI Express Capability Structure in PCI
* Configuration Space.
*/
error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
if (error == 0) {
printf(": PCIe capability structure not found!\n");
return;
}
/* Clear device-specific "PCI retry timeout" register (41h). */
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
if (reg & 0xff00)
pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
/* Hardware bug workaround. */
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
DPRINTF(("PCIe INTx Disable set\n"));
reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
pci_conf_write(sc->sc_pct, sc->sc_pcitag,
PCI_COMMAND_STATUS_REG, reg);
}
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
&sc->sc_sh, NULL, &sc->sc_sz, 0);
if (error != 0) {
printf(": can't map mem space\n");
return;
}
/* Install interrupt handler. */
if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) {
printf(": can't map interrupt\n");
return;
}
intrstr = pci_intr_string(sc->sc_pct, ih);
sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc,
sc->sc_dev.dv_xname);
if (sc->sc_ih == NULL) {
printf(": can't establish interrupt");
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
return;
}
printf(": %s", intrstr);
/* Read hardware revision and attach. */
sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0x1f;
if (sc->hw_type == IWN_HW_REV_TYPE_4965)
error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
else
error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
if (error != 0) {
printf(": could not attach device\n");
return;
}
if ((error = iwn_hw_prepare(sc)) != 0) {
printf(": hardware not ready\n");
return;
}
/* Read MAC address, channels, etc from EEPROM. */
if ((error = iwn_read_eeprom(sc)) != 0) {
printf(": could not read EEPROM\n");
return;
}
/* Allocate DMA memory for firmware transfers. */
if ((error = iwn_alloc_fwmem(sc)) != 0) {
printf(": could not allocate memory for firmware\n");
return;
}
/* Allocate "Keep Warm" page. */
if ((error = iwn_alloc_kw(sc)) != 0) {
printf(": could not allocate keep warm page\n");
goto fail1;
}
/* Allocate ICT table for 5000 Series. */
if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
(error = iwn_alloc_ict(sc)) != 0) {
printf(": could not allocate ICT table\n");
goto fail2;
}
/* Allocate TX scheduler "rings". */
if ((error = iwn_alloc_sched(sc)) != 0) {
printf(": could not allocate TX scheduler rings\n");
goto fail3;
}
/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
for (i = 0; i < sc->ntxqs; i++) {
if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
printf(": could not allocate TX ring %d\n", i);
goto fail4;
}
}
/* Allocate RX ring. */
if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
printf(": could not allocate RX ring\n");
goto fail4;
}
/* Clear pending interrupts. */
IWN_WRITE(sc, IWN_INT, 0xffffffff);
/* Count the number of available chains. */
sc->ntxchains =
((sc->txchainmask >> 2) & 1) +
((sc->txchainmask >> 1) & 1) +
((sc->txchainmask >> 0) & 1);
sc->nrxchains =
((sc->rxchainmask >> 2) & 1) +
((sc->rxchainmask >> 1) & 1) +
((sc->rxchainmask >> 0) & 1);
printf(", MIMO %dT%dR, %.4s, address %s\n", sc->ntxchains,
sc->nrxchains, sc->eeprom_domain, ether_sprintf(ic->ic_myaddr));
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
/* Set device capabilities. */
ic->ic_caps =
IEEE80211_C_WEP | /* WEP */
IEEE80211_C_RSN | /* WPA/RSN */
IEEE80211_C_SCANALL | /* device scans all channels at once */
IEEE80211_C_SCANALLBAND | /* driver scans all bands at once */
IEEE80211_C_MONITOR | /* monitor mode supported */
IEEE80211_C_SHSLOT | /* short slot time supported */
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_PMGT; /* power saving supported */
/* No optional HT features supported for now, */
ic->ic_htcaps = 0;
ic->ic_htxcaps = 0;
ic->ic_txbfcaps = 0;
ic->ic_aselcaps = 0;
ic->ic_ampdu_params = (IEEE80211_AMPDU_PARAM_SS_4 | 0x3 /* 64k */);
if (sc->sc_flags & IWN_FLAG_HAS_11N) {
ic->ic_caps |= (IEEE80211_C_QOS | IEEE80211_C_TX_AMPDU);
/* Set HT capabilities. */
ic->ic_htcaps = IEEE80211_HTCAP_SGI20;
/* 6200 devices have issues with SGI40 for some reason. */
if ((sc->sc_flags & IWN_FLAG_INTERNAL_PA) == 0)
ic->ic_htcaps |= IEEE80211_HTCAP_SGI40;
ic->ic_htcaps |= IEEE80211_HTCAP_CBW20_40;
#ifdef notyet
ic->ic_htcaps |=
#if IWN_RBUF_SIZE == 8192
IEEE80211_HTCAP_AMSDU7935 |
#endif
if (sc->hw_type != IWN_HW_REV_TYPE_4965)
ic->ic_htcaps |= IEEE80211_HTCAP_GF;
if (sc->hw_type == IWN_HW_REV_TYPE_6050)
ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
else
ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
#endif /* notyet */
}
/* Set supported legacy rates. */
ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
ic->ic_sup_rates[IEEE80211_MODE_11A] =
ieee80211_std_rateset_11a;
}
if (sc->sc_flags & IWN_FLAG_HAS_11N) {
/* Set supported HT rates. */
ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */
#ifdef notyet
if (sc->nrxchains > 1)
ic->ic_sup_mcs[1] = 0xff; /* MCS 8-15 */
if (sc->nrxchains > 2)
ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */
#endif
}
/* IBSS channel undefined for now. */
ic->ic_ibss_chan = &ic->ic_channels[0];
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = iwn_ioctl;
ifp->if_start = iwn_start;
ifp->if_watchdog = iwn_watchdog;
memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
if_attach(ifp);
ieee80211_ifattach(ifp);
ic->ic_node_alloc = iwn_node_alloc;
ic->ic_bgscan_start = iwn_bgscan;
ic->ic_newassoc = iwn_newassoc;
ic->ic_updateedca = iwn_updateedca;
ic->ic_set_key = iwn_set_key;
ic->ic_delete_key = iwn_delete_key;
ic->ic_updatechan = iwn_updatechan;
ic->ic_updateprot = iwn_updateprot;
ic->ic_updateslot = iwn_updateslot;
ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
/* Override 802.11 state transition machine. */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = iwn_newstate;
ieee80211_media_init(ifp, iwn_media_change, ieee80211_media_status);
sc->amrr.amrr_min_success_threshold = 1;
sc->amrr.amrr_max_success_threshold = 15;
#if NBPFILTER > 0
iwn_radiotap_attach(sc);
#endif
timeout_set(&sc->calib_to, iwn_calib_timeout, sc);
rw_init(&sc->sc_rwlock, "iwnlock");
task_set(&sc->init_task, iwn_init_task, sc);
return;
/* Free allocated memory if something failed during attachment. */
fail4: while (--i >= 0)
iwn_free_tx_ring(sc, &sc->txq[i]);
iwn_free_sched(sc);
fail3: if (sc->ict != NULL)
iwn_free_ict(sc);
fail2: iwn_free_kw(sc);
fail1: iwn_free_fwmem(sc);
}
int
iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
{
struct iwn_ops *ops = &sc->ops;
ops->load_firmware = iwn4965_load_firmware;
ops->read_eeprom = iwn4965_read_eeprom;
ops->post_alive = iwn4965_post_alive;
ops->nic_config = iwn4965_nic_config;
ops->reset_sched = iwn4965_reset_sched;
ops->update_sched = iwn4965_update_sched;
ops->update_rxon = iwn4965_update_rxon;
ops->get_temperature = iwn4965_get_temperature;
ops->get_rssi = iwn4965_get_rssi;
ops->set_txpower = iwn4965_set_txpower;
ops->init_gains = iwn4965_init_gains;
ops->set_gains = iwn4965_set_gains;
ops->add_node = iwn4965_add_node;
ops->tx_done = iwn4965_tx_done;
ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
sc->ntxqs = IWN4965_NTXQUEUES;
sc->first_agg_txq = IWN4965_FIRST_AGG_TXQUEUE;
sc->ndmachnls = IWN4965_NDMACHNLS;
sc->broadcast_id = IWN4965_ID_BROADCAST;
sc->rxonsz = IWN4965_RXONSZ;
sc->schedsz = IWN4965_SCHEDSZ;
sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
sc->fwsz = IWN4965_FWSZ;
sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
sc->limits = &iwn4965_sensitivity_limits;
sc->fwname = "iwn-4965";
/* Override chains masks, ROM is known to be broken. */
sc->txchainmask = IWN_ANT_AB;
sc->rxchainmask = IWN_ANT_ABC;
return 0;
}
int
iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
{
struct iwn_ops *ops = &sc->ops;
ops->load_firmware = iwn5000_load_firmware;
ops->read_eeprom = iwn5000_read_eeprom;
ops->post_alive = iwn5000_post_alive;
ops->nic_config = iwn5000_nic_config;
ops->reset_sched = iwn5000_reset_sched;
ops->update_sched = iwn5000_update_sched;
ops->update_rxon = iwn5000_update_rxon;
ops->get_temperature = iwn5000_get_temperature;
ops->get_rssi = iwn5000_get_rssi;
ops->set_txpower = iwn5000_set_txpower;
ops->init_gains = iwn5000_init_gains;
ops->set_gains = iwn5000_set_gains;
ops->add_node = iwn5000_add_node;
ops->tx_done = iwn5000_tx_done;
ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
sc->ntxqs = IWN5000_NTXQUEUES;
sc->first_agg_txq = IWN5000_FIRST_AGG_TXQUEUE;
sc->ndmachnls = IWN5000_NDMACHNLS;
sc->broadcast_id = IWN5000_ID_BROADCAST;
sc->rxonsz = IWN5000_RXONSZ;
sc->schedsz = IWN5000_SCHEDSZ;
sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
sc->fwsz = IWN5000_FWSZ;
sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
switch (sc->hw_type) {
case IWN_HW_REV_TYPE_5100:
sc->limits = &iwn5000_sensitivity_limits;
sc->fwname = "iwn-5000";
/* Override chains masks, ROM is known to be broken. */
sc->txchainmask = IWN_ANT_B;
sc->rxchainmask = IWN_ANT_AB;
break;
case IWN_HW_REV_TYPE_5150:
sc->limits = &iwn5150_sensitivity_limits;
sc->fwname = "iwn-5150";
break;
case IWN_HW_REV_TYPE_5300:
case IWN_HW_REV_TYPE_5350:
sc->limits = &iwn5000_sensitivity_limits;
sc->fwname = "iwn-5000";
break;
case IWN_HW_REV_TYPE_1000:
sc->limits = &iwn1000_sensitivity_limits;
sc->fwname = "iwn-1000";
break;
case IWN_HW_REV_TYPE_6000:
sc->limits = &iwn6000_sensitivity_limits;
sc->fwname = "iwn-6000";
if (pid == PCI_PRODUCT_INTEL_WL_6200_1 ||
pid == PCI_PRODUCT_INTEL_WL_6200_2) {
sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
/* Override chains masks, ROM is known to be broken. */
sc->txchainmask = IWN_ANT_BC;
sc->rxchainmask = IWN_ANT_BC;
}
break;
case IWN_HW_REV_TYPE_6050:
sc->limits = &iwn6000_sensitivity_limits;
sc->fwname = "iwn-6050";
break;
case IWN_HW_REV_TYPE_6005:
sc->limits = &iwn6000_sensitivity_limits;
if (pid != PCI_PRODUCT_INTEL_WL_6005_1 &&
pid != PCI_PRODUCT_INTEL_WL_6005_2) {
sc->fwname = "iwn-6030";
sc->sc_flags |= IWN_FLAG_ADV_BT_COEX;
} else
sc->fwname = "iwn-6005";
break;
case IWN_HW_REV_TYPE_2030:
sc->limits = &iwn2000_sensitivity_limits;
sc->fwname = "iwn-2030";
sc->sc_flags |= IWN_FLAG_ADV_BT_COEX;
break;
case IWN_HW_REV_TYPE_2000:
sc->limits = &iwn2000_sensitivity_limits;
sc->fwname = "iwn-2000";
break;
case IWN_HW_REV_TYPE_135:
sc->limits = &iwn2000_sensitivity_limits;
sc->fwname = "iwn-135";
sc->sc_flags |= IWN_FLAG_ADV_BT_COEX;
break;
case IWN_HW_REV_TYPE_105:
sc->limits = &iwn2000_sensitivity_limits;
sc->fwname = "iwn-105";
break;
default:
printf(": adapter type %d not supported\n", sc->hw_type);
return ENOTSUP;
}
return 0;
}
#if NBPFILTER > 0
/*
* Attach the interface to 802.11 radiotap.
*/
void
iwn_radiotap_attach(struct iwn_softc *sc)
{
bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_if, DLT_IEEE802_11_RADIO,
sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof sc->sc_txtapu;
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
}
#endif
int
iwn_detach(struct device *self, int flags)
{
struct iwn_softc *sc = (struct iwn_softc *)self;
struct ifnet *ifp = &sc->sc_ic.ic_if;
int qid;
timeout_del(&sc->calib_to);
task_del(systq, &sc->init_task);
/* Uninstall interrupt handler. */
if (sc->sc_ih != NULL)
pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
/* Free DMA resources. */
iwn_free_rx_ring(sc, &sc->rxq);
for (qid = 0; qid < sc->ntxqs; qid++)
iwn_free_tx_ring(sc, &sc->txq[qid]);
iwn_free_sched(sc);
iwn_free_kw(sc);
if (sc->ict != NULL)
iwn_free_ict(sc);
iwn_free_fwmem(sc);
bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
ieee80211_ifdetach(ifp);
if_detach(ifp);
return 0;
}
int
iwn_activate(struct device *self, int act)
{
struct iwn_softc *sc = (struct iwn_softc *)self;
struct ifnet *ifp = &sc->sc_ic.ic_if;
switch (act) {
case DVACT_SUSPEND:
if (ifp->if_flags & IFF_RUNNING)
iwn_stop(ifp);
break;
case DVACT_WAKEUP:
iwn_wakeup(sc);
break;
}
return 0;
}
void
iwn_wakeup(struct iwn_softc *sc)
{
pcireg_t reg;
/* Clear device-specific "PCI retry timeout" register (41h). */
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
if (reg & 0xff00)
pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
iwn_init_task(sc);
}
void
iwn_init_task(void *arg1)
{
struct iwn_softc *sc = arg1;
struct ifnet *ifp = &sc->sc_ic.ic_if;
int s;
rw_enter_write(&sc->sc_rwlock);
s = splnet();
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_UP)
iwn_init(ifp);
splx(s);
rw_exit_write(&sc->sc_rwlock);
}
int
iwn_nic_lock(struct iwn_softc *sc)
{
int ntries;
/* Request exclusive access to NIC. */
IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
/* Spin until we actually get the lock. */
for (ntries = 0; ntries < 1000; ntries++) {
if ((IWN_READ(sc, IWN_GP_CNTRL) &
(IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
IWN_GP_CNTRL_MAC_ACCESS_ENA)
return 0;
DELAY(10);
}
return ETIMEDOUT;
}
static __inline void
iwn_nic_unlock(struct iwn_softc *sc)
{
IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
}
static __inline uint32_t
iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
{
IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
IWN_BARRIER_READ_WRITE(sc);
return IWN_READ(sc, IWN_PRPH_RDATA);
}
static __inline void
iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
{
IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
IWN_BARRIER_WRITE(sc);
IWN_WRITE(sc, IWN_PRPH_WDATA, data);
}
static __inline void
iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
{
iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
}
static __inline void
iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
{
iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
}
static __inline void
iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
const uint32_t *data, int count)
{
for (; count > 0; count--, data++, addr += 4)
iwn_prph_write(sc, addr, *data);
}
static __inline uint32_t
iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
{
IWN_WRITE(sc, IWN_MEM_RADDR, addr);
IWN_BARRIER_READ_WRITE(sc);
return IWN_READ(sc, IWN_MEM_RDATA);
}
static __inline void
iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
{
IWN_WRITE(sc, IWN_MEM_WADDR, addr);
IWN_BARRIER_WRITE(sc);
IWN_WRITE(sc, IWN_MEM_WDATA, data);
}
static __inline void
iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
{
uint32_t tmp;
tmp = iwn_mem_read(sc, addr & ~3);
if (addr & 3)
tmp = (tmp & 0x0000ffff) | data << 16;
else
tmp = (tmp & 0xffff0000) | data;
iwn_mem_write(sc, addr & ~3, tmp);
}
static __inline void
iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
int count)
{
for (; count > 0; count--, addr += 4)
*data++ = iwn_mem_read(sc, addr);
}
static __inline void
iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
int count)
{
for (; count > 0; count--, addr += 4)
iwn_mem_write(sc, addr, val);
}
int
iwn_eeprom_lock(struct iwn_softc *sc)
{
int i, ntries;
for (i = 0; i < 100; i++) {
/* Request exclusive access to EEPROM. */
IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
IWN_HW_IF_CONFIG_EEPROM_LOCKED);
/* Spin until we actually get the lock. */
for (ntries = 0; ntries < 100; ntries++) {
if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
IWN_HW_IF_CONFIG_EEPROM_LOCKED)
return 0;
DELAY(10);
}
}
return ETIMEDOUT;
}
static __inline void
iwn_eeprom_unlock(struct iwn_softc *sc)
{
IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
}
/*
* Initialize access by host to One Time Programmable ROM.
* NB: This kind of ROM can be found on 1000 or 6000 Series only.
*/
int
iwn_init_otprom(struct iwn_softc *sc)
{
uint16_t prev, base, next;
int count, error;
/* Wait for clock stabilization before accessing prph. */
if ((error = iwn_clock_wait(sc)) != 0)
return error;
if ((error = iwn_nic_lock(sc)) != 0)
return error;
iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
DELAY(5);
iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
iwn_nic_unlock(sc);
/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
IWN_RESET_LINK_PWR_MGMT_DIS);
}
IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
/* Clear ECC status. */
IWN_SETBITS(sc, IWN_OTP_GP,
IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
/*
* Find the block before last block (contains the EEPROM image)
* for HW without OTP shadow RAM.
*/
if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
/* Switch to absolute addressing mode. */
IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
base = 0;
for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
error = iwn_read_prom_data(sc, base, &next, 2);
if (error != 0)
return error;
if (next == 0) /* End of linked-list. */
break;
prev = base;
base = letoh16(next);
}
if (count == 0 || count == IWN1000_OTP_NBLOCKS)
return EIO;
/* Skip "next" word. */
sc->prom_base = prev + 1;
}
return 0;
}
int
iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
{
uint8_t *out = data;
uint32_t val, tmp;
int ntries;
addr += sc->prom_base;
for (; count > 0; count -= 2, addr++) {
IWN_WRITE(sc, IWN_EEPROM, addr << 2);
for (ntries = 0; ntries < 10; ntries++) {
val = IWN_READ(sc, IWN_EEPROM);
if (val & IWN_EEPROM_READ_VALID)
break;
DELAY(5);
}
if (ntries == 10) {
printf("%s: timeout reading ROM at 0x%x\n",
sc->sc_dev.dv_xname, addr);
return ETIMEDOUT;
}
if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
/* OTPROM, check for ECC errors. */
tmp = IWN_READ(sc, IWN_OTP_GP);
if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
printf("%s: OTPROM ECC error at 0x%x\n",
sc->sc_dev.dv_xname, addr);
return EIO;
}
if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
/* Correctable ECC error, clear bit. */
IWN_SETBITS(sc, IWN_OTP_GP,
IWN_OTP_GP_ECC_CORR_STTS);
}
}
*out++ = val >> 16;
if (count > 1)
*out++ = val >> 24;
}
return 0;
}
int
iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
bus_size_t size, bus_size_t alignment)
{
int nsegs, error;
dma->tag = tag;
dma->size = size;
error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
&dma->map);
if (error != 0)
goto fail;
error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
BUS_DMA_NOWAIT | BUS_DMA_ZERO);
if (error != 0)
goto fail;
error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
if (error != 0)
goto fail;
error = bus_dmamap_load_raw(tag, dma->map, &dma->seg, 1, size,
BUS_DMA_NOWAIT);
if (error != 0)
goto fail;
bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
dma->paddr = dma->map->dm_segs[0].ds_addr;
if (kvap != NULL)
*kvap = dma->vaddr;
return 0;
fail: iwn_dma_contig_free(dma);
return error;
}
void
iwn_dma_contig_free(struct iwn_dma_info *dma)
{
if (dma->map != NULL) {
if (dma->vaddr != NULL) {
bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(dma->tag, dma->map);
bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
bus_dmamem_free(dma->tag, &dma->seg, 1);
dma->vaddr = NULL;
}
bus_dmamap_destroy(dma->tag, dma->map);
dma->map = NULL;
}
}
int
iwn_alloc_sched(struct iwn_softc *sc)
{
/* TX scheduler rings must be aligned on a 1KB boundary. */
return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
(void **)&sc->sched, sc->schedsz, 1024);
}
void
iwn_free_sched(struct iwn_softc *sc)
{
iwn_dma_contig_free(&sc->sched_dma);
}
int
iwn_alloc_kw(struct iwn_softc *sc)
{
/* "Keep Warm" page must be aligned on a 4KB boundary. */
return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
4096);
}
void
iwn_free_kw(struct iwn_softc *sc)
{
iwn_dma_contig_free(&sc->kw_dma);
}
int
iwn_alloc_ict(struct iwn_softc *sc)
{
/* ICT table must be aligned on a 4KB boundary. */
return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
(void **)&sc->ict, IWN_ICT_SIZE, 4096);
}
void
iwn_free_ict(struct iwn_softc *sc)
{
iwn_dma_contig_free(&sc->ict_dma);
}
int
iwn_alloc_fwmem(struct iwn_softc *sc)
{
/* Must be aligned on a 16-byte boundary. */
return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
sc->fwsz, 16);
}
void
iwn_free_fwmem(struct iwn_softc *sc)
{
iwn_dma_contig_free(&sc->fw_dma);
}
int
iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
{
bus_size_t size;
int i, error;
ring->cur = 0;
/* Allocate RX descriptors (256-byte aligned). */
size = IWN_RX_RING_COUNT * sizeof (uint32_t);
error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
(void **)&ring->desc, size, 256);
if (error != 0) {
printf("%s: could not allocate RX ring DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
/* Allocate RX status area (16-byte aligned). */
error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
(void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
if (error != 0) {
printf("%s: could not allocate RX status DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
/*
* Allocate and map RX buffers.
*/
for (i = 0; i < IWN_RX_RING_COUNT; i++) {
struct iwn_rx_data *data = &ring->data[i];
error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
&data->map);
if (error != 0) {
printf("%s: could not create RX buf DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
data->m = MCLGETL(NULL, M_DONTWAIT, IWN_RBUF_SIZE);
if (data->m == NULL) {
printf("%s: could not allocate RX mbuf\n",
sc->sc_dev.dv_xname);
error = ENOBUFS;
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, data->map,
mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
BUS_DMA_NOWAIT | BUS_DMA_READ);
if (error != 0) {
printf("%s: can't map mbuf (error %d)\n",
sc->sc_dev.dv_xname, error);
goto fail;
}
/* Set physical address of RX buffer (256-byte aligned). */
ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
}
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
BUS_DMASYNC_PREWRITE);
return 0;
fail: iwn_free_rx_ring(sc, ring);
return error;
}
void
iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
{
int ntries;
if (iwn_nic_lock(sc) == 0) {
IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
for (ntries = 0; ntries < 1000; ntries++) {
if (IWN_READ(sc, IWN_FH_RX_STATUS) &
IWN_FH_RX_STATUS_IDLE)
break;
DELAY(10);
}
iwn_nic_unlock(sc);
}
ring->cur = 0;
sc->last_rx_valid = 0;
}
void
iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
{
int i;
iwn_dma_contig_free(&ring->desc_dma);
iwn_dma_contig_free(&ring->stat_dma);
for (i = 0; i < IWN_RX_RING_COUNT; i++) {
struct iwn_rx_data *data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
}
if (data->map != NULL)
bus_dmamap_destroy(sc->sc_dmat, data->map);
}
}
int
iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
{
bus_addr_t paddr;
bus_size_t size;
int i, error;
ring->qid = qid;
ring->queued = 0;
ring->cur = 0;
/* Allocate TX descriptors (256-byte aligned). */
size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
(void **)&ring->desc, size, 256);
if (error != 0) {
printf("%s: could not allocate TX ring DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
(void **)&ring->cmd, size, 4);
if (error != 0) {
printf("%s: could not allocate TX cmd DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
paddr = ring->cmd_dma.paddr;
for (i = 0; i < IWN_TX_RING_COUNT; i++) {
struct iwn_tx_data *data = &ring->data[i];
data->cmd_paddr = paddr;
data->scratch_paddr = paddr + 12;
paddr += sizeof (struct iwn_tx_cmd);
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
&data->map);
if (error != 0) {
printf("%s: could not create TX buf DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
}
return 0;
fail: iwn_free_tx_ring(sc, ring);
return error;
}
void
iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
{
int i;
for (i = 0; i < IWN_TX_RING_COUNT; i++) {
struct iwn_tx_data *data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
}
/* Clear TX descriptors. */
memset(ring->desc, 0, ring->desc_dma.size);
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
sc->qfullmsk &= ~(1 << ring->qid);
ring->queued = 0;
ring->cur = 0;
}
void
iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
{
int i;
iwn_dma_contig_free(&ring->desc_dma);
iwn_dma_contig_free(&ring->cmd_dma);
for (i = 0; i < IWN_TX_RING_COUNT; i++) {
struct iwn_tx_data *data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
}
if (data->map != NULL)
bus_dmamap_destroy(sc->sc_dmat, data->map);
}
}
void
iwn5000_ict_reset(struct iwn_softc *sc)
{
/* Disable interrupts. */
IWN_WRITE(sc, IWN_INT_MASK, 0);
/* Reset ICT table. */
memset(sc->ict, 0, IWN_ICT_SIZE);
sc->ict_cur = 0;
/* Set physical address of ICT table (4KB aligned). */
DPRINTF(("enabling ICT\n"));
IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
/* Enable periodic RX interrupt. */
sc->int_mask |= IWN_INT_RX_PERIODIC;
/* Switch to ICT interrupt mode in driver. */
sc->sc_flags |= IWN_FLAG_USE_ICT;
/* Re-enable interrupts. */
IWN_WRITE(sc, IWN_INT, 0xffffffff);
IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
}
int
iwn_read_eeprom(struct iwn_softc *sc)
{
struct iwn_ops *ops = &sc->ops;
struct ieee80211com *ic = &sc->sc_ic;
uint16_t val;
int error;
/* Check whether adapter has an EEPROM or an OTPROM. */
if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
(IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
"OTPROM" : "EEPROM"));
/* Adapter has to be powered on for EEPROM access to work. */
if ((error = iwn_apm_init(sc)) != 0) {
printf("%s: could not power ON adapter\n",
sc->sc_dev.dv_xname);
return error;
}
if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
printf("%s: bad ROM signature\n", sc->sc_dev.dv_xname);
return EIO;
}
if ((error = iwn_eeprom_lock(sc)) != 0) {
printf("%s: could not lock ROM (error=%d)\n",
sc->sc_dev.dv_xname, error);
return error;
}
if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
if ((error = iwn_init_otprom(sc)) != 0) {
printf("%s: could not initialize OTPROM\n",
sc->sc_dev.dv_xname);
return error;
}
}
iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
DPRINTF(("SKU capabilities=0x%04x\n", letoh16(val)));
/* Check if HT support is bonded out. */
if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
sc->sc_flags |= IWN_FLAG_HAS_11N;
iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
sc->rfcfg = letoh16(val);
DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
/* Read Tx/Rx chains from ROM unless it's known to be broken. */
if (sc->txchainmask == 0)
sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
if (sc->rxchainmask == 0)
sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
/* Read MAC address. */
iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
/* Read adapter-specific information from EEPROM. */
ops->read_eeprom(sc);
iwn_apm_stop(sc); /* Power OFF adapter. */
iwn_eeprom_unlock(sc);
return 0;
}
void
iwn4965_read_eeprom(struct iwn_softc *sc)
{
uint32_t addr;
uint16_t val;
int i;
/* Read regulatory domain (4 ASCII characters). */
iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
/* Read the list of authorized channels. */
for (i = 0; i < 7; i++) {
addr = iwn4965_regulatory_bands[i];
iwn_read_eeprom_channels(sc, i, addr);
}
/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
sc->maxpwr2GHz = val & 0xff;
sc->maxpwr5GHz = val >> 8;
/* Check that EEPROM values are within valid range. */
if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
sc->maxpwr5GHz = 38;
if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
sc->maxpwr2GHz = 38;
DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
/* Read samples for each TX power group. */
iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
sizeof sc->bands);
/* Read voltage at which samples were taken. */
iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
sc->eeprom_voltage = (int16_t)letoh16(val);
DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
#ifdef IWN_DEBUG
/* Print samples. */
if (iwn_debug > 0) {
for (i = 0; i < IWN_NBANDS; i++)
iwn4965_print_power_group(sc, i);
}
#endif
}
#ifdef IWN_DEBUG
void
iwn4965_print_power_group(struct iwn_softc *sc, int i)
{
struct iwn4965_eeprom_band *band = &sc->bands[i];
struct iwn4965_eeprom_chan_samples *chans = band->chans;
int j, c;
printf("===band %d===\n", i);
printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
printf("chan1 num=%d\n", chans[0].num);
for (c = 0; c < 2; c++) {
for (j = 0; j < IWN_NSAMPLES; j++) {
printf("chain %d, sample %d: temp=%d gain=%d "
"power=%d pa_det=%d\n", c, j,
chans[0].samples[c][j].temp,
chans[0].samples[c][j].gain,
chans[0].samples[c][j].power,
chans[0].samples[c][j].pa_det);
}
}
printf("chan2 num=%d\n", chans[1].num);
for (c = 0; c < 2; c++) {
for (j = 0; j < IWN_NSAMPLES; j++) {
printf("chain %d, sample %d: temp=%d gain=%d "
"power=%d pa_det=%d\n", c, j,
chans[1].samples[c][j].temp,
chans[1].samples[c][j].gain,
chans[1].samples[c][j].power,
chans[1].samples[c][j].pa_det);
}
}
}
#endif
void
iwn5000_read_eeprom(struct iwn_softc *sc)
{
struct iwn5000_eeprom_calib_hdr hdr;
int32_t volt;
uint32_t base, addr;
uint16_t val;
int i;
/* Read regulatory domain (4 ASCII characters). */
iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
base = letoh16(val);
iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
sc->eeprom_domain, 4);
/* Read the list of authorized channels. */
for (i = 0; i < 7; i++) {
addr = base + iwn5000_regulatory_bands[i];
iwn_read_eeprom_channels(sc, i, addr);
}
/* Read enhanced TX power information for 6000 Series. */
if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
iwn_read_eeprom_enhinfo(sc);
iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
base = letoh16(val);
iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
hdr.version, hdr.pa_type, letoh16(hdr.volt)));
sc->calib_ver = hdr.version;
if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
sc->hw_type == IWN_HW_REV_TYPE_2000 ||
sc->hw_type == IWN_HW_REV_TYPE_135 ||
sc->hw_type == IWN_HW_REV_TYPE_105) {
sc->eeprom_voltage = letoh16(hdr.volt);
iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
sc->eeprom_temp = letoh16(val);
iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
sc->eeprom_rawtemp = letoh16(val);
}
if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
/* Compute temperature offset. */
iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
sc->eeprom_temp = letoh16(val);
iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
volt = letoh16(val);
sc->temp_off = sc->eeprom_temp - (volt / -5);
DPRINTF(("temp=%d volt=%d offset=%dK\n",
sc->eeprom_temp, volt, sc->temp_off));
} else {
/* Read crystal calibration. */
iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
&sc->eeprom_crystal, sizeof (uint32_t));
DPRINTF(("crystal calibration 0x%08x\n",
letoh32(sc->eeprom_crystal)));
}
}
void
iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
{
struct ieee80211com *ic = &sc->sc_ic;
const struct iwn_chan_band *band = &iwn_bands[n];
struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
uint8_t chan;
int i;
iwn_read_prom_data(sc, addr, channels,
band->nchan * sizeof (struct iwn_eeprom_chan));
for (i = 0; i < band->nchan; i++) {
if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
continue;
chan = band->chan[i];
if (n == 0) { /* 2GHz band */
ic->ic_channels[chan].ic_freq =
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
ic->ic_channels[chan].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
} else if (n < 5) { /* 5GHz band */
/*
* Some adapters support channels 7, 8, 11 and 12
* both in the 2GHz and 4.9GHz bands.
* Because of limitations in our net80211 layer,
* we don't support them in the 4.9GHz band.
*/
if (chan <= 14)
continue;
ic->ic_channels[chan].ic_freq =
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
/* We have at least one valid 5GHz channel. */
sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
} else { /* 40 MHz */
sc->maxpwr40[chan] = channels[i].maxpwr;
ic->ic_channels[chan].ic_flags |= IEEE80211_CHAN_40MHZ;
}
if (n < 5) {
/* Is active scan allowed on this channel? */
if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
ic->ic_channels[chan].ic_flags |=
IEEE80211_CHAN_PASSIVE;
}
/* Save maximum allowed TX power for this channel. */
sc->maxpwr[chan] = channels[i].maxpwr;
if (sc->sc_flags & IWN_FLAG_HAS_11N)
ic->ic_channels[chan].ic_flags |=
IEEE80211_CHAN_HT;
}
DPRINTF(("adding chan %d flags=0x%x maxpwr=%d maxpwr40=%d\n",
chan, channels[i].flags, sc->maxpwr[chan],
sc->maxpwr40[chan]));
}
}
void
iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
{
struct iwn_eeprom_enhinfo enhinfo[35];
uint16_t val, base;
int8_t maxpwr;
int i;
iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
base = letoh16(val);
iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
enhinfo, sizeof enhinfo);
memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
for (i = 0; i < nitems(enhinfo); i++) {
if ((enhinfo[i].flags & IWN_TXP_VALID) == 0)
continue; /* Skip invalid entries. */
maxpwr = 0;
if (sc->txchainmask & IWN_ANT_A)
maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
if (sc->txchainmask & IWN_ANT_B)
maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
if (sc->txchainmask & IWN_ANT_C)
maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
if (sc->ntxchains == 2)
maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
else if (sc->ntxchains == 3)
maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
maxpwr /= 2; /* Convert half-dBm to dBm. */
DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
sc->enh_maxpwr[i] = maxpwr;
}
}
struct ieee80211_node *
iwn_node_alloc(struct ieee80211com *ic)
{
return malloc(sizeof (struct iwn_node), M_DEVBUF, M_NOWAIT | M_ZERO);
}
void
iwn_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
{
struct iwn_softc *sc = ic->ic_if.if_softc;
struct iwn_node *wn = (void *)ni;
uint8_t rate;
int ridx, i;
if ((ni->ni_flags & IEEE80211_NODE_HT) == 0)
ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
/* Start at lowest available bit-rate, AMRR/MiRA will raise. */
ni->ni_txrate = 0;
ni->ni_txmcs = 0;
for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
/* Map 802.11 rate to HW rate index. */
for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
if (iwn_rates[ridx].plcp != IWN_PLCP_INVALID &&
iwn_rates[ridx].rate == rate)
break;
}
wn->ridx[i] = ridx;
}
}
int
iwn_media_change(struct ifnet *ifp)
{
struct iwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint8_t rate, ridx;
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return error;
if (ic->ic_fixed_mcs != -1)
sc->fixed_ridx = iwn_mcs2ridx[ic->ic_fixed_mcs];
if (ic->ic_fixed_rate != -1) {
rate = ic->ic_sup_rates[ic->ic_curmode].
rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
/* Map 802.11 rate to HW rate index. */
for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
if (iwn_rates[ridx].plcp != IWN_PLCP_INVALID &&
iwn_rates[ridx].rate == rate)
break;
sc->fixed_ridx = ridx;
}
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING)) {
iwn_stop(ifp);
error = iwn_init(ifp);
}
return error;
}
int
iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct ifnet *ifp = &ic->ic_if;
struct iwn_softc *sc = ifp->if_softc;
struct ieee80211_node *ni = ic->ic_bss;
int error;
if (ic->ic_state == IEEE80211_S_RUN) {
if (nstate == IEEE80211_S_SCAN) {
/*
* During RUN->SCAN we don't call sc_newstate() so
* we must stop A-MPDU Tx ourselves in this case.
*/
ieee80211_stop_ampdu_tx(ic, ni, -1);
ieee80211_ba_del(ni);
}
timeout_del(&sc->calib_to);
sc->calib.state = IWN_CALIB_STATE_INIT;
if (sc->sc_flags & IWN_FLAG_BGSCAN)
iwn_scan_abort(sc);
}
if (ic->ic_state == IEEE80211_S_SCAN) {
if (nstate == IEEE80211_S_SCAN) {
if (sc->sc_flags & IWN_FLAG_SCANNING)
return 0;
} else
sc->sc_flags &= ~IWN_FLAG_SCANNING;
/* Turn LED off when leaving scan state. */
iwn_set_led(sc, IWN_LED_LINK, 1, 0);
}
if (ic->ic_state >= IEEE80211_S_ASSOC &&
nstate <= IEEE80211_S_ASSOC) {
/* Reset state to handle re- and disassociations. */
sc->rxon.associd = 0;
sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
sc->rxon.flags &= ~htole32(IWN_RXON_HT_CHANMODE_MIXED2040 |
IWN_RXON_HT_CHANMODE_PURE40 | IWN_RXON_HT_HT40MINUS);
sc->calib.state = IWN_CALIB_STATE_INIT;
error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
if (error != 0)
printf("%s: RXON command failed\n",
sc->sc_dev.dv_xname);
}
switch (nstate) {
case IEEE80211_S_SCAN:
/* Make the link LED blink while we're scanning. */
iwn_set_led(sc, IWN_LED_LINK, 10, 10);
if ((sc->sc_flags & IWN_FLAG_BGSCAN) == 0) {
ieee80211_set_link_state(ic, LINK_STATE_DOWN);
ieee80211_node_cleanup(ic, ic->ic_bss);
}
if (ifp->if_flags & IFF_DEBUG)
printf("%s: %s -> %s\n", ifp->if_xname,
ieee80211_state_name[ic->ic_state],
ieee80211_state_name[nstate]);
ic->ic_state = nstate;
if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ, 0)) != 0) {
printf("%s: could not initiate scan\n",
sc->sc_dev.dv_xname);
}
return error;
case IEEE80211_S_ASSOC:
if (ic->ic_state != IEEE80211_S_RUN)
break;
/* FALLTHROUGH */
case IEEE80211_S_AUTH:
if ((error = iwn_auth(sc, arg)) != 0) {
printf("%s: could not move to auth state\n",
sc->sc_dev.dv_xname);
return error;
}
break;
case IEEE80211_S_RUN:
if ((error = iwn_run(sc)) != 0) {
printf("%s: could not move to run state\n",
sc->sc_dev.dv_xname);
return error;
}
break;
case IEEE80211_S_INIT:
sc->calib.state = IWN_CALIB_STATE_INIT;
break;
}
return sc->sc_newstate(ic, nstate, arg);
}
void
iwn_iter_func(void *arg, struct ieee80211_node *ni)
{
struct iwn_softc *sc = arg;
struct iwn_node *wn = (void *)ni;
if ((ni->ni_flags & IEEE80211_NODE_HT) == 0) {
int old_txrate = ni->ni_txrate;
ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
if (old_txrate != ni->ni_txrate)
iwn_set_link_quality(sc, ni);
}
}
void
iwn_calib_timeout(void *arg)
{
struct iwn_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
int s;
s = splnet();
if (ic->ic_fixed_rate == -1) {
if (ic->ic_opmode == IEEE80211_M_STA)
iwn_iter_func(sc, ic->ic_bss);
else
ieee80211_iterate_nodes(ic, iwn_iter_func, sc);
}
/* Force automatic TX power calibration every 60 secs. */
if (++sc->calib_cnt >= 120) {
uint32_t flags = 0;
DPRINTFN(2, ("sending request for statistics\n"));
(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
sizeof flags, 1);
sc->calib_cnt = 0;
}
splx(s);
/* Automatic rate control triggered every 500ms. */
timeout_add_msec(&sc->calib_to, 500);
}
int
iwn_ccmp_decap(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_key *k = &ni->ni_pairwise_key;
struct ieee80211_frame *wh;
uint64_t pn, *prsc;
uint8_t *ivp;
uint8_t tid;
int hdrlen, hasqos;
wh = mtod(m, struct ieee80211_frame *);
hdrlen = ieee80211_get_hdrlen(wh);
ivp = (uint8_t *)wh + hdrlen;
/* Check that ExtIV bit is set. */
if (!(ivp[3] & IEEE80211_WEP_EXTIV)) {
DPRINTF(("CCMP decap ExtIV not set\n"));
return 1;
}
hasqos = ieee80211_has_qos(wh);
tid = hasqos ? ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0;
prsc = &k->k_rsc[tid];
/* Extract the 48-bit PN from the CCMP header. */
pn = (uint64_t)ivp[0] |
(uint64_t)ivp[1] << 8 |
(uint64_t)ivp[4] << 16 |
(uint64_t)ivp[5] << 24 |
(uint64_t)ivp[6] << 32 |
(uint64_t)ivp[7] << 40;
if (pn <= *prsc) {
DPRINTF(("CCMP replayed\n"));
ic->ic_stats.is_ccmp_replays++;
return 1;
}
/* Last seen packet number is updated in ieee80211_inputm(). */
/* Strip MIC. IV will be stripped by ieee80211_inputm(). */
m_adj(m, -IEEE80211_CCMP_MICLEN);
return 0;
}
/*
* Process an RX_PHY firmware notification. This is usually immediately
* followed by an MPDU_RX_DONE notification.
*/
void
iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
DPRINTFN(2, ("received PHY stats\n"));
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
sizeof (*stat), BUS_DMASYNC_POSTREAD);
/* Save RX statistics, they will be used on MPDU_RX_DONE. */
memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
sc->last_rx_valid = IWN_LAST_RX_VALID;
/*
* The firmware does not send separate RX_PHY
* notifications for A-MPDU subframes.
*/
if (stat->flags & htole16(IWN_STAT_FLAG_AGG))
sc->last_rx_valid |= IWN_LAST_RX_AMPDU;
}
/*
* Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
* Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
*/
void
iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data, struct mbuf_list *ml)
{
struct iwn_ops *ops = &sc->ops;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct iwn_rx_ring *ring = &sc->rxq;
struct ieee80211_frame *wh;
struct ieee80211_rxinfo rxi;
struct ieee80211_node *ni;
struct mbuf *m, *m1;
struct iwn_rx_stat *stat;
caddr_t head;
uint32_t flags;
int error, len, rssi;
uint16_t chan;
if (desc->type == IWN_MPDU_RX_DONE) {
/* Check for prior RX_PHY notification. */
if (!sc->last_rx_valid) {
DPRINTF(("missing RX_PHY\n"));
return;
}
sc->last_rx_valid &= ~IWN_LAST_RX_VALID;
stat = &sc->last_rx_stat;
if ((sc->last_rx_valid & IWN_LAST_RX_AMPDU) &&
(stat->flags & htole16(IWN_STAT_FLAG_AGG)) == 0) {
DPRINTF(("missing RX_PHY (expecting A-MPDU)\n"));
return;
}
if ((sc->last_rx_valid & IWN_LAST_RX_AMPDU) == 0 &&
(stat->flags & htole16(IWN_STAT_FLAG_AGG))) {
DPRINTF(("missing RX_PHY (unexpected A-MPDU)\n"));
return;
}
} else
stat = (struct iwn_rx_stat *)(desc + 1);
bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
BUS_DMASYNC_POSTREAD);
if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
printf("%s: invalid RX statistic header\n",
sc->sc_dev.dv_xname);
return;
}
if (desc->type == IWN_MPDU_RX_DONE) {
struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
head = (caddr_t)(mpdu + 1);
len = letoh16(mpdu->len);
} else {
head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
len = letoh16(stat->len);
}
flags = letoh32(*(uint32_t *)(head + len));
/* Discard frames with a bad FCS early. */
if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
DPRINTFN(2, ("RX flags error %x\n", flags));
ifp->if_ierrors++;
return;
}
/* Discard frames that are too short. */
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
/* Allow control frames in monitor mode. */
if (len < sizeof (struct ieee80211_frame_cts)) {
DPRINTF(("frame too short: %d\n", len));
ic->ic_stats.is_rx_tooshort++;
ifp->if_ierrors++;
return;
}
} else if (len < sizeof (*wh)) {
DPRINTF(("frame too short: %d\n", len));
ic->ic_stats.is_rx_tooshort++;
ifp->if_ierrors++;
return;
}
m1 = MCLGETL(NULL, M_DONTWAIT, IWN_RBUF_SIZE);
if (m1 == NULL) {
ic->ic_stats.is_rx_nombuf++;
ifp->if_ierrors++;
return;
}
bus_dmamap_unload(sc->sc_dmat, data->map);
error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
if (error != 0) {
m_freem(m1);
/* Try to reload the old mbuf. */
error = bus_dmamap_load(sc->sc_dmat, data->map,
mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
BUS_DMA_NOWAIT | BUS_DMA_READ);
if (error != 0) {
panic("%s: could not load old RX mbuf",
sc->sc_dev.dv_xname);
}
/* Physical address may have changed. */
ring->desc[ring->cur] =
htole32(data->map->dm_segs[0].ds_addr >> 8);
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
ring->cur * sizeof (uint32_t), sizeof (uint32_t),
BUS_DMASYNC_PREWRITE);
ifp->if_ierrors++;
return;
}
m = data->m;
data->m = m1;
/* Update RX descriptor. */
ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
ring->cur * sizeof (uint32_t), sizeof (uint32_t),
BUS_DMASYNC_PREWRITE);
/* Finalize mbuf. */
m->m_data = head;
m->m_pkthdr.len = m->m_len = len;
/*
* Grab a reference to the source node. Note that control frames are
* shorter than struct ieee80211_frame but ieee80211_find_rxnode()
* is being careful about control frames.
*/
wh = mtod(m, struct ieee80211_frame *);
if (len < sizeof (*wh) &&
(wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
ic->ic_stats.is_rx_tooshort++;
ifp->if_ierrors++;
m_freem(m);
return;
}
ni = ieee80211_find_rxnode(ic, wh);
memset(&rxi, 0, sizeof(rxi));
if (((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL)
&& (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
(ni->ni_flags & IEEE80211_NODE_RXPROT) &&
ni->ni_pairwise_key.k_cipher == IEEE80211_CIPHER_CCMP) {
if ((flags & IWN_RX_CIPHER_MASK) != IWN_RX_CIPHER_CCMP) {
ic->ic_stats.is_ccmp_dec_errs++;
ifp->if_ierrors++;
m_freem(m);
ieee80211_release_node(ic, ni);
return;
}
/* Check whether decryption was successful or not. */
if ((desc->type == IWN_MPDU_RX_DONE &&
(flags & (IWN_RX_MPDU_DEC | IWN_RX_MPDU_MIC_OK)) !=
(IWN_RX_MPDU_DEC | IWN_RX_MPDU_MIC_OK)) ||
(desc->type != IWN_MPDU_RX_DONE &&
(flags & IWN_RX_DECRYPT_MASK) != IWN_RX_DECRYPT_OK)) {
DPRINTF(("CCMP decryption failed 0x%x\n", flags));
ic->ic_stats.is_ccmp_dec_errs++;
ifp->if_ierrors++;
m_freem(m);
ieee80211_release_node(ic, ni);
return;
}
if (iwn_ccmp_decap(sc, m, ni) != 0) {
ifp->if_ierrors++;
m_freem(m);
ieee80211_release_node(ic, ni);
return;
}
rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
}
rssi = ops->get_rssi(stat);
chan = stat->chan;
if (chan > IEEE80211_CHAN_MAX)
chan = IEEE80211_CHAN_MAX;
#if NBPFILTER > 0
if (sc->sc_drvbpf != NULL) {
struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
uint16_t chan_flags;
tap->wr_flags = 0;
if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
tap->wr_chan_freq = htole16(ic->ic_channels[chan].ic_freq);
chan_flags = ic->ic_channels[chan].ic_flags;
if (ic->ic_curmode != IEEE80211_MODE_11N)
chan_flags &= ~IEEE80211_CHAN_HT;
tap->wr_chan_flags = htole16(chan_flags);
tap->wr_dbm_antsignal = (int8_t)rssi;
tap->wr_dbm_antnoise = (int8_t)sc->noise;
tap->wr_tsft = stat->tstamp;
if (stat->rflags & IWN_RFLAG_MCS) {
tap->wr_rate = (0x80 | stat->rate); /* HT MCS index */
} else {
switch (stat->rate) {
/* CCK rates. */
case 10: tap->wr_rate = 2; break;
case 20: tap->wr_rate = 4; break;
case 55: tap->wr_rate = 11; break;
case 110: tap->wr_rate = 22; break;
/* OFDM rates. */
case 0xd: tap->wr_rate = 12; break;
case 0xf: tap->wr_rate = 18; break;
case 0x5: tap->wr_rate = 24; break;
case 0x7: tap->wr_rate = 36; break;
case 0x9: tap->wr_rate = 48; break;
case 0xb: tap->wr_rate = 72; break;
case 0x1: tap->wr_rate = 96; break;
case 0x3: tap->wr_rate = 108; break;
/* Unknown rate: should not happen. */
default: tap->wr_rate = 0;
}
}
bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_rxtap_len,
m, BPF_DIRECTION_IN);
}
#endif
/* Send the frame to the 802.11 layer. */
rxi.rxi_rssi = rssi;
rxi.rxi_chan = chan;
ieee80211_inputm(ifp, m, ni, &rxi, ml);
/* Node is no longer needed. */
ieee80211_release_node(ic, ni);
}
void
iwn_ra_choose(struct iwn_softc *sc, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwn_node *wn = (void *)ni;
int old_txmcs = ni->ni_txmcs;
ieee80211_ra_choose(&wn->rn, ic, ni);
/* Update firmware's LQ retry table if RA has chosen a new MCS. */
if (ni->ni_txmcs != old_txmcs)
iwn_set_link_quality(sc, ni);
}
void
iwn_ampdu_rate_control(struct iwn_softc *sc, struct ieee80211_node *ni,
struct iwn_tx_ring *txq, uint16_t seq, uint16_t ssn)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwn_node *wn = (void *)ni;
int idx, end_idx;
/*
* Update Tx rate statistics for A-MPDUs before firmware's BA window.
*/
idx = IWN_AGG_SSN_TO_TXQ_IDX(seq);
end_idx = IWN_AGG_SSN_TO_TXQ_IDX(ssn);
while (idx != end_idx) {
struct iwn_tx_data *txdata = &txq->data[idx];
if (txdata->m != NULL && txdata->ampdu_nframes > 1) {
/*
* We can assume that this subframe has been ACKed
* because ACK failures come as single frames and
* before failing an A-MPDU subframe the firmware
* sends it as a single frame at least once.
*/
ieee80211_ra_add_stats_ht(&wn->rn, ic, ni,
txdata->ampdu_txmcs, 1, 0);
/* Report this frame only once. */
txdata->ampdu_nframes = 0;
}
idx = (idx + 1) % IWN_TX_RING_COUNT;
}
iwn_ra_choose(sc, ni);
}
void
iwn_ht_single_rate_control(struct iwn_softc *sc, struct ieee80211_node *ni,
uint8_t rate, uint8_t rflags, uint8_t ackfailcnt, int txfail)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwn_node *wn = (void *)ni;
int mcs = rate;
const struct ieee80211_ht_rateset *rs =
ieee80211_ra_get_ht_rateset(rate,
ieee80211_node_supports_ht_chan40(ni),
ieee80211_ra_use_ht_sgi(ni));
unsigned int retries = 0, i;
/*
* Ignore Tx reports which don't match our last LQ command.
*/
if (rate != ni->ni_txmcs) {
if (++wn->lq_rate_mismatch > 15) {
/* Try to sync firmware with driver. */
iwn_set_link_quality(sc, ni);
wn->lq_rate_mismatch = 0;
}
return;
}
wn->lq_rate_mismatch = 0;
/*
* Firmware has attempted rates in this rate set in sequence.
* Retries at a basic rate are counted against the minimum MCS.
*/
for (i = 0; i < ackfailcnt; i++) {
if (mcs > rs->min_mcs) {
ieee80211_ra_add_stats_ht(&wn->rn, ic, ni, mcs, 1, 1);
mcs--;
} else
retries++;
}
if (txfail && ackfailcnt == 0)
ieee80211_ra_add_stats_ht(&wn->rn, ic, ni, mcs, 1, 1);
else
ieee80211_ra_add_stats_ht(&wn->rn, ic, ni, mcs, retries + 1, retries);
iwn_ra_choose(sc, ni);
}
/*
* Process an incoming Compressed BlockAck.
* Note that these block ack notifications are generated by firmware and do
* not necessarily correspond to contents of block ack frames seen on the air.
*/
void
iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
struct iwn_compressed_ba *cba = (struct iwn_compressed_ba *)(desc + 1);
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
struct ieee80211_tx_ba *ba;
struct iwn_tx_ring *txq;
uint16_t seq, ssn;
int qid;
if (ic->ic_state != IEEE80211_S_RUN)
return;
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*cba),
BUS_DMASYNC_POSTREAD);
if (!IEEE80211_ADDR_EQ(ic->ic_bss->ni_macaddr, cba->macaddr))
return;
ni = ic->ic_bss;
qid = le16toh(cba->qid);
if (qid < sc->first_agg_txq || qid >= sc->ntxqs)
return;
txq = &sc->txq[qid];
/* Protect against a firmware bug where the queue/TID are off. */
if (qid != sc->first_agg_txq + cba->tid)
return;
ba = &ni->ni_tx_ba[cba->tid];
if (ba->ba_state != IEEE80211_BA_AGREED)
return;
/*
* The first bit in cba->bitmap corresponds to the sequence number
* stored in the sequence control field cba->seq.
* Multiple BA notifications in a row may be using this number, with
* additional bits being set in cba->bitmap. It is unclear how the
* firmware decides to shift this window forward.
* We rely on ba->ba_winstart instead.
*/
seq = le16toh(cba->seq) >> IEEE80211_SEQ_SEQ_SHIFT;
/*
* The firmware's new BA window starting sequence number
* corresponds to the first hole in cba->bitmap, implying
* that all frames between 'seq' and 'ssn' (non-inclusive)
* have been acked.
*/
ssn = le16toh(cba->ssn);
if (SEQ_LT(ssn, ba->ba_winstart))
return;
/* Skip rate control if our Tx rate is fixed. */
if (ic->ic_fixed_mcs == -1)
iwn_ampdu_rate_control(sc, ni, txq, ba->ba_winstart, ssn);
/*
* SSN corresponds to the first (perhaps not yet transmitted) frame
* in firmware's BA window. Firmware is not going to retransmit any
* frames before its BA window so mark them all as done.
*/
ieee80211_output_ba_move_window(ic, ni, cba->tid, ssn);
iwn_ampdu_txq_advance(sc, txq, qid,
IWN_AGG_SSN_TO_TXQ_IDX(ssn));
iwn_clear_oactive(sc, txq);
}
/*
* Process a CALIBRATION_RESULT notification sent by the initialization
* firmware on response to a CMD_CALIB_CONFIG command (5000 only).
*/
void
iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
int len, idx = -1;
/* Runtime firmware should not send such a notification. */
if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
return;
len = (letoh32(desc->len) & IWN_RX_DESC_LEN_MASK) - 4;
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
BUS_DMASYNC_POSTREAD);
switch (calib->code) {
case IWN5000_PHY_CALIB_DC:
if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
sc->hw_type == IWN_HW_REV_TYPE_2030 ||
sc->hw_type == IWN_HW_REV_TYPE_2000 ||
sc->hw_type == IWN_HW_REV_TYPE_135 ||
sc->hw_type == IWN_HW_REV_TYPE_105)
idx = 0;
break;
case IWN5000_PHY_CALIB_LO:
idx = 1;
break;
case IWN5000_PHY_CALIB_TX_IQ:
idx = 2;
break;
case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
sc->hw_type != IWN_HW_REV_TYPE_5150)
idx = 3;
break;
case IWN5000_PHY_CALIB_BASE_BAND:
idx = 4;
break;
}
if (idx == -1) /* Ignore other results. */
return;
/* Save calibration result. */
if (sc->calibcmd[idx].buf != NULL)
free(sc->calibcmd[idx].buf, M_DEVBUF, 0);
sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
if (sc->calibcmd[idx].buf == NULL) {
DPRINTF(("not enough memory for calibration result %d\n",
calib->code));
return;
}
DPRINTF(("saving calibration result code=%d len=%d\n",
calib->code, len));
sc->calibcmd[idx].len = len;
memcpy(sc->calibcmd[idx].buf, calib, len);
}
/*
* Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
* The latter is sent by the firmware after each received beacon.
*/
void
iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
struct iwn_ops *ops = &sc->ops;
struct ieee80211com *ic = &sc->sc_ic;
struct iwn_calib_state *calib = &sc->calib;
struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
int temp;
/* Ignore statistics received during a scan. */
if (ic->ic_state != IEEE80211_S_RUN)
return;
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
sizeof (*stats), BUS_DMASYNC_POSTREAD);
DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
sc->calib_cnt = 0; /* Reset TX power calibration timeout. */
sc->rx_stats_flags = htole32(stats->flags);
/* Test if temperature has changed. */
if (stats->general.temp != sc->rawtemp) {
/* Convert "raw" temperature to degC. */
sc->rawtemp = stats->general.temp;
temp = ops->get_temperature(sc);
DPRINTFN(2, ("temperature=%dC\n", temp));
/* Update TX power if need be (4965AGN only). */
if (sc->hw_type == IWN_HW_REV_TYPE_4965)
iwn4965_power_calibration(sc, temp);
}
if (desc->type != IWN_BEACON_STATISTICS)
return; /* Reply to a statistics request. */
sc->noise = iwn_get_noise(&stats->rx.general);
/* Test that RSSI and noise are present in stats report. */
if (sc->noise == -127)
return;
if (letoh32(stats->rx.general.flags) != 1) {
DPRINTF(("received statistics without RSSI\n"));
return;
}
/*
* XXX Differential gain calibration makes the 6005 firmware
* crap out, so skip it for now. This effectively disables
* sensitivity tuning as well.
*/
if (sc->hw_type == IWN_HW_REV_TYPE_6005)
return;
if (calib->state == IWN_CALIB_STATE_ASSOC)
iwn_collect_noise(sc, &stats->rx.general);
else if (calib->state == IWN_CALIB_STATE_RUN)
iwn_tune_sensitivity(sc, &stats->rx);
}
void
iwn_ampdu_txq_advance(struct iwn_softc *sc, struct iwn_tx_ring *txq, int qid,
int idx)
{
struct iwn_ops *ops = &sc->ops;
DPRINTFN(3, ("%s: txq->cur=%d txq->read=%d txq->queued=%d qid=%d "
"idx=%d\n", __func__, txq->cur, txq->read, txq->queued, qid, idx));
while (txq->read != idx) {
struct iwn_tx_data *txdata = &txq->data[txq->read];
if (txdata->m != NULL) {
ops->reset_sched(sc, qid, txq->read);
iwn_tx_done_free_txdata(sc, txdata);
txq->queued--;
}
txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
}
}
/*
* Handle A-MPDU Tx queue status report.
* Tx failures come as single frames (perhaps out of order), and before failing
* an A-MPDU subframe the firmware transmits it as a single frame at least once.
* Frames successfully transmitted in an A-MPDU are completed when a compressed
* block ack notification is received.
*/
void
iwn_ampdu_tx_done(struct iwn_softc *sc, struct iwn_tx_ring *txq,
struct iwn_rx_desc *desc, uint16_t status, uint8_t ackfailcnt,
uint8_t rate, uint8_t rflags, int nframes, uint32_t ssn,
struct iwn_txagg_status *agg_status)
{
struct ieee80211com *ic = &sc->sc_ic;
int tid = desc->qid - sc->first_agg_txq;
struct iwn_tx_data *txdata = &txq->data[desc->idx];
struct ieee80211_node *ni = txdata->ni;
int txfail = (status != IWN_TX_STATUS_SUCCESS &&
status != IWN_TX_STATUS_DIRECT_DONE);
struct ieee80211_tx_ba *ba;
uint16_t seq;
sc->sc_tx_timer = 0;
if (ic->ic_state != IEEE80211_S_RUN)
return;
if (nframes > 1) {
int i;
/*
* Collect information about this A-MPDU.
*/
for (i = 0; i < nframes; i++) {
uint8_t qid = agg_status[i].qid;
uint8_t idx = agg_status[i].idx;
uint16_t txstatus = (le16toh(agg_status[i].status) &
IWN_AGG_TX_STATUS_MASK);
if (txstatus != IWN_AGG_TX_STATE_TRANSMITTED)
continue;
if (qid != desc->qid)
continue;
txdata = &txq->data[idx];
if (txdata->ni == NULL)
continue;
/* The Tx rate was the same for all subframes. */
txdata->ampdu_txmcs = rate;
txdata->ampdu_nframes = nframes;
}
return;
}
if (ni == NULL)
return;
ba = &ni->ni_tx_ba[tid];
if (ba->ba_state != IEEE80211_BA_AGREED)
return;
if (SEQ_LT(ssn, ba->ba_winstart))
return;
/* This was a final single-frame Tx attempt for frame SSN-1. */
seq = (ssn - 1) & 0xfff;
/*
* Skip rate control if our Tx rate is fixed.
*/
if (ic->ic_fixed_mcs == -1) {
if (txdata->ampdu_nframes > 1) {
struct iwn_node *wn = (void *)ni;
/*
* This frame was once part of an A-MPDU.
* Report one failed A-MPDU Tx attempt.
* The firmware might have made several such
* attempts but we don't keep track of this.
*/
ieee80211_ra_add_stats_ht(&wn->rn, ic, ni,
txdata->ampdu_txmcs, 1, 1);
}
/* Report the final single-frame Tx attempt. */
if (rflags & IWN_RFLAG_MCS)
iwn_ht_single_rate_control(sc, ni, rate, rflags,
ackfailcnt, txfail);
}
if (txfail)
ieee80211_tx_compressed_bar(ic, ni, tid, ssn);
/*
* SSN corresponds to the first (perhaps not yet transmitted) frame
* in firmware's BA window. Firmware is not going to retransmit any
* frames before its BA window so mark them all as done.
*/
ieee80211_output_ba_move_window(ic, ni, tid, ssn);
iwn_ampdu_txq_advance(sc, txq, desc->qid, IWN_AGG_SSN_TO_TXQ_IDX(ssn));
iwn_clear_oactive(sc, txq);
}
/*
* Process a TX_DONE firmware notification. Unfortunately, the 4965AGN
* and 5000 adapters have different incompatible TX status formats.
*/
void
iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
struct iwn_tx_ring *ring;
size_t len = (letoh32(desc->len) & IWN_RX_DESC_LEN_MASK);
uint16_t status = letoh32(stat->stat.status) & 0xff;
uint32_t ssn;
if (desc->qid > IWN4965_NTXQUEUES)
return;
ring = &sc->txq[desc->qid];
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
len, BUS_DMASYNC_POSTREAD);
/* Sanity checks. */
if (sizeof(*stat) > len)
return;
if (stat->nframes < 1 || stat->nframes > IWN_AMPDU_MAX)
return;
if (desc->qid < sc->first_agg_txq && stat->nframes > 1)
return;
if (desc->qid >= sc->first_agg_txq && sizeof(*stat) + sizeof(ssn) +
stat->nframes * sizeof(stat->stat) > len)
return;
if (desc->qid < sc->first_agg_txq) {
/* XXX 4965 does not report byte count */
struct iwn_tx_data *txdata = &ring->data[desc->idx];
uint16_t framelen = txdata->totlen + IEEE80211_CRC_LEN;
int txfail = (status != IWN_TX_STATUS_SUCCESS &&
status != IWN_TX_STATUS_DIRECT_DONE);
iwn_tx_done(sc, desc, stat->ackfailcnt, stat->rate,
stat->rflags, txfail, desc->qid, framelen);
} else {
memcpy(&ssn, &stat->stat.status + stat->nframes, sizeof(ssn));
ssn = le32toh(ssn) & 0xfff;
iwn_ampdu_tx_done(sc, ring, desc, status, stat->ackfailcnt,
stat->rate, stat->rflags, stat->nframes, ssn,
stat->stat.agg_status);
}
}
void
iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
struct iwn_rx_data *data)
{
struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
struct iwn_tx_ring *ring;
size_t len = (letoh32(desc->len) & IWN_RX_DESC_LEN_MASK);
uint16_t status = letoh32(stat->stat.status) & 0xff;
uint32_t ssn;
if (desc->qid > IWN5000_NTXQUEUES)
return;
ring = &sc->txq[desc->qid];
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
sizeof (*stat), BUS_DMASYNC_POSTREAD);
/* Sanity checks. */
if (sizeof(*stat) > len)
return;
if (stat->nframes < 1 || stat->nframes > IWN_AMPDU_MAX)
return;
if (desc->qid < sc->first_agg_txq && stat->nframes > 1)
return;
if (desc->qid >= sc->first_agg_txq && sizeof(*stat) + sizeof(ssn) +
stat->nframes * sizeof(stat->stat) > len)
return;
/* If this was not an aggregated frame, complete it now. */
if (desc->qid < sc->first_agg_txq) {
int txfail = (status != IWN_TX_STATUS_SUCCESS &&
status != IWN_TX_STATUS_DIRECT_DONE);
/* Reset TX scheduler slot. */
iwn5000_reset_sched(sc, desc->qid, desc->idx);
iwn_tx_done(sc, desc, stat->ackfailcnt, stat->rate,
stat->rflags, txfail, desc->qid, letoh16(stat->len));
} else {
memcpy(&ssn, &stat->stat.status + stat->nframes, sizeof(ssn));
ssn = le32toh(ssn) & 0xfff;
iwn_ampdu_tx_done(sc, ring, desc, status, stat->ackfailcnt,
stat->rate, stat->rflags, stat->nframes, ssn,
stat->stat.agg_status);
}
}
void
iwn_tx_done_free_txdata(struct iwn_softc *sc, struct iwn_tx_data *data)
{
struct ieee80211com *ic = &sc->sc_ic;
bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
data->m = NULL;
ieee80211_release_node(ic, data->ni);
data->ni = NULL;
data->totlen = 0;
data->ampdu_nframes = 0;
data->ampdu_txmcs = 0;
}
void
iwn_clear_oactive(struct iwn_softc *sc, struct iwn_tx_ring *ring)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
if (ring->queued < IWN_TX_RING_LOMARK) {
sc->qfullmsk &= ~(1 << ring->qid);
if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
ifq_clr_oactive(&ifp->if_snd);
(*ifp->if_start)(ifp);
}
}
}
/*
* Adapter-independent backend for TX_DONE firmware notifications.
* This handles Tx status for non-aggregation queues.
*/
void
iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
uint8_t ackfailcnt, uint8_t rate, uint8_t rflags, int txfail,
int qid, uint16_t len)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct iwn_tx_ring *ring = &sc->txq[qid];
struct iwn_tx_data *data = &ring->data[desc->idx];
struct iwn_node *wn = (void *)data->ni;
if (data->ni == NULL)
return;
if (data->ni->ni_flags & IEEE80211_NODE_HT) {
if (ic->ic_state == IEEE80211_S_RUN &&
ic->ic_fixed_mcs == -1 && (rflags & IWN_RFLAG_MCS)) {
iwn_ht_single_rate_control(sc, data->ni, rate, rflags,
ackfailcnt, txfail);
}
} else {
if (rate != data->ni->ni_txrate) {
if (++wn->lq_rate_mismatch > 15) {
/* Try to sync firmware with driver. */
iwn_set_link_quality(sc, data->ni);
wn->lq_rate_mismatch = 0;
}
} else {
wn->lq_rate_mismatch = 0;
wn->amn.amn_txcnt++;
if (ackfailcnt > 0)
wn->amn.amn_retrycnt++;
if (txfail)
wn->amn.amn_retrycnt++;
}
}
if (txfail)
ifp->if_oerrors++;
iwn_tx_done_free_txdata(sc, data);
sc->sc_tx_timer = 0;
ring->queued--;
iwn_clear_oactive(sc, ring);
}
/*
* Process a "command done" firmware notification. This is where we wakeup
* processes waiting for a synchronous command completion.
*/
void
iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
{
struct iwn_tx_ring *ring = &sc->txq[4];
struct iwn_tx_data *data;
if ((desc->qid & 0xf) != 4)
return; /* Not a command ack. */
data = &ring->data[desc->idx];
/* If the command was mapped in an mbuf, free it. */
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
wakeup(&ring->desc[desc->idx]);
}
/*
* Process an INT_FH_RX or INT_SW_RX interrupt.
*/
void
iwn_notif_intr(struct iwn_softc *sc)
{
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
struct iwn_ops *ops = &sc->ops;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
uint16_t hw;
bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
hw = letoh16(sc->rxq.stat->closed_count) & 0xfff;
while (sc->rxq.cur != hw) {
struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
struct iwn_rx_desc *desc;
bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
BUS_DMASYNC_POSTREAD);
desc = mtod(data->m, struct iwn_rx_desc *);
DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
desc->qid & 0xf, desc->idx, desc->flags, desc->type));
if (!(desc->qid & 0x80)) /* Reply to a command. */
iwn_cmd_done(sc, desc);
switch (desc->type) {
case IWN_RX_PHY:
iwn_rx_phy(sc, desc, data);
break;
case IWN_RX_DONE: /* 4965AGN only. */
case IWN_MPDU_RX_DONE:
/* An 802.11 frame has been received. */
iwn_rx_done(sc, desc, data, &ml);
break;
case IWN_RX_COMPRESSED_BA:
/* A Compressed BlockAck has been received. */
iwn_rx_compressed_ba(sc, desc, data);
break;
case IWN_TX_DONE:
/* An 802.11 frame has been transmitted. */
ops->tx_done(sc, desc, data);
break;
case IWN_RX_STATISTICS:
case IWN_BEACON_STATISTICS:
iwn_rx_statistics(sc, desc, data);
break;
case IWN_BEACON_MISSED:
{
struct iwn_beacon_missed *miss =
(struct iwn_beacon_missed *)(desc + 1);
uint32_t missed;
if ((ic->ic_opmode != IEEE80211_M_STA) ||
(ic->ic_state != IEEE80211_S_RUN))
break;
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
sizeof (*miss), BUS_DMASYNC_POSTREAD);
missed = letoh32(miss->consecutive);
/*
* If more than 5 consecutive beacons are missed,
* reinitialize the sensitivity state machine.
*/
if (missed > 5)
(void)iwn_init_sensitivity(sc);
/*
* Rather than go directly to scan state, try to send a
* directed probe request first. If that fails then the
* state machine will drop us into scanning after timing
* out waiting for a probe response.
*/
if (missed > ic->ic_bmissthres && !ic->ic_mgt_timer) {
if (ic->ic_if.if_flags & IFF_DEBUG)
printf("%s: receiving no beacons from "
"%s; checking if this AP is still "
"responding to probe requests\n",
sc->sc_dev.dv_xname, ether_sprintf(
ic->ic_bss->ni_macaddr));
IEEE80211_SEND_MGMT(ic, ic->ic_bss,
IEEE80211_FC0_SUBTYPE_PROBE_REQ, 0);
}
break;
}
case IWN_UC_READY:
{
struct iwn_ucode_info *uc =
(struct iwn_ucode_info *)(desc + 1);
/* The microcontroller is ready. */
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
sizeof (*uc), BUS_DMASYNC_POSTREAD);
DPRINTF(("microcode alive notification version=%d.%d "
"subtype=%x alive=%x\n", uc->major, uc->minor,
uc->subtype, letoh32(uc->valid)));
if (letoh32(uc->valid) != 1) {
printf("%s: microcontroller initialization "
"failed\n", sc->sc_dev.dv_xname);
break;
}
if (uc->subtype == IWN_UCODE_INIT) {
/* Save microcontroller report. */
memcpy(&sc->ucode_info, uc, sizeof (*uc));
}
/* Save the address of the error log in SRAM. */
sc->errptr = letoh32(uc->errptr);
break;
}
case IWN_STATE_CHANGED:
{
uint32_t *status = (uint32_t *)(desc + 1);
/* Enabled/disabled notification. */
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
sizeof (*status), BUS_DMASYNC_POSTREAD);
DPRINTF(("state changed to %x\n", letoh32(*status)));
if (letoh32(*status) & 1) {
/* Radio transmitter is off, power down. */
iwn_stop(ifp);
return; /* No further processing. */
}
break;
}
case IWN_START_SCAN:
{
struct iwn_start_scan *scan =
(struct iwn_start_scan *)(desc + 1);
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
sizeof (*scan), BUS_DMASYNC_POSTREAD);
DPRINTFN(2, ("scan start: chan %d status %x\n",
scan->chan, letoh32(scan->status)));
if (sc->sc_flags & IWN_FLAG_BGSCAN)
break;
/* Fix current channel. */
ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
break;
}
case IWN_STOP_SCAN:
{
struct iwn_stop_scan *scan =
(struct iwn_stop_scan *)(desc + 1);
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
sizeof (*scan), BUS_DMASYNC_POSTREAD);
DPRINTFN(2, ("scan stop: nchan=%d status=%d chan=%d\n",
scan->nchan, scan->status, scan->chan));
if (scan->status == 1 && scan->chan <= 14 &&
(sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
int error;
/*
* We just finished scanning 2GHz channels,
* start scanning 5GHz ones.
*/
error = iwn_scan(sc, IEEE80211_CHAN_5GHZ,
(sc->sc_flags & IWN_FLAG_BGSCAN) ? 1 : 0);
if (error == 0)
break;
}
sc->sc_flags &= ~IWN_FLAG_SCANNING;
sc->sc_flags &= ~IWN_FLAG_BGSCAN;
ieee80211_end_scan(ifp);
break;
}
case IWN5000_CALIBRATION_RESULT:
iwn5000_rx_calib_results(sc, desc, data);
break;
case IWN5000_CALIBRATION_DONE:
sc->sc_flags |= IWN_FLAG_CALIB_DONE;
wakeup(sc);
break;
}
sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
}
if_input(&sc->sc_ic.ic_if, &ml);
/* Tell the firmware what we have processed. */
hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
}
/*
* Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
* from power-down sleep mode.
*/
void
iwn_wakeup_intr(struct iwn_softc *sc)
{
int qid;
DPRINTF(("ucode wakeup from power-down sleep\n"));
/* Wakeup RX and TX rings. */
IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
for (qid = 0; qid < sc->ntxqs; qid++) {
struct iwn_tx_ring *ring = &sc->txq[qid];
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
}
}
/*
* Dump the error log of the firmware when a firmware panic occurs. Although
* we can't debug the firmware because it is neither open source nor free, it
* can help us to identify certain classes of problems.
*/
void
iwn_fatal_intr(struct iwn_softc *sc)
{
struct iwn_fw_dump dump;
int i;
/* Check that the error log address is valid. */
if (sc->errptr < IWN_FW_DATA_BASE ||
sc->errptr + sizeof (dump) >
IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
printf("%s: bad firmware error log address 0x%08x\n",
sc->sc_dev.dv_xname, sc->errptr);
return;
}
if (iwn_nic_lock(sc) != 0) {
printf("%s: could not read firmware error log\n",
sc->sc_dev.dv_xname);
return;
}
/* Read firmware error log from SRAM. */
iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
sizeof (dump) / sizeof (uint32_t));
iwn_nic_unlock(sc);
if (dump.valid == 0) {
printf("%s: firmware error log is empty\n",
sc->sc_dev.dv_xname);
return;
}
printf("firmware error log:\n");
printf(" error type = \"%s\" (0x%08X)\n",
(dump.id < nitems(iwn_fw_errmsg)) ?
iwn_fw_errmsg[dump.id] : "UNKNOWN",
dump.id);
printf(" program counter = 0x%08X\n", dump.pc);
printf(" source line = 0x%08X\n", dump.src_line);
printf(" error data = 0x%08X%08X\n",
dump.error_data[0], dump.error_data[1]);
printf(" branch link = 0x%08X%08X\n",
dump.branch_link[0], dump.branch_link[1]);
printf(" interrupt link = 0x%08X%08X\n",
dump.interrupt_link[0], dump.interrupt_link[1]);
printf(" time = %u\n", dump.time[0]);
/* Dump driver status (TX and RX rings) while we're here. */
printf("driver status:\n");
for (i = 0; i < sc->ntxqs; i++) {
struct iwn_tx_ring *ring = &sc->txq[i];
printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
i, ring->qid, ring->cur, ring->queued);
}
printf(" rx ring: cur=%d\n", sc->rxq.cur);
printf(" 802.11 state %d\n", sc->sc_ic.ic_state);
}
int
iwn_intr(void *arg)
{
struct iwn_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ic.ic_if;
uint32_t r1, r2, tmp;
/* Disable interrupts. */
IWN_WRITE(sc, IWN_INT_MASK, 0);
/* Read interrupts from ICT (fast) or from registers (slow). */
if (sc->sc_flags & IWN_FLAG_USE_ICT) {
tmp = 0;
while (sc->ict[sc->ict_cur] != 0) {
tmp |= sc->ict[sc->ict_cur];
sc->ict[sc->ict_cur] = 0; /* Acknowledge. */
sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
}
tmp = letoh32(tmp);
if (tmp == 0xffffffff) /* Shouldn't happen. */
tmp = 0;
else if (tmp & 0xc0000) /* Workaround a HW bug. */
tmp |= 0x8000;
r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
r2 = 0; /* Unused. */
} else {
r1 = IWN_READ(sc, IWN_INT);
if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
return 0; /* Hardware gone! */
r2 = IWN_READ(sc, IWN_FH_INT);
}
if (r1 == 0 && r2 == 0) {
if (ifp->if_flags & IFF_UP)
IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
return 0; /* Interrupt not for us. */
}
/* Acknowledge interrupts. */
IWN_WRITE(sc, IWN_INT, r1);
if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
IWN_WRITE(sc, IWN_FH_INT, r2);
if (r1 & IWN_INT_RF_TOGGLED) {
tmp = IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL;
printf("%s: RF switch: radio %s\n", sc->sc_dev.dv_xname,
tmp ? "enabled" : "disabled");
if (tmp)
task_add(systq, &sc->init_task);
}
if (r1 & IWN_INT_CT_REACHED) {
printf("%s: critical temperature reached!\n",
sc->sc_dev.dv_xname);
}
if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
printf("%s: fatal firmware error\n", sc->sc_dev.dv_xname);
/* Force a complete recalibration on next init. */
sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
/* Dump firmware error log and stop. */
if (ifp->if_flags & IFF_DEBUG)
iwn_fatal_intr(sc);
iwn_stop(ifp);
task_add(systq, &sc->init_task);
return 1;
}
if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
(r2 & IWN_FH_INT_RX)) {
if (sc->sc_flags & IWN_FLAG_USE_ICT) {
if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
IWN_WRITE_1(sc, IWN_INT_PERIODIC,
IWN_INT_PERIODIC_DIS);
iwn_notif_intr(sc);
if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
IWN_WRITE_1(sc, IWN_INT_PERIODIC,
IWN_INT_PERIODIC_ENA);
}
} else
iwn_notif_intr(sc);
}
if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
if (sc->sc_flags & IWN_FLAG_USE_ICT)
IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
wakeup(sc); /* FH DMA transfer completed. */
}
if (r1 & IWN_INT_ALIVE)
wakeup(sc); /* Firmware is alive. */
if (r1 & IWN_INT_WAKEUP)
iwn_wakeup_intr(sc);
/* Re-enable interrupts. */
if (ifp->if_flags & IFF_UP)
IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
return 1;
}
/*
* Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
* 5000 adapters use a slightly different format).
*/
void
iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
uint16_t len)
{
uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
*w = htole16(len + 8);
bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
(caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t),
BUS_DMASYNC_PREWRITE);
if (idx < IWN_SCHED_WINSZ) {
*(w + IWN_TX_RING_COUNT) = *w;
bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
(caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr,
sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
}
}
void
iwn4965_reset_sched(struct iwn_softc *sc, int qid, int idx)
{
/* TBD */
}
void
iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
uint16_t len)
{
uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
*w = htole16(id << 12 | (len + 8));
bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
(caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t),
BUS_DMASYNC_PREWRITE);
if (idx < IWN_SCHED_WINSZ) {
*(w + IWN_TX_RING_COUNT) = *w;
bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
(caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr,
sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
}
}
void
iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
{
uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
*w = (*w & htole16(0xf000)) | htole16(1);
bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
(caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t),
BUS_DMASYNC_PREWRITE);
if (idx < IWN_SCHED_WINSZ) {
*(w + IWN_TX_RING_COUNT) = *w;
bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
(caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr,
sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
}
}
int
iwn_rval2ridx(int rval)
{
int ridx;
for (ridx = 0; ridx < nitems(iwn_rates); ridx++) {
if (rval == iwn_rates[ridx].rate)
break;
}
return ridx;
}
int
iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
{
struct iwn_ops *ops = &sc->ops;
struct ieee80211com *ic = &sc->sc_ic;
struct iwn_node *wn = (void *)ni;
struct iwn_tx_ring *ring;
struct iwn_tx_desc *desc;
struct iwn_tx_data *data;
struct iwn_tx_cmd *cmd;
struct iwn_cmd_data *tx;
const struct iwn_rate *rinfo;
struct ieee80211_frame *wh;
struct ieee80211_key *k = NULL;
enum ieee80211_edca_ac ac;
int qid;
uint32_t flags;
uint16_t qos;
u_int hdrlen;
bus_dma_segment_t *seg;
uint8_t *ivp, tid, ridx, txant, type, subtype;
int i, totlen, hasqos, error, pad;
wh = mtod(m, struct ieee80211_frame *);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
if (type == IEEE80211_FC0_TYPE_CTL)
hdrlen = sizeof(struct ieee80211_frame_min);
else
hdrlen = ieee80211_get_hdrlen(wh);
if ((hasqos = ieee80211_has_qos(wh))) {
/* Select EDCA Access Category and TX ring for this frame. */
struct ieee80211_tx_ba *ba;
qos = ieee80211_get_qos(wh);
tid = qos & IEEE80211_QOS_TID;
ac = ieee80211_up_to_ac(ic, tid);
qid = ac;
/* If possible, put this frame on an aggregation queue. */
if (sc->sc_tx_ba[tid].wn == wn) {
ba = &ni->ni_tx_ba[tid];
if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
ba->ba_state == IEEE80211_BA_AGREED) {
qid = sc->first_agg_txq + tid;
if (sc->qfullmsk & (1 << qid)) {
m_freem(m);
return ENOBUFS;
}
}
}
} else {
qos = 0;
tid = IWN_NONQOS_TID;
ac = EDCA_AC_BE;
qid = ac;
}
ring = &sc->txq[qid];
desc = &ring->desc[ring->cur];
data = &ring->data[ring->cur];
/* Choose a TX rate index. */
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
type != IEEE80211_FC0_TYPE_DATA)
ridx = iwn_rval2ridx(ieee80211_min_basic_rate(ic));
else if (ic->ic_fixed_mcs != -1)
ridx = sc->fixed_ridx;
else if (ic->ic_fixed_rate != -1)
ridx = sc->fixed_ridx;
else {
if (ni->ni_flags & IEEE80211_NODE_HT)
ridx = iwn_mcs2ridx[ni->ni_txmcs];
else
ridx = wn->ridx[ni->ni_txrate];
}
rinfo = &iwn_rates[ridx];
#if NBPFILTER > 0
if (sc->sc_drvbpf != NULL) {
struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
uint16_t chan_flags;
tap->wt_flags = 0;
tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
chan_flags = ni->ni_chan->ic_flags;
if (ic->ic_curmode != IEEE80211_MODE_11N)
chan_flags &= ~IEEE80211_CHAN_HT;
tap->wt_chan_flags = htole16(chan_flags);
if ((ni->ni_flags & IEEE80211_NODE_HT) &&
!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
type == IEEE80211_FC0_TYPE_DATA) {
tap->wt_rate = (0x80 | ni->ni_txmcs);
} else
tap->wt_rate = rinfo->rate;
if ((ic->ic_flags & IEEE80211_F_WEPON) &&
(wh->i_fc[1] & IEEE80211_FC1_PROTECTED))
tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_txtap_len,
m, BPF_DIRECTION_OUT);
}
#endif
totlen = m->m_pkthdr.len;
/* Encrypt the frame if need be. */
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
/* Retrieve key for TX. */
k = ieee80211_get_txkey(ic, wh, ni);
if (k->k_cipher != IEEE80211_CIPHER_CCMP) {
/* Do software encryption. */
if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
return ENOBUFS;
/* 802.11 header may have moved. */
wh = mtod(m, struct ieee80211_frame *);
totlen = m->m_pkthdr.len;
} else /* HW appends CCMP MIC. */
totlen += IEEE80211_CCMP_HDRLEN;
}
data->totlen = totlen;
/* Prepare TX firmware command. */
cmd = &ring->cmd[ring->cur];
cmd->code = IWN_CMD_TX_DATA;
cmd->flags = 0;
cmd->qid = ring->qid;
cmd->idx = ring->cur;
tx = (struct iwn_cmd_data *)cmd->data;
/* NB: No need to clear tx, all fields are reinitialized here. */
tx->scratch = 0; /* clear "scratch" area */
flags = 0;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
/* Unicast frame, check if an ACK is expected. */
if (!hasqos || (qos & IEEE80211_QOS_ACK_POLICY_MASK) !=
IEEE80211_QOS_ACK_POLICY_NOACK)
flags |= IWN_TX_NEED_ACK;
}
if (type == IEEE80211_FC0_TYPE_CTL &&
subtype == IEEE80211_FC0_SUBTYPE_BAR) {
struct ieee80211_frame_min *mwh;
uint8_t *barfrm;
uint16_t ctl;
mwh = mtod(m, struct ieee80211_frame_min *);
barfrm = (uint8_t *)&mwh[1];
ctl = LE_READ_2(barfrm);
tid = (ctl & IEEE80211_BA_TID_INFO_MASK) >>
IEEE80211_BA_TID_INFO_SHIFT;
flags |= (IWN_TX_NEED_ACK | IWN_TX_IMM_BA);
}
if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */
/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
/* NB: Group frames are sent using CCK in 802.11b/g/n (2GHz). */
if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
flags |= IWN_TX_NEED_RTS;
} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
ridx >= IWN_RIDX_OFDM6) {
if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
flags |= IWN_TX_NEED_CTS;
else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
flags |= IWN_TX_NEED_RTS;
}
if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
/* 5000 autoselects RTS/CTS or CTS-to-self. */
flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
flags |= IWN_TX_NEED_PROTECTION;
} else
flags |= IWN_TX_FULL_TXOP;
}
}
if (type == IEEE80211_FC0_TYPE_CTL &&
subtype == IEEE80211_FC0_SUBTYPE_BAR)
tx->id = wn->id;
else if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
type != IEEE80211_FC0_TYPE_DATA)
tx->id = sc->broadcast_id;
else
tx->id = wn->id;
if (type == IEEE80211_FC0_TYPE_MGT) {
#ifndef IEEE80211_STA_ONLY
/* Tell HW to set timestamp in probe responses. */
if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
flags |= IWN_TX_INSERT_TSTAMP;
#endif
if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
tx->timeout = htole16(3);
else
tx->timeout = htole16(2);
} else
tx->timeout = htole16(0);
if (hdrlen & 3) {
/* First segment length must be a multiple of 4. */
flags |= IWN_TX_NEED_PADDING;
pad = 4 - (hdrlen & 3);
} else
pad = 0;
tx->len = htole16(totlen);
tx->tid = tid;
tx->rts_ntries = 60;
tx->data_ntries = 15;
tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
if ((ni->ni_flags & IEEE80211_NODE_HT) &&
tx->id != sc->broadcast_id)
tx->plcp = rinfo->ht_plcp;
else
tx->plcp = rinfo->plcp;
if ((ni->ni_flags & IEEE80211_NODE_HT) &&
tx->id != sc->broadcast_id) {
tx->rflags = rinfo->ht_flags;
if (iwn_rxon_ht40_enabled(sc))
tx->rflags |= IWN_RFLAG_HT40;
if (ieee80211_ra_use_ht_sgi(ni))
tx->rflags |= IWN_RFLAG_SGI;
}
else
tx->rflags = rinfo->flags;
if (tx->id == sc->broadcast_id || ic->ic_fixed_mcs != -1 ||
ic->ic_fixed_rate != -1) {
/* Group or management frame, or fixed Tx rate. */
tx->linkq = 0;
/* XXX Alternate between antenna A and B? */
txant = IWN_LSB(sc->txchainmask);
tx->rflags |= IWN_RFLAG_ANT(txant);
} else {
tx->linkq = 0; /* initial index into firmware LQ retry table */
flags |= IWN_TX_LINKQ; /* enable multi-rate retry */
}
/* Set physical address of "scratch area". */
tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
/* Copy 802.11 header in TX command. */
memcpy((uint8_t *)(tx + 1), wh, hdrlen);
if (k != NULL && k->k_cipher == IEEE80211_CIPHER_CCMP) {
/* Trim 802.11 header and prepend CCMP IV. */
m_adj(m, hdrlen - IEEE80211_CCMP_HDRLEN);
ivp = mtod(m, uint8_t *);
k->k_tsc++;
ivp[0] = k->k_tsc;
ivp[1] = k->k_tsc >> 8;
ivp[2] = 0;
ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV;
ivp[4] = k->k_tsc >> 16;
ivp[5] = k->k_tsc >> 24;
ivp[6] = k->k_tsc >> 32;
ivp[7] = k->k_tsc >> 40;
tx->security = IWN_CIPHER_CCMP;
if (qid >= sc->first_agg_txq)
flags |= IWN_TX_AMPDU_CCMP;
memcpy(tx->key, k->k_key, k->k_len);
/* TX scheduler includes CCMP MIC len w/5000 Series. */
if (sc->hw_type != IWN_HW_REV_TYPE_4965)
totlen += IEEE80211_CCMP_MICLEN;
} else {
/* Trim 802.11 header. */
m_adj(m, hdrlen);
tx->security = 0;
}
tx->flags = htole32(flags);
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
if (error != 0 && error != EFBIG) {
printf("%s: can't map mbuf (error %d)\n",
sc->sc_dev.dv_xname, error);
m_freem(m);
return error;
}
if (error != 0) {
/* Too many DMA segments, linearize mbuf. */
if (m_defrag(m, M_DONTWAIT)) {
m_freem(m);
return ENOBUFS;
}
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
if (error != 0) {
printf("%s: can't map mbuf (error %d)\n",
sc->sc_dev.dv_xname, error);
m_freem(m);
return error;
}
}
data->m = m;
data->ni = ni;
data->ampdu_txmcs = ni->ni_txmcs; /* updated upon Tx interrupt */
DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
/* Fill TX descriptor. */
desc->nsegs = 1 + data->map->dm_nsegs;
/* First DMA segment is used by the TX command. */
desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) |
(4 + sizeof (*tx) + hdrlen + pad) << 4);
/* Other DMA segments are for data payload. */
seg = data->map->dm_segs;
for (i = 1; i <= data->map->dm_nsegs; i++) {
desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) |
seg->ds_len << 4);
seg++;
}
bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
(caddr_t)cmd - ring->cmd_dma.vaddr, sizeof (*cmd),
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
(caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),
BUS_DMASYNC_PREWRITE);
/* Update TX scheduler. */
ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
/* Kick TX ring. */
ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
/* Mark TX ring as full if we reach a certain threshold. */
if (++ring->queued > IWN_TX_RING_HIMARK)
sc->qfullmsk |= 1 << ring->qid;
return 0;
}
void
iwn_start(struct ifnet *ifp)
{
struct iwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
struct mbuf *m;
if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
return;
for (;;) {
if (sc->qfullmsk != 0) {
ifq_set_oactive(&ifp->if_snd);
break;
}
/* Send pending management frames first. */
m = mq_dequeue(&ic->ic_mgtq);
if (m != NULL) {
ni = m->m_pkthdr.ph_cookie;
goto sendit;
}
if (ic->ic_state != IEEE80211_S_RUN ||
(ic->ic_xflags & IEEE80211_F_TX_MGMT_ONLY))
break;
/* Encapsulate and send data frames. */
m = ifq_dequeue(&ifp->if_snd);
if (m == NULL)
break;
#if NBPFILTER > 0
if (ifp->if_bpf != NULL)
bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
#endif
if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
continue;
sendit:
#if NBPFILTER > 0
if (ic->ic_rawbpf != NULL)
bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
#endif
if (iwn_tx(sc, m, ni) != 0) {
ieee80211_release_node(ic, ni);
ifp->if_oerrors++;
continue;
}
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
}
void
iwn_watchdog(struct ifnet *ifp)
{
struct iwn_softc *sc = ifp->if_softc;
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
printf("%s: device timeout\n", sc->sc_dev.dv_xname);
iwn_stop(ifp);
ifp->if_oerrors++;
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(ifp);
}
int
iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct iwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int s, error = 0;
error = rw_enter(&sc->sc_rwlock, RW_WRITE | RW_INTR);
if (error)
return error;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
/* FALLTHROUGH */
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_flags & IFF_RUNNING))
error = iwn_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
iwn_stop(ifp);
}
break;
case SIOCS80211POWER:
error = ieee80211_ioctl(ifp, cmd, data);
if (error != ENETRESET)
break;
if (ic->ic_state == IEEE80211_S_RUN &&
sc->calib.state == IWN_CALIB_STATE_RUN) {
if (ic->ic_flags & IEEE80211_F_PMGTON)
error = iwn_set_pslevel(sc, 0, 3, 0);
else /* back to CAM */
error = iwn_set_pslevel(sc, 0, 0, 0);
} else {
/* Defer until transition to IWN_CALIB_STATE_RUN. */
error = 0;
}
break;
default:
error = ieee80211_ioctl(ifp, cmd, data);
}
if (error == ENETRESET) {
error = 0;
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING)) {
iwn_stop(ifp);
error = iwn_init(ifp);
}
}
splx(s);
rw_exit_write(&sc->sc_rwlock);
return error;
}
/*
* Send a command to the firmware.
*/
int
iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
{
struct iwn_ops *ops = &sc->ops;
struct iwn_tx_ring *ring = &sc->txq[4];
struct iwn_tx_desc *desc;
struct iwn_tx_data *data;
struct iwn_tx_cmd *cmd;
struct mbuf *m;
bus_addr_t paddr;
int totlen, error;
desc = &ring->desc[ring->cur];
data = &ring->data[ring->cur];
totlen = 4 + size;
if (size > sizeof cmd->data) {
/* Command is too large to fit in a descriptor. */
if (totlen > MCLBYTES)
return EINVAL;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return ENOMEM;
if (totlen > MHLEN) {
MCLGET(m, M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
m_freem(m);
return ENOMEM;
}
}
cmd = mtod(m, struct iwn_tx_cmd *);
error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
if (error != 0) {
m_freem(m);
return error;
}
data->m = m;
paddr = data->map->dm_segs[0].ds_addr;
} else {
cmd = &ring->cmd[ring->cur];
paddr = data->cmd_paddr;
}
cmd->code = code;
cmd->flags = 0;
cmd->qid = ring->qid;
cmd->idx = ring->cur;
memcpy(cmd->data, buf, size);
desc->nsegs = 1;
desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4);
if (size > sizeof cmd->data) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
BUS_DMASYNC_PREWRITE);
} else {
bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
(caddr_t)cmd - ring->cmd_dma.vaddr, totlen,
BUS_DMASYNC_PREWRITE);
}
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
(caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),
BUS_DMASYNC_PREWRITE);
/* Update TX scheduler. */
ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
/* Kick command ring. */
ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
return async ? 0 : tsleep_nsec(desc, PCATCH, "iwncmd", SEC_TO_NSEC(1));
}
int
iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
{
struct iwn4965_node_info hnode;
caddr_t src, dst;
/*
* We use the node structure for 5000 Series internally (it is
* a superset of the one for 4965AGN). We thus copy the common
* fields before sending the command.
*/
src = (caddr_t)node;
dst = (caddr_t)&hnode;
memcpy(dst, src, 48);
/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
memcpy(dst + 48, src + 72, 20);
return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
}
int
iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
{
/* Direct mapping. */
return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
}
int
iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwn_node *wn = (void *)ni;
struct iwn_cmd_link_quality linkq;
const struct iwn_rate *rinfo;
uint8_t txant;
int i;
/* Use the first valid TX antenna. */
txant = IWN_LSB(sc->txchainmask);
memset(&linkq, 0, sizeof linkq);
linkq.id = wn->id;
linkq.antmsk_1stream = txant;
linkq.antmsk_2stream = IWN_ANT_AB;
linkq.ampdu_max = IWN_AMPDU_MAX;
linkq.ampdu_threshold = 3;
linkq.ampdu_limit = htole16(4000); /* 4ms */
i = 0;
if (ni->ni_flags & IEEE80211_NODE_HT) {
int txmcs;
for (txmcs = ni->ni_txmcs; txmcs >= 0; txmcs--) {
rinfo = &iwn_rates[iwn_mcs2ridx[txmcs]];
linkq.retry[i].plcp = rinfo->ht_plcp;
linkq.retry[i].rflags = rinfo->ht_flags;
/* XXX set correct ant mask for MIMO rates here */
linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
/* First two Tx attempts may use 40MHz/SGI. */
if (i < 2) {
if (iwn_rxon_ht40_enabled(sc))
linkq.retry[i].rflags |= IWN_RFLAG_HT40;
if (ieee80211_ra_use_ht_sgi(ni))
linkq.retry[i].rflags |= IWN_RFLAG_SGI;
}
if (++i >= IWN_MAX_TX_RETRIES)
break;
}
} else {
int txrate;
for (txrate = ni->ni_txrate; txrate >= 0; txrate--) {
rinfo = &iwn_rates[wn->ridx[txrate]];
linkq.retry[i].plcp = rinfo->plcp;
linkq.retry[i].rflags = rinfo->flags;
linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
if (++i >= IWN_MAX_TX_RETRIES)
break;
}
}
/* Fill the rest with the lowest basic rate. */
rinfo = &iwn_rates[iwn_rval2ridx(ieee80211_min_basic_rate(ic))];
while (i < IWN_MAX_TX_RETRIES) {
linkq.retry[i].plcp = rinfo->plcp;
linkq.retry[i].rflags = rinfo->flags;
linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
i++;
}
return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
}
/*
* Broadcast node is used to send group-addressed and management frames.
*/
int
iwn_add_broadcast_node(struct iwn_softc *sc, int async, int ridx)
{
struct iwn_ops *ops = &sc->ops;
struct iwn_node_info node;
struct iwn_cmd_link_quality linkq;
const struct iwn_rate *rinfo;
uint8_t txant;
int i, error;
memset(&node, 0, sizeof node);
IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
node.id = sc->broadcast_id;
DPRINTF(("adding broadcast node\n"));
if ((error = ops->add_node(sc, &node, async)) != 0)
return error;
/* Use the first valid TX antenna. */
txant = IWN_LSB(sc->txchainmask);
memset(&linkq, 0, sizeof linkq);
linkq.id = sc->broadcast_id;
linkq.antmsk_1stream = txant;
linkq.antmsk_2stream = IWN_ANT_AB;
linkq.ampdu_max = IWN_AMPDU_MAX_NO_AGG;
linkq.ampdu_threshold = 3;
linkq.ampdu_limit = htole16(4000); /* 4ms */
/* Use lowest mandatory bit-rate. */
rinfo = &iwn_rates[ridx];
linkq.retry[0].plcp = rinfo->plcp;
linkq.retry[0].rflags = rinfo->flags;
linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
/* Use same bit-rate for all TX retries. */
for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
linkq.retry[i].plcp = linkq.retry[0].plcp;
linkq.retry[i].rflags = linkq.retry[0].rflags;
}
return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
}
void
iwn_updateedca(struct ieee80211com *ic)
{
#define IWN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */
struct iwn_softc *sc = ic->ic_softc;
struct iwn_edca_params cmd;
int aci;
memset(&cmd, 0, sizeof cmd);
cmd.flags = htole32(IWN_EDCA_UPDATE);
for (aci = 0; aci < EDCA_NUM_AC; aci++) {
const struct ieee80211_edca_ac_params *ac =
&ic->ic_edca_ac[aci];
cmd.ac[aci].aifsn = ac->ac_aifsn;
cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->ac_ecwmin));
cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->ac_ecwmax));
cmd.ac[aci].txoplimit =
htole16(IEEE80211_TXOP_TO_US(ac->ac_txoplimit));
}
(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
#undef IWN_EXP2
}
void
iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
{
struct iwn_cmd_led led;
/* Clear microcode LED ownership. */
IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
led.which = which;
led.unit = htole32(10000); /* on/off in unit of 100ms */
led.off = off;
led.on = on;
(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
}
/*
* Set the critical temperature at which the firmware will stop the radio
* and notify us.
*/
int
iwn_set_critical_temp(struct iwn_softc *sc)
{
struct iwn_critical_temp crit;
int32_t temp;
IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
if (sc->hw_type == IWN_HW_REV_TYPE_5150)
temp = (IWN_CTOK(110) - sc->temp_off) * -5;
else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
temp = IWN_CTOK(110);
else
temp = 110;
memset(&crit, 0, sizeof crit);
crit.tempR = htole32(temp);
DPRINTF(("setting critical temperature to %d\n", temp));
return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
}
int
iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
{
struct iwn_cmd_timing cmd;
uint64_t val, mod;
memset(&cmd, 0, sizeof cmd);
memcpy(&cmd.tstamp, ni->ni_tstamp, sizeof (uint64_t));
cmd.bintval = htole16(ni->ni_intval);
cmd.lintval = htole16(10);
/* Compute remaining time until next beacon. */
val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
mod = letoh64(cmd.tstamp) % val;
cmd.binitval = htole32((uint32_t)(val - mod));
DPRINTF(("timing bintval=%u, tstamp=%llu, init=%u\n",
ni->ni_intval, letoh64(cmd.tstamp), (uint32_t)(val - mod)));
return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
}
void
iwn4965_power_calibration(struct iwn_softc *sc, int temp)
{
/* Adjust TX power if need be (delta >= 3 degC). */
DPRINTF(("temperature %d->%d\n", sc->temp, temp));
if (abs(temp - sc->temp) >= 3) {
/* Record temperature of last calibration. */
sc->temp = temp;
(void)iwn4965_set_txpower(sc, 1);
}
}
/*
* Set TX power for current channel (each rate has its own power settings).
* This function takes into account the regulatory information from EEPROM,
* the current temperature and the current voltage.
*/
int
iwn4965_set_txpower(struct iwn_softc *sc, int async)
{
/* Fixed-point arithmetic division using a n-bit fractional part. */
#define fdivround(a, b, n) \
((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
/* Linear interpolation. */
#define interpolate(x, x1, y1, x2, y2, n) \
((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
struct ieee80211com *ic = &sc->sc_ic;
struct iwn_ucode_info *uc = &sc->ucode_info;
struct ieee80211_channel *ch;
struct iwn4965_cmd_txpower cmd;
struct iwn4965_eeprom_chan_samples *chans;
const uint8_t *rf_gain, *dsp_gain;
int32_t vdiff, tdiff;
int i, c, grp, maxpwr, is_ht40 = 0;
uint8_t chan, ext_chan;
/* Retrieve current channel from last RXON. */
chan = sc->rxon.chan;
DPRINTF(("setting TX power for channel %d\n", chan));
ch = &ic->ic_channels[chan];
memset(&cmd, 0, sizeof cmd);
cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
cmd.chan = chan;
if (IEEE80211_IS_CHAN_5GHZ(ch)) {
maxpwr = sc->maxpwr5GHz;
rf_gain = iwn4965_rf_gain_5ghz;
dsp_gain = iwn4965_dsp_gain_5ghz;
} else {
maxpwr = sc->maxpwr2GHz;
rf_gain = iwn4965_rf_gain_2ghz;
dsp_gain = iwn4965_dsp_gain_2ghz;
}
/* Compute voltage compensation. */
vdiff = ((int32_t)letoh32(uc->volt) - sc->eeprom_voltage) / 7;
if (vdiff > 0)
vdiff *= 2;
if (abs(vdiff) > 2)
vdiff = 0;
DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
vdiff, letoh32(uc->volt), sc->eeprom_voltage));
/* Get channel attenuation group. */
if (chan <= 20) /* 1-20 */
grp = 4;
else if (chan <= 43) /* 34-43 */
grp = 0;
else if (chan <= 70) /* 44-70 */
grp = 1;
else if (chan <= 124) /* 71-124 */
grp = 2;
else /* 125-200 */
grp = 3;
DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
/* Get channel sub-band. */
for (i = 0; i < IWN_NBANDS; i++)
if (sc->bands[i].lo != 0 &&
sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
break;
if (i == IWN_NBANDS) /* Can't happen in real-life. */
return EINVAL;
chans = sc->bands[i].chans;
DPRINTF(("chan %d sub-band=%d\n", chan, i));
if (iwn_rxon_ht40_enabled(sc)) {
is_ht40 = 1;
if (le32toh(sc->rxon.flags) & IWN_RXON_HT_HT40MINUS)
ext_chan = chan - 2;
else
ext_chan = chan + 2;
} else
ext_chan = chan;
for (c = 0; c < 2; c++) {
uint8_t power, gain, temp;
int maxchpwr, pwr, ridx, idx;
power = interpolate(ext_chan,
chans[0].num, chans[0].samples[c][1].power,
chans[1].num, chans[1].samples[c][1].power, 1);
gain = interpolate(ext_chan,
chans[0].num, chans[0].samples[c][1].gain,
chans[1].num, chans[1].samples[c][1].gain, 1);
temp = interpolate(ext_chan,
chans[0].num, chans[0].samples[c][1].temp,
chans[1].num, chans[1].samples[c][1].temp, 1);
DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
c, power, gain, temp));
/* Compute temperature compensation. */
tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
DPRINTF(("temperature compensation=%d (current=%d, "
"EEPROM=%d)\n", tdiff, sc->temp, temp));
for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
/* Convert dBm to half-dBm. */
if (is_ht40)
maxchpwr = sc->maxpwr40[chan] * 2;
else
maxchpwr = sc->maxpwr[chan] * 2;
#ifdef notyet
if (ridx > iwn_mcs2ridx[7] && ridx < iwn_mcs2ridx[16])
maxchpwr -= 6; /* MIMO 2T: -3dB */
#endif
pwr = maxpwr;
/* Adjust TX power based on rate. */
if ((ridx % 8) == 5)
pwr -= 15; /* OFDM48: -7.5dB */
else if ((ridx % 8) == 6)
pwr -= 17; /* OFDM54: -8.5dB */
else if ((ridx % 8) == 7)
pwr -= 20; /* OFDM60: -10dB */
else
pwr -= 10; /* Others: -5dB */
/* Do not exceed channel max TX power. */
if (pwr > maxchpwr)
pwr = maxchpwr;
idx = gain - (pwr - power) - tdiff - vdiff;
if (ridx > iwn_mcs2ridx[7]) /* MIMO */
idx += (int32_t)letoh32(uc->atten[grp][c]);
if (cmd.band == 0)
idx += 9; /* 5GHz */
if (ridx == IWN_RIDX_MAX)
idx += 5; /* CCK */
/* Make sure idx stays in a valid range. */
if (idx < 0)
idx = 0;
else if (idx > IWN4965_MAX_PWR_INDEX)
idx = IWN4965_MAX_PWR_INDEX;
DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
c, ridx, idx));
cmd.power[ridx].rf_gain[c] = rf_gain[idx];
cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
}
}
DPRINTF(("setting TX power for chan %d\n", chan));
return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
#undef interpolate
#undef fdivround
}
int
iwn5000_set_txpower(struct iwn_softc *sc, int async)
{
struct iwn5000_cmd_txpower cmd;
/*
* TX power calibration is handled automatically by the firmware
* for 5000 Series.
*/
memset(&cmd, 0, sizeof cmd);
cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */
cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
cmd.srv_limit = IWN5000_TXPOWER_AUTO;
DPRINTF(("setting TX power\n"));
return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
}
/*
* Retrieve the maximum RSSI (in dBm) among receivers.
*/
int
iwn4965_get_rssi(const struct iwn_rx_stat *stat)
{
struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
uint8_t mask, agc;
int rssi;
mask = (letoh16(phy->antenna) >> 4) & IWN_ANT_ABC;
agc = (letoh16(phy->agc) >> 7) & 0x7f;
rssi = 0;
if (mask & IWN_ANT_A)
rssi = MAX(rssi, phy->rssi[0]);
if (mask & IWN_ANT_B)
rssi = MAX(rssi, phy->rssi[2]);
if (mask & IWN_ANT_C)
rssi = MAX(rssi, phy->rssi[4]);
return rssi - agc - IWN_RSSI_TO_DBM;
}
int
iwn5000_get_rssi(const struct iwn_rx_stat *stat)
{
struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
uint8_t agc;
int rssi;
agc = (letoh32(phy->agc) >> 9) & 0x7f;
rssi = MAX(letoh16(phy->rssi[0]) & 0xff,
letoh16(phy->rssi[1]) & 0xff);
rssi = MAX(letoh16(phy->rssi[2]) & 0xff, rssi);
return rssi - agc - IWN_RSSI_TO_DBM;
}
/*
* Retrieve the average noise (in dBm) among receivers.
*/
int
iwn_get_noise(const struct iwn_rx_general_stats *stats)
{
int i, total, nbant, noise;
total = nbant = 0;
for (i = 0; i < 3; i++) {
if ((noise = letoh32(stats->noise[i]) & 0xff) == 0)
continue;
total += noise;
nbant++;
}
/* There should be at least one antenna but check anyway. */
return (nbant == 0) ? -127 : (total / nbant) - 107;
}
/*
* Compute temperature (in degC) from last received statistics.
*/
int
iwn4965_get_temperature(struct iwn_softc *sc)
{
struct iwn_ucode_info *uc = &sc->ucode_info;
int32_t r1, r2, r3, r4, temp;
if (sc->rx_stats_flags & IWN_STATS_FLAGS_BAND_HT40) {
r1 = letoh32(uc->temp[0].chan40MHz);
r2 = letoh32(uc->temp[1].chan40MHz);
r3 = letoh32(uc->temp[2].chan40MHz);
} else {
r1 = letoh32(uc->temp[0].chan20MHz);
r2 = letoh32(uc->temp[1].chan20MHz);
r3 = letoh32(uc->temp[2].chan20MHz);
}
r4 = letoh32(sc->rawtemp);
if (r1 == r3) /* Prevents division by 0 (should not happen). */
return 0;
/* Sign-extend 23-bit R4 value to 32-bit. */
r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
/* Compute temperature in Kelvin. */
temp = (259 * (r4 - r2)) / (r3 - r1);
temp = (temp * 97) / 100 + 8;
DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
return IWN_KTOC(temp);
}
int
iwn5000_get_temperature(struct iwn_softc *sc)
{
int32_t temp;
/*
* Temperature is not used by the driver for 5000 Series because
* TX power calibration is handled by firmware.
*/
temp = letoh32(sc->rawtemp);
if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
temp = (temp / -5) + sc->temp_off;
temp = IWN_KTOC(temp);
}
return temp;
}
/*
* Initialize sensitivity calibration state machine.
*/
int
iwn_init_sensitivity(struct iwn_softc *sc)
{
struct iwn_ops *ops = &sc->ops;
struct iwn_calib_state *calib = &sc->calib;
uint32_t flags;
int error;
/* Reset calibration state machine. */
memset(calib, 0, sizeof (*calib));
calib->state = IWN_CALIB_STATE_INIT;
calib->cck_state = IWN_CCK_STATE_HIFA;
/* Set initial correlation values. */
calib->ofdm_x1 = sc->limits->min_ofdm_x1;
calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
calib->ofdm_x4 = sc->limits->min_ofdm_x4;
calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
calib->cck_x4 = 125;
calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4;
calib->energy_cck = sc->limits->energy_cck;
/* Write initial sensitivity. */
if ((error = iwn_send_sensitivity(sc)) != 0)
return error;
/* Write initial gains. */
if ((error = ops->init_gains(sc)) != 0)
return error;
/* Request statistics at each beacon interval. */
flags = 0;
DPRINTFN(2, ("sending request for statistics\n"));
return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
}
/*
* Collect noise and RSSI statistics for the first 20 beacons received
* after association and use them to determine connected antennas and
* to set differential gains.
*/
void
iwn_collect_noise(struct iwn_softc *sc,
const struct iwn_rx_general_stats *stats)
{
struct iwn_ops *ops = &sc->ops;
struct iwn_calib_state *calib = &sc->calib;
uint32_t val;
int i;
/* Accumulate RSSI and noise for all 3 antennas. */
for (i = 0; i < 3; i++) {
calib->rssi[i] += letoh32(stats->rssi[i]) & 0xff;
calib->noise[i] += letoh32(stats->noise[i]) & 0xff;
}
/* NB: We update differential gains only once after 20 beacons. */
if (++calib->nbeacons < 20)
return;
/* Determine highest average RSSI. */
val = MAX(calib->rssi[0], calib->rssi[1]);
val = MAX(calib->rssi[2], val);
/* Determine which antennas are connected. */
sc->chainmask = sc->rxchainmask;
for (i = 0; i < 3; i++)
if (val - calib->rssi[i] > 15 * 20)
sc->chainmask &= ~(1 << i);
DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
sc->rxchainmask, sc->chainmask));
/* If none of the TX antennas are connected, keep at least one. */
if ((sc->chainmask & sc->txchainmask) == 0)
sc->chainmask |= IWN_LSB(sc->txchainmask);
(void)ops->set_gains(sc);
calib->state = IWN_CALIB_STATE_RUN;
#ifdef notyet
/* XXX Disable RX chains with no antennas connected. */
sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
#endif
/* Enable power-saving mode if requested by user. */
if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
(void)iwn_set_pslevel(sc, 0, 3, 1);
}
int
iwn4965_init_gains(struct iwn_softc *sc)
{
struct iwn_phy_calib_gain cmd;
memset(&cmd, 0, sizeof cmd);
cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
/* Differential gains initially set to 0 for all 3 antennas. */
DPRINTF(("setting initial differential gains\n"));
return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
}
int
iwn5000_init_gains(struct iwn_softc *sc)
{
struct iwn_phy_calib cmd;
memset(&cmd, 0, sizeof cmd);
cmd.code = sc->reset_noise_gain;
cmd.ngroups = 1;
cmd.isvalid = 1;
DPRINTF(("setting initial differential gains\n"));
return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
}
int
iwn4965_set_gains(struct iwn_softc *sc)
{
struct iwn_calib_state *calib = &sc->calib;
struct iwn_phy_calib_gain cmd;
int i, delta, noise;
/* Get minimal noise among connected antennas. */
noise = INT_MAX; /* NB: There's at least one antenna. */
for (i = 0; i < 3; i++)
if (sc->chainmask & (1 << i))
noise = MIN(calib->noise[i], noise);
memset(&cmd, 0, sizeof cmd);
cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
/* Set differential gains for connected antennas. */
for (i = 0; i < 3; i++) {
if (sc->chainmask & (1 << i)) {
/* Compute attenuation (in unit of 1.5dB). */
delta = (noise - (int32_t)calib->noise[i]) / 30;
/* NB: delta <= 0 */
/* Limit to [-4.5dB,0]. */
cmd.gain[i] = MIN(abs(delta), 3);
if (delta < 0)
cmd.gain[i] |= 1 << 2; /* sign bit */
}
}
DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
}
int
iwn5000_set_gains(struct iwn_softc *sc)
{
struct iwn_calib_state *calib = &sc->calib;
struct iwn_phy_calib_gain cmd;
int i, ant, div, delta;
/* We collected 20 beacons and !=6050 need a 1.5 factor. */
div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
memset(&cmd, 0, sizeof cmd);
cmd.code = sc->noise_gain;
cmd.ngroups = 1;
cmd.isvalid = 1;
/*
* Get first available RX antenna as referential.
* IWN_LSB() return values start with 1, but antenna gain array
* cmd.gain[] and noise array calib->noise[] start with 0.
*/
ant = IWN_LSB(sc->rxchainmask) - 1;
/* Set differential gains for other antennas. */
for (i = ant + 1; i < 3; i++) {
if (sc->chainmask & (1 << i)) {
/* The delta is relative to antenna "ant". */
delta = ((int32_t)calib->noise[ant] -
(int32_t)calib->noise[i]) / div;
DPRINTF(("Ant[%d] vs. Ant[%d]: delta %d\n", ant, i, delta));
/* Limit to [-4.5dB,+4.5dB]. */
cmd.gain[i] = MIN(abs(delta), 3);
if (delta < 0)
cmd.gain[i] |= 1 << 2; /* sign bit */
DPRINTF(("Setting differential gains for antenna %d: %x\n",
i, cmd.gain[i]));
}
}
return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
}
/*
* Tune RF RX sensitivity based on the number of false alarms detected
* during the last beacon period.
*/
void
iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
{
#define inc(val, inc, max) \
if ((val) < (max)) { \
if ((val) < (max) - (inc)) \
(val) += (inc); \
else \
(val) = (max); \
needs_update = 1; \
}
#define dec(val, dec, min) \
if ((val) > (min)) { \
if ((val) > (min) + (dec)) \
(val) -= (dec); \
else \
(val) = (min); \
needs_update = 1; \
}
const struct iwn_sensitivity_limits *limits = sc->limits;
struct iwn_calib_state *calib = &sc->calib;
uint32_t val, rxena, fa;
uint32_t energy[3], energy_min;
uint8_t noise[3], noise_ref;
int i, needs_update = 0;
/* Check that we've been enabled long enough. */
if ((rxena = letoh32(stats->general.load)) == 0)
return;
/* Compute number of false alarms since last call for OFDM. */
fa = letoh32(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
fa += letoh32(stats->ofdm.fa) - calib->fa_ofdm;
fa *= 200 * IEEE80211_DUR_TU; /* 200TU */
/* Save counters values for next call. */
calib->bad_plcp_ofdm = letoh32(stats->ofdm.bad_plcp);
calib->fa_ofdm = letoh32(stats->ofdm.fa);
if (fa > 50 * rxena) {
/* High false alarm count, decrease sensitivity. */
DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
inc(calib->ofdm_x1, 1, limits->max_ofdm_x1);
inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
inc(calib->ofdm_x4, 1, limits->max_ofdm_x4);
inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
} else if (fa < 5 * rxena) {
/* Low false alarm count, increase sensitivity. */
DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
dec(calib->ofdm_x1, 1, limits->min_ofdm_x1);
dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
dec(calib->ofdm_x4, 1, limits->min_ofdm_x4);
dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
}
/* Compute maximum noise among 3 receivers. */
for (i = 0; i < 3; i++)
noise[i] = (letoh32(stats->general.noise[i]) >> 8) & 0xff;
val = MAX(noise[0], noise[1]);
val = MAX(noise[2], val);
/* Insert it into our samples table. */
calib->noise_samples[calib->cur_noise_sample] = val;
calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
/* Compute maximum noise among last 20 samples. */
noise_ref = calib->noise_samples[0];
for (i = 1; i < 20; i++)
noise_ref = MAX(noise_ref, calib->noise_samples[i]);
/* Compute maximum energy among 3 receivers. */
for (i = 0; i < 3; i++)
energy[i] = letoh32(stats->general.energy[i]);
val = MIN(energy[0], energy[1]);
val = MIN(energy[2], val);
/* Insert it into our samples table. */
calib->energy_samples[calib->cur_energy_sample] = val;
calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
/* Compute minimum energy among last 10 samples. */
energy_min = calib->energy_samples[0];
for (i = 1; i < 10; i++)
energy_min = MAX(energy_min, calib->energy_samples[i]);
energy_min += 6;
/* Compute number of false alarms since last call for CCK. */
fa = letoh32(stats->cck.bad_plcp) - calib->bad_plcp_cck;
fa += letoh32(stats->cck.fa) - calib->fa_cck;
fa *= 200 * IEEE80211_DUR_TU; /* 200TU */
/* Save counters values for next call. */
calib->bad_plcp_cck = letoh32(stats->cck.bad_plcp);
calib->fa_cck = letoh32(stats->cck.fa);
if (fa > 50 * rxena) {
/* High false alarm count, decrease sensitivity. */
DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
calib->cck_state = IWN_CCK_STATE_HIFA;
calib->low_fa = 0;
if (calib->cck_x4 > 160) {
calib->noise_ref = noise_ref;
if (calib->energy_cck > 2)
dec(calib->energy_cck, 2, energy_min);
}
if (calib->cck_x4 < 160) {
calib->cck_x4 = 161;
needs_update = 1;
} else
inc(calib->cck_x4, 3, limits->max_cck_x4);
inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
} else if (fa < 5 * rxena) {
/* Low false alarm count, increase sensitivity. */
DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
calib->cck_state = IWN_CCK_STATE_LOFA;
calib->low_fa++;
if (calib->cck_state != IWN_CCK_STATE_INIT &&
(((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
calib->low_fa > 100)) {
inc(calib->energy_cck, 2, limits->min_energy_cck);
dec(calib->cck_x4, 3, limits->min_cck_x4);
dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
}
} else {
/* Not worth to increase or decrease sensitivity. */
DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
calib->low_fa = 0;
calib->noise_ref = noise_ref;
if (calib->cck_state == IWN_CCK_STATE_HIFA) {
/* Previous interval had many false alarms. */
dec(calib->energy_cck, 8, energy_min);
}
calib->cck_state = IWN_CCK_STATE_INIT;
}
if (needs_update)
(void)iwn_send_sensitivity(sc);
#undef dec
#undef inc
}
int
iwn_send_sensitivity(struct iwn_softc *sc)
{
struct iwn_calib_state *calib = &sc->calib;
struct iwn_enhanced_sensitivity_cmd cmd;
int len;
memset(&cmd, 0, sizeof cmd);
len = sizeof (struct iwn_sensitivity_cmd);
cmd.which = IWN_SENSITIVITY_WORKTBL;
/* OFDM modulation. */
cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1);
cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4);
cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
cmd.energy_ofdm = htole16(sc->limits->energy_ofdm);
cmd.energy_ofdm_th = htole16(62);
/* CCK modulation. */
cmd.corr_cck_x4 = htole16(calib->cck_x4);
cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4);
cmd.energy_cck = htole16(calib->energy_cck);
/* Barker modulation: use default values. */
cmd.corr_barker = htole16(190);
cmd.corr_barker_mrc = htole16(390);
if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
goto send;
/* Enhanced sensitivity settings. */
len = sizeof (struct iwn_enhanced_sensitivity_cmd);
cmd.ofdm_det_slope_mrc = htole16(668);
cmd.ofdm_det_icept_mrc = htole16(4);
cmd.ofdm_det_slope = htole16(486);
cmd.ofdm_det_icept = htole16(37);
cmd.cck_det_slope_mrc = htole16(853);
cmd.cck_det_icept_mrc = htole16(4);
cmd.cck_det_slope = htole16(476);
cmd.cck_det_icept = htole16(99);
send:
return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
}
/*
* Set STA mode power saving level (between 0 and 5).
* Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
*/
int
iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
{
struct iwn_pmgt_cmd cmd;
const struct iwn_pmgt *pmgt;
uint32_t max, skip_dtim;
pcireg_t reg;
int i;
/* Select which PS parameters to use. */
if (dtim <= 2)
pmgt = &iwn_pmgt[0][level];
else if (dtim <= 10)
pmgt = &iwn_pmgt[1][level];
else
pmgt = &iwn_pmgt[2][level];
memset(&cmd, 0, sizeof cmd);
if (level != 0) /* not CAM */
cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
if (level == 5)
cmd.flags |= htole16(IWN_PS_FAST_PD);
/* Retrieve PCIe Active State Power Management (ASPM). */
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
sc->sc_cap_off + PCI_PCIE_LCSR);
if (!(reg & PCI_PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */
cmd.flags |= htole16(IWN_PS_PCI_PMGT);
cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
if (dtim == 0) {
dtim = 1;
skip_dtim = 0;
} else
skip_dtim = pmgt->skip_dtim;
if (skip_dtim != 0) {
cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
max = pmgt->intval[4];
if (max == (uint32_t)-1)
max = dtim * (skip_dtim + 1);
else if (max > dtim)
max = (max / dtim) * dtim;
} else
max = dtim;
for (i = 0; i < 5; i++)
cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
DPRINTF(("setting power saving level to %d\n", level));
return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
}
int
iwn_send_btcoex(struct iwn_softc *sc)
{
struct iwn_bluetooth cmd;
memset(&cmd, 0, sizeof cmd);
cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
cmd.max_kill = IWN_BT_MAX_KILL_DEF;
DPRINTF(("configuring bluetooth coexistence\n"));
return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
}
int
iwn_send_advanced_btcoex(struct iwn_softc *sc)
{
static const uint32_t btcoex_3wire[12] = {
0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
};
struct iwn_btcoex_priotable btprio;
struct iwn_btcoex_prot btprot;
int error, i;
if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
sc->hw_type == IWN_HW_REV_TYPE_135) {
struct iwn2000_btcoex_config btconfig;
memset(&btconfig, 0, sizeof btconfig);
btconfig.flags = IWN_BT_COEX6000_CHAN_INHIBITION |
(IWN_BT_COEX6000_MODE_3W << IWN_BT_COEX6000_MODE_SHIFT) |
IWN_BT_SYNC_2_BT_DISABLE;
btconfig.max_kill = 5;
btconfig.bt3_t7_timer = 1;
btconfig.kill_ack = htole32(0xffff0000);
btconfig.kill_cts = htole32(0xffff0000);
btconfig.sample_time = 2;
btconfig.bt3_t2_timer = 0xc;
for (i = 0; i < 12; i++)
btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
btconfig.valid = htole16(0xff);
btconfig.prio_boost = htole32(0xf0);
DPRINTF(("configuring advanced bluetooth coexistence\n"));
error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
sizeof(btconfig), 1);
if (error != 0)
return (error);
} else {
struct iwn6000_btcoex_config btconfig;
memset(&btconfig, 0, sizeof btconfig);
btconfig.flags = IWN_BT_COEX6000_CHAN_INHIBITION |
(IWN_BT_COEX6000_MODE_3W << IWN_BT_COEX6000_MODE_SHIFT) |
IWN_BT_SYNC_2_BT_DISABLE;
btconfig.max_kill = 5;
btconfig.bt3_t7_timer = 1;
btconfig.kill_ack = htole32(0xffff0000);
btconfig.kill_cts = htole32(0xffff0000);
btconfig.sample_time = 2;
btconfig.bt3_t2_timer = 0xc;
for (i = 0; i < 12; i++)
btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
btconfig.valid = htole16(0xff);
btconfig.prio_boost = 0xf0;
DPRINTF(("configuring advanced bluetooth coexistence\n"));
error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
sizeof(btconfig), 1);
if (error != 0)
return (error);
}
memset(&btprio, 0, sizeof btprio);
btprio.calib_init1 = 0x6;
btprio.calib_init2 = 0x7;
btprio.calib_periodic_low1 = 0x2;
btprio.calib_periodic_low2 = 0x3;
btprio.calib_periodic_high1 = 0x4;
btprio.calib_periodic_high2 = 0x5;
btprio.dtim = 0x6;
btprio.scan52 = 0x8;
btprio.scan24 = 0xa;
error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
1);
if (error != 0)
return (error);
/* Force BT state machine change */
memset(&btprot, 0, sizeof btprot);
btprot.open = 1;
btprot.type = 1;
error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
if (error != 0)
return (error);
btprot.open = 0;
return (iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1));
}
int
iwn5000_runtime_calib(struct iwn_softc *sc)
{
struct iwn5000_calib_config cmd;
memset(&cmd, 0, sizeof cmd);
cmd.ucode.once.enable = 0xffffffff;
cmd.ucode.once.start = IWN5000_CALIB_DC;
DPRINTF(("configuring runtime calibration\n"));
return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
}
int
iwn_config(struct iwn_softc *sc)
{
struct iwn_ops *ops = &sc->ops;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
uint32_t txmask;
uint16_t rxchain;
int error, ridx;
/* Set radio temperature sensor offset. */
if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
error = iwn6000_temp_offset_calib(sc);
if (error != 0) {
printf("%s: could not set temperature offset\n",
sc->sc_dev.dv_xname);
return error;
}
}
if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
sc->hw_type == IWN_HW_REV_TYPE_2000 ||
sc->hw_type == IWN_HW_REV_TYPE_135 ||
sc->hw_type == IWN_HW_REV_TYPE_105) {
error = iwn2000_temp_offset_calib(sc);
if (error != 0) {
printf("%s: could not set temperature offset\n",
sc->sc_dev.dv_xname);
return error;
}
}
if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
sc->hw_type == IWN_HW_REV_TYPE_6005) {
/* Configure runtime DC calibration. */
error = iwn5000_runtime_calib(sc);
if (error != 0) {
printf("%s: could not configure runtime calibration\n",
sc->sc_dev.dv_xname);
return error;
}
}
/* Configure valid TX chains for >=5000 Series. */
if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
txmask = htole32(sc->txchainmask);
DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
sizeof txmask, 0);
if (error != 0) {
printf("%s: could not configure valid TX chains\n",
sc->sc_dev.dv_xname);
return error;
}
}
/* Configure bluetooth coexistence. */
if (sc->sc_flags & IWN_FLAG_ADV_BT_COEX)
error = iwn_send_advanced_btcoex(sc);
else
error = iwn_send_btcoex(sc);
if (error != 0) {
printf("%s: could not configure bluetooth coexistence\n",
sc->sc_dev.dv_xname);
return error;
}
/* Set mode, channel, RX filter and enable RX. */
memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
if (ic->ic_flags & IEEE80211_F_USEPROT)
sc->rxon.flags |= htole32(IWN_RXON_TGG_PROT);
DPRINTF(("%s: 2ghz prot 0x%x\n", __func__,
le32toh(sc->rxon.flags)));
}
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
sc->rxon.mode = IWN_MODE_STA;
sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
break;
case IEEE80211_M_MONITOR:
sc->rxon.mode = IWN_MODE_MONITOR;
sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
IWN_FILTER_CTL | IWN_FILTER_PROMISC);
break;
default:
/* Should not get there. */
break;
}
sc->rxon.cck_mask = 0x0f; /* not yet negotiated */
sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */
sc->rxon.ht_single_mask = 0xff;
sc->rxon.ht_dual_mask = 0xff;
sc->rxon.ht_triple_mask = 0xff;
rxchain =
IWN_RXCHAIN_VALID(sc->rxchainmask) |
IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) |
IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains);
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
rxchain |= IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask);
rxchain |= (IWN_RXCHAIN_DRIVER_FORCE | IWN_RXCHAIN_MIMO_FORCE);
}
sc->rxon.rxchain = htole16(rxchain);
DPRINTF(("setting configuration\n"));
DPRINTF(("%s: rxon chan %d flags %x cck %x ofdm %x rxchain %x\n",
__func__, sc->rxon.chan, le32toh(sc->rxon.flags), sc->rxon.cck_mask,
sc->rxon.ofdm_mask, sc->rxon.rxchain));
error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
if (error != 0) {
printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
return error;
}
ridx = (sc->sc_ic.ic_curmode == IEEE80211_MODE_11A) ?
IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
if ((error = iwn_add_broadcast_node(sc, 0, ridx)) != 0) {
printf("%s: could not add broadcast node\n",
sc->sc_dev.dv_xname);
return error;
}
/* Configuration has changed, set TX power accordingly. */
if ((error = ops->set_txpower(sc, 0)) != 0) {
printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
return error;
}
if ((error = iwn_set_critical_temp(sc)) != 0) {
printf("%s: could not set critical temperature\n",
sc->sc_dev.dv_xname);
return error;
}
/* Set power saving level to CAM during initialization. */
if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
printf("%s: could not set power saving level\n",
sc->sc_dev.dv_xname);
return error;
}
return 0;
}
uint16_t
iwn_get_active_dwell_time(struct iwn_softc *sc,
uint16_t flags, uint8_t n_probes)
{
/* No channel? Default to 2GHz settings */
if (flags & IEEE80211_CHAN_2GHZ) {
return (IWN_ACTIVE_DWELL_TIME_2GHZ +
IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
}
/* 5GHz dwell time */
return (IWN_ACTIVE_DWELL_TIME_5GHZ +
IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
}
/*
* Limit the total dwell time to 85% of the beacon interval.
*
* Returns the dwell time in milliseconds.
*/
uint16_t
iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
int bintval = 0;
/* bintval is in TU (1.024mS) */
if (ni != NULL)
bintval = ni->ni_intval;
/*
* If it's non-zero, we should calculate the minimum of
* it and the DWELL_BASE.
*
* XXX Yes, the math should take into account that bintval
* is 1.024mS, not 1mS..
*/
if (ic->ic_state == IEEE80211_S_RUN && bintval > 0)
return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
/* No association context? Default */
return dwell_time;
}
uint16_t
iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
{
uint16_t passive;
if (flags & IEEE80211_CHAN_2GHZ) {
passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
} else {
passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
}
/* Clamp to the beacon interval if we're associated */
return (iwn_limit_dwell(sc, passive));
}
int
iwn_scan(struct iwn_softc *sc, uint16_t flags, int bgscan)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwn_scan_hdr *hdr;
struct iwn_cmd_data *tx;
struct iwn_scan_essid *essid;
struct iwn_scan_chan *chan;
struct ieee80211_frame *wh;
struct ieee80211_rateset *rs;
struct ieee80211_channel *c;
uint8_t *buf, *frm;
uint16_t rxchain, dwell_active, dwell_passive;
uint8_t txant;
int buflen, error, is_active;
buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
if (buf == NULL) {
printf("%s: could not allocate buffer for scan command\n",
sc->sc_dev.dv_xname);
return ENOMEM;
}
hdr = (struct iwn_scan_hdr *)buf;
/*
* Move to the next channel if no frames are received within 10ms
* after sending the probe request.
*/
hdr->quiet_time = htole16(10); /* timeout in milliseconds */
hdr->quiet_threshold = htole16(1); /* min # of packets */
if (bgscan) {
int bintval;
/* Set maximum off-channel time. */
hdr->max_out = htole32(200 * 1024);
/* Configure scan pauses which service on-channel traffic. */
bintval = ic->ic_bss->ni_intval ? ic->ic_bss->ni_intval : 100;
hdr->pause_scan = htole32(((100 / bintval) << 22) |
((100 % bintval) * 1024));
}
/* Select antennas for scanning. */
rxchain =
IWN_RXCHAIN_VALID(sc->rxchainmask) |
IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
IWN_RXCHAIN_DRIVER_FORCE;
if ((flags & IEEE80211_CHAN_5GHZ) &&
sc->hw_type == IWN_HW_REV_TYPE_4965) {
/*
* On 4965 ant A and C must be avoided in 5GHz because of a
* HW bug which causes very weak RSSI values being reported.
*/
rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
} else /* Use all available RX antennas. */
rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
hdr->rxchain = htole16(rxchain);
hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
tx = (struct iwn_cmd_data *)(hdr + 1);
tx->flags = htole32(IWN_TX_AUTO_SEQ);
tx->id = sc->broadcast_id;
tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
if (flags & IEEE80211_CHAN_5GHZ) {
/* Send probe requests at 6Mbps. */
tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
} else {
hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
if (bgscan && sc->hw_type == IWN_HW_REV_TYPE_4965 &&
sc->rxon.chan > 14) {
/*
* 4965 firmware can crash when sending probe requests
* with CCK rates while associated to a 5GHz AP.
* Send probe requests at 6Mbps OFDM as a workaround.
*/
tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
} else {
/* Send probe requests at 1Mbps. */
tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
tx->rflags = IWN_RFLAG_CCK;
}
rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
}
/* Use the first valid TX antenna. */
txant = IWN_LSB(sc->txchainmask);
tx->rflags |= IWN_RFLAG_ANT(txant);
/*
* Only do active scanning if we're announcing a probe request
* for a given SSID (or more, if we ever add it to the driver.)
*/
is_active = 0;
/*
* If we're scanning for a specific SSID, add it to the command.
*/
essid = (struct iwn_scan_essid *)(tx + 1);
if (ic->ic_des_esslen != 0) {
essid[0].id = IEEE80211_ELEMID_SSID;
essid[0].len = ic->ic_des_esslen;
memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
is_active = 1;
}
/*
* Build a probe request frame. Most of the following code is a
* copy & paste of what is done in net80211.
*/
wh = (struct ieee80211_frame *)(essid + 20);
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
IEEE80211_FC0_SUBTYPE_PROBE_REQ;
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
*(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
*(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
frm = (uint8_t *)(wh + 1);
frm = ieee80211_add_ssid(frm, NULL, 0);
frm = ieee80211_add_rates(frm, rs);
if (rs->rs_nrates > IEEE80211_RATE_SIZE)
frm = ieee80211_add_xrates(frm, rs);
if (ic->ic_flags & IEEE80211_F_HTON)
frm = ieee80211_add_htcaps(frm, ic);
/* Set length of probe request. */
tx->len = htole16(frm - (uint8_t *)wh);
/*
* If active scanning is requested but a certain channel is
* marked passive, we can do active scanning if we detect
* transmissions.
*
* There is an issue with some firmware versions that triggers
* a sysassert on a "good CRC threshold" of zero (== disabled),
* on a radar channel even though this means that we should NOT
* send probes.
*
* The "good CRC threshold" is the number of frames that we
* need to receive during our dwell time on a channel before
* sending out probes -- setting this to a huge value will
* mean we never reach it, but at the same time work around
* the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
* here instead of IWN_GOOD_CRC_TH_DISABLED.
*
* This was fixed in later versions along with some other
* scan changes, and the threshold behaves as a flag in those
* versions.
*/
/*
* If we're doing active scanning, set the crc_threshold
* to a suitable value. This is different to active veruss
* passive scanning depending upon the channel flags; the
* firmware will obey that particular check for us.
*/
if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
hdr->crc_threshold = is_active ?
IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
else
hdr->crc_threshold = is_active ?
IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
chan = (struct iwn_scan_chan *)frm;
for (c = &ic->ic_channels[1];
c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
if ((c->ic_flags & flags) != flags)
continue;
chan->chan = htole16(ieee80211_chan2ieee(ic, c));
DPRINTFN(2, ("adding channel %d\n", chan->chan));
chan->flags = 0;
if (ic->ic_des_esslen != 0)
chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
chan->flags |= htole32(IWN_CHAN_PASSIVE);
else
chan->flags |= htole32(IWN_CHAN_ACTIVE);
/*
* Calculate the active/passive dwell times.
*/
dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
dwell_passive = iwn_get_passive_dwell_time(sc, flags);
/* Make sure they're valid */
if (dwell_passive <= dwell_active)
dwell_passive = dwell_active + 1;
chan->active = htole16(dwell_active);
chan->passive = htole16(dwell_passive);
chan->dsp_gain = 0x6e;
if (IEEE80211_IS_CHAN_5GHZ(c)) {
chan->rf_gain = 0x3b;
} else {
chan->rf_gain = 0x28;
}
hdr->nchan++;
chan++;
}
buflen = (uint8_t *)chan - buf;
hdr->len = htole16(buflen);
error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
if (error == 0) {
/*
* The current mode might have been fixed during association.
* Ensure all channels get scanned.
*/
if (IFM_MODE(ic->ic_media.ifm_cur->ifm_media) == IFM_AUTO)
ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
sc->sc_flags |= IWN_FLAG_SCANNING;
if (bgscan)
sc->sc_flags |= IWN_FLAG_BGSCAN;
}
free(buf, M_DEVBUF, IWN_SCAN_MAXSZ);
return error;
}
void
iwn_scan_abort(struct iwn_softc *sc)
{
iwn_cmd(sc, IWN_CMD_SCAN_ABORT, NULL, 0, 1);
/* XXX Cannot wait for status response in interrupt context. */
DELAY(100);
sc->sc_flags &= ~IWN_FLAG_SCANNING;
sc->sc_flags &= ~IWN_FLAG_BGSCAN;
}
int
iwn_bgscan(struct ieee80211com *ic)
{
struct iwn_softc *sc = ic->ic_softc;
int error;
if (sc->sc_flags & IWN_FLAG_SCANNING)
return 0;
error = iwn_scan(sc, IEEE80211_CHAN_2GHZ, 1);
if (error)
printf("%s: could not initiate background scan\n",
sc->sc_dev.dv_xname);
return error;
}
void
iwn_rxon_configure_ht40(struct ieee80211com *ic, struct ieee80211_node *ni)
{
struct iwn_softc *sc = ic->ic_softc;
uint8_t sco = (ni->ni_htop0 & IEEE80211_HTOP0_SCO_MASK);
enum ieee80211_htprot htprot = (ni->ni_htop1 &
IEEE80211_HTOP1_PROT_MASK);
sc->rxon.flags &= ~htole32(IWN_RXON_HT_CHANMODE_MIXED2040 |
IWN_RXON_HT_CHANMODE_PURE40 | IWN_RXON_HT_HT40MINUS);
if (ieee80211_node_supports_ht_chan40(ni) &&
(sco == IEEE80211_HTOP0_SCO_SCA ||
sco == IEEE80211_HTOP0_SCO_SCB)) {
if (sco == IEEE80211_HTOP0_SCO_SCB)
sc->rxon.flags |= htole32(IWN_RXON_HT_HT40MINUS);
if (htprot == IEEE80211_HTPROT_20MHZ)
sc->rxon.flags |= htole32(IWN_RXON_HT_CHANMODE_PURE40);
else
sc->rxon.flags |= htole32(
IWN_RXON_HT_CHANMODE_MIXED2040);
}
}
int
iwn_rxon_ht40_enabled(struct iwn_softc *sc)
{
return ((le32toh(sc->rxon.flags) & IWN_RXON_HT_CHANMODE_MIXED2040) ||
(le32toh(sc->rxon.flags) & IWN_RXON_HT_CHANMODE_PURE40)) ? 1 : 0;
}
int
iwn_auth(struct iwn_softc *sc, int arg)
{
struct iwn_ops *ops = &sc->ops;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
int error, ridx;
int bss_switch =
(!IEEE80211_ADDR_EQ(sc->bss_node_addr, etheranyaddr) &&
!IEEE80211_ADDR_EQ(sc->bss_node_addr, ni->ni_macaddr));
/* Update adapter configuration. */
IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
if (ic->ic_flags & IEEE80211_F_USEPROT)
sc->rxon.flags |= htole32(IWN_RXON_TGG_PROT);
DPRINTF(("%s: 2ghz prot 0x%x\n", __func__,
le32toh(sc->rxon.flags)));
}
if (ic->ic_flags & IEEE80211_F_SHSLOT)
sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
else
sc->rxon.flags &= ~htole32(IWN_RXON_SHSLOT);
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
else
sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE);
switch (ic->ic_curmode) {
case IEEE80211_MODE_11A:
sc->rxon.cck_mask = 0;
sc->rxon.ofdm_mask = 0x15;
break;
case IEEE80211_MODE_11B:
sc->rxon.cck_mask = 0x03;
sc->rxon.ofdm_mask = 0;
break;
default: /* Assume 802.11b/g/n. */
sc->rxon.cck_mask = 0x0f;
sc->rxon.ofdm_mask = 0x15;
}
/* Configure 40MHz early to avoid problems on 6205 devices. */
iwn_rxon_configure_ht40(ic, ni);
DPRINTF(("%s: rxon chan %d flags %x cck %x ofdm %x\n", __func__,
sc->rxon.chan, le32toh(sc->rxon.flags), sc->rxon.cck_mask,
sc->rxon.ofdm_mask));
error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
if (error != 0) {
printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
return error;
}
/* Configuration has changed, set TX power accordingly. */
if ((error = ops->set_txpower(sc, 1)) != 0) {
printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
return error;
}
/*
* Reconfiguring RXON clears the firmware nodes table so we must
* add the broadcast node again.
*/
ridx = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ?
IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
if ((error = iwn_add_broadcast_node(sc, 1, ridx)) != 0) {
printf("%s: could not add broadcast node\n",
sc->sc_dev.dv_xname);
return error;
}
/*
* Make sure the firmware gets to see a beacon before we send
* the auth request. Otherwise the Tx attempt can fail due to
* the firmware's built-in regulatory domain enforcement.
* Delaying here for every incoming deauth frame can result in a DoS.
* Don't delay if we're here because of an incoming frame (arg != -1)
* or if we're already waiting for a response (ic_mgt_timer != 0).
* If we are switching APs after a background scan then net80211 has
* just faked the reception of a deauth frame from our old AP, so it
* is safe to delay in that case.
*/
if ((arg == -1 || bss_switch) && ic->ic_mgt_timer == 0)
DELAY(ni->ni_intval * 3 * IEEE80211_DUR_TU);
/* We can now clear the cached address of our previous AP. */
memset(sc->bss_node_addr, 0, sizeof(sc->bss_node_addr));
return 0;
}
int
iwn_run(struct iwn_softc *sc)
{
struct iwn_ops *ops = &sc->ops;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
struct iwn_node *wn = (void *)ni;
struct iwn_node_info node;
int error;
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
/* Link LED blinks while monitoring. */
iwn_set_led(sc, IWN_LED_LINK, 50, 50);
return 0;
}
if ((error = iwn_set_timing(sc, ni)) != 0) {
printf("%s: could not set timing\n", sc->sc_dev.dv_xname);
return error;
}
/* Update adapter configuration. */
sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
/* Short preamble and slot time are negotiated when associating. */
sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
if (ic->ic_flags & IEEE80211_F_SHSLOT)
sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
sc->rxon.filter |= htole32(IWN_FILTER_BSS);
/* HT is negotiated when associating. */
if (ni->ni_flags & IEEE80211_NODE_HT) {
enum ieee80211_htprot htprot =
(ni->ni_htop1 & IEEE80211_HTOP1_PROT_MASK);
DPRINTF(("%s: htprot = %d\n", __func__, htprot));
sc->rxon.flags |= htole32(IWN_RXON_HT_PROTMODE(htprot));
} else
sc->rxon.flags &= ~htole32(IWN_RXON_HT_PROTMODE(3));
iwn_rxon_configure_ht40(ic, ni);
if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) {
/* 11a or 11n 5GHz */
sc->rxon.cck_mask = 0;
sc->rxon.ofdm_mask = 0x15;
} else if (ni->ni_flags & IEEE80211_NODE_HT) {
/* 11n 2GHz */
sc->rxon.cck_mask = 0x0f;
sc->rxon.ofdm_mask = 0x15;
} else {
if (ni->ni_rates.rs_nrates == 4) {
/* 11b */
sc->rxon.cck_mask = 0x03;
sc->rxon.ofdm_mask = 0;
} else {
/* assume 11g */
sc->rxon.cck_mask = 0x0f;
sc->rxon.ofdm_mask = 0x15;
}
}
DPRINTF(("%s: rxon chan %d flags %x cck %x ofdm %x\n", __func__,
sc->rxon.chan, le32toh(sc->rxon.flags), sc->rxon.cck_mask,
sc->rxon.ofdm_mask));
error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
if (error != 0) {
printf("%s: could not update configuration\n",
sc->sc_dev.dv_xname);
return error;
}
/* Configuration has changed, set TX power accordingly. */
if ((error = ops->set_txpower(sc, 1)) != 0) {
printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
return error;
}
/* Fake a join to initialize the TX rate. */
((struct iwn_node *)ni)->id = IWN_ID_BSS;
iwn_newassoc(ic, ni, 1);
/* Add BSS node. */
memset(&node, 0, sizeof node);
IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
node.id = IWN_ID_BSS;
if (ni->ni_flags & IEEE80211_NODE_HT) {
node.htmask = (IWN_AMDPU_SIZE_FACTOR_MASK |
IWN_AMDPU_DENSITY_MASK);
node.htflags = htole32(
IWN_AMDPU_SIZE_FACTOR(
(ic->ic_ampdu_params & IEEE80211_AMPDU_PARAM_LE)) |
IWN_AMDPU_DENSITY(
(ic->ic_ampdu_params & IEEE80211_AMPDU_PARAM_SS) >> 2));
if (iwn_rxon_ht40_enabled(sc))
node.htflags |= htole32(IWN_40MHZ_ENABLE);
}
DPRINTF(("adding BSS node\n"));
error = ops->add_node(sc, &node, 1);
if (error != 0) {
printf("%s: could not add BSS node\n", sc->sc_dev.dv_xname);
return error;
}
/* Cache address of AP in case it changes after a background scan. */
IEEE80211_ADDR_COPY(sc->bss_node_addr, ni->ni_macaddr);
DPRINTF(("setting link quality for node %d\n", node.id));
if ((error = iwn_set_link_quality(sc, ni)) != 0) {
printf("%s: could not setup link quality for node %d\n",
sc->sc_dev.dv_xname, node.id);
return error;
}
if ((error = iwn_init_sensitivity(sc)) != 0) {
printf("%s: could not set sensitivity\n",
sc->sc_dev.dv_xname);
return error;
}
/* Start periodic calibration timer. */
sc->calib.state = IWN_CALIB_STATE_ASSOC;
sc->calib_cnt = 0;
timeout_add_msec(&sc->calib_to, 500);
ieee80211_ra_node_init(&wn->rn);
/* Link LED always on while associated. */
iwn_set_led(sc, IWN_LED_LINK, 0, 1);
return 0;
}
/*
* We support CCMP hardware encryption/decryption of unicast frames only.
* HW support for TKIP really sucks. We should let TKIP die anyway.
*/
int
iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
struct iwn_softc *sc = ic->ic_softc;
struct iwn_ops *ops = &sc->ops;
struct iwn_node *wn = (void *)ni;
struct iwn_node_info node;
uint16_t kflags;
if ((k->k_flags & IEEE80211_KEY_GROUP) ||
k->k_cipher != IEEE80211_CIPHER_CCMP)
return ieee80211_set_key(ic, ni, k);
kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
if (k->k_flags & IEEE80211_KEY_GROUP)
kflags |= IWN_KFLAG_GROUP;
memset(&node, 0, sizeof node);
node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
sc->broadcast_id : wn->id;
node.control = IWN_NODE_UPDATE;
node.flags = IWN_FLAG_SET_KEY;
node.kflags = htole16(kflags);
node.kid = k->k_id;
memcpy(node.key, k->k_key, k->k_len);
DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
return ops->add_node(sc, &node, 1);
}
void
iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
struct iwn_softc *sc = ic->ic_softc;
struct iwn_ops *ops = &sc->ops;
struct iwn_node *wn = (void *)ni;
struct iwn_node_info node;
if ((k->k_flags & IEEE80211_KEY_GROUP) ||
k->k_cipher != IEEE80211_CIPHER_CCMP) {
/* See comment about other ciphers above. */
ieee80211_delete_key(ic, ni, k);
return;
}
if (ic->ic_state != IEEE80211_S_RUN)
return; /* Nothing to do. */
memset(&node, 0, sizeof node);
node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
sc->broadcast_id : wn->id;
node.control = IWN_NODE_UPDATE;
node.flags = IWN_FLAG_SET_KEY;
node.kflags = htole16(IWN_KFLAG_INVALID);
node.kid = 0xff;
DPRINTF(("delete keys for node %d\n", node.id));
(void)ops->add_node(sc, &node, 1);
}
void
iwn_updatechan(struct ieee80211com *ic)
{
struct iwn_softc *sc = ic->ic_softc;
if (ic->ic_state != IEEE80211_S_RUN)
return;
iwn_rxon_configure_ht40(ic, ic->ic_bss);
sc->ops.update_rxon(sc);
iwn_set_link_quality(sc, ic->ic_bss);
}
void
iwn_updateprot(struct ieee80211com *ic)
{
struct iwn_softc *sc = ic->ic_softc;
enum ieee80211_htprot htprot;
if (ic->ic_state != IEEE80211_S_RUN)
return;
/* Update ERP protection setting. */
if (ic->ic_flags & IEEE80211_F_USEPROT)
sc->rxon.flags |= htole32(IWN_RXON_TGG_PROT);
else
sc->rxon.flags &= ~htole32(IWN_RXON_TGG_PROT);
/* Update HT protection mode setting. */
htprot = (ic->ic_bss->ni_htop1 & IEEE80211_HTOP1_PROT_MASK) >>
IEEE80211_HTOP1_PROT_SHIFT;
sc->rxon.flags &= ~htole32(IWN_RXON_HT_PROTMODE(3));
sc->rxon.flags |= htole32(IWN_RXON_HT_PROTMODE(htprot));
sc->ops.update_rxon(sc);
}
void
iwn_updateslot(struct ieee80211com *ic)
{
struct iwn_softc *sc = ic->ic_softc;
if (ic->ic_state != IEEE80211_S_RUN)
return;
if (ic->ic_flags & IEEE80211_F_SHSLOT)
sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
else
sc->rxon.flags &= ~htole32(IWN_RXON_SHSLOT);
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
else
sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE);
sc->ops.update_rxon(sc);
}
void
iwn_update_rxon_restore_power(struct iwn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwn_ops *ops = &sc->ops;
int error;
DELAY(100);
/* All RXONs wipe the firmware's txpower table. Restore it. */
error = ops->set_txpower(sc, 1);
if (error != 0)
printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
DELAY(100);
/* Restore power saving level */
if (ic->ic_flags & IEEE80211_F_PMGTON)
error = iwn_set_pslevel(sc, 0, 3, 1);
else
error = iwn_set_pslevel(sc, 0, 0, 1);
if (error != 0)
printf("%s: could not set PS level\n", sc->sc_dev.dv_xname);
}
void
iwn5000_update_rxon(struct iwn_softc *sc)
{
struct iwn_rxon_assoc rxon_assoc;
int s, error;
/* Update RXON config. */
memset(&rxon_assoc, 0, sizeof(rxon_assoc));
rxon_assoc.flags = sc->rxon.flags;
rxon_assoc.filter = sc->rxon.filter;
rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
rxon_assoc.cck_mask = sc->rxon.cck_mask;
rxon_assoc.ht_single_mask = sc->rxon.ht_single_mask;
rxon_assoc.ht_dual_mask = sc->rxon.ht_dual_mask;
rxon_assoc.ht_triple_mask = sc->rxon.ht_triple_mask;
rxon_assoc.rxchain = sc->rxon.rxchain;
rxon_assoc.acquisition = sc->rxon.acquisition;
s = splnet();
error = iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &rxon_assoc,
sizeof(rxon_assoc), 1);
if (error != 0)
printf("%s: RXON_ASSOC command failed\n", sc->sc_dev.dv_xname);
iwn_update_rxon_restore_power(sc);
splx(s);
}
void
iwn4965_update_rxon(struct iwn_softc *sc)
{
struct iwn4965_rxon_assoc rxon_assoc;
int s, error;
/* Update RXON config. */
memset(&rxon_assoc, 0, sizeof(rxon_assoc));
rxon_assoc.flags = sc->rxon.flags;
rxon_assoc.filter = sc->rxon.filter;
rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
rxon_assoc.cck_mask = sc->rxon.cck_mask;
rxon_assoc.ht_single_mask = sc->rxon.ht_single_mask;
rxon_assoc.ht_dual_mask = sc->rxon.ht_dual_mask;
rxon_assoc.rxchain = sc->rxon.rxchain;
s = splnet();
error = iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &rxon_assoc,
sizeof(rxon_assoc), 1);
if (error != 0)
printf("%s: RXON_ASSOC command failed\n", sc->sc_dev.dv_xname);
iwn_update_rxon_restore_power(sc);
splx(s);
}
/*
* This function is called by upper layer when an ADDBA request is received
* from another STA and before the ADDBA response is sent.
*/
int
iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
uint8_t tid)
{
struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
struct iwn_softc *sc = ic->ic_softc;
struct iwn_ops *ops = &sc->ops;
struct iwn_node *wn = (void *)ni;
struct iwn_node_info node;
memset(&node, 0, sizeof node);
node.id = wn->id;
node.control = IWN_NODE_UPDATE;
node.flags = IWN_FLAG_SET_ADDBA;
node.addba_tid = tid;
node.addba_ssn = htole16(ba->ba_winstart);
DPRINTF(("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
ba->ba_winstart));
/* XXX async command, so firmware may still fail to add BA agreement */
return ops->add_node(sc, &node, 1);
}
/*
* This function is called by upper layer on teardown of an HT-immediate
* Block Ack agreement (e.g., upon receipt of a DELBA frame).
*/
void
iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
uint8_t tid)
{
struct iwn_softc *sc = ic->ic_softc;
struct iwn_ops *ops = &sc->ops;
struct iwn_node *wn = (void *)ni;
struct iwn_node_info node;
memset(&node, 0, sizeof node);
node.id = wn->id;
node.control = IWN_NODE_UPDATE;
node.flags = IWN_FLAG_SET_DELBA;
node.delba_tid = tid;
DPRINTF(("DELBA RA=%d TID=%d\n", wn->id, tid));
(void)ops->add_node(sc, &node, 1);
}
/*
* This function is called by upper layer when an ADDBA response is received
* from another STA.
*/
int
iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
uint8_t tid)
{
struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
struct iwn_softc *sc = ic->ic_softc;
struct iwn_ops *ops = &sc->ops;
struct iwn_node *wn = (void *)ni;
struct iwn_node_info node;
int qid = sc->first_agg_txq + tid;
int error;
/* Ensure we can map this TID to an aggregation queue. */
if (tid >= IWN_NUM_AMPDU_TID || ba->ba_winsize > IWN_SCHED_WINSZ ||
qid > sc->ntxqs || (sc->agg_queue_mask & (1 << qid)))
return ENOSPC;
/* Enable TX for the specified RA/TID. */
wn->disable_tid &= ~(1 << tid);
memset(&node, 0, sizeof node);
node.id = wn->id;
node.control = IWN_NODE_UPDATE;
node.flags = IWN_FLAG_SET_DISABLE_TID;
node.disable_tid = htole16(wn->disable_tid);
error = ops->add_node(sc, &node, 1);
if (error != 0)
return error;
if ((error = iwn_nic_lock(sc)) != 0)
return error;
ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
iwn_nic_unlock(sc);
sc->agg_queue_mask |= (1 << qid);
sc->sc_tx_ba[tid].wn = wn;
ba->ba_bitmap = 0;
return 0;
}
void
iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
uint8_t tid)
{
struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
struct iwn_softc *sc = ic->ic_softc;
struct iwn_ops *ops = &sc->ops;
int qid = sc->first_agg_txq + tid;
struct iwn_node *wn = (void *)ni;
struct iwn_node_info node;
/* Discard all frames in the current window. */
iwn_ampdu_txq_advance(sc, &sc->txq[qid], qid,
IWN_AGG_SSN_TO_TXQ_IDX(ba->ba_winend));
if (iwn_nic_lock(sc) != 0)
return;
ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
iwn_nic_unlock(sc);
sc->agg_queue_mask &= ~(1 << qid);
sc->sc_tx_ba[tid].wn = NULL;
ba->ba_bitmap = 0;
/* Disable TX for the specified RA/TID. */
wn->disable_tid |= (1 << tid);
memset(&node, 0, sizeof node);
node.id = wn->id;
node.control = IWN_NODE_UPDATE;
node.flags = IWN_FLAG_SET_DISABLE_TID;
node.disable_tid = htole16(wn->disable_tid);
ops->add_node(sc, &node, 1);
}
void
iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
uint8_t tid, uint16_t ssn)
{
struct iwn_node *wn = (void *)ni;
int qid = IWN4965_FIRST_AGG_TXQUEUE + tid;
uint16_t idx = IWN_AGG_SSN_TO_TXQ_IDX(ssn);
/* Stop TX scheduler while we're changing its configuration. */
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
IWN4965_TXQ_STATUS_CHGACT);
/* Assign RA/TID translation to the queue. */
iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
wn->id << 4 | tid);
/* Enable chain-building mode for the queue. */
iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
/* Set starting sequence number from the ADDBA request. */
sc->txq[qid].cur = sc->txq[qid].read = idx;
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | idx);
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
/* Set scheduler window size. */
iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
IWN_SCHED_WINSZ);
/* Set scheduler frame limit. */
iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
IWN_SCHED_LIMIT << 16);
/* Enable interrupts for the queue. */
iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
/* Mark the queue as active. */
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
iwn_tid2fifo[tid] << 1);
}
void
iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
{
int qid = IWN4965_FIRST_AGG_TXQUEUE + tid;
uint16_t idx = IWN_AGG_SSN_TO_TXQ_IDX(ssn);
/* Stop TX scheduler while we're changing its configuration. */
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
IWN4965_TXQ_STATUS_CHGACT);
/* Set starting sequence number from the ADDBA request. */
sc->txq[qid].cur = sc->txq[qid].read = idx;
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | idx);
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
/* Disable interrupts for the queue. */
iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
/* Mark the queue as inactive. */
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
}
void
iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
uint8_t tid, uint16_t ssn)
{
int qid = IWN5000_FIRST_AGG_TXQUEUE + tid;
int idx = IWN_AGG_SSN_TO_TXQ_IDX(ssn);
struct iwn_node *wn = (void *)ni;
/* Stop TX scheduler while we're changing its configuration. */
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
IWN5000_TXQ_STATUS_CHGACT);
/* Assign RA/TID translation to the queue. */
iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
wn->id << 4 | tid);
/* Enable chain-building mode for the queue. */
iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
/* Enable aggregation for the queue. */
iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
/* Set starting sequence number from the ADDBA request. */
sc->txq[qid].cur = sc->txq[qid].read = idx;
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | idx);
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
/* Set scheduler window size and frame limit. */
iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
/* Enable interrupts for the queue. */
iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
/* Mark the queue as active. */
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
}
void
iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
{
int qid = IWN5000_FIRST_AGG_TXQUEUE + tid;
int idx = IWN_AGG_SSN_TO_TXQ_IDX(ssn);
/* Stop TX scheduler while we're changing its configuration. */
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
IWN5000_TXQ_STATUS_CHGACT);
/* Disable aggregation for the queue. */
iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
/* Set starting sequence number from the ADDBA request. */
sc->txq[qid].cur = sc->txq[qid].read = idx;
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | idx);
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
/* Disable interrupts for the queue. */
iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
/* Mark the queue as inactive. */
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
}
/*
* Query calibration tables from the initialization firmware. We do this
* only once at first boot. Called from a process context.
*/
int
iwn5000_query_calibration(struct iwn_softc *sc)
{
struct iwn5000_calib_config cmd;
int error;
memset(&cmd, 0, sizeof cmd);
cmd.ucode.once.enable = 0xffffffff;
cmd.ucode.once.start = 0xffffffff;
cmd.ucode.once.send = 0xffffffff;
cmd.ucode.flags = 0xffffffff;
DPRINTF(("sending calibration query\n"));
error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
if (error != 0)
return error;
/* Wait at most two seconds for calibration to complete. */
if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
error = tsleep_nsec(sc, PCATCH, "iwncal", SEC_TO_NSEC(2));
return error;
}
/*
* Send calibration results to the runtime firmware. These results were
* obtained on first boot from the initialization firmware.
*/
int
iwn5000_send_calibration(struct iwn_softc *sc)
{
int idx, error;
for (idx = 0; idx < 5; idx++) {
if (sc->calibcmd[idx].buf == NULL)
continue; /* No results available. */
DPRINTF(("send calibration result idx=%d len=%d\n",
idx, sc->calibcmd[idx].len));
error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
sc->calibcmd[idx].len, 0);
if (error != 0) {
printf("%s: could not send calibration result\n",
sc->sc_dev.dv_xname);
return error;
}
}
return 0;
}
int
iwn5000_send_wimax_coex(struct iwn_softc *sc)
{
struct iwn5000_wimax_coex wimax;
#ifdef notyet
if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
/* Enable WiMAX coexistence for combo adapters. */
wimax.flags =
IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
IWN_WIMAX_COEX_STA_TABLE_VALID |
IWN_WIMAX_COEX_ENABLE;
memcpy(wimax.events, iwn6050_wimax_events,
sizeof iwn6050_wimax_events);
} else
#endif
{
/* Disable WiMAX coexistence. */
wimax.flags = 0;
memset(wimax.events, 0, sizeof wimax.events);
}
DPRINTF(("Configuring WiMAX coexistence\n"));
return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
}
int
iwn5000_crystal_calib(struct iwn_softc *sc)
{
struct iwn5000_phy_calib_crystal cmd;
memset(&cmd, 0, sizeof cmd);
cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
cmd.ngroups = 1;
cmd.isvalid = 1;
cmd.cap_pin[0] = letoh32(sc->eeprom_crystal) & 0xff;
cmd.cap_pin[1] = (letoh32(sc->eeprom_crystal) >> 16) & 0xff;
DPRINTF(("sending crystal calibration %d, %d\n",
cmd.cap_pin[0], cmd.cap_pin[1]));
return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
}
int
iwn6000_temp_offset_calib(struct iwn_softc *sc)
{
struct iwn6000_phy_calib_temp_offset cmd;
memset(&cmd, 0, sizeof cmd);
cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
cmd.ngroups = 1;
cmd.isvalid = 1;
if (sc->eeprom_temp != 0)
cmd.offset = htole16(sc->eeprom_temp);
else
cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
DPRINTF(("setting radio sensor offset to %d\n", letoh16(cmd.offset)));
return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
}
int
iwn2000_temp_offset_calib(struct iwn_softc *sc)
{
struct iwn2000_phy_calib_temp_offset cmd;
memset(&cmd, 0, sizeof cmd);
cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
cmd.ngroups = 1;
cmd.isvalid = 1;
if (sc->eeprom_rawtemp != 0) {
cmd.offset_low = htole16(sc->eeprom_rawtemp);
cmd.offset_high = htole16(sc->eeprom_temp);
} else {
cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
}
cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
letoh16(cmd.offset_low), letoh16(cmd.offset_high),
letoh16(cmd.burnt_voltage_ref)));
return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
}
/*
* This function is called after the runtime firmware notifies us of its
* readiness (called in a process context).
*/
int
iwn4965_post_alive(struct iwn_softc *sc)
{
int error, qid;
if ((error = iwn_nic_lock(sc)) != 0)
return error;
/* Clear TX scheduler state in SRAM. */
sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
/* Set physical address of TX scheduler rings (1KB aligned). */
iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
/* Disable chain mode for all our 16 queues. */
iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
/* Set scheduler window size. */
iwn_mem_write(sc, sc->sched_base +
IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
/* Set scheduler frame limit. */
iwn_mem_write(sc, sc->sched_base +
IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
IWN_SCHED_LIMIT << 16);
}
/* Enable interrupts for all our 16 queues. */
iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
/* Identify TX FIFO rings (0-7). */
iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
for (qid = 0; qid < 7; qid++) {
static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
}
iwn_nic_unlock(sc);
return 0;
}
/*
* This function is called after the initialization or runtime firmware
* notifies us of its readiness (called in a process context).
*/
int
iwn5000_post_alive(struct iwn_softc *sc)
{
int error, qid;
/* Switch to using ICT interrupt mode. */
iwn5000_ict_reset(sc);
if ((error = iwn_nic_lock(sc)) != 0)
return error;
/* Clear TX scheduler state in SRAM. */
sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
/* Set physical address of TX scheduler rings (1KB aligned). */
iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
/* Disable scheduler chain extension (enabled by default in HW). */
iwn_prph_write(sc, IWN5000_SCHED_CHAINEXT_EN, 0);
IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
/* Enable chain mode for all queues, except command queue. */
iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
iwn_mem_write(sc, sc->sched_base +
IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
/* Set scheduler window size and frame limit. */
iwn_mem_write(sc, sc->sched_base +
IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
}
/* Enable interrupts for all our 20 queues. */
iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
/* Identify TX FIFO rings (0-7). */
iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
for (qid = 0; qid < 7; qid++) {
static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
}
iwn_nic_unlock(sc);
/* Configure WiMAX coexistence for combo adapters. */
error = iwn5000_send_wimax_coex(sc);
if (error != 0) {
printf("%s: could not configure WiMAX coexistence\n",
sc->sc_dev.dv_xname);
return error;
}
if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
/* Perform crystal calibration. */
error = iwn5000_crystal_calib(sc);
if (error != 0) {
printf("%s: crystal calibration failed\n",
sc->sc_dev.dv_xname);
return error;
}
}
if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
/* Query calibration from the initialization firmware. */
if ((error = iwn5000_query_calibration(sc)) != 0) {
printf("%s: could not query calibration\n",
sc->sc_dev.dv_xname);
return error;
}
/*
* We have the calibration results now, reboot with the
* runtime firmware (call ourselves recursively!)
*/
iwn_hw_stop(sc);
error = iwn_hw_init(sc);
} else {
/* Send calibration results to runtime firmware. */
error = iwn5000_send_calibration(sc);
}
return error;
}
/*
* The firmware boot code is small and is intended to be copied directly into
* the NIC internal memory (no DMA transfer).
*/
int
iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
{
int error, ntries;
size /= sizeof (uint32_t);
if ((error = iwn_nic_lock(sc)) != 0)
return error;
/* Copy microcode image into NIC memory. */
iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
(const uint32_t *)ucode, size);
iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
/* Start boot load now. */
iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
/* Wait for transfer to complete. */
for (ntries = 0; ntries < 1000; ntries++) {
if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
IWN_BSM_WR_CTRL_START))
break;
DELAY(10);
}
if (ntries == 1000) {
printf("%s: could not load boot firmware\n",
sc->sc_dev.dv_xname);
iwn_nic_unlock(sc);
return ETIMEDOUT;
}
/* Enable boot after power up. */
iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
iwn_nic_unlock(sc);
return 0;
}
int
iwn4965_load_firmware(struct iwn_softc *sc)
{
struct iwn_fw_info *fw = &sc->fw;
struct iwn_dma_info *dma = &sc->fw_dma;
int error;
/* Copy initialization sections into pre-allocated DMA-safe memory. */
memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
BUS_DMASYNC_PREWRITE);
memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
fw->init.text, fw->init.textsz);
bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
fw->init.textsz, BUS_DMASYNC_PREWRITE);
/* Tell adapter where to find initialization sections. */
if ((error = iwn_nic_lock(sc)) != 0)
return error;
iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
(dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
iwn_nic_unlock(sc);
/* Load firmware boot code. */
error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
if (error != 0) {
printf("%s: could not load boot firmware\n",
sc->sc_dev.dv_xname);
return error;
}
/* Now press "execute". */
IWN_WRITE(sc, IWN_RESET, 0);
/* Wait at most one second for first alive notification. */
if ((error = tsleep_nsec(sc, PCATCH, "iwninit", SEC_TO_NSEC(1))) != 0) {
printf("%s: timeout waiting for adapter to initialize\n",
sc->sc_dev.dv_xname);
return error;
}
/* Retrieve current temperature for initial TX power calibration. */
sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
sc->temp = iwn4965_get_temperature(sc);
/* Copy runtime sections into pre-allocated DMA-safe memory. */
memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
BUS_DMASYNC_PREWRITE);
memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
fw->main.text, fw->main.textsz);
bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
fw->main.textsz, BUS_DMASYNC_PREWRITE);
/* Tell adapter where to find runtime sections. */
if ((error = iwn_nic_lock(sc)) != 0)
return error;
iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
(dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
IWN_FW_UPDATED | fw->main.textsz);
iwn_nic_unlock(sc);
return 0;
}
int
iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
const uint8_t *section, int size)
{
struct iwn_dma_info *dma = &sc->fw_dma;
int error;
/* Copy firmware section into pre-allocated DMA-safe memory. */
memcpy(dma->vaddr, section, size);
bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
if ((error = iwn_nic_lock(sc)) != 0)
return error;
IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
IWN_FH_TX_CONFIG_DMA_PAUSE);
IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
IWN_LOADDR(dma->paddr));
IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
IWN_HIADDR(dma->paddr) << 28 | size);
IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
IWN_FH_TXBUF_STATUS_TBNUM(1) |
IWN_FH_TXBUF_STATUS_TBIDX(1) |
IWN_FH_TXBUF_STATUS_TFBD_VALID);
/* Kick Flow Handler to start DMA transfer. */
IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
iwn_nic_unlock(sc);
/* Wait at most five seconds for FH DMA transfer to complete. */
return tsleep_nsec(sc, PCATCH, "iwninit", SEC_TO_NSEC(5));
}
int
iwn5000_load_firmware(struct iwn_softc *sc)
{
struct iwn_fw_part *fw;
int error;
/* Load the initialization firmware on first boot only. */
fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
&sc->fw.main : &sc->fw.init;
error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
fw->text, fw->textsz);
if (error != 0) {
printf("%s: could not load firmware %s section\n",
sc->sc_dev.dv_xname, ".text");
return error;
}
error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
fw->data, fw->datasz);
if (error != 0) {
printf("%s: could not load firmware %s section\n",
sc->sc_dev.dv_xname, ".data");
return error;
}
/* Now press "execute". */
IWN_WRITE(sc, IWN_RESET, 0);
return 0;
}
/*
* Extract text and data sections from a legacy firmware image.
*/
int
iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
{
const uint32_t *ptr;
size_t hdrlen = 24;
uint32_t rev;
ptr = (const uint32_t *)fw->data;
rev = letoh32(*ptr++);
/* Check firmware API version. */
if (IWN_FW_API(rev) <= 1) {
printf("%s: bad firmware, need API version >=2\n",
sc->sc_dev.dv_xname);
return EINVAL;
}
if (IWN_FW_API(rev) >= 3) {
/* Skip build number (version 2 header). */
hdrlen += 4;
ptr++;
}
if (fw->size < hdrlen) {
printf("%s: firmware too short: %zu bytes\n",
sc->sc_dev.dv_xname, fw->size);
return EINVAL;
}
fw->main.textsz = letoh32(*ptr++);
fw->main.datasz = letoh32(*ptr++);
fw->init.textsz = letoh32(*ptr++);
fw->init.datasz = letoh32(*ptr++);
fw->boot.textsz = letoh32(*ptr++);
/* Check that all firmware sections fit. */
if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
printf("%s: firmware too short: %zu bytes\n",
sc->sc_dev.dv_xname, fw->size);
return EINVAL;
}
/* Get pointers to firmware sections. */
fw->main.text = (const uint8_t *)ptr;
fw->main.data = fw->main.text + fw->main.textsz;
fw->init.text = fw->main.data + fw->main.datasz;
fw->init.data = fw->init.text + fw->init.textsz;
fw->boot.text = fw->init.data + fw->init.datasz;
return 0;
}
/*
* Extract text and data sections from a TLV firmware image.
*/
int
iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
uint16_t alt)
{
const struct iwn_fw_tlv_hdr *hdr;
const struct iwn_fw_tlv *tlv;
const uint8_t *ptr, *end;
uint64_t altmask;
uint32_t len;
if (fw->size < sizeof (*hdr)) {
printf("%s: firmware too short: %zu bytes\n",
sc->sc_dev.dv_xname, fw->size);
return EINVAL;
}
hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
printf("%s: bad firmware signature 0x%08x\n",
sc->sc_dev.dv_xname, letoh32(hdr->signature));
return EINVAL;
}
DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
letoh32(hdr->build)));
/*
* Select the closest supported alternative that is less than
* or equal to the specified one.
*/
altmask = letoh64(hdr->altmask);
while (alt > 0 && !(altmask & (1ULL << alt)))
alt--; /* Downgrade. */
DPRINTF(("using alternative %d\n", alt));
ptr = (const uint8_t *)(hdr + 1);
end = (const uint8_t *)(fw->data + fw->size);
/* Parse type-length-value fields. */
while (ptr + sizeof (*tlv) <= end) {
tlv = (const struct iwn_fw_tlv *)ptr;
len = letoh32(tlv->len);
ptr += sizeof (*tlv);
if (ptr + len > end) {
printf("%s: firmware too short: %zu bytes\n",
sc->sc_dev.dv_xname, fw->size);
return EINVAL;
}
/* Skip other alternatives. */
if (tlv->alt != 0 && tlv->alt != htole16(alt))
goto next;
switch (letoh16(tlv->type)) {
case IWN_FW_TLV_MAIN_TEXT:
fw->main.text = ptr;
fw->main.textsz = len;
break;
case IWN_FW_TLV_MAIN_DATA:
fw->main.data = ptr;
fw->main.datasz = len;
break;
case IWN_FW_TLV_INIT_TEXT:
fw->init.text = ptr;
fw->init.textsz = len;
break;
case IWN_FW_TLV_INIT_DATA:
fw->init.data = ptr;
fw->init.datasz = len;
break;
case IWN_FW_TLV_BOOT_TEXT:
fw->boot.text = ptr;
fw->boot.textsz = len;
break;
case IWN_FW_TLV_ENH_SENS:
if (len != 0) {
printf("%s: TLV type %d has invalid size %u\n",
sc->sc_dev.dv_xname, letoh16(tlv->type),
len);
goto next;
}
sc->sc_flags |= IWN_FLAG_ENH_SENS;
break;
case IWN_FW_TLV_PHY_CALIB:
if (len != sizeof(uint32_t)) {
printf("%s: TLV type %d has invalid size %u\n",
sc->sc_dev.dv_xname, letoh16(tlv->type),
len);
goto next;
}
if (letoh32(*ptr) <= IWN5000_PHY_CALIB_MAX) {
sc->reset_noise_gain = letoh32(*ptr);
sc->noise_gain = letoh32(*ptr) + 1;
}
break;
case IWN_FW_TLV_FLAGS:
if (len < sizeof(uint32_t))
break;
if (len % sizeof(uint32_t))
break;
sc->tlv_feature_flags = letoh32(*ptr);
DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
break;
default:
DPRINTF(("TLV type %d not handled\n",
letoh16(tlv->type)));
break;
}
next: /* TLV fields are 32-bit aligned. */
ptr += (len + 3) & ~3;
}
return 0;
}
int
iwn_read_firmware(struct iwn_softc *sc)
{
struct iwn_fw_info *fw = &sc->fw;
int error;
/*
* Some PHY calibration commands are firmware-dependent; these
* are the default values that will be overridden if
* necessary.
*/
sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
memset(fw, 0, sizeof (*fw));
/* Read firmware image from filesystem. */
if ((error = loadfirmware(sc->fwname, &fw->data, &fw->size)) != 0) {
printf("%s: could not read firmware %s (error %d)\n",
sc->sc_dev.dv_xname, sc->fwname, error);
return error;
}
if (fw->size < sizeof (uint32_t)) {
printf("%s: firmware too short: %zu bytes\n",
sc->sc_dev.dv_xname, fw->size);
free(fw->data, M_DEVBUF, fw->size);
return EINVAL;
}
/* Retrieve text and data sections. */
if (*(const uint32_t *)fw->data != 0) /* Legacy image. */
error = iwn_read_firmware_leg(sc, fw);
else
error = iwn_read_firmware_tlv(sc, fw, 1);
if (error != 0) {
printf("%s: could not read firmware sections\n",
sc->sc_dev.dv_xname);
free(fw->data, M_DEVBUF, fw->size);
return error;
}
/* Make sure text and data sections fit in hardware memory. */
if (fw->main.textsz > sc->fw_text_maxsz ||
fw->main.datasz > sc->fw_data_maxsz ||
fw->init.textsz > sc->fw_text_maxsz ||
fw->init.datasz > sc->fw_data_maxsz ||
fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
(fw->boot.textsz & 3) != 0) {
printf("%s: firmware sections too large\n",
sc->sc_dev.dv_xname);
free(fw->data, M_DEVBUF, fw->size);
return EINVAL;
}
/* We can proceed with loading the firmware. */
return 0;
}
int
iwn_clock_wait(struct iwn_softc *sc)
{
int ntries;
/* Set "initialization complete" bit. */
IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
/* Wait for clock stabilization. */
for (ntries = 0; ntries < 2500; ntries++) {
if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
return 0;
DELAY(10);
}
printf("%s: timeout waiting for clock stabilization\n",
sc->sc_dev.dv_xname);
return ETIMEDOUT;
}
int
iwn_apm_init(struct iwn_softc *sc)
{
pcireg_t reg;
int error;
/* Disable L0s exit timer (NMI bug workaround). */
IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
/* Don't wait for ICH L0s (ICH bug workaround). */
IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
/* Set FH wait threshold to max (HW bug under stress workaround). */
IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
/* Enable HAP INTA to move adapter from L1a to L0s. */
IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
/* Retrieve PCIe Active State Power Management (ASPM). */
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
sc->sc_cap_off + PCI_PCIE_LCSR);
/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
if (reg & PCI_PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */
IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
else
IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
sc->hw_type <= IWN_HW_REV_TYPE_1000)
IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
/* Wait for clock stabilization before accessing prph. */
if ((error = iwn_clock_wait(sc)) != 0)
return error;
if ((error = iwn_nic_lock(sc)) != 0)
return error;
if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
/* Enable DMA and BSM (Bootstrap State Machine). */
iwn_prph_write(sc, IWN_APMG_CLK_EN,
IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
} else {
/* Enable DMA. */
iwn_prph_write(sc, IWN_APMG_CLK_EN,
IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
}
DELAY(20);
/* Disable L1-Active. */
iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
iwn_nic_unlock(sc);
return 0;
}
void
iwn_apm_stop_master(struct iwn_softc *sc)
{
int ntries;
/* Stop busmaster DMA activity. */
IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
for (ntries = 0; ntries < 100; ntries++) {
if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
return;
DELAY(10);
}
printf("%s: timeout waiting for master\n", sc->sc_dev.dv_xname);
}
void
iwn_apm_stop(struct iwn_softc *sc)
{
iwn_apm_stop_master(sc);
/* Reset the entire device. */
IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
DELAY(10);
/* Clear "initialization complete" bit. */
IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
}
int
iwn4965_nic_config(struct iwn_softc *sc)
{
if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
/*
* I don't believe this to be correct but this is what the
* vendor driver is doing. Probably the bits should not be
* shifted in IWN_RFCFG_*.
*/
IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
IWN_RFCFG_TYPE(sc->rfcfg) |
IWN_RFCFG_STEP(sc->rfcfg) |
IWN_RFCFG_DASH(sc->rfcfg));
}
IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
return 0;
}
int
iwn5000_nic_config(struct iwn_softc *sc)
{
uint32_t tmp;
int error;
if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
IWN_RFCFG_TYPE(sc->rfcfg) |
IWN_RFCFG_STEP(sc->rfcfg) |
IWN_RFCFG_DASH(sc->rfcfg));
}
IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
if ((error = iwn_nic_lock(sc)) != 0)
return error;
iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
/*
* Select first Switching Voltage Regulator (1.32V) to
* solve a stability issue related to noisy DC2DC line
* in the silicon of 1000 Series.
*/
tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
}
iwn_nic_unlock(sc);
if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
/* Use internal power amplifier only. */
IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
}
if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
/* Indicate that ROM calibration version is >=6. */
IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
}
if (sc->hw_type == IWN_HW_REV_TYPE_6005)
IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
sc->hw_type == IWN_HW_REV_TYPE_2000 ||
sc->hw_type == IWN_HW_REV_TYPE_135 ||
sc->hw_type == IWN_HW_REV_TYPE_105)
IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
return 0;
}
/*
* Take NIC ownership over Intel Active Management Technology (AMT).
*/
int
iwn_hw_prepare(struct iwn_softc *sc)
{
int ntries;
/* Check if hardware is ready. */
IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
for (ntries = 0; ntries < 5; ntries++) {
if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
IWN_HW_IF_CONFIG_NIC_READY)
return 0;
DELAY(10);
}
/* Hardware not ready, force into ready state. */
IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
for (ntries = 0; ntries < 15000; ntries++) {
if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
IWN_HW_IF_CONFIG_PREPARE_DONE))
break;
DELAY(10);
}
if (ntries == 15000)
return ETIMEDOUT;
/* Hardware should be ready now. */
IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
for (ntries = 0; ntries < 5; ntries++) {
if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
IWN_HW_IF_CONFIG_NIC_READY)
return 0;
DELAY(10);
}
return ETIMEDOUT;
}
int
iwn_hw_init(struct iwn_softc *sc)
{
struct iwn_ops *ops = &sc->ops;
int error, chnl, qid;
/* Clear pending interrupts. */
IWN_WRITE(sc, IWN_INT, 0xffffffff);
if ((error = iwn_apm_init(sc)) != 0) {
printf("%s: could not power on adapter\n",
sc->sc_dev.dv_xname);
return error;
}
/* Select VMAIN power source. */
if ((error = iwn_nic_lock(sc)) != 0)
return error;
iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
iwn_nic_unlock(sc);
/* Perform adapter-specific initialization. */
if ((error = ops->nic_config(sc)) != 0)
return error;
/* Initialize RX ring. */
if ((error = iwn_nic_lock(sc)) != 0)
return error;
IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
/* Set physical address of RX ring (256-byte aligned). */
IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
/* Set physical address of RX status (16-byte aligned). */
IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
/* Enable RX. */
IWN_WRITE(sc, IWN_FH_RX_CONFIG,
IWN_FH_RX_CONFIG_ENA |
IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */
IWN_FH_RX_CONFIG_IRQ_DST_HOST |
IWN_FH_RX_CONFIG_SINGLE_FRAME |
IWN_FH_RX_CONFIG_RB_TIMEOUT(0x11) | /* about 1/2 msec */
IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
iwn_nic_unlock(sc);
IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
if ((error = iwn_nic_lock(sc)) != 0)
return error;
/* Initialize TX scheduler. */
iwn_prph_write(sc, sc->sched_txfact_addr, 0);
/* Set physical address of "keep warm" page (16-byte aligned). */
IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
/* Initialize TX rings. */
for (qid = 0; qid < sc->ntxqs; qid++) {
struct iwn_tx_ring *txq = &sc->txq[qid];
/* Set physical address of TX ring (256-byte aligned). */
IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
txq->desc_dma.paddr >> 8);
}
iwn_nic_unlock(sc);
/* Enable DMA channels. */
for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
IWN_FH_TX_CONFIG_DMA_ENA |
IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
}
/* Clear "radio off" and "commands blocked" bits. */
IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
/* Clear pending interrupts. */
IWN_WRITE(sc, IWN_INT, 0xffffffff);
/* Enable interrupt coalescing. */
IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
/* Enable interrupts. */
IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
/* _Really_ make sure "radio off" bit is cleared! */
IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
/* Enable shadow registers. */
if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
if ((error = ops->load_firmware(sc)) != 0) {
printf("%s: could not load firmware\n", sc->sc_dev.dv_xname);
return error;
}
/* Wait at most one second for firmware alive notification. */
if ((error = tsleep_nsec(sc, PCATCH, "iwninit", SEC_TO_NSEC(1))) != 0) {
printf("%s: timeout waiting for adapter to initialize\n",
sc->sc_dev.dv_xname);
return error;
}
/* Do post-firmware initialization. */
return ops->post_alive(sc);
}
void
iwn_hw_stop(struct iwn_softc *sc)
{
int chnl, qid, ntries;
IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
/* Disable interrupts. */
IWN_WRITE(sc, IWN_INT_MASK, 0);
IWN_WRITE(sc, IWN_INT, 0xffffffff);
IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
sc->sc_flags &= ~IWN_FLAG_USE_ICT;
/* Make sure we no longer hold the NIC lock. */
iwn_nic_unlock(sc);
/* Stop TX scheduler. */
iwn_prph_write(sc, sc->sched_txfact_addr, 0);
/* Stop all DMA channels. */
if (iwn_nic_lock(sc) == 0) {
for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
for (ntries = 0; ntries < 200; ntries++) {
if (IWN_READ(sc, IWN_FH_TX_STATUS) &
IWN_FH_TX_STATUS_IDLE(chnl))
break;
DELAY(10);
}
}
iwn_nic_unlock(sc);
}
/* Stop RX ring. */
iwn_reset_rx_ring(sc, &sc->rxq);
/* Reset all TX rings. */
for (qid = 0; qid < sc->ntxqs; qid++)
iwn_reset_tx_ring(sc, &sc->txq[qid]);
if (iwn_nic_lock(sc) == 0) {
iwn_prph_write(sc, IWN_APMG_CLK_DIS,
IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
iwn_nic_unlock(sc);
}
DELAY(5);
/* Power OFF adapter. */
iwn_apm_stop(sc);
}
int
iwn_init(struct ifnet *ifp)
{
struct iwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int error;
memset(sc->bss_node_addr, 0, sizeof(sc->bss_node_addr));
sc->agg_queue_mask = 0;
memset(sc->sc_tx_ba, 0, sizeof(sc->sc_tx_ba));
if ((error = iwn_hw_prepare(sc)) != 0) {
printf("%s: hardware not ready\n", sc->sc_dev.dv_xname);
goto fail;
}
/* Initialize interrupt mask to default value. */
sc->int_mask = IWN_INT_MASK_DEF;
sc->sc_flags &= ~IWN_FLAG_USE_ICT;
/* Check that the radio is not disabled by hardware switch. */
if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
printf("%s: radio is disabled by hardware switch\n",
sc->sc_dev.dv_xname);
error = EPERM; /* :-) */
/* Re-enable interrupts. */
IWN_WRITE(sc, IWN_INT, 0xffffffff);
IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
return error;
}
/* Read firmware images from the filesystem. */
if ((error = iwn_read_firmware(sc)) != 0) {
printf("%s: could not read firmware\n", sc->sc_dev.dv_xname);
goto fail;
}
/* Initialize hardware and upload firmware. */
error = iwn_hw_init(sc);
free(sc->fw.data, M_DEVBUF, sc->fw.size);
if (error != 0) {
printf("%s: could not initialize hardware\n",
sc->sc_dev.dv_xname);
goto fail;
}
/* Configure adapter now that it is ready. */
if ((error = iwn_config(sc)) != 0) {
printf("%s: could not configure device\n",
sc->sc_dev.dv_xname);
goto fail;
}
ifq_clr_oactive(&ifp->if_snd);
ifp->if_flags |= IFF_RUNNING;
if (ic->ic_opmode != IEEE80211_M_MONITOR)
ieee80211_begin_scan(ifp);
else
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
return 0;
fail: iwn_stop(ifp);
return error;
}
void
iwn_stop(struct ifnet *ifp)
{
struct iwn_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
timeout_del(&sc->calib_to);
ifp->if_timer = sc->sc_tx_timer = 0;
ifp->if_flags &= ~IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
/* Power OFF hardware. */
iwn_hw_stop(sc);
}