src/sys/dev/pci/if_ste.c

1395 lines
32 KiB
C

/* $OpenBSD: if_ste.c,v 1.70 2023/11/10 15:51:24 bluhm Exp $ */
/*
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD: src/sys/pci/if_ste.c,v 1.14 1999/12/07 20:14:42 wpaul Exp $
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/timeout.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net/if_media.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <uvm/uvm_extern.h> /* for vtophys */
#include <sys/device.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#define STE_USEIOSPACE
#include <dev/pci/if_stereg.h>
int ste_probe(struct device *, void *, void *);
void ste_attach(struct device *, struct device *, void *);
int ste_intr(void *);
void ste_init(void *);
void ste_rxeoc(struct ste_softc *);
void ste_rxeof(struct ste_softc *);
void ste_txeoc(struct ste_softc *);
void ste_txeof(struct ste_softc *);
void ste_stats_update(void *);
void ste_stop(struct ste_softc *);
void ste_reset(struct ste_softc *);
int ste_ioctl(struct ifnet *, u_long, caddr_t);
int ste_encap(struct ste_softc *, struct ste_chain *,
struct mbuf *);
void ste_start(struct ifnet *);
void ste_watchdog(struct ifnet *);
int ste_newbuf(struct ste_softc *,
struct ste_chain_onefrag *,
struct mbuf *);
int ste_ifmedia_upd(struct ifnet *);
void ste_ifmedia_sts(struct ifnet *, struct ifmediareq *);
void ste_mii_sync(struct ste_softc *);
void ste_mii_send(struct ste_softc *, u_int32_t, int);
int ste_mii_readreg(struct ste_softc *,
struct ste_mii_frame *);
int ste_mii_writereg(struct ste_softc *,
struct ste_mii_frame *);
int ste_miibus_readreg(struct device *, int, int);
void ste_miibus_writereg(struct device *, int, int, int);
void ste_miibus_statchg(struct device *);
int ste_eeprom_wait(struct ste_softc *);
int ste_read_eeprom(struct ste_softc *, caddr_t, int,
int, int);
void ste_wait(struct ste_softc *);
void ste_iff(struct ste_softc *);
int ste_init_rx_list(struct ste_softc *);
void ste_init_tx_list(struct ste_softc *);
#define STE_SETBIT4(sc, reg, x) \
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
#define STE_CLRBIT4(sc, reg, x) \
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
#define STE_SETBIT2(sc, reg, x) \
CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | x)
#define STE_CLRBIT2(sc, reg, x) \
CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~x)
#define STE_SETBIT1(sc, reg, x) \
CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | x)
#define STE_CLRBIT1(sc, reg, x) \
CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~x)
#define MII_SET(x) STE_SETBIT1(sc, STE_PHYCTL, x)
#define MII_CLR(x) STE_CLRBIT1(sc, STE_PHYCTL, x)
const struct pci_matchid ste_devices[] = {
{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DFE550TX },
{ PCI_VENDOR_SUNDANCE, PCI_PRODUCT_SUNDANCE_ST201_1 },
{ PCI_VENDOR_SUNDANCE, PCI_PRODUCT_SUNDANCE_ST201_2 }
};
const struct cfattach ste_ca = {
sizeof(struct ste_softc), ste_probe, ste_attach
};
struct cfdriver ste_cd = {
NULL, "ste", DV_IFNET
};
/*
* Sync the PHYs by setting data bit and strobing the clock 32 times.
*/
void
ste_mii_sync(struct ste_softc *sc)
{
int i;
MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA);
for (i = 0; i < 32; i++) {
MII_SET(STE_PHYCTL_MCLK);
DELAY(1);
MII_CLR(STE_PHYCTL_MCLK);
DELAY(1);
}
}
/*
* Clock a series of bits through the MII.
*/
void
ste_mii_send(struct ste_softc *sc, u_int32_t bits, int cnt)
{
int i;
MII_CLR(STE_PHYCTL_MCLK);
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
if (bits & i) {
MII_SET(STE_PHYCTL_MDATA);
} else {
MII_CLR(STE_PHYCTL_MDATA);
}
DELAY(1);
MII_CLR(STE_PHYCTL_MCLK);
DELAY(1);
MII_SET(STE_PHYCTL_MCLK);
}
}
/*
* Read an PHY register through the MII.
*/
int
ste_mii_readreg(struct ste_softc *sc, struct ste_mii_frame *frame)
{
int ack, i, s;
s = splnet();
/*
* Set up frame for RX.
*/
frame->mii_stdelim = STE_MII_STARTDELIM;
frame->mii_opcode = STE_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
CSR_WRITE_2(sc, STE_PHYCTL, 0);
/*
* Turn on data xmit.
*/
MII_SET(STE_PHYCTL_MDIR);
ste_mii_sync(sc);
/*
* Send command/address info.
*/
ste_mii_send(sc, frame->mii_stdelim, 2);
ste_mii_send(sc, frame->mii_opcode, 2);
ste_mii_send(sc, frame->mii_phyaddr, 5);
ste_mii_send(sc, frame->mii_regaddr, 5);
/* Turn off xmit. */
MII_CLR(STE_PHYCTL_MDIR);
/* Idle bit */
MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA));
DELAY(1);
MII_SET(STE_PHYCTL_MCLK);
DELAY(1);
/* Check for ack */
MII_CLR(STE_PHYCTL_MCLK);
DELAY(1);
ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA;
MII_SET(STE_PHYCTL_MCLK);
DELAY(1);
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHY(s) in sync.
*/
if (ack) {
for(i = 0; i < 16; i++) {
MII_CLR(STE_PHYCTL_MCLK);
DELAY(1);
MII_SET(STE_PHYCTL_MCLK);
DELAY(1);
}
goto fail;
}
for (i = 0x8000; i; i >>= 1) {
MII_CLR(STE_PHYCTL_MCLK);
DELAY(1);
if (!ack) {
if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA)
frame->mii_data |= i;
DELAY(1);
}
MII_SET(STE_PHYCTL_MCLK);
DELAY(1);
}
fail:
MII_CLR(STE_PHYCTL_MCLK);
DELAY(1);
MII_SET(STE_PHYCTL_MCLK);
DELAY(1);
splx(s);
if (ack)
return(1);
return(0);
}
/*
* Write to a PHY register through the MII.
*/
int
ste_mii_writereg(struct ste_softc *sc, struct ste_mii_frame *frame)
{
int s;
s = splnet();
/*
* Set up frame for TX.
*/
frame->mii_stdelim = STE_MII_STARTDELIM;
frame->mii_opcode = STE_MII_WRITEOP;
frame->mii_turnaround = STE_MII_TURNAROUND;
/*
* Turn on data output.
*/
MII_SET(STE_PHYCTL_MDIR);
ste_mii_sync(sc);
ste_mii_send(sc, frame->mii_stdelim, 2);
ste_mii_send(sc, frame->mii_opcode, 2);
ste_mii_send(sc, frame->mii_phyaddr, 5);
ste_mii_send(sc, frame->mii_regaddr, 5);
ste_mii_send(sc, frame->mii_turnaround, 2);
ste_mii_send(sc, frame->mii_data, 16);
/* Idle bit. */
MII_SET(STE_PHYCTL_MCLK);
DELAY(1);
MII_CLR(STE_PHYCTL_MCLK);
DELAY(1);
/*
* Turn off xmit.
*/
MII_CLR(STE_PHYCTL_MDIR);
splx(s);
return(0);
}
int
ste_miibus_readreg(struct device *self, int phy, int reg)
{
struct ste_softc *sc = (struct ste_softc *)self;
struct ste_mii_frame frame;
if (sc->ste_one_phy && phy != 0)
return (0);
bzero(&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
ste_mii_readreg(sc, &frame);
return(frame.mii_data);
}
void
ste_miibus_writereg(struct device *self, int phy, int reg, int data)
{
struct ste_softc *sc = (struct ste_softc *)self;
struct ste_mii_frame frame;
bzero(&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
frame.mii_data = data;
ste_mii_writereg(sc, &frame);
}
void
ste_miibus_statchg(struct device *self)
{
struct ste_softc *sc = (struct ste_softc *)self;
struct mii_data *mii;
int fdx, fcur;
mii = &sc->sc_mii;
fcur = CSR_READ_2(sc, STE_MACCTL0) & STE_MACCTL0_FULLDUPLEX;
fdx = (mii->mii_media_active & IFM_GMASK) == IFM_FDX;
if ((fcur && fdx) || (! fcur && ! fdx))
return;
STE_SETBIT4(sc, STE_DMACTL,
STE_DMACTL_RXDMA_STALL |STE_DMACTL_TXDMA_STALL);
ste_wait(sc);
if (fdx)
STE_SETBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
else
STE_CLRBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX);
STE_SETBIT4(sc, STE_DMACTL,
STE_DMACTL_RXDMA_UNSTALL | STE_DMACTL_TXDMA_UNSTALL);
}
int
ste_ifmedia_upd(struct ifnet *ifp)
{
struct ste_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = &sc->sc_mii;
sc->ste_link = 0;
if (mii->mii_instance) {
struct mii_softc *miisc;
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
mii_phy_reset(miisc);
}
mii_mediachg(mii);
return(0);
}
void
ste_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct ste_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = &sc->sc_mii;
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
}
void
ste_wait(struct ste_softc *sc)
{
int i;
for (i = 0; i < STE_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
break;
}
if (i == STE_TIMEOUT)
printf("%s: command never completed!\n", sc->sc_dev.dv_xname);
}
/*
* The EEPROM is slow: give it time to come ready after issuing
* it a command.
*/
int
ste_eeprom_wait(struct ste_softc *sc)
{
int i;
DELAY(1000);
for (i = 0; i < 100; i++) {
if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
DELAY(1000);
else
break;
}
if (i == 100) {
printf("%s: eeprom failed to come ready\n",
sc->sc_dev.dv_xname);
return(1);
}
return(0);
}
/*
* Read a sequence of words from the EEPROM. Note that ethernet address
* data is stored in the EEPROM in network byte order.
*/
int
ste_read_eeprom(struct ste_softc *sc, caddr_t dest, int off, int cnt, int swap)
{
int err = 0, i;
u_int16_t word = 0, *ptr;
if (ste_eeprom_wait(sc))
return(1);
for (i = 0; i < cnt; i++) {
CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
err = ste_eeprom_wait(sc);
if (err)
break;
word = CSR_READ_2(sc, STE_EEPROM_DATA);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
return(err ? 1 : 0);
}
void
ste_iff(struct ste_softc *sc)
{
struct ifnet *ifp = &sc->arpcom.ac_if;
struct arpcom *ac = &sc->arpcom;
struct ether_multi *enm;
struct ether_multistep step;
u_int32_t rxmode, hashes[2];
int h = 0;
rxmode = CSR_READ_1(sc, STE_RX_MODE);
rxmode &= ~(STE_RXMODE_ALLMULTI | STE_RXMODE_BROADCAST |
STE_RXMODE_MULTIHASH | STE_RXMODE_PROMISC |
STE_RXMODE_UNICAST);
bzero(hashes, sizeof(hashes));
ifp->if_flags &= ~IFF_ALLMULTI;
/*
* Always accept broadcast frames.
* Always accept frames destined to our station address.
*/
rxmode |= STE_RXMODE_BROADCAST | STE_RXMODE_UNICAST;
if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
ifp->if_flags |= IFF_ALLMULTI;
rxmode |= STE_RXMODE_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC)
rxmode |= STE_RXMODE_PROMISC;
} else {
rxmode |= STE_RXMODE_MULTIHASH;
/* now program new ones */
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
h = ether_crc32_be(enm->enm_addrlo,
ETHER_ADDR_LEN) & 0x3F;
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
ETHER_NEXT_MULTI(step, enm);
}
}
CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
CSR_WRITE_1(sc, STE_RX_MODE, rxmode);
}
int
ste_intr(void *xsc)
{
struct ste_softc *sc;
struct ifnet *ifp;
u_int16_t status;
int claimed = 0;
sc = xsc;
ifp = &sc->arpcom.ac_if;
/* See if this is really our interrupt. */
if (!(CSR_READ_2(sc, STE_ISR) & STE_ISR_INTLATCH))
return claimed;
for (;;) {
status = CSR_READ_2(sc, STE_ISR_ACK);
if (!(status & STE_INTRS))
break;
claimed = 1;
if (status & STE_ISR_RX_DMADONE) {
ste_rxeoc(sc);
ste_rxeof(sc);
}
if (status & STE_ISR_TX_DMADONE)
ste_txeof(sc);
if (status & STE_ISR_TX_DONE)
ste_txeoc(sc);
if (status & STE_ISR_STATS_OFLOW) {
timeout_del(&sc->sc_stats_tmo);
ste_stats_update(sc);
}
if (status & STE_ISR_LINKEVENT)
mii_pollstat(&sc->sc_mii);
if (status & STE_ISR_HOSTERR)
ste_init(sc);
}
/* Re-enable interrupts */
CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
if (ifp->if_flags & IFF_RUNNING && !ifq_empty(&ifp->if_snd))
ste_start(ifp);
return claimed;
}
void
ste_rxeoc(struct ste_softc *sc)
{
struct ste_chain_onefrag *cur_rx;
if (sc->ste_cdata.ste_rx_head->ste_ptr->ste_status == 0) {
cur_rx = sc->ste_cdata.ste_rx_head;
do {
cur_rx = cur_rx->ste_next;
/* If the ring is empty, just return. */
if (cur_rx == sc->ste_cdata.ste_rx_head)
return;
} while (cur_rx->ste_ptr->ste_status == 0);
if (sc->ste_cdata.ste_rx_head->ste_ptr->ste_status == 0) {
/* We've fallen behind the chip: catch it. */
sc->ste_cdata.ste_rx_head = cur_rx;
}
}
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
void
ste_rxeof(struct ste_softc *sc)
{
struct mbuf *m;
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
struct ifnet *ifp;
struct ste_chain_onefrag *cur_rx;
int total_len = 0, count=0;
u_int32_t rxstat;
ifp = &sc->arpcom.ac_if;
while((rxstat = sc->ste_cdata.ste_rx_head->ste_ptr->ste_status)
& STE_RXSTAT_DMADONE) {
if ((STE_RX_LIST_CNT - count) < 3)
break;
cur_rx = sc->ste_cdata.ste_rx_head;
sc->ste_cdata.ste_rx_head = cur_rx->ste_next;
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring.
*/
if (rxstat & STE_RXSTAT_FRAME_ERR) {
ifp->if_ierrors++;
cur_rx->ste_ptr->ste_status = 0;
continue;
}
/*
* If there error bit was not set, the upload complete
* bit should be set which means we have a valid packet.
* If not, something truly strange has happened.
*/
if (!(rxstat & STE_RXSTAT_DMADONE)) {
printf("%s: bad receive status -- packet dropped",
sc->sc_dev.dv_xname);
ifp->if_ierrors++;
cur_rx->ste_ptr->ste_status = 0;
continue;
}
/* No errors; receive the packet. */
m = cur_rx->ste_mbuf;
total_len = cur_rx->ste_ptr->ste_status & STE_RXSTAT_FRAMELEN;
/*
* Try to conjure up a new mbuf cluster. If that
* fails, it means we have an out of memory condition and
* should leave the buffer in place and continue. This will
* result in a lost packet, but there's little else we
* can do in this situation.
*/
if (ste_newbuf(sc, cur_rx, NULL) == ENOBUFS) {
ifp->if_ierrors++;
cur_rx->ste_ptr->ste_status = 0;
continue;
}
m->m_pkthdr.len = m->m_len = total_len;
ml_enqueue(&ml, m);
cur_rx->ste_ptr->ste_status = 0;
count++;
}
if_input(ifp, &ml);
}
void
ste_txeoc(struct ste_softc *sc)
{
u_int8_t txstat;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
while ((txstat = CSR_READ_1(sc, STE_TX_STATUS)) &
STE_TXSTATUS_TXDONE) {
if (txstat & STE_TXSTATUS_UNDERRUN ||
txstat & STE_TXSTATUS_EXCESSCOLLS ||
txstat & STE_TXSTATUS_RECLAIMERR) {
ifp->if_oerrors++;
printf("%s: transmission error: %x\n",
sc->sc_dev.dv_xname, txstat);
ste_init(sc);
if (txstat & STE_TXSTATUS_UNDERRUN &&
sc->ste_tx_thresh < ETHER_MAX_DIX_LEN) {
sc->ste_tx_thresh += STE_MIN_FRAMELEN;
printf("%s: tx underrun, increasing tx"
" start threshold to %d bytes\n",
sc->sc_dev.dv_xname, sc->ste_tx_thresh);
}
CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
CSR_WRITE_2(sc, STE_TX_RECLAIM_THRESH,
(ETHER_MAX_DIX_LEN >> 4));
}
ste_init(sc);
CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
}
}
void
ste_txeof(struct ste_softc *sc)
{
struct ste_chain *cur_tx = NULL;
struct ifnet *ifp;
int idx;
ifp = &sc->arpcom.ac_if;
idx = sc->ste_cdata.ste_tx_cons;
while(idx != sc->ste_cdata.ste_tx_prod) {
cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
if (!(cur_tx->ste_ptr->ste_ctl & STE_TXCTL_DMADONE))
break;
m_freem(cur_tx->ste_mbuf);
cur_tx->ste_mbuf = NULL;
ifq_clr_oactive(&ifp->if_snd);
STE_INC(idx, STE_TX_LIST_CNT);
}
sc->ste_cdata.ste_tx_cons = idx;
if (idx == sc->ste_cdata.ste_tx_prod)
ifp->if_timer = 0;
}
void
ste_stats_update(void *xsc)
{
struct ste_softc *sc;
struct ifnet *ifp;
struct mii_data *mii;
int s;
s = splnet();
sc = xsc;
ifp = &sc->arpcom.ac_if;
mii = &sc->sc_mii;
ifp->if_collisions += CSR_READ_1(sc, STE_LATE_COLLS)
+ CSR_READ_1(sc, STE_MULTI_COLLS)
+ CSR_READ_1(sc, STE_SINGLE_COLLS);
if (!sc->ste_link) {
mii_pollstat(mii);
if (mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
sc->ste_link++;
/*
* we don't get a call-back on re-init so do it
* otherwise we get stuck in the wrong link state
*/
ste_miibus_statchg((struct device *)sc);
if (!ifq_empty(&ifp->if_snd))
ste_start(ifp);
}
}
timeout_add_sec(&sc->sc_stats_tmo, 1);
splx(s);
}
/*
* Probe for a Sundance ST201 chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
int
ste_probe(struct device *parent, void *match, void *aux)
{
return (pci_matchbyid((struct pci_attach_args *)aux, ste_devices,
nitems(ste_devices)));
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
void
ste_attach(struct device *parent, struct device *self, void *aux)
{
const char *intrstr = NULL;
struct ste_softc *sc = (struct ste_softc *)self;
struct pci_attach_args *pa = aux;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
struct ifnet *ifp;
bus_size_t size;
pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
/*
* Only use one PHY since this chip reports multiple
* Note on the DFE-550TX the PHY is at 1 on the DFE-580TX
* it is at 0 & 1. It is rev 0x12.
*/
if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_DLINK &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_DLINK_DFE550TX &&
PCI_REVISION(pa->pa_class) == 0x12)
sc->ste_one_phy = 1;
/*
* Map control/status registers.
*/
#ifdef STE_USEIOSPACE
if (pci_mapreg_map(pa, STE_PCI_LOIO,
PCI_MAPREG_TYPE_IO, 0,
&sc->ste_btag, &sc->ste_bhandle, NULL, &size, 0)) {
printf(": can't map i/o space\n");
return;
}
#else
if (pci_mapreg_map(pa, STE_PCI_LOMEM,
PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
&sc->ste_btag, &sc->ste_bhandle, NULL, &size, 0)) {
printf(": can't map mem space\n");
return;
}
#endif
/* Allocate interrupt */
if (pci_intr_map(pa, &ih)) {
printf(": couldn't map interrupt\n");
goto fail_1;
}
intrstr = pci_intr_string(pc, ih);
sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc,
self->dv_xname);
if (sc->sc_ih == NULL) {
printf(": couldn't establish interrupt");
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
goto fail_1;
}
printf(": %s", intrstr);
/* Reset the adapter. */
ste_reset(sc);
/*
* Get station address from the EEPROM.
*/
if (ste_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr,
STE_EEADDR_NODE0, 3, 0)) {
printf(": failed to read station address\n");
goto fail_2;
}
printf(", address %s\n", ether_sprintf(sc->arpcom.ac_enaddr));
sc->ste_ldata_ptr = malloc(sizeof(struct ste_list_data) + 8,
M_DEVBUF, M_DONTWAIT);
if (sc->ste_ldata_ptr == NULL) {
printf(": no memory for list buffers!\n");
goto fail_2;
}
sc->ste_ldata = (struct ste_list_data *)sc->ste_ldata_ptr;
bzero(sc->ste_ldata, sizeof(struct ste_list_data));
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = ste_ioctl;
ifp->if_start = ste_start;
ifp->if_watchdog = ste_watchdog;
ifq_init_maxlen(&ifp->if_snd, STE_TX_LIST_CNT - 1);
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
ifp->if_capabilities = IFCAP_VLAN_MTU;
sc->ste_tx_thresh = STE_TXSTART_THRESH;
sc->sc_mii.mii_ifp = ifp;
sc->sc_mii.mii_readreg = ste_miibus_readreg;
sc->sc_mii.mii_writereg = ste_miibus_writereg;
sc->sc_mii.mii_statchg = ste_miibus_statchg;
ifmedia_init(&sc->sc_mii.mii_media, 0, ste_ifmedia_upd,ste_ifmedia_sts);
mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY,
0);
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
} else
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
/*
* Call MI attach routines.
*/
if_attach(ifp);
ether_ifattach(ifp);
return;
fail_2:
pci_intr_disestablish(pc, sc->sc_ih);
fail_1:
bus_space_unmap(sc->ste_btag, sc->ste_bhandle, size);
}
int
ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *c, struct mbuf *m)
{
struct mbuf *m_new = NULL;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL)
return(ENOBUFS);
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
return(ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
m_adj(m_new, ETHER_ALIGN);
c->ste_mbuf = m_new;
c->ste_ptr->ste_status = 0;
c->ste_ptr->ste_frag.ste_addr = vtophys(mtod(m_new, vaddr_t));
c->ste_ptr->ste_frag.ste_len = (ETHER_MAX_DIX_LEN + ETHER_VLAN_ENCAP_LEN) | STE_FRAG_LAST;
return(0);
}
int
ste_init_rx_list(struct ste_softc *sc)
{
struct ste_chain_data *cd;
struct ste_list_data *ld;
int i;
cd = &sc->ste_cdata;
ld = sc->ste_ldata;
for (i = 0; i < STE_RX_LIST_CNT; i++) {
cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
if (ste_newbuf(sc, &cd->ste_rx_chain[i], NULL) == ENOBUFS)
return(ENOBUFS);
if (i == (STE_RX_LIST_CNT - 1)) {
cd->ste_rx_chain[i].ste_next =
&cd->ste_rx_chain[0];
ld->ste_rx_list[i].ste_next =
vtophys((vaddr_t)&ld->ste_rx_list[0]);
} else {
cd->ste_rx_chain[i].ste_next =
&cd->ste_rx_chain[i + 1];
ld->ste_rx_list[i].ste_next =
vtophys((vaddr_t)&ld->ste_rx_list[i + 1]);
}
ld->ste_rx_list[i].ste_status = 0;
}
cd->ste_rx_head = &cd->ste_rx_chain[0];
return(0);
}
void
ste_init_tx_list(struct ste_softc *sc)
{
struct ste_chain_data *cd;
struct ste_list_data *ld;
int i;
cd = &sc->ste_cdata;
ld = sc->ste_ldata;
for (i = 0; i < STE_TX_LIST_CNT; i++) {
cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
cd->ste_tx_chain[i].ste_phys = vtophys((vaddr_t)&ld->ste_tx_list[i]);
if (i == (STE_TX_LIST_CNT - 1))
cd->ste_tx_chain[i].ste_next =
&cd->ste_tx_chain[0];
else
cd->ste_tx_chain[i].ste_next =
&cd->ste_tx_chain[i + 1];
}
bzero(ld->ste_tx_list, sizeof(struct ste_desc) * STE_TX_LIST_CNT);
cd->ste_tx_prod = 0;
cd->ste_tx_cons = 0;
}
void
ste_init(void *xsc)
{
struct ste_softc *sc = (struct ste_softc *)xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
struct mii_data *mii;
int i, s;
s = splnet();
ste_stop(sc);
/* Reset the chip to a known state. */
ste_reset(sc);
mii = &sc->sc_mii;
/* Init our MAC address */
for (i = 0; i < ETHER_ADDR_LEN; i++) {
CSR_WRITE_1(sc, STE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
}
/* Init RX list */
if (ste_init_rx_list(sc) == ENOBUFS) {
printf("%s: initialization failed: no "
"memory for RX buffers\n", sc->sc_dev.dv_xname);
ste_stop(sc);
splx(s);
return;
}
/* Set RX polling interval */
CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
/* Init TX descriptors */
ste_init_tx_list(sc);
/* Set the TX freethresh value */
CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, ETHER_MAX_DIX_LEN >> 8);
/* Set the TX start threshold for best performance. */
CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
/* Set the TX reclaim threshold. */
CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (ETHER_MAX_DIX_LEN >> 4));
/* Program promiscuous mode and multicast filters. */
ste_iff(sc);
/* Load the address of the RX list. */
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
ste_wait(sc);
CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
vtophys((vaddr_t)&sc->ste_ldata->ste_rx_list[0]));
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
/* Set TX polling interval (defer until we TX first packet) */
CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
/* Load address of the TX list */
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
ste_wait(sc);
CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
ste_wait(sc);
sc->ste_tx_prev=NULL;
/* Enable receiver and transmitter */
CSR_WRITE_2(sc, STE_MACCTL0, 0);
CSR_WRITE_2(sc, STE_MACCTL1, 0);
STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
/* Enable stats counters. */
STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
/* Enable interrupts. */
CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
/* Accept VLAN length packets */
CSR_WRITE_2(sc, STE_MAX_FRAMELEN,
ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
ste_ifmedia_upd(ifp);
ifp->if_flags |= IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
splx(s);
timeout_set(&sc->sc_stats_tmo, ste_stats_update, sc);
timeout_add_sec(&sc->sc_stats_tmo, 1);
}
void
ste_stop(struct ste_softc *sc)
{
int i;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
timeout_del(&sc->sc_stats_tmo);
ifp->if_flags &= ~IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
CSR_WRITE_2(sc, STE_IMR, 0);
STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_DISABLE);
STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_DISABLE);
STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_DISABLE);
STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
ste_wait(sc);
/*
* Try really hard to stop the RX engine or under heavy RX
* data chip will write into de-allocated memory.
*/
ste_reset(sc);
sc->ste_link = 0;
for (i = 0; i < STE_RX_LIST_CNT; i++) {
if (sc->ste_cdata.ste_rx_chain[i].ste_mbuf != NULL) {
m_freem(sc->ste_cdata.ste_rx_chain[i].ste_mbuf);
sc->ste_cdata.ste_rx_chain[i].ste_mbuf = NULL;
}
}
for (i = 0; i < STE_TX_LIST_CNT; i++) {
if (sc->ste_cdata.ste_tx_chain[i].ste_mbuf != NULL) {
m_freem(sc->ste_cdata.ste_tx_chain[i].ste_mbuf);
sc->ste_cdata.ste_tx_chain[i].ste_mbuf = NULL;
}
}
bzero(sc->ste_ldata, sizeof(struct ste_list_data));
}
void
ste_reset(struct ste_softc *sc)
{
int i;
STE_SETBIT4(sc, STE_ASICCTL,
STE_ASICCTL_GLOBAL_RESET|STE_ASICCTL_RX_RESET|
STE_ASICCTL_TX_RESET|STE_ASICCTL_DMA_RESET|
STE_ASICCTL_FIFO_RESET|STE_ASICCTL_NETWORK_RESET|
STE_ASICCTL_AUTOINIT_RESET|STE_ASICCTL_HOST_RESET|
STE_ASICCTL_EXTRESET_RESET);
DELAY(100000);
for (i = 0; i < STE_TIMEOUT; i++) {
if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
break;
}
if (i == STE_TIMEOUT)
printf("%s: global reset never completed\n",
sc->sc_dev.dv_xname);
}
int
ste_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct ste_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
s = splnet();
switch(command) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
if (!(ifp->if_flags & IFF_RUNNING))
ste_init(sc);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING)
error = ENETRESET;
else {
sc->ste_tx_thresh = STE_TXSTART_THRESH;
ste_init(sc);
}
} else {
if (ifp->if_flags & IFF_RUNNING)
ste_stop(sc);
}
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
break;
default:
error = ether_ioctl(ifp, &sc->arpcom, command, data);
}
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
ste_iff(sc);
error = 0;
}
splx(s);
return(error);
}
int
ste_encap(struct ste_softc *sc, struct ste_chain *c, struct mbuf *m_head)
{
int frag = 0;
struct ste_frag *f = NULL;
struct mbuf *m;
struct ste_desc *d;
d = c->ste_ptr;
d->ste_ctl = 0;
encap_retry:
for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
if (frag == STE_MAXFRAGS)
break;
f = &d->ste_frags[frag];
f->ste_addr = vtophys(mtod(m, vaddr_t));
f->ste_len = m->m_len;
frag++;
}
}
if (m != NULL) {
struct mbuf *mn;
/*
* We ran out of segments. We have to recopy this
* mbuf chain first. Bail out if we can't get the
* new buffers.
*/
MGETHDR(mn, M_DONTWAIT, MT_DATA);
if (mn == NULL) {
m_freem(m_head);
return ENOMEM;
}
if (m_head->m_pkthdr.len > MHLEN) {
MCLGET(mn, M_DONTWAIT);
if ((mn->m_flags & M_EXT) == 0) {
m_freem(mn);
m_freem(m_head);
return ENOMEM;
}
}
m_copydata(m_head, 0, m_head->m_pkthdr.len,
mtod(mn, caddr_t));
mn->m_pkthdr.len = mn->m_len = m_head->m_pkthdr.len;
m_freem(m_head);
m_head = mn;
goto encap_retry;
}
c->ste_mbuf = m_head;
d->ste_frags[frag - 1].ste_len |= STE_FRAG_LAST;
d->ste_ctl = 1;
return(0);
}
void
ste_start(struct ifnet *ifp)
{
struct ste_softc *sc;
struct mbuf *m_head = NULL;
struct ste_chain *cur_tx;
int idx;
sc = ifp->if_softc;
if (!sc->ste_link)
return;
if (ifq_is_oactive(&ifp->if_snd))
return;
idx = sc->ste_cdata.ste_tx_prod;
while(sc->ste_cdata.ste_tx_chain[idx].ste_mbuf == NULL) {
/*
* We cannot re-use the last (free) descriptor;
* the chip may not have read its ste_next yet.
*/
if (STE_NEXT(idx, STE_TX_LIST_CNT) ==
sc->ste_cdata.ste_tx_cons) {
ifq_set_oactive(&ifp->if_snd);
break;
}
m_head = ifq_dequeue(&ifp->if_snd);
if (m_head == NULL)
break;
cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
if (ste_encap(sc, cur_tx, m_head) != 0)
break;
cur_tx->ste_ptr->ste_next = 0;
if (sc->ste_tx_prev == NULL) {
cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
/* Load address of the TX list */
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
ste_wait(sc);
CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
vtophys((vaddr_t)&sc->ste_ldata->ste_tx_list[0]));
/* Set TX polling interval to start TX engine */
CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
ste_wait(sc);
}else{
cur_tx->ste_ptr->ste_ctl = STE_TXCTL_DMAINTR | 1;
sc->ste_tx_prev->ste_ptr->ste_next
= cur_tx->ste_phys;
}
sc->ste_tx_prev = cur_tx;
#if NBPFILTER > 0
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, cur_tx->ste_mbuf,
BPF_DIRECTION_OUT);
#endif
STE_INC(idx, STE_TX_LIST_CNT);
ifp->if_timer = 5;
}
sc->ste_cdata.ste_tx_prod = idx;
}
void
ste_watchdog(struct ifnet *ifp)
{
struct ste_softc *sc;
sc = ifp->if_softc;
ifp->if_oerrors++;
printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
ste_txeoc(sc);
ste_txeof(sc);
ste_rxeoc(sc);
ste_rxeof(sc);
ste_init(sc);
if (!ifq_empty(&ifp->if_snd))
ste_start(ifp);
}