src/sys/dev/pci/if_stge.c

1627 lines
39 KiB
C

/* $OpenBSD: if_stge.c,v 1.73 2023/11/10 15:51:24 bluhm Exp $ */
/* $NetBSD: if_stge.c,v 1.27 2005/05/16 21:35:32 bouyer Exp $ */
/*-
* Copyright (c) 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Device driver for the Sundance Tech. TC9021 10/100/1000
* Ethernet controller.
*/
#include "bpfilter.h"
#include "vlan.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/timeout.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <sys/queue.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <net/if_media.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/mii/miivar.h>
#include <dev/mii/mii_bitbang.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_stgereg.h>
void stge_start(struct ifnet *);
void stge_watchdog(struct ifnet *);
int stge_ioctl(struct ifnet *, u_long, caddr_t);
int stge_init(struct ifnet *);
void stge_stop(struct ifnet *, int);
void stge_reset(struct stge_softc *);
void stge_rxdrain(struct stge_softc *);
int stge_add_rxbuf(struct stge_softc *, int);
void stge_read_eeprom(struct stge_softc *, int, uint16_t *);
void stge_tick(void *);
void stge_stats_update(struct stge_softc *);
void stge_iff(struct stge_softc *);
int stge_intr(void *);
void stge_txintr(struct stge_softc *);
void stge_rxintr(struct stge_softc *);
int stge_mii_readreg(struct device *, int, int);
void stge_mii_writereg(struct device *, int, int, int);
void stge_mii_statchg(struct device *);
int stge_mediachange(struct ifnet *);
void stge_mediastatus(struct ifnet *, struct ifmediareq *);
int stge_match(struct device *, void *, void *);
void stge_attach(struct device *, struct device *, void *);
int stge_copy_small = 0;
const struct cfattach stge_ca = {
sizeof(struct stge_softc), stge_match, stge_attach,
};
struct cfdriver stge_cd = {
NULL, "stge", DV_IFNET
};
uint32_t stge_mii_bitbang_read(struct device *);
void stge_mii_bitbang_write(struct device *, uint32_t);
const struct mii_bitbang_ops stge_mii_bitbang_ops = {
stge_mii_bitbang_read,
stge_mii_bitbang_write,
{
PC_MgmtData, /* MII_BIT_MDO */
PC_MgmtData, /* MII_BIT_MDI */
PC_MgmtClk, /* MII_BIT_MDC */
PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */
0, /* MII_BIT_DIR_PHY_HOST */
}
};
/*
* Devices supported by this driver.
*/
const struct pci_matchid stge_devices[] = {
{ PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021 },
{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550T },
{ PCI_VENDOR_SUNDANCE, PCI_PRODUCT_SUNDANCE_ST1023 },
{ PCI_VENDOR_SUNDANCE, PCI_PRODUCT_SUNDANCE_ST2021 },
{ PCI_VENDOR_SUNDANCE, PCI_PRODUCT_SUNDANCE_TC9021 },
{ PCI_VENDOR_SUNDANCE, PCI_PRODUCT_SUNDANCE_TC9021_ALT },
{ PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021 },
{ PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT }
};
int
stge_match(struct device *parent, void *match, void *aux)
{
return (pci_matchbyid((struct pci_attach_args *)aux, stge_devices,
sizeof(stge_devices) / sizeof(stge_devices[0])));
}
void
stge_attach(struct device *parent, struct device *self, void *aux)
{
struct stge_softc *sc = (struct stge_softc *) self;
struct pci_attach_args *pa = aux;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr = NULL;
bus_space_tag_t iot, memt;
bus_space_handle_t ioh, memh;
bus_dma_segment_t seg;
bus_size_t iosize;
int ioh_valid, memh_valid;
int i, rseg, error;
timeout_set(&sc->sc_timeout, stge_tick, sc);
sc->sc_rev = PCI_REVISION(pa->pa_class);
/*
* Map the device.
*/
ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA,
PCI_MAPREG_TYPE_IO, 0,
&iot, &ioh, NULL, &iosize, 0) == 0);
memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA,
PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
&memt, &memh, NULL, &iosize, 0) == 0);
if (memh_valid) {
sc->sc_st = memt;
sc->sc_sh = memh;
} else if (ioh_valid) {
sc->sc_st = iot;
sc->sc_sh = ioh;
} else {
printf(": unable to map device registers\n");
return;
}
sc->sc_dmat = pa->pa_dmat;
/* Get it out of power save mode if needed. */
pci_set_powerstate(pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
/*
* Map and establish our interrupt.
*/
if (pci_intr_map(pa, &ih)) {
printf(": unable to map interrupt\n");
goto fail_0;
}
intrstr = pci_intr_string(pc, ih);
sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc,
sc->sc_dev.dv_xname);
if (sc->sc_ih == NULL) {
printf(": unable to establish interrupt");
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
goto fail_0;
}
printf(": %s", intrstr);
/*
* Allocate the control data structures, and create and load the
* DMA map for it.
*/
if ((error = bus_dmamem_alloc(sc->sc_dmat,
sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
0)) != 0) {
printf("%s: unable to allocate control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_0;
}
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
sizeof(struct stge_control_data), (caddr_t *)&sc->sc_control_data,
BUS_DMA_COHERENT)) != 0) {
printf("%s: unable to map control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_1;
}
if ((error = bus_dmamap_create(sc->sc_dmat,
sizeof(struct stge_control_data), 1,
sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
printf("%s: unable to create control data DMA map, "
"error = %d\n", sc->sc_dev.dv_xname, error);
goto fail_2;
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
sc->sc_control_data, sizeof(struct stge_control_data), NULL,
0)) != 0) {
printf("%s: unable to load control data DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_3;
}
/*
* Create the transmit buffer DMA maps. Note that rev B.3
* and earlier seem to have a bug regarding multi-fragment
* packets. We need to limit the number of Tx segments on
* such chips to 1.
*/
for (i = 0; i < STGE_NTXDESC; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat,
STGE_JUMBO_FRAMELEN, STGE_NTXFRAGS, MCLBYTES, 0, 0,
&sc->sc_txsoft[i].ds_dmamap)) != 0) {
printf("%s: unable to create tx DMA map %d, "
"error = %d\n", sc->sc_dev.dv_xname, i, error);
goto fail_4;
}
}
/*
* Create the receive buffer DMA maps.
*/
for (i = 0; i < STGE_NRXDESC; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
printf("%s: unable to create rx DMA map %d, "
"error = %d\n", sc->sc_dev.dv_xname, i, error);
goto fail_5;
}
sc->sc_rxsoft[i].ds_mbuf = NULL;
}
/*
* Determine if we're copper or fiber. It affects how we
* reset the card.
*/
if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
sc->sc_usefiber = 1;
else
sc->sc_usefiber = 0;
/*
* Reset the chip to a known state.
*/
stge_reset(sc);
/*
* Reading the station address from the EEPROM doesn't seem
* to work, at least on my sample boards. Instead, since
* the reset sequence does AutoInit, read it from the station
* address registers. For Sundance 1023 you can only read it
* from EEPROM.
*/
if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_SUNDANCE_ST1023) {
sc->sc_arpcom.ac_enaddr[0] = CSR_READ_2(sc,
STGE_StationAddress0) & 0xff;
sc->sc_arpcom.ac_enaddr[1] = CSR_READ_2(sc,
STGE_StationAddress0) >> 8;
sc->sc_arpcom.ac_enaddr[2] = CSR_READ_2(sc,
STGE_StationAddress1) & 0xff;
sc->sc_arpcom.ac_enaddr[3] = CSR_READ_2(sc,
STGE_StationAddress1) >> 8;
sc->sc_arpcom.ac_enaddr[4] = CSR_READ_2(sc,
STGE_StationAddress2) & 0xff;
sc->sc_arpcom.ac_enaddr[5] = CSR_READ_2(sc,
STGE_StationAddress2) >> 8;
sc->sc_stge1023 = 0;
} else {
uint16_t myaddr[ETHER_ADDR_LEN / 2];
for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
&myaddr[i]);
myaddr[i] = letoh16(myaddr[i]);
}
(void)memcpy(sc->sc_arpcom.ac_enaddr, myaddr,
sizeof(sc->sc_arpcom.ac_enaddr));
sc->sc_stge1023 = 1;
}
printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
/*
* Read some important bits from the PhyCtrl register.
*/
sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
(PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
/*
* Initialize our media structures and probe the MII.
*/
sc->sc_mii.mii_ifp = ifp;
sc->sc_mii.mii_readreg = stge_mii_readreg;
sc->sc_mii.mii_writereg = stge_mii_writereg;
sc->sc_mii.mii_statchg = stge_mii_statchg;
ifmedia_init(&sc->sc_mii.mii_media, 0, stge_mediachange,
stge_mediastatus);
mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, MIIF_DOPAUSE);
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
} else
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
ifp = &sc->sc_arpcom.ac_if;
strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, sizeof ifp->if_xname);
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = stge_ioctl;
ifp->if_start = stge_start;
ifp->if_watchdog = stge_watchdog;
#ifdef STGE_JUMBO
ifp->if_hardmtu = STGE_JUMBO_MTU;
#endif
ifq_init_maxlen(&ifp->if_snd, STGE_NTXDESC - 1);
ifp->if_capabilities = IFCAP_VLAN_MTU;
#if NVLAN > 0
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
#endif
/*
* The manual recommends disabling early transmit, so we
* do. It's disabled anyway, if using IP checksumming,
* since the entire packet must be in the FIFO in order
* for the chip to perform the checksum.
*/
sc->sc_txthresh = 0x0fff;
/*
* Disable MWI if the PCI layer tells us to.
*/
sc->sc_DMACtrl = 0;
#ifdef fake
if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
sc->sc_DMACtrl |= DMAC_MWIDisable;
#endif
#ifdef STGE_CHECKSUM
/*
* We can do IPv4/TCPv4/UDPv4 checksums in hardware.
*/
sc->sc_arpcom.ac_if.if_capabilities |= IFCAP_CSUM_IPv4 |
IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
#endif
/*
* Attach the interface.
*/
if_attach(ifp);
ether_ifattach(ifp);
return;
/*
* Free any resources we've allocated during the failed attach
* attempt. Do this in reverse order and fall through.
*/
fail_5:
for (i = 0; i < STGE_NRXDESC; i++) {
if (sc->sc_rxsoft[i].ds_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_rxsoft[i].ds_dmamap);
}
fail_4:
for (i = 0; i < STGE_NTXDESC; i++) {
if (sc->sc_txsoft[i].ds_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_txsoft[i].ds_dmamap);
}
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
fail_3:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
fail_2:
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
sizeof(struct stge_control_data));
fail_1:
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
fail_0:
bus_space_unmap(sc->sc_st, sc->sc_sh, iosize);
return;
}
static void
stge_dma_wait(struct stge_softc *sc)
{
int i;
for (i = 0; i < STGE_TIMEOUT; i++) {
delay(2);
if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
break;
}
if (i == STGE_TIMEOUT)
printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname);
}
/*
* stge_start: [ifnet interface function]
*
* Start packet transmission on the interface.
*/
void
stge_start(struct ifnet *ifp)
{
struct stge_softc *sc = ifp->if_softc;
struct mbuf *m0;
struct stge_descsoft *ds;
struct stge_tfd *tfd;
bus_dmamap_t dmamap;
int error, firsttx, nexttx, opending, seg, totlen;
uint64_t csum_flags = 0, tfc;
if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
return;
/*
* Remember the previous number of pending transmissions
* and the first descriptor we will use.
*/
opending = sc->sc_txpending;
firsttx = STGE_NEXTTX(sc->sc_txlast);
/*
* Loop through the send queue, setting up transmit descriptors
* until we drain the queue, or use up all available transmit
* descriptors.
*/
for (;;) {
/*
* Grab a packet off the queue.
*/
m0 = ifq_deq_begin(&ifp->if_snd);
if (m0 == NULL)
break;
/*
* Leave one unused descriptor at the end of the
* list to prevent wrapping completely around.
*/
if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
ifq_deq_rollback(&ifp->if_snd, m0);
break;
}
/*
* Get the last and next available transmit descriptor.
*/
nexttx = STGE_NEXTTX(sc->sc_txlast);
tfd = &sc->sc_txdescs[nexttx];
ds = &sc->sc_txsoft[nexttx];
dmamap = ds->ds_dmamap;
/*
* Load the DMA map. If this fails, the packet either
* didn't fit in the allotted number of segments, or we
* were short on resources. For the too-many-segments
* case, we simply report an error and drop the packet,
* since we can't sanely copy a jumbo packet to a single
* buffer.
*/
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
BUS_DMA_NOWAIT);
if (error) {
if (error == EFBIG) {
printf("%s: Tx packet consumes too many "
"DMA segments (%u), dropping...\n",
sc->sc_dev.dv_xname, dmamap->dm_nsegs);
ifq_deq_commit(&ifp->if_snd, m0);
m_freem(m0);
continue;
}
/*
* Short on resources, just stop for now.
*/
ifq_deq_rollback(&ifp->if_snd, m0);
break;
}
ifq_deq_commit(&ifp->if_snd, m0);
/*
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
*/
/* Sync the DMA map. */
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
/* Initialize the fragment list. */
for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
tfd->tfd_frags[seg].frag_word0 =
htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) |
FRAG_LEN(dmamap->dm_segs[seg].ds_len));
totlen += dmamap->dm_segs[seg].ds_len;
}
#ifdef STGE_CHECKSUM
/*
* Initialize checksumming flags in the descriptor.
* Byte-swap constants so the compiler can optimize.
*/
if (m0->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
csum_flags |= TFD_IPChecksumEnable;
if (m0->m_pkthdr.csum_flags & M_TCP_CSUM_OUT)
csum_flags |= TFD_TCPChecksumEnable;
else if (m0->m_pkthdr.csum_flags & M_UDP_CSUM_OUT)
csum_flags |= TFD_UDPChecksumEnable;
#endif
/*
* Initialize the descriptor and give it to the chip.
*/
tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) |
TFD_FragCount(seg) | csum_flags;
if ((nexttx & STGE_TXINTR_SPACING_MASK) == 0)
tfc |= TFD_TxDMAIndicate;
#if NVLAN > 0
/* Check if we have a VLAN tag to insert. */
if (m0->m_flags & M_VLANTAG)
tfc |= (TFD_VLANTagInsert |
TFD_VID(m0->m_pkthdr.ether_vtag));
#endif
tfd->tfd_control = htole64(tfc);
/* Sync the descriptor. */
STGE_CDTXSYNC(sc, nexttx,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* Kick the transmit DMA logic.
*/
CSR_WRITE_4(sc, STGE_DMACtrl,
sc->sc_DMACtrl | DMAC_TxDMAPollNow);
/*
* Store a pointer to the packet so we can free it later.
*/
ds->ds_mbuf = m0;
/* Advance the tx pointer. */
sc->sc_txpending++;
sc->sc_txlast = nexttx;
#if NBPFILTER > 0
/*
* Pass the packet to any BPF listeners.
*/
if (ifp->if_bpf)
bpf_mtap_ether(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
#endif /* NBPFILTER > 0 */
}
if (sc->sc_txpending == (STGE_NTXDESC - 1)) {
/* No more slots left; notify upper layer. */
ifq_set_oactive(&ifp->if_snd);
}
if (sc->sc_txpending != opending) {
/*
* We enqueued packets. If the transmitter was idle,
* reset the txdirty pointer.
*/
if (opending == 0)
sc->sc_txdirty = firsttx;
/* Set a watchdog timer in case the chip flakes out. */
ifp->if_timer = 5;
}
}
/*
* stge_watchdog: [ifnet interface function]
*
* Watchdog timer handler.
*/
void
stge_watchdog(struct ifnet *ifp)
{
struct stge_softc *sc = ifp->if_softc;
/*
* Sweep up first, since we don't interrupt every frame.
*/
stge_txintr(sc);
if (sc->sc_txpending != 0) {
printf("%s: device timeout\n", sc->sc_dev.dv_xname);
ifp->if_oerrors++;
(void) stge_init(ifp);
/* Try to get more packets going. */
stge_start(ifp);
}
}
/*
* stge_ioctl: [ifnet interface function]
*
* Handle control requests from the operator.
*/
int
stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct stge_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
if (!(ifp->if_flags & IFF_RUNNING))
stge_init(ifp);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING)
error = ENETRESET;
else
stge_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
stge_stop(ifp, 1);
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
break;
default:
error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
}
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
stge_iff(sc);
error = 0;
}
splx(s);
return (error);
}
/*
* stge_intr:
*
* Interrupt service routine.
*/
int
stge_intr(void *arg)
{
struct stge_softc *sc = arg;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
uint32_t txstat;
int wantinit;
uint16_t isr;
if ((CSR_READ_2(sc, STGE_IntStatus) & IS_InterruptStatus) == 0)
return (0);
for (wantinit = 0; wantinit == 0;) {
isr = CSR_READ_2(sc, STGE_IntStatusAck);
if ((isr & sc->sc_IntEnable) == 0)
break;
/* Host interface errors. */
if (isr & IS_HostError) {
printf("%s: Host interface error\n",
sc->sc_dev.dv_xname);
wantinit = 1;
continue;
}
/* Receive interrupts. */
if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) {
stge_rxintr(sc);
if (isr & IS_RFDListEnd) {
printf("%s: receive ring overflow\n",
sc->sc_dev.dv_xname);
/*
* XXX Should try to recover from this
* XXX more gracefully.
*/
wantinit = 1;
}
}
/* Transmit interrupts. */
if (isr & (IS_TxDMAComplete|IS_TxComplete))
stge_txintr(sc);
/* Statistics overflow. */
if (isr & IS_UpdateStats)
stge_stats_update(sc);
/* Transmission errors. */
if (isr & IS_TxComplete) {
for (;;) {
txstat = CSR_READ_4(sc, STGE_TxStatus);
if ((txstat & TS_TxComplete) == 0)
break;
if (txstat & TS_TxUnderrun) {
sc->sc_txthresh++;
if (sc->sc_txthresh > 0x0fff)
sc->sc_txthresh = 0x0fff;
printf("%s: transmit underrun, new "
"threshold: %d bytes\n",
sc->sc_dev.dv_xname,
sc->sc_txthresh << 5);
}
if (txstat & TS_MaxCollisions)
printf("%s: excessive collisions\n",
sc->sc_dev.dv_xname);
}
wantinit = 1;
}
}
if (wantinit)
stge_init(ifp);
CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
/* Try to get more packets going. */
stge_start(ifp);
return (1);
}
/*
* stge_txintr:
*
* Helper; handle transmit interrupts.
*/
void
stge_txintr(struct stge_softc *sc)
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct stge_descsoft *ds;
uint64_t control;
int i;
ifq_clr_oactive(&ifp->if_snd);
/*
* Go through our Tx list and free mbufs for those
* frames which have been transmitted.
*/
for (i = sc->sc_txdirty; sc->sc_txpending != 0;
i = STGE_NEXTTX(i), sc->sc_txpending--) {
ds = &sc->sc_txsoft[i];
STGE_CDTXSYNC(sc, i,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
control = letoh64(sc->sc_txdescs[i].tfd_control);
if ((control & TFD_TFDDone) == 0)
break;
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
m_freem(ds->ds_mbuf);
ds->ds_mbuf = NULL;
}
/* Update the dirty transmit buffer pointer. */
sc->sc_txdirty = i;
/*
* If there are no more pending transmissions, cancel the watchdog
* timer.
*/
if (sc->sc_txpending == 0)
ifp->if_timer = 0;
}
/*
* stge_rxintr:
*
* Helper; handle receive interrupts.
*/
void
stge_rxintr(struct stge_softc *sc)
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct stge_descsoft *ds;
struct mbuf *m, *tailm;
struct mbuf_list ml = MBUF_LIST_INITIALIZER();
uint64_t status;
int i, len;
for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) {
ds = &sc->sc_rxsoft[i];
STGE_CDRXSYNC(sc, i,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
status = letoh64(sc->sc_rxdescs[i].rfd_status);
if ((status & RFD_RFDDone) == 0)
break;
if (__predict_false(sc->sc_rxdiscard)) {
STGE_INIT_RXDESC(sc, i);
if (status & RFD_FrameEnd) {
/* Reset our state. */
sc->sc_rxdiscard = 0;
}
continue;
}
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
m = ds->ds_mbuf;
/*
* Add a new receive buffer to the ring.
*/
if (stge_add_rxbuf(sc, i) != 0) {
/*
* Failed, throw away what we've done so
* far, and discard the rest of the packet.
*/
ifp->if_ierrors++;
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
STGE_INIT_RXDESC(sc, i);
if ((status & RFD_FrameEnd) == 0)
sc->sc_rxdiscard = 1;
m_freem(sc->sc_rxhead);
STGE_RXCHAIN_RESET(sc);
continue;
}
#ifdef DIAGNOSTIC
if (status & RFD_FrameStart) {
KASSERT(sc->sc_rxhead == NULL);
KASSERT(sc->sc_rxtailp == &sc->sc_rxhead);
}
#endif
STGE_RXCHAIN_LINK(sc, m);
/*
* If this is not the end of the packet, keep
* looking.
*/
if ((status & RFD_FrameEnd) == 0) {
sc->sc_rxlen += m->m_len;
continue;
}
/*
* Okay, we have the entire packet now...
*/
*sc->sc_rxtailp = NULL;
m = sc->sc_rxhead;
tailm = sc->sc_rxtail;
STGE_RXCHAIN_RESET(sc);
/*
* If the packet had an error, drop it. Note we
* count the error later in the periodic stats update.
*/
if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
RFD_RxAlignmentError | RFD_RxFCSError |
RFD_RxLengthError)) {
m_freem(m);
continue;
}
/*
* No errors.
*
* Note we have configured the chip to not include
* the CRC at the end of the packet.
*/
len = RFD_RxDMAFrameLen(status);
tailm->m_len = len - sc->sc_rxlen;
/*
* If the packet is small enough to fit in a
* single header mbuf, allocate one and copy
* the data into it. This greatly reduces
* memory consumption when we receive lots
* of small packets.
*/
if (stge_copy_small != 0 && len <= (MHLEN - 2)) {
struct mbuf *nm;
MGETHDR(nm, M_DONTWAIT, MT_DATA);
if (nm == NULL) {
ifp->if_ierrors++;
m_freem(m);
continue;
}
nm->m_data += 2;
nm->m_pkthdr.len = nm->m_len = len;
m_copydata(m, 0, len, mtod(nm, caddr_t));
m_freem(m);
m = nm;
}
/*
* Set the incoming checksum information for the packet.
*/
if ((status & RFD_IPDetected) &&
(!(status & RFD_IPError)))
m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
if ((status & RFD_TCPDetected) &&
(!(status & RFD_TCPError)))
m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK;
else if ((status & RFD_UDPDetected) &&
(!(status & RFD_UDPError)))
m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK;
#if NVLAN > 0
/* Check for VLAN tagged packets. */
if (status & RFD_VLANDetected) {
m->m_pkthdr.ether_vtag = RFD_TCI(status);
m->m_flags |= M_VLANTAG;
}
#endif
m->m_pkthdr.len = len;
ml_enqueue(&ml, m);
}
/* Update the receive pointer. */
sc->sc_rxptr = i;
if_input(ifp, &ml);
}
/*
* stge_tick:
*
* One second timer, used to tick the MII.
*/
void
stge_tick(void *arg)
{
struct stge_softc *sc = arg;
int s;
s = splnet();
mii_tick(&sc->sc_mii);
stge_stats_update(sc);
splx(s);
timeout_add_sec(&sc->sc_timeout, 1);
}
/*
* stge_stats_update:
*
* Read the TC9021 statistics counters.
*/
void
stge_stats_update(struct stge_softc *sc)
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
(void) CSR_READ_4(sc, STGE_OctetRcvOk);
ifp->if_ierrors +=
(u_int) CSR_READ_2(sc, STGE_FramesLostRxErrors);
(void) CSR_READ_4(sc, STGE_OctetXmtdOk);
ifp->if_collisions +=
CSR_READ_4(sc, STGE_LateCollisions) +
CSR_READ_4(sc, STGE_MultiColFrames) +
CSR_READ_4(sc, STGE_SingleColFrames);
ifp->if_oerrors +=
(u_int) CSR_READ_2(sc, STGE_FramesAbortXSColls) +
(u_int) CSR_READ_2(sc, STGE_FramesWEXDeferal);
}
/*
* stge_reset:
*
* Perform a soft reset on the TC9021.
*/
void
stge_reset(struct stge_softc *sc)
{
uint32_t ac;
int i;
ac = CSR_READ_4(sc, STGE_AsicCtrl);
/*
* Only assert RstOut if we're fiber. We need GMII clocks
* to be present in order for the reset to complete on fiber
* cards.
*/
CSR_WRITE_4(sc, STGE_AsicCtrl,
ac | AC_GlobalReset | AC_RxReset | AC_TxReset |
AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
(sc->sc_usefiber ? AC_RstOut : 0));
delay(50000);
for (i = 0; i < STGE_TIMEOUT; i++) {
delay(5000);
if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
break;
}
if (i == STGE_TIMEOUT)
printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
delay(1000);
}
/*
* stge_init: [ ifnet interface function ]
*
* Initialize the interface. Must be called at splnet().
*/
int
stge_init(struct ifnet *ifp)
{
struct stge_softc *sc = ifp->if_softc;
struct stge_descsoft *ds;
int i, error = 0;
/*
* Cancel any pending I/O.
*/
stge_stop(ifp, 0);
/*
* Reset the chip to a known state.
*/
stge_reset(sc);
/*
* Initialize the transmit descriptor ring.
*/
memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
for (i = 0; i < STGE_NTXDESC; i++) {
sc->sc_txdescs[i].tfd_next = htole64(
STGE_CDTXADDR(sc, STGE_NEXTTX(i)));
sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone);
}
sc->sc_txpending = 0;
sc->sc_txdirty = 0;
sc->sc_txlast = STGE_NTXDESC - 1;
/*
* Initialize the receive descriptor and receive job
* descriptor rings.
*/
for (i = 0; i < STGE_NRXDESC; i++) {
ds = &sc->sc_rxsoft[i];
if (ds->ds_mbuf == NULL) {
if ((error = stge_add_rxbuf(sc, i)) != 0) {
printf("%s: unable to allocate or map rx "
"buffer %d, error = %d\n",
sc->sc_dev.dv_xname, i, error);
/*
* XXX Should attempt to run with fewer receive
* XXX buffers instead of just failing.
*/
stge_rxdrain(sc);
goto out;
}
} else
STGE_INIT_RXDESC(sc, i);
}
sc->sc_rxptr = 0;
sc->sc_rxdiscard = 0;
STGE_RXCHAIN_RESET(sc);
/* Set the station address. */
if (sc->sc_stge1023) {
CSR_WRITE_2(sc, STGE_StationAddress0,
sc->sc_arpcom.ac_enaddr[0] | sc->sc_arpcom.ac_enaddr[1] << 8);
CSR_WRITE_2(sc, STGE_StationAddress1,
sc->sc_arpcom.ac_enaddr[2] | sc->sc_arpcom.ac_enaddr[3] << 8);
CSR_WRITE_2(sc, STGE_StationAddress2,
sc->sc_arpcom.ac_enaddr[4] | sc->sc_arpcom.ac_enaddr[5] << 8);
} else {
for (i = 0; i < ETHER_ADDR_LEN; i++)
CSR_WRITE_1(sc, STGE_StationAddress0 + i,
sc->sc_arpcom.ac_enaddr[i]);
}
/*
* Set the statistics masks. Disable all the RMON stats,
* and disable selected stats in the non-RMON stats registers.
*/
CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
CSR_WRITE_4(sc, STGE_StatisticsMask,
(1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
(1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
(1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
(1U << 21));
/* Program promiscuous mode and multicast filters. */
stge_iff(sc);
/*
* Give the transmit and receive ring to the chip.
*/
CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */
CSR_WRITE_4(sc, STGE_TFDListPtrLo,
STGE_CDTXADDR(sc, sc->sc_txdirty));
CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */
CSR_WRITE_4(sc, STGE_RFDListPtrLo,
STGE_CDRXADDR(sc, sc->sc_rxptr));
/*
* Initialize the Tx auto-poll period. It's OK to make this number
* large (255 is the max, but we use 127) -- we explicitly kick the
* transmit engine when there's actually a packet.
*/
CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
/* ..and the Rx auto-poll period. */
CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 64);
/* Initialize the Tx start threshold. */
CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
/* RX DMA thresholds, from linux */
CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
/* Rx early threshold, from Linux */
CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
/* Tx DMA thresholds, from Linux */
CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
/*
* Initialize the Rx DMA interrupt control register. We
* request an interrupt after every incoming packet, but
* defer it for 32us (64 * 512 ns). When the number of
* interrupts pending reaches 8, we stop deferring the
* interrupt, and signal it immediately.
*/
CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512));
/*
* Initialize the interrupt mask.
*/
sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats |
IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
CSR_WRITE_2(sc, STGE_IntStatus, 0xffff);
CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
/*
* Configure the DMA engine.
* XXX Should auto-tune TxBurstLimit.
*/
CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl |
DMAC_TxBurstLimit(3));
/*
* Send a PAUSE frame when we reach 29,696 bytes in the Rx
* FIFO, and send an un-PAUSE frame when we reach 3056 bytes
* in the Rx FIFO.
*/
CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
/*
* Set the maximum frame size.
*/
#ifdef STGE_JUMBO
CSR_WRITE_2(sc, STGE_MaxFrameSize, STGE_JUMBO_FRAMELEN);
#else
CSR_WRITE_2(sc, STGE_MaxFrameSize, ETHER_MAX_LEN);
#endif
/*
* Initialize MacCtrl -- do it before setting the media,
* as setting the media will actually program the register.
*
* Note: We have to poke the IFS value before poking
* anything else.
*/
sc->sc_MACCtrl = MC_IFSSelect(0);
CSR_WRITE_4(sc, STGE_MACCtrl, sc->sc_MACCtrl);
if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
sc->sc_MACCtrl |= MC_AutoVLANuntagging;
sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
if (sc->sc_rev >= 6) { /* >= B.2 */
/* Multi-frag frame bug work-around. */
CSR_WRITE_2(sc, STGE_DebugCtrl,
CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
/* Tx Poll Now bug work-around. */
CSR_WRITE_2(sc, STGE_DebugCtrl,
CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
/* Rx Poll Now bug work-around. */
CSR_WRITE_2(sc, STGE_DebugCtrl,
CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
}
/*
* Set the current media.
*/
mii_mediachg(&sc->sc_mii);
/*
* Start the one second MII clock.
*/
timeout_add_sec(&sc->sc_timeout, 1);
/*
* ...all done!
*/
ifp->if_flags |= IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
out:
if (error)
printf("%s: interface not running\n", sc->sc_dev.dv_xname);
return (error);
}
/*
* stge_drain:
*
* Drain the receive queue.
*/
void
stge_rxdrain(struct stge_softc *sc)
{
struct stge_descsoft *ds;
int i;
for (i = 0; i < STGE_NRXDESC; i++) {
ds = &sc->sc_rxsoft[i];
if (ds->ds_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
ds->ds_mbuf->m_next = NULL;
m_freem(ds->ds_mbuf);
ds->ds_mbuf = NULL;
}
}
}
/*
* stge_stop: [ ifnet interface function ]
*
* Stop transmission on the interface.
*/
void
stge_stop(struct ifnet *ifp, int disable)
{
struct stge_softc *sc = ifp->if_softc;
struct stge_descsoft *ds;
int i;
/*
* Stop the one second clock.
*/
timeout_del(&sc->sc_timeout);
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp->if_flags &= ~IFF_RUNNING;
ifq_clr_oactive(&ifp->if_snd);
ifp->if_timer = 0;
/* Down the MII. */
mii_down(&sc->sc_mii);
/*
* Disable interrupts.
*/
CSR_WRITE_2(sc, STGE_IntEnable, 0);
/*
* Stop receiver, transmitter, and stats update.
*/
CSR_WRITE_4(sc, STGE_MACCtrl,
MC_StatisticsDisable | MC_TxDisable | MC_RxDisable);
/*
* Stop the transmit and receive DMA.
*/
stge_dma_wait(sc);
CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
/*
* Release any queued transmit buffers.
*/
for (i = 0; i < STGE_NTXDESC; i++) {
ds = &sc->sc_txsoft[i];
if (ds->ds_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
m_freem(ds->ds_mbuf);
ds->ds_mbuf = NULL;
}
}
if (disable)
stge_rxdrain(sc);
}
static int
stge_eeprom_wait(struct stge_softc *sc)
{
int i;
for (i = 0; i < STGE_TIMEOUT; i++) {
delay(1000);
if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
return (0);
}
return (1);
}
/*
* stge_read_eeprom:
*
* Read data from the serial EEPROM.
*/
void
stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
{
if (stge_eeprom_wait(sc))
printf("%s: EEPROM failed to come ready\n",
sc->sc_dev.dv_xname);
CSR_WRITE_2(sc, STGE_EepromCtrl,
EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
if (stge_eeprom_wait(sc))
printf("%s: EEPROM read timed out\n",
sc->sc_dev.dv_xname);
*data = CSR_READ_2(sc, STGE_EepromData);
}
/*
* stge_add_rxbuf:
*
* Add a receive buffer to the indicated descriptor.
*/
int
stge_add_rxbuf(struct stge_softc *sc, int idx)
{
struct stge_descsoft *ds = &sc->sc_rxsoft[idx];
struct mbuf *m;
int error;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return (ENOBUFS);
}
m->m_data = m->m_ext.ext_buf + 2;
m->m_len = MCLBYTES - 2;
if (ds->ds_mbuf != NULL)
bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
ds->ds_mbuf = m;
error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
if (error) {
printf("%s: can't load rx DMA map %d, error = %d\n",
sc->sc_dev.dv_xname, idx, error);
panic("stge_add_rxbuf"); /* XXX */
}
bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
STGE_INIT_RXDESC(sc, idx);
return (0);
}
/*
* stge_iff:
*
* Set up the receive filter.
*/
void
stge_iff(struct stge_softc *sc)
{
struct arpcom *ac = &sc->sc_arpcom;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct ether_multi *enm;
struct ether_multistep step;
uint32_t crc;
uint32_t mchash[2];
memset(mchash, 0, sizeof(mchash));
ifp->if_flags &= ~IFF_ALLMULTI;
/*
* Always accept broadcast packets.
* Always accept frames destined to our station address.
*/
sc->sc_ReceiveMode = RM_ReceiveBroadcast | RM_ReceiveUnicast;
if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
ifp->if_flags |= IFF_ALLMULTI;
if (ifp->if_flags & IFF_PROMISC)
sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
else
sc->sc_ReceiveMode |= RM_ReceiveMulticast;
} else {
/*
* Set up the multicast address filter by passing all
* multicast addresses through a CRC generator, and then
* using the low-order 6 bits as an index into the 64 bit
* multicast hash table. The high order bits select the
* register, while the rest of the bits select the bit
* within the register.
*/
sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
crc = ether_crc32_be(enm->enm_addrlo,
ETHER_ADDR_LEN);
/* Just want the 6 least significant bits. */
crc &= 0x3f;
/* Set the corresponding bit in the hash table. */
mchash[crc >> 5] |= 1 << (crc & 0x1f);
ETHER_NEXT_MULTI(step, enm);
}
}
CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
CSR_WRITE_2(sc, STGE_ReceiveMode, sc->sc_ReceiveMode);
}
/*
* stge_mii_readreg: [mii interface function]
*
* Read a PHY register on the MII of the TC9021.
*/
int
stge_mii_readreg(struct device *self, int phy, int reg)
{
return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg));
}
/*
* stge_mii_writereg: [mii interface function]
*
* Write a PHY register on the MII of the TC9021.
*/
void
stge_mii_writereg(struct device *self, int phy, int reg, int val)
{
mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val);
}
/*
* stge_mii_statchg: [mii interface function]
*
* Callback from MII layer when media changes.
*/
void
stge_mii_statchg(struct device *self)
{
struct stge_softc *sc = (struct stge_softc *) self;
struct mii_data *mii = &sc->sc_mii;
sc->sc_MACCtrl &= ~(MC_DuplexSelect | MC_RxFlowControlEnable |
MC_TxFlowControlEnable);
if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
sc->sc_MACCtrl |= MC_DuplexSelect;
if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_RXPAUSE) != 0)
sc->sc_MACCtrl |= MC_RxFlowControlEnable;
if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_TXPAUSE) != 0)
sc->sc_MACCtrl |= MC_TxFlowControlEnable;
CSR_WRITE_4(sc, STGE_MACCtrl, sc->sc_MACCtrl);
}
/*
* sste_mii_bitbang_read: [mii bit-bang interface function]
*
* Read the MII serial port for the MII bit-bang module.
*/
uint32_t
stge_mii_bitbang_read(struct device *self)
{
struct stge_softc *sc = (void *) self;
return (CSR_READ_1(sc, STGE_PhyCtrl));
}
/*
* stge_mii_bitbang_write: [mii big-bang interface function]
*
* Write the MII serial port for the MII bit-bang module.
*/
void
stge_mii_bitbang_write(struct device *self, uint32_t val)
{
struct stge_softc *sc = (void *) self;
CSR_WRITE_1(sc, STGE_PhyCtrl, val | sc->sc_PhyCtrl);
}
/*
* stge_mediastatus: [ifmedia interface function]
*
* Get the current interface media status.
*/
void
stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct stge_softc *sc = ifp->if_softc;
mii_pollstat(&sc->sc_mii);
ifmr->ifm_status = sc->sc_mii.mii_media_status;
ifmr->ifm_active = sc->sc_mii.mii_media_active;
}
/*
* stge_mediachange: [ifmedia interface function]
*
* Set hardware to newly-selected media.
*/
int
stge_mediachange(struct ifnet *ifp)
{
struct stge_softc *sc = ifp->if_softc;
if (ifp->if_flags & IFF_UP)
mii_mediachg(&sc->sc_mii);
return (0);
}